JP2007285156A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2007285156A
JP2007285156A JP2006110929A JP2006110929A JP2007285156A JP 2007285156 A JP2007285156 A JP 2007285156A JP 2006110929 A JP2006110929 A JP 2006110929A JP 2006110929 A JP2006110929 A JP 2006110929A JP 2007285156 A JP2007285156 A JP 2007285156A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
internal combustion
combustion engine
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006110929A
Other languages
Japanese (ja)
Inventor
Mikio Inoue
三樹男 井上
Taro Aoyama
太郎 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006110929A priority Critical patent/JP2007285156A/en
Publication of JP2007285156A publication Critical patent/JP2007285156A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology capable of favorably performing the air-fuel ratio degradation control by suppressing degradation of the fuel economy in the air-fuel ratio degradation control in an exhaust emission control device of an internal combustion engine. <P>SOLUTION: In the exhaust emission control device of the internal combustion engine for regenerating the performance of a NOx catalyst by performing the rich spike control for degrading the air-fuel ratio of an exhaust gas by feeding a fuel to the exhaust gas of the internal combustion engine, the wall temperature of an exhaust gas passage is estimated, and the execution permission is determined for permitting the execution of the rich spike control when the estimated wall temperature exceeds the predetermined value, and prohibiting the execution of the rich spike control when the estimated wall temperature is lower than the predetermined value. The estimated wall temperature is corrected for determining acceptance/rejection of the next rich spike control based on the gradient of the change in the air-fuel ratio when the air-fuel ratio is degraded in the rich spike control under execution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気に燃料を供給して排気の空燃比を低下させる空燃比低下制御を行うことで、排気浄化触媒の性能を再生する内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine that regenerates the performance of an exhaust gas purification catalyst by performing air-fuel ratio lowering control for reducing the air-fuel ratio of the exhaust gas by supplying fuel to the exhaust gas of the internal combustion engine.

ディーゼル機関などの内燃機関の排気通路に、吸蔵還元型NOx触媒(以下、「NOx触媒」という。)を配置し、窒素酸化物(以下、「NOx」という。)を除去して排気を浄化する技術が知られている。   An NOx storage reduction catalyst (hereinafter referred to as “NOx catalyst”) is disposed in an exhaust passage of an internal combustion engine such as a diesel engine, and nitrogen oxides (hereinafter referred to as “NOx”) are removed to purify the exhaust gas. Technology is known.

排気通路にNOx触媒が備えられている場合には、NOx触媒のNOx吸蔵能力を再生するために、NOx触媒に吸蔵されたNOxあるいは硫黄酸化物(以下、「SOx」という。)を放出及び還元して除去する必要がある。そのために、例えばNOx触媒より上流の排気通路に取り付けた還元剤添加弁から還元剤である燃料を供給し、NOx触媒に流入する排気の空燃比を理論空燃比あるいはリッチ(理論空燃比以下)に低下させている。   When the NOx catalyst is provided in the exhaust passage, NOx or sulfur oxide (hereinafter referred to as “SOx”) stored in the NOx catalyst is released and reduced in order to regenerate the NOx storage capacity of the NOx catalyst. Need to be removed. For this purpose, for example, a fuel as a reducing agent is supplied from a reducing agent addition valve attached to an exhaust passage upstream of the NOx catalyst, and the air-fuel ratio of the exhaust flowing into the NOx catalyst is made the stoichiometric air-fuel ratio or rich (below the stoichiometric air-fuel ratio). It is decreasing.

そして、排気通路の壁温が低い場合には、排気の空燃比を理論空燃比あるいはリッチに低下させることを中止する技術が提案されている(例えば、特許文献1参照)。
特開2004−339974号公報 特開2002−38925号公報
And when the wall temperature of an exhaust passage is low, the technique which stops reducing the air fuel ratio of exhaust_gas | exhaustion to a theoretical air fuel ratio or rich is proposed (for example, refer patent document 1).
JP 2004-339974 A JP 2002-38925 A

本発明の目的とするところは、内燃機関の排気浄化装置において、空燃比低下制御における燃費の悪化を抑制し、空燃比低下制御をより好適に実行する技術を提供することにある。   An object of the present invention is to provide a technique for suppressing the deterioration of fuel efficiency in air-fuel ratio lowering control and executing air-fuel ratio lowering control more suitably in an exhaust gas purification apparatus for an internal combustion engine.

本発明にあっては、以下の構成を採用する。すなわち、
内燃機関の排気に燃料を供給して排気の空燃比を低下させる空燃比低下制御を行うことで、排気浄化触媒の性能を再生する内燃機関の排気浄化装置において、
内燃機関の排気通路中の特定部位の壁温を推定し、当該推定壁温が所定温度以上であると空燃比低下制御の実行を許可し、前記推定壁温が前記所定温度より低いと空燃比低下制御の実行を禁止する実行許可判定手段と、
実行中の空燃比低下制御における空燃比低下時の空燃比変化の傾きに基づいて、次回の前記実行許可判定手段による前記空燃比低下制御の可否の判定について前記推定壁温の補正又は所定温度の変更を行う補正変更手段と、
を備えることを特徴とする内燃機関の排気浄化装置である。
In the present invention, the following configuration is adopted. That is,
In an exhaust gas purification apparatus for an internal combustion engine that regenerates the performance of an exhaust gas purification catalyst by performing air-fuel ratio lowering control that lowers the air-fuel ratio of the exhaust gas by supplying fuel to the exhaust gas of the internal combustion engine,
The wall temperature of a specific part in the exhaust passage of the internal combustion engine is estimated. When the estimated wall temperature is equal to or higher than a predetermined temperature, execution of air-fuel ratio reduction control is permitted. When the estimated wall temperature is lower than the predetermined temperature, the air-fuel ratio is Execution permission determination means for prohibiting execution of the decrease control;
Based on the gradient of the air-fuel ratio change at the time of air-fuel ratio decrease during the air-fuel ratio decrease control being executed, the estimated wall temperature correction or the predetermined temperature Correction changing means for changing, and
An exhaust emission control device for an internal combustion engine, comprising:

ここで、所定温度は予め算出される温度であり、それよりも前記推定壁温が低い場合には空燃比低下制御を実行しても排気浄化触媒の性能を再生することができず、排気に供給する燃料が無駄になると考えられる閾値の温度である。   Here, the predetermined temperature is a temperature calculated in advance, and if the estimated wall temperature is lower than that, the performance of the exhaust purification catalyst cannot be regenerated even if the air-fuel ratio lowering control is executed, This is a threshold temperature at which the supplied fuel is considered to be wasted.

これによると、次回の空燃比低下制御の可否判定が、事前の実行中の空燃比低下制御における空燃比低下時の空燃比変化の傾きに基づいた学習で調整され、次回の空燃比低下制御の実行がより好適に行えるようになる。言い換えれば、空燃比低下制御が無駄になる状況で空燃比低下制御が実行されることが抑制されると共に、空燃比低下制御が好適に実行可能な状況で空燃比低下制御が実行されることが促進される。このため、空燃比低下制御
における燃費の悪化をより好適に抑制し、空燃比低下制御をより好適に実行することができる。
According to this, whether or not the next air-fuel ratio lowering control is possible is adjusted by learning based on the gradient of the air-fuel ratio change at the time of air-fuel ratio lowering in the previously executed air-fuel ratio lowering control, and the next air-fuel ratio lowering control is performed. Execution can be performed more suitably. In other words, the air-fuel ratio lowering control is suppressed from being executed in a situation where the air-fuel ratio lowering control is wasted, and the air-fuel ratio lowering control is executed in a situation where the air-fuel ratio lowering control can be suitably executed. Promoted. For this reason, the deterioration of the fuel consumption in the air-fuel ratio lowering control can be suppressed more suitably, and the air-fuel ratio lowering control can be more suitably executed.

前記補正変更手段は、前記空燃比変化の傾きの絶対値が第1所定値よりも小さい場合には、次回の前記実行許可判定手段による前記空燃比低下制御の可否判定について前記推定壁温を低温側へ補正するとよい。   When the absolute value of the gradient of the air-fuel ratio change is smaller than a first predetermined value, the correction changing unit lowers the estimated wall temperature for the next determination of whether or not the air-fuel ratio decrease control is performed by the execution permission determining unit. It is good to correct to the side.

ここで、第1所定値は予め算出される値であり、それよりも空燃比変化の傾きの絶対値が小さいと前記推定壁温を低温側へ補正する閾値である。   Here, the first predetermined value is a value calculated in advance, and is a threshold value for correcting the estimated wall temperature to the low temperature side when the absolute value of the gradient of the air-fuel ratio change is smaller than that.

これによると、次回の前記実行許可判定手段による前記空燃比低下制御の可否判定で推定壁温が低温側へ補正され、実行中の空燃比低下制御を許可した際の壁温よりも実際の壁温がより高温にならないと次回の空燃比低下制御は許可されなくなる。よって、実際の壁温が低温で燃料が排気通路に付着して排気浄化触媒まで直達し難く排気浄化触媒の性能の再生が困難な場合のような、空燃比低下制御が無駄になる状況において空燃比低下制御が実行されることが抑制される。したがって、空燃比低下制御における燃費の悪化が抑制できる。   According to this, the estimated wall temperature is corrected to the low temperature side in the next determination of whether or not the air-fuel ratio decrease control is performed by the execution permission determination means, and the actual wall temperature is higher than the wall temperature when the air-fuel ratio decrease control being performed is permitted. If the temperature does not become higher, the next air-fuel ratio lowering control is not permitted. Therefore, when the actual wall temperature is low and the fuel adheres to the exhaust passage, it is difficult to reach the exhaust purification catalyst and it is difficult to regenerate the performance of the exhaust purification catalyst. Execution of the fuel ratio reduction control is suppressed. Therefore, the deterioration of the fuel consumption in the air-fuel ratio reduction control can be suppressed.

前記補正変更手段は、前記空燃比変化の傾きの絶対値が第1所定値よりも小さい場合には、次回の前記実行許可判定手段による前記空燃比低下制御の可否判定について前記所定温度を高温側へ変更するとよい。   When the absolute value of the gradient of the air-fuel ratio change is smaller than a first predetermined value, the correction changing means sets the predetermined temperature to a higher temperature side for the next determination of whether or not the air-fuel ratio lowering control is performed by the execution permission determining means. It is good to change to.

ここで、第1所定値は予め算出される値であり、それよりも空燃比変化の傾きの絶対値が小さいと所定温度を高温側へ変更する閾値である。   Here, the first predetermined value is a value calculated in advance, and is a threshold value for changing the predetermined temperature to the high temperature side when the absolute value of the gradient of the air-fuel ratio change is smaller than that.

これによると、次回の前記実行許可判定手段による前記空燃比低下制御の可否判定における所定温度が高温側へ変更され、実行中の空燃比低下制御を許可した際の壁温よりも実際の壁温がより高温にならないと次回の空燃比低下制御は許可されなくなる。よって、実際の壁温が低温で燃料が排気通路に付着して排気浄化触媒まで直達し難く排気浄化触媒の性能の再生が困難な場合のような、空燃比低下制御が無駄になる状況において空燃比低下制御が実行されることが抑制される。したがって、空燃比低下制御における燃費の悪化が抑制できる。   According to this, the predetermined temperature in the next determination of whether or not the air-fuel ratio lowering control is performed by the execution permission determining means is changed to the high temperature side, and the actual wall temperature is higher than the wall temperature when the air-fuel ratio lowering control being performed is permitted. If the temperature does not become higher, the next air-fuel ratio lowering control is not permitted. Therefore, when the actual wall temperature is low and the fuel adheres to the exhaust passage, it is difficult to reach the exhaust purification catalyst and it is difficult to regenerate the performance of the exhaust purification catalyst. Execution of the fuel ratio reduction control is suppressed. Therefore, the deterioration of the fuel consumption in the air-fuel ratio reduction control can be suppressed.

前記補正変更手段は、前記空燃比変化の傾きの絶対値が第2所定値よりも大きい場合には、次回の前記実行許可判定手段による前記空燃比低下制御の可否判定について前記推定壁温を高温側へ補正するとよい。   When the absolute value of the gradient of the air-fuel ratio change is greater than a second predetermined value, the correction change unit increases the estimated wall temperature for the next determination of whether or not the air-fuel ratio decrease control is performed by the execution permission determination unit. It is good to correct to the side.

ここで、第2所定値は予め算出される値であり、それよりも空燃比変化の傾きの絶対値が大きいと前記推定壁温を高温側へ補正する閾値である。   Here, the second predetermined value is a value calculated in advance, and is a threshold value for correcting the estimated wall temperature to the high temperature side when the absolute value of the gradient of the air-fuel ratio change is larger than that.

これによると、次回の前記実行許可判定手段による前記空燃比低下制御の可否判定における推定壁温が高温側へ補正され、実行中の空燃比低下制御を許可した際の壁温よりも実際の壁温がより低温であっても次回の空燃比低下制御は許可される。よって、実際の壁温が高温で燃料が排気浄化触媒まで直達し易く排気浄化触媒の性能の再生が可能な場合のような、空燃比低下制御が好適に実行可能な状況において空燃比低下制御が実行されることが促進される。したがって、空燃比低下制御がより好適に実行できる。   According to this, the estimated wall temperature in the next determination of whether or not the air-fuel ratio lowering control is performed by the execution permission determining means is corrected to the high temperature side, and the actual wall temperature is higher than the wall temperature when the air-fuel ratio lowering control being performed is permitted. Even if the temperature is lower, the next air-fuel ratio lowering control is permitted. Therefore, the air-fuel ratio lowering control is performed in a situation where the air-fuel ratio lowering control can be suitably executed, such as when the actual wall temperature is high and the fuel easily reaches the exhaust purification catalyst and the performance of the exhaust purification catalyst can be regenerated. It is promoted to be executed. Therefore, the air-fuel ratio reduction control can be executed more suitably.

前記補正変更手段は、前記空燃比変化の傾きの絶対値が第2所定値よりも大きい場合には、次回の前記実行許可判定手段による前記空燃比低下制御の可否判定について前記所定温度を低温側へ変更するとよい。   When the absolute value of the gradient of the air-fuel ratio change is greater than a second predetermined value, the correction changing means sets the predetermined temperature to a low temperature side for the next determination of whether or not the air-fuel ratio decrease control is performed by the execution permission determining means. It is good to change to.

ここで、第2所定値は予め算出される値であり、それよりも空燃比変化の傾きの絶対値が大きいと所定温度を低温側へ変更する閾値である。   Here, the second predetermined value is a value calculated in advance, and is a threshold value for changing the predetermined temperature to the low temperature side when the absolute value of the gradient of the air-fuel ratio change is larger than that.

これによると、次回の前記実行許可判定手段による前記空燃比低下制御の可否判定における所定温度が低温側へ変更され、実行中の空燃比低下制御を許可した際の壁温よりも実際の壁温がより低温であっても次回の空燃比低下制御は許可される。よって、実際の壁温が高温で燃料が排気浄化触媒まで直達し易く排気浄化触媒の性能の再生が可能な場合のような、空燃比低下制御が好適に実行可能な状況において空燃比低下制御が実行されることが促進される。したがって、空燃比低下制御がより好適に実行できる。   According to this, the predetermined temperature in the next determination of whether or not the air-fuel ratio decrease control by the execution permission determination means is changed to the low temperature side, and the actual wall temperature is higher than the wall temperature when the air-fuel ratio decrease control being performed is permitted. Even if the temperature is lower, the next air-fuel ratio lowering control is permitted. Therefore, the air-fuel ratio lowering control is performed in a situation where the air-fuel ratio lowering control can be suitably executed, such as when the actual wall temperature is high and the fuel easily reaches the exhaust purification catalyst and the performance of the exhaust purification catalyst can be regenerated. It is promoted to be executed. Therefore, the air-fuel ratio reduction control can be executed more suitably.

前記第1所定値又は前記第2所定値は、空燃比低下制御の実行の度に吸入空気量に基づいて変更されるとよい。   The first predetermined value or the second predetermined value may be changed based on the intake air amount every time the air-fuel ratio lowering control is executed.

これによると、吸入空気量によって燃料の輸送遅れが変化し、前記空燃比変化の傾きの値に影響を及ぼしてしまうような状況においても、この変化を考慮して第1所定値又は第2所定値を定めることができる。   According to this, even in a situation where the fuel transportation delay changes depending on the intake air amount and affects the slope value of the air-fuel ratio change, the first predetermined value or the second predetermined value is taken into consideration. A value can be defined.

内燃機関の排気に燃料を供給して排気の空燃比を低下させる空燃比低下制御を行うことで、排気浄化触媒の性能を再生する内燃機関の排気浄化装置において、
内燃機関の排気通路中の特定部位の壁温を推定し、当該推定壁温に基づいて空燃比低下制御における燃料の供給量を算出する供給量算出手段を備え、
前記供給量算出手段は、実行中の空燃比低下制御における空燃比低下時の空燃比変化の傾きに基づいて、前記推定壁温の補正を行うことで、次回の空燃比低下制御についての燃料の供給量を変更することを特徴とする内燃機関の排気浄化装置である。
In an exhaust gas purification apparatus for an internal combustion engine that regenerates the performance of an exhaust gas purification catalyst by performing air-fuel ratio lowering control that lowers the air-fuel ratio of the exhaust gas by supplying fuel to the exhaust gas of the internal combustion engine,
A supply amount calculating means for estimating a wall temperature of a specific part in the exhaust passage of the internal combustion engine and calculating a fuel supply amount in the air-fuel ratio reduction control based on the estimated wall temperature;
The supply amount calculation means corrects the estimated wall temperature based on the slope of the air-fuel ratio change at the time of air-fuel ratio decrease in the air-fuel ratio decrease control that is being executed, so that the fuel for the next air-fuel ratio decrease control is corrected. An exhaust emission control device for an internal combustion engine, characterized in that a supply amount is changed.

これによると、事前の実行中の空燃比低下制御における空燃比低下時の空燃比変化の傾きに基づいた学習で推定壁温が補正され、推定壁温に基づいて算出される次回の空燃比低下制御についての燃料の供給量がより好適な量となる。このため、空燃比低下制御における燃費の悪化を抑制し、空燃比低下制御をより好適に実行することができる。   According to this, the estimated wall temperature is corrected by learning based on the gradient of the air-fuel ratio change at the time of air-fuel ratio decrease in the air-fuel ratio decrease control that is being executed in advance, and the next air-fuel ratio decrease calculated based on the estimated wall temperature The amount of fuel supplied for control becomes a more suitable amount. For this reason, the deterioration of the fuel consumption in the air-fuel ratio reduction control can be suppressed, and the air-fuel ratio reduction control can be executed more suitably.

内燃機関の排気に燃料を供給して排気の空燃比を低下させる空燃比低下制御を行うことで、排気浄化触媒の性能を再生する内燃機関の排気浄化装置において、
実行中の空燃比低下制御における空燃比低下時の空燃比変化の傾きの絶対値が第3所定値よりも小さい場合には、実行中の空燃比低下制御を中止する制御中止手段を備えることを特徴とする内燃機関の排気浄化装置である。
In an exhaust gas purification apparatus for an internal combustion engine that regenerates the performance of an exhaust gas purification catalyst by performing air-fuel ratio lowering control that lowers the air-fuel ratio of the exhaust gas by supplying fuel to the exhaust gas of the internal combustion engine,
A control stopping means for stopping the air-fuel ratio lowering control being executed when the absolute value of the slope of the air-fuel ratio change at the time of air-fuel ratio lowering is smaller than the third predetermined value in the air-fuel ratio lowering control being executed; An exhaust gas purification apparatus for an internal combustion engine characterized by the above.

ここで、第3所定値は予め算出される値であり、それよりも空燃比変化の傾きの絶対値が小さいと実行中の空燃比低下制御を中止する閾値である。   Here, the third predetermined value is a value calculated in advance, and is a threshold value at which the air-fuel ratio reduction control being executed is stopped when the absolute value of the gradient of the air-fuel ratio change is smaller than that.

これによると、実行中の空燃比低下制御について中止要否判断される。そして、空燃比低下制御が無駄になる状況であるにも拘わらず空燃比低下制御が実行中であれば、実行中の空燃比低下制御が中止される。このため、空燃比低下制御における燃費の悪化を抑制し、空燃比低下制御をより好適に実行することができる。   According to this, it is determined whether or not the air-fuel ratio reduction control being executed is to be stopped. If the air-fuel ratio lowering control is being executed despite the situation where the air-fuel ratio lowering control is wasted, the air-fuel ratio lowering control being executed is stopped. For this reason, the deterioration of the fuel consumption in the air-fuel ratio reduction control can be suppressed, and the air-fuel ratio reduction control can be executed more suitably.

本発明によると、内燃機関の排気浄化装置において、空燃比低下制御における燃費の悪化を抑制し、空燃比低下制御をより好適に実行することが可能となる。   According to the present invention, in the exhaust gas purification apparatus for an internal combustion engine, it is possible to suppress the deterioration of fuel consumption in the air-fuel ratio lowering control, and more appropriately execute the air-fuel ratio lowering control.

以下に本発明の具体的な実施例を説明する。   Specific examples of the present invention will be described below.

<実施例1>
図1は、本発明の実施例1に係る排気浄化装置を適用する内燃機関とその吸排気系の概略構成を示す図である。
<Example 1>
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which an exhaust gas purification apparatus according to Embodiment 1 of the present invention is applied and its intake / exhaust system.

図1に示す内燃機関1は、4つの気筒を有する水冷式の4サイクル・ディーゼル機関であり、各気筒の燃焼室に直接燃料を噴射する燃料噴射弁を備えている。   An internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine having four cylinders, and includes a fuel injection valve that directly injects fuel into a combustion chamber of each cylinder.

内燃機関1からは吸気通路2が延びている。吸気通路2の途中には、内燃機関1に取り込む吸入空気量を検出するエアフロメータ3が設けられている。   An intake passage 2 extends from the internal combustion engine 1. An air flow meter 3 for detecting the amount of intake air taken into the internal combustion engine 1 is provided in the intake passage 2.

一方、内燃機関1からは排気通路4が延びている。排気通路4は、下流にて不図示のマフラーと接続されている。排気通路4の途中には、内燃機関1の気筒から排出される排気を浄化するための吸蔵還元型NOx触媒(以下、NOx触媒という)5が配置されている。   On the other hand, an exhaust passage 4 extends from the internal combustion engine 1. The exhaust passage 4 is connected to a muffler (not shown) downstream. An occlusion reduction type NOx catalyst (hereinafter referred to as NOx catalyst) 5 for purifying the exhaust discharged from the cylinder of the internal combustion engine 1 is disposed in the middle of the exhaust passage 4.

また、NOx触媒5より上流側の排気通路4には、排気通路4内を流通する排気中に還元剤たる燃料を供給する燃料添加弁6が取り付けられている。   A fuel addition valve 6 is attached to the exhaust passage 4 upstream of the NOx catalyst 5 to supply fuel as a reducing agent into the exhaust gas flowing through the exhaust passage 4.

また、燃料添加弁6より下流側且つNOx触媒5の直上流側の排気通路4には、排気の空燃比を検出する空燃比センサ7が設けられている。   An air-fuel ratio sensor 7 for detecting the air-fuel ratio of the exhaust is provided in the exhaust passage 4 downstream of the fuel addition valve 6 and immediately upstream of the NOx catalyst 5.

以上の構成の内燃機関1には、内燃機関1を制御するための電子制御ユニット(ECU:Electronic Control Unit)8が併設されている。このECU8は、CPU、ROM、
RAM、バックアップRAMなどからなる制御コンピュータである。
The internal combustion engine 1 having the above configuration is provided with an electronic control unit (ECU) 8 for controlling the internal combustion engine 1. The ECU 8 includes a CPU, a ROM,
A control computer including a RAM, a backup RAM, and the like.

ECU8には、エアフロメータ3や空燃比センサ7が電気的に接続されており、エアフロメータ3や空燃比センサ7の出力信号がECU8に入力される。また、ECU8には、燃料添加弁6が電気的に接続されており、ECU8が燃料添加弁6での燃料供給/停止や燃料供給量を調節することが可能になっている。   The air flow meter 3 and the air-fuel ratio sensor 7 are electrically connected to the ECU 8, and output signals from the air flow meter 3 and the air-fuel ratio sensor 7 are input to the ECU 8. Further, the fuel addition valve 6 is electrically connected to the ECU 8 so that the ECU 8 can adjust the fuel supply / stop and the fuel supply amount at the fuel addition valve 6.

ここで、内燃機関1に配置されるNOx触媒5は、NOx触媒5に流入する排気の空燃比がリーン(理論空燃比以上)であるときには、排気中のNOxを吸蔵して大気中に放出しないようにし、NOx触媒5に流入する排気の空燃比が理論空燃比あるいはリッチであるときには、吸蔵されていたNOxを放出及び還元して除去するものである。また、NOx触媒5は、NOx触媒5に流入する排気の空燃比がリーンであるときには、排気中のSOxをも吸蔵してしまう。   Here, the NOx catalyst 5 disposed in the internal combustion engine 1 occludes NOx in the exhaust and does not release it into the atmosphere when the air-fuel ratio of the exhaust flowing into the NOx catalyst 5 is lean (stoichiometric air-fuel ratio or higher). Thus, when the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 5 is the stoichiometric air-fuel ratio or rich, the stored NOx is released and reduced to be removed. Further, when the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 5 is lean, the NOx catalyst 5 also stores SOx in the exhaust gas.

このため、内燃機関1が希薄燃焼運転されている場合には、内燃機関1から排出される排気の空燃比がリーンとなり排気の酸素濃度が高くなるため、排気中に含まれるNOxあるいはSOxがNOx触媒5に吸蔵されることになるが、内燃機関1の希薄燃焼運転が長期間継続されると、NOx触媒5のNOx吸蔵能力が飽和し、排気中のNOxがNOx触媒5に吸蔵されずに大気中へ放出されてしまう。   For this reason, when the internal combustion engine 1 is operated in lean combustion, the air-fuel ratio of the exhaust discharged from the internal combustion engine 1 becomes lean and the oxygen concentration of the exhaust becomes high, so that NOx or SOx contained in the exhaust becomes NOx. Although the catalyst 5 is occluded, if the lean combustion operation of the internal combustion engine 1 is continued for a long time, the NOx occlusion capacity of the NOx catalyst 5 is saturated, and NOx in the exhaust is not occluded in the NOx catalyst 5. It will be released into the atmosphere.

特に、内燃機関1のようなディーゼル機関では、大部分の運転領域においてリーンの混合気が燃焼され、それに応じて排気の空燃比がリーンとなるため、NOx触媒5のNOx吸蔵能力が飽和し易い。   In particular, in a diesel engine such as the internal combustion engine 1, the lean air-fuel mixture is combusted in most of the operation region, and the air-fuel ratio of the exhaust gas becomes lean accordingly, so that the NOx occlusion capability of the NOx catalyst 5 is easily saturated. .

したがって、内燃機関1が希薄燃焼されている場合には、NOx触媒5のNOx吸蔵能
力が飽和する前にNOx触媒に流入する排気中の酸素濃度を低下させると共に燃料の濃度を高め、NOx触媒5に吸蔵されたNOxあるいはSOxを放出及び還元する必要がある。
Therefore, when the internal combustion engine 1 is lean-burned, before the NOx occlusion capacity of the NOx catalyst 5 is saturated, the oxygen concentration in the exhaust gas flowing into the NOx catalyst is lowered and the fuel concentration is increased, so that the NOx catalyst 5 It is necessary to release and reduce NOx or SOx occluded.

このため、ECU8は、ROMに記憶されたアプリケーションプログラムに従って、NOx還元処理又はSOx被毒回復処理といった、NOx触媒5に流入する排気の空燃比を比較的短い周期でスパイク的に(短時間に)リッチとする、リッチスパイク制御を実行する。ここで、このリッチスパイク制御が本発明の空燃比低下制御に相当するが、本発明の空燃比低下制御はリッチスパイク制御に限られず、排気に燃料を供給して排気の空燃比を低下させる制御であればよい。   Therefore, the ECU 8 spikes the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 5 such as NOx reduction processing or SOx poisoning recovery processing in a relatively short cycle (in a short time) according to the application program stored in the ROM. Rich spike control is executed to make it rich. Here, the rich spike control corresponds to the air-fuel ratio lowering control of the present invention. However, the air-fuel ratio lowering control of the present invention is not limited to the rich spike control, and is a control for reducing the air-fuel ratio of the exhaust by supplying fuel to the exhaust gas. If it is.

なお、NOx還元処理は、スパイク的に燃料添加弁6から排気中へ燃料を添加させることにより、NOx触媒5に流入する排気の空燃比をリッチとし、NOx触媒5に吸蔵されたNOxを放出及び還元する処理である。   In the NOx reduction treatment, fuel is spiked into the exhaust gas from the fuel addition valve 6 to enrich the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 5, and the NOx occluded in the NOx catalyst 5 is released and released. This is a reduction process.

SOx被毒回復処理は、スパイク的に燃料添加弁6から排気中へ燃料を添加させることにより、添加した燃料をNOx触媒5において酸化させ、酸化反応に伴う熱によって触媒温度を600℃〜800℃に昇温させると共にNOx触媒5に流入する排気の空燃比をリッチとし、NOx触媒5に吸蔵されたSOxを放出及び還元させる処理である。   In the SOx poisoning recovery process, fuel is spiked into the exhaust gas from the fuel addition valve 6 to oxidize the added fuel in the NOx catalyst 5, and the catalyst temperature is changed from 600 ° C. to 800 ° C. by the heat accompanying the oxidation reaction. The temperature of the exhaust gas flowing into the NOx catalyst 5 is made rich, and the SOx occluded in the NOx catalyst 5 is released and reduced.

ここで、リッチスパイク制御における燃費の悪化を抑制し、リッチスパイク制御をより好適に実行することが望まれる。   Here, it is desired to suppress the deterioration of fuel consumption in the rich spike control and to execute the rich spike control more suitably.

ところで、排気通路4の壁温が低温の状態で前述のリッチスパイク制御を実施した場合、燃料添加弁6から排気中に添加された燃料が排気通路4に付着してNOx触媒5まで直達し難くなる。そうすると、NOx触媒5に吸蔵されたNOxあるいはSOxを放出及び還元することが困難となる場合がある。このような状況においてリッチスパイク制御が実施されてしまうと、当該制御において添加された燃料が無駄になってしまい、燃費の悪化を招来する場合がある。ここで、排気通路4の壁温は直接測定することはできないが、機関運転状態に基づいて推定することはできる。よって、排気通路4の推定壁温に応じてリッチスパイク制御の実行可否を判定することができる。一方、本発明者らは排気通路4の推定壁温は、リッチスパイク制御での空燃比低下時の空燃比変化の傾きに基づいて補正でき、補正を行うことでリッチスパイク制御の実行可否の判定が精度向上できることを見出した。   By the way, when the above-described rich spike control is performed in a state where the wall temperature of the exhaust passage 4 is low, the fuel added to the exhaust from the fuel addition valve 6 adheres to the exhaust passage 4 and hardly reaches the NOx catalyst 5 directly. Become. Then, it may be difficult to release and reduce NOx or SOx stored in the NOx catalyst 5. If the rich spike control is performed in such a situation, the fuel added in the control may be wasted, resulting in deterioration of fuel consumption. Here, the wall temperature of the exhaust passage 4 cannot be directly measured, but can be estimated based on the engine operating state. Therefore, whether or not the rich spike control can be performed can be determined according to the estimated wall temperature of the exhaust passage 4. On the other hand, the present inventors can correct the estimated wall temperature of the exhaust passage 4 based on the gradient of the air-fuel ratio change when the air-fuel ratio is lowered in the rich spike control, and determine whether or not the rich spike control can be executed by performing the correction. Found that accuracy could be improved.

そこで、本実施例では、実行中のリッチスパイク制御中における空燃比低下時の空燃比変化の傾きに基づいて、次回のリッチスパイク制御の実行許可判定で推定壁温の補正を行うようにしている。また、推定壁温の補正を行うことで、次回のリッチスパイク制御における燃料添加弁6の燃料の添加量を変更するようにもしている。さらに、実行中のリッチスパイク制御における空燃比低下時の空燃比変化の傾きの絶対値が所定の閾値よりも小さい場合には、実行中のリッチスパイク制御を中止するようにもしている。   Therefore, in the present embodiment, the estimated wall temperature is corrected in the next rich spike control execution permission determination based on the slope of the air-fuel ratio change when the air-fuel ratio decreases during the rich spike control being executed. . Further, by correcting the estimated wall temperature, the amount of fuel added to the fuel addition valve 6 in the next rich spike control is changed. Further, when the absolute value of the gradient of the air-fuel ratio change when the air-fuel ratio is reduced in the rich spike control being executed is smaller than a predetermined threshold, the rich spike control being executed is stopped.

ここで、本実施例のリッチスパイク制御において上記各種制御を行う制御ルーチンについて、図2に示すフローチャートに基づいて説明する。なお、本ルーチンは、ECU8に予め記憶されており、リッチスパイク制御の実行の際に、周期的に実行されるルーチンである。   Here, a control routine for performing the above-described various controls in the rich spike control of the present embodiment will be described based on the flowchart shown in FIG. Note that this routine is stored in advance in the ECU 8, and is periodically executed when the rich spike control is executed.

リッチスパイク制御の実行要求が指示され、本ルーチンの処理が開始されると、ECU8は、まず、S101においては、リッチスパイク制御の実行可否判定を行う。本ステップを実行するECU8が本発明の実行許可判定手段に相当する。具体的には、ECU8は
、内燃機関1の排気通路4中の特定部位の壁温を推定した推定壁温が所定の温度以上となると、リッチスパイク制御の実行を許可し、推定壁温が所定の温度より低いと、リッチスパイク制御の実行を禁止する。ここで、所定の温度は、予め算出された温度であり、それよりも推定壁温が低いとリッチスパイク制御を実行してもNOx触媒5に吸蔵されたNOxあるいはSOxを放出及び還元することが困難で、排気に供給する燃料が無駄になると考えられる温度である。
When an execution request for rich spike control is instructed and processing of this routine is started, the ECU 8 first determines whether or not rich spike control can be executed in S101. The ECU 8 that executes this step corresponds to execution permission determination means of the present invention. Specifically, the ECU 8 permits the execution of rich spike control when the estimated wall temperature obtained by estimating the wall temperature of a specific part in the exhaust passage 4 of the internal combustion engine 1 exceeds a predetermined temperature, and the estimated wall temperature is predetermined. If the temperature is lower than this, execution of rich spike control is prohibited. Here, the predetermined temperature is a temperature calculated in advance, and if the estimated wall temperature is lower than that, NOx or SOx stored in the NOx catalyst 5 can be released and reduced even if the rich spike control is executed. This is a temperature that is considered difficult and wastes the fuel supplied to the exhaust.

ここで、排気通路4中の特定部位の壁温を推定した推定壁温について説明する。推定壁温は、機関運転状態、具体的には内燃機関1の筒内の燃料噴射量と機関回転速度とに基づいて推定される。このようにして推定される理由は、燃料噴射量が増大するほど排気温度が上昇し排気通路4の壁温が高温になるためであり、機関回転速度が増大すると排気流量が増大し排気から排気通路4の壁面に移動する熱量が増大し排気通路4の壁温が高温になるためである。なお、内燃機関1の筒内の燃料噴射量は、アクセル開度及び機関回転速度などに基づいて算出される。   Here, the estimated wall temperature which estimated the wall temperature of the specific site | part in the exhaust passage 4 is demonstrated. The estimated wall temperature is estimated based on the engine operating state, specifically, the fuel injection amount in the cylinder of the internal combustion engine 1 and the engine speed. The reason estimated in this way is that the exhaust temperature rises and the wall temperature of the exhaust passage 4 becomes higher as the fuel injection amount increases. When the engine speed increases, the exhaust flow rate increases and the exhaust gas is discharged from the exhaust. This is because the amount of heat transferred to the wall surface of the passage 4 increases and the wall temperature of the exhaust passage 4 becomes high. The fuel injection amount in the cylinder of the internal combustion engine 1 is calculated based on the accelerator opening, the engine speed, and the like.

また、推定壁温は、前回の本ルーチンが実行された際に補正値を学習していれば、ECU8からその補正値を読み出し、その補正値も反映して算出される。例えば、補正値が「−5℃」であれば、推定壁温を−5℃低温側に補正し、補正値が「5℃」であれば、推定壁温を5℃高温側に補正する。補正値の学習については後述する。   Further, if the correction value is learned when the previous routine is executed, the estimated wall temperature is calculated by reading the correction value from the ECU 8 and reflecting the correction value. For example, if the correction value is “−5 ° C.”, the estimated wall temperature is corrected to the −5 ° C. low temperature side, and if the correction value is “5 ° C.”, the estimated wall temperature is corrected to the 5 ° C. high temperature side. The correction value learning will be described later.

そして、ECU8は、推定壁温が所定の温度以上となり、リッチスパイク制御の実行が許可できる状態であれば、S102へ移行する。また、推定壁温が所定の温度より低温で、リッチスパイク制御の実行が許可できない状態であれば、本ルーチンの処理を一旦終了する。   If the estimated wall temperature is equal to or higher than the predetermined temperature and the execution of the rich spike control can be permitted, the ECU 8 proceeds to S102. If the estimated wall temperature is lower than the predetermined temperature and the execution of the rich spike control cannot be permitted, the process of this routine is temporarily terminated.

ECU8は、S102においては、これから行うリッチスパイク制御の全期間において、排気通路4の燃料添加弁6から供給する燃料の添加量αを算出する。本ステップを実行するECU8が本発明の供給量算出手段に相当する。燃料の添加量αは、エアフロメータ3で検出する吸入空気量、これから行うリッチスパイク制御によって排気の空燃比を低下させる目標空燃比、S101で用いた推定壁温、内燃機関1の筒内の燃料噴射量に基づいて算出される。   In S102, the ECU 8 calculates the fuel addition amount α to be supplied from the fuel addition valve 6 in the exhaust passage 4 during the entire period of the rich spike control to be performed. The ECU 8 that executes this step corresponds to the supply amount calculating means of the present invention. The amount of fuel added α is the amount of intake air detected by the air flow meter 3, the target air-fuel ratio that lowers the air-fuel ratio of the exhaust by rich spike control to be performed, the estimated wall temperature used in S101, the fuel in the cylinder of the internal combustion engine 1 Calculated based on the injection amount.

なお、S102においても、燃料の添加量αの算出には、推定壁温が考慮されるため、S101と同様に、前回の本ルーチンが実行された際に学習した推定壁温の補正値が反映されることとなる。このため、これから行うリッチスパイク制御における燃料の添加量αが、前回の本ルーチンが実行されて推定壁温が補正されることにより、より好適な量となる。このため、リッチスパイク制御における燃費の悪化を抑制できる。次に、S103へ移行する。   In S102, since the estimated wall temperature is taken into consideration in the calculation of the fuel addition amount α, the correction value of the estimated wall temperature learned when the previous routine is executed is reflected as in S101. Will be. Therefore, the fuel addition amount α in the rich spike control to be performed in the future becomes a more suitable amount by executing the previous routine and correcting the estimated wall temperature. For this reason, the deterioration of the fuel consumption in rich spike control can be suppressed. Next, the process proceeds to S103.

ECU8は、S103においては、リッチスパイク制御を実行開始し、S102で算出した添加量αの燃料をスパイク的に燃料添加弁6から排気中へ添加させ始める。次に、S104へ移行する。   In S103, the ECU 8 starts executing the rich spike control, and starts adding the fuel of the addition amount α calculated in S102 from the fuel addition valve 6 into the exhaust gas in a spike manner. Next, the process proceeds to S104.

ECU8は、S104においては、燃料添加弁6から燃料を添加していくことに伴う、リッチスパイク制御における空燃比低下時の空燃比変化の傾きの絶対値Nを算出する。具体的には、図3に示すように、燃料添加開始時点から空燃比センサ7で検出する排気の空燃比に基づきECU8で単位時間当たりの空燃比低下率を算出していき、空燃比低下率が所定期間の間、一定値に安定した時点t1で、安定した空燃比低下率を空燃比低下時の空燃比変化の傾きとし、当該傾きの絶対値Nを算出する。次に、S105へ移行する。   In S104, the ECU 8 calculates the absolute value N of the slope of the change in the air-fuel ratio when the air-fuel ratio is lowered in the rich spike control accompanying the addition of fuel from the fuel addition valve 6. Specifically, as shown in FIG. 3, the ECU 8 calculates the air-fuel ratio reduction rate per unit time based on the air-fuel ratio of the exhaust detected by the air-fuel ratio sensor 7 from the start of fuel addition, and the air-fuel ratio reduction rate. At a time t1 when the air-fuel ratio has stabilized at a constant value for a predetermined period, the stable air-fuel ratio decrease rate is set as the inclination of the air-fuel ratio change when the air-fuel ratio decreases, and the absolute value N of the inclination is calculated. Next, the process proceeds to S105.

なお、S104にて空燃比低下時の空燃比変化の傾きの絶対値Nを算出する場合には、エアフロメータ3で検出する吸入空気量の偏差や内燃機関1の筒内の燃料噴射量の偏差が一定範囲内に収まっていることや、エアフロメータ3や内燃機関1の製造時点での量産バラツキを既に学習済みであることが実行条件とされていてもよい。   When calculating the absolute value N of the gradient of the air-fuel ratio change when the air-fuel ratio is lowered in S104, the deviation of the intake air amount detected by the air flow meter 3 or the deviation of the fuel injection amount in the cylinder of the internal combustion engine 1 is calculated. May be within a certain range, or may have already been learned as to the mass production variation at the time of manufacture of the air flow meter 3 or the internal combustion engine 1 as an execution condition.

ECU8は、S105においては、S104で算出した空燃比変化の傾きの絶対値Nと対比する2つの閾値A,Bを導出する。2つの閾値A,Bは、エアフロメータ3で算出する吸入空気量に基づき、吸入空気量が少なくなるほど閾値が小さく(傾きが緩やかに)なるように設定されたマップから、吸入空気量によって生じる燃料の輸送遅れの変化を考慮して導出される。ここで、2つの閾値A,Bは、リッチスパイク制御を最後まで続行可能となる空燃比変化の標準的な傾きの絶対値に対して、小さい閾値(閾値A)と、大きい閾値(閾値B)であり、閾値A<閾値Bの関係を満たす。また、閾値Aが本発明の第1、第3所定値に相当し、閾値Bが本発明の第2所定値に相当する。次に、S106へ移行する。   In S105, the ECU 8 derives two threshold values A and B that are compared with the absolute value N of the gradient of the air-fuel ratio change calculated in S104. The two threshold values A and B are based on the intake air amount calculated by the air flow meter 3, and the fuel generated by the intake air amount from the map set so that the threshold value becomes smaller (gradient slope) as the intake air amount decreases. Derived in consideration of changes in transport delay. Here, the two threshold values A and B are a small threshold value (threshold value A) and a large threshold value (threshold value B) with respect to the absolute value of the standard gradient of the air-fuel ratio change that allows the rich spike control to continue to the end. And the relationship of threshold A <threshold B is satisfied. The threshold A corresponds to the first and third predetermined values of the present invention, and the threshold B corresponds to the second predetermined value of the present invention. Next, the process proceeds to S106.

ECU8は、S106においては、S104で算出した空燃比変化の傾きの絶対値Nを閾値Aと対比し、空燃比変化の傾きの絶対値Nが閾値Aよりも小さいか否か(絶対値N<閾値A?)を判別する。   In S106, the ECU 8 compares the absolute value N of the gradient of the air-fuel ratio calculated in S104 with the threshold A, and determines whether the absolute value N of the gradient of the air-fuel ratio change is smaller than the threshold A (absolute value N < Threshold A?).

そして、ECU8は、空燃比変化の傾きの絶対値Nが閾値Aよりも小さい(絶対値N<閾値Aを満たす)場合には、S107へ移行する。また、空燃比変化の傾きの絶対値Nが閾値Aよりも小さくはない(絶対値N<閾値Aを満たさない)場合には、S109へ移行する。   If the absolute value N of the gradient of the air-fuel ratio change is smaller than the threshold A (absolute value N <the threshold A is satisfied), the ECU 8 proceeds to S107. If the absolute value N of the gradient of the air-fuel ratio change is not smaller than the threshold A (absolute value N <the threshold A is not satisfied), the process proceeds to S109.

ECU8は、S107においては、直ちに実行中のリッチスパイク制御を中止する。本ステップを実行するECU8が本発明の制御中止手段に相当する。このように実行中のリッチスパイク制御を中止する理由は、空燃比変化の傾きの絶対値Nが閾値Aよりも小さいと、図4の破線で示すリッチスパイク制御を最後まで続行可能となる空燃比変化とは異なり、図4の実線で示すように、それ以後にリッチスパイク制御で燃料の添加を続行しても、実際の排気通路4の壁温が低温で燃料が排気通路4に付着してNOx触媒5まで直達し難いために目標空燃比まで空燃比が低下せず、NOx触媒5に吸蔵されたNOxやSOxを放出及び還元することができないため、それ以後に添加する燃料が無駄になるからである。このため、それ以後のリッチスパイク制御を中止することによって、リッチスパイク制御における燃費の悪化を抑制できる。次に、S108へ移行する。   In S107, the ECU 8 immediately stops the rich spike control being executed. The ECU 8 that executes this step corresponds to control stop means of the present invention. The reason for canceling the rich spike control that is being executed in this way is that if the absolute value N of the gradient of the air-fuel ratio change is smaller than the threshold value A, the rich spike control indicated by the broken line in FIG. Unlike the change, as shown by the solid line in FIG. 4, even if the fuel addition is continued by rich spike control thereafter, the wall temperature of the actual exhaust passage 4 is low and the fuel adheres to the exhaust passage 4. Since it is difficult to reach the NOx catalyst 5 directly, the air-fuel ratio does not decrease to the target air-fuel ratio, and NOx and SOx stored in the NOx catalyst 5 cannot be released and reduced, so that fuel added thereafter is wasted. Because. For this reason, the fuel consumption deterioration in the rich spike control can be suppressed by stopping the rich spike control thereafter. Next, the process proceeds to S108.

ECU8は、S108においては、次回の本ルーチンにおけるS101やS102で用いる推定壁温を低温側へ補正するべく推定壁温に付加する「−5℃」の補正値を学習し、ECU8に記憶しておく。このように学習する理由は、次回も排気通路4の壁温が低温で燃料が排気通路4に付着してNOx触媒5まで直達し難く燃料が無駄になる場合であるにも拘らず、次回の本ルーチン実行の際にS101で再度リッチスパイク制御の実行が許可されてしまい、次回のリッチスパイク制御が実行されることを抑制するためである。このため、不要なリッチスパイク制御を実行しないことで、燃費の悪化が抑制できる。そして、本ルーチンの処理を一旦終了する。   In S108, the ECU 8 learns a correction value “−5 ° C.” to be added to the estimated wall temperature in order to correct the estimated wall temperature used in S101 and S102 in the next main routine to the low temperature side, and stores it in the ECU 8. deep. The reason for learning in this way is the next time the wall temperature of the exhaust passage 4 is low and the fuel adheres to the exhaust passage 4 and hardly reaches the NOx catalyst 5 and the fuel is wasted. This is because the execution of the rich spike control is permitted again in S101 during the execution of this routine, and the next rich spike control is prevented from being executed. For this reason, deterioration of fuel consumption can be suppressed by not performing unnecessary rich spike control. Then, the processing of this routine is temporarily terminated.

一方、ECU8は、S109においては、リッチスパイク制御を最後まで実行する。空燃比変化の傾きの絶対値Nが閾値Aよりも小さくはないと、燃料がNOx触媒5まで直達し目標空燃比まで空燃比が低下し、NOx触媒5に吸蔵されたNOxやSOxを放出及び還元することができるため、それ以後も燃料を添加しリッチスパイク制御を最後まで行う。次に、S110へ移行する。   On the other hand, the ECU 8 executes rich spike control to the end in S109. If the absolute value N of the gradient of the air-fuel ratio change is not smaller than the threshold value A, the fuel reaches the NOx catalyst 5 directly, the air-fuel ratio decreases to the target air-fuel ratio, and NOx and SOx stored in the NOx catalyst 5 are released and Since it can be reduced, fuel is added thereafter and rich spike control is performed to the end. Next, the process proceeds to S110.

ECU8は、S110においては、S104で算出した空燃比変化の傾きの絶対値Nを閾値Bと対比し、空燃比変化の傾きの絶対値Nが閾値Bよりも大きいか否か(絶対値N>閾値B?)を判別する。   In S110, the ECU 8 compares the absolute value N of the gradient of the air-fuel ratio calculated in S104 with the threshold B, and determines whether or not the absolute value N of the gradient of the air-fuel ratio change is larger than the threshold B (absolute value N> Threshold value B?).

そして、ECU8は、空燃比変化の傾きの絶対値Nが閾値Bよりも大きい(絶対値N>閾値Bを満たす)場合には、S111へ移行する。また、空燃比変化の傾きの絶対値Nが閾値Bよりも大きくない(絶対値N>閾値Bを満たさない)場合には、本ルーチンの処理を一旦終了する。   If the absolute value N of the gradient of the air-fuel ratio change is greater than the threshold value B (absolute value N> the threshold value B is satisfied), the ECU 8 proceeds to S111. Further, when the absolute value N of the gradient of the air-fuel ratio change is not larger than the threshold value B (absolute value N> the threshold value B is not satisfied), the processing of this routine is once ended.

ECU8は、S111においては、次回の本ルーチンにおけるS101やS102で用いる推定壁温を高温側へ補正するべく推定壁温に付加する「5℃」の補正値を学習し、ECU8に記憶しておく。このように学習する理由は、次回には排気通路4の壁温を少し低温にしても燃料がNOx触媒5まで直達して目標空燃比まで空燃比が低下し、NOx触媒5に吸蔵されたNOxやSOxを放出及び還元することができる場合に、次回の本ルーチン実行の際にS101で今回よりも排気通路4の壁温が低温であってもリッチスパイク制御の実行が許可され、次回のリッチスパイク制御が実行されるようにするためである。そして、本ルーチンの処理を一旦終了する。   In S111, the ECU 8 learns a correction value of “5 ° C.” to be added to the estimated wall temperature to correct the estimated wall temperature used in S101 and S102 in the next main routine to the high temperature side, and stores it in the ECU 8. . The reason for learning in this way is that the next time, even if the wall temperature of the exhaust passage 4 is slightly lowered, the fuel reaches the NOx catalyst 5 directly, the air-fuel ratio decreases to the target air-fuel ratio, and the NOx stored in the NOx catalyst 5 is stored. Or SOx can be released and reduced, the execution of the rich spike control is permitted in the next execution of this routine even if the wall temperature of the exhaust passage 4 is lower than this time in S101. This is because the spike control is executed. Then, the processing of this routine is temporarily terminated.

ここで、S101、S104、S105、S106、S108、S110、S111などのステップを実行するECU8が本発明の補正変更手段に相当する。   Here, ECU8 which performs steps, such as S101, S104, S105, S106, S108, S110, S111, is equivalent to the correction change means of this invention.

そして、以後のリッチスパイク制御においては、その制御の度に本ルーチンの処理が行われる。   Then, in the subsequent rich spike control, the processing of this routine is performed every time the control is performed.

このように上記ルーチンを実行することにより、本実施例では、実行中のリッチスパイク制御中における空燃比低下時の空燃比変化の傾きに基づいて、次回のリッチスパイク制御の実行可否判定時における推定壁温の補正を行う。これによると、次回のリッチスパイク制御の実行可否判定が、事前の実行中のリッチスパイク制御における空燃比低下時の空燃比変化の傾きに基づいた学習で調整され、次回のリッチスパイク制御の実行がより好適に行えるようになる。言い換えれば、リッチスパイク制御が無駄になる状況でリッチスパイク制御が実行されることが抑制されると共に、リッチスパイク制御が好適に実行可能な状況でリッチスパイク制御が実行されることが促進される。このため、リッチスパイク制御における燃費の悪化をより好適に抑制し、リッチスパイク制御をより好適に実行することができる。   By executing the routine as described above, in the present embodiment, the estimation at the time of determining whether or not to execute the next rich spike control based on the gradient of the air-fuel ratio change at the time of air-fuel ratio decrease during the rich spike control being executed. Correct the wall temperature. According to this, whether or not the next rich spike control can be executed is adjusted by learning based on the gradient of the air-fuel ratio change when the air-fuel ratio decreases in the rich spike control that is being executed in advance, and the next rich spike control is executed. It becomes possible to perform more suitably. In other words, the rich spike control is suppressed from being executed in a situation where the rich spike control is wasted, and the rich spike control is promoted to be executed in a situation where the rich spike control can be suitably executed. For this reason, the deterioration of the fuel consumption in rich spike control can be suppressed more suitably, and rich spike control can be performed more suitably.

また、本実施例では、推定壁温の補正を行うことで、次回のリッチスパイク制御における燃料添加弁6の燃料の添加量αを変更する。これによると、事前の実行中のリッチスパイク制御における空燃比低下時の空燃比変化の傾きに基づいた学習で推定壁温が補正され、推定壁温に基づいて算出される次回のリッチスパイク制御における燃料の添加量αがより好適な量となる。このため、リッチスパイク制御における燃費の悪化を抑制し、リッチスパイク制御をより好適に実行することができる。   In this embodiment, the fuel addition amount α of the fuel addition valve 6 in the next rich spike control is changed by correcting the estimated wall temperature. According to this, the estimated wall temperature is corrected by learning based on the gradient of the air-fuel ratio change when the air-fuel ratio is lowered in the rich spike control that is being executed in advance, and in the next rich spike control that is calculated based on the estimated wall temperature. The added amount α of fuel becomes a more suitable amount. For this reason, the deterioration of the fuel consumption in rich spike control can be suppressed, and rich spike control can be performed more suitably.

また、本実施例では、実行中のリッチスパイク制御における空燃比低下時の空燃比変化の傾きの絶対値が閾値Aよりも小さい場合には、実行中のリッチスパイク制御を中止する。これによると、実行中のリッチスパイク制御が中止要否判断される。そして、リッチスパイク制御が無駄になる状況であるにも拘わらずリッチスパイク制御が実行中であれば、実行中のリッチスパイク制御が中止される。このため、リッチスパイク制御における燃費の悪化を抑制し、リッチスパイク制御をより好適に実行することができる。   Further, in the present embodiment, when the absolute value of the gradient of the air-fuel ratio change when the air-fuel ratio is lowered in the rich spike control being executed is smaller than the threshold A, the rich spike control being executed is stopped. According to this, it is determined whether or not the rich spike control being executed is to be stopped. If the rich spike control is being executed in spite of the situation where the rich spike control is wasted, the running rich spike control is stopped. For this reason, the deterioration of the fuel consumption in rich spike control can be suppressed, and rich spike control can be performed more suitably.

なお、上記実施例では、S108やS111で次回の図2の制御ルーチンにおけるS1
01やS102で用いる推定壁温を補正するようにしていた。しかし、これに限られず、図5の制御ルーチンにおけるS201やS202に示すように、推定壁温を補正せず、S101での所定の温度を変更するようにしてもよい。
In the above embodiment, S1 in the next control routine of FIG.
The estimated wall temperature used in 01 and S102 was corrected. However, the present invention is not limited to this, and the predetermined wall temperature in S101 may be changed without correcting the estimated wall temperature, as shown in S201 and S202 in the control routine of FIG.

具体的には、ECU8は、S201においては、次回の図5の制御ルーチンにおけるS101で用いる所定の温度を「5℃」高温側へ変更することを学習し、ECU8に記憶しておく。また、ECU8は、S202においては、次回の制御ルーチンにおけるS101で用いる所定の温度を「−5℃」低温側へ変更することを学習し、ECU8に記憶しておく。そして、次回の制御ルーチンでは、S101において、前回の制御ルーチンの実行により学習した所定の温度をECU8から読み出し、リッチスパイク制御の実行可否判定を行う。このようにしても、本発明の効果を奏することができる。   Specifically, in S201, the ECU 8 learns to change the predetermined temperature used in S101 in the next control routine of FIG. 5 to the “5 ° C.” high temperature side, and stores it in the ECU 8. In S202, the ECU 8 learns to change the predetermined temperature used in S101 in the next control routine to the “−5 ° C.” low temperature side, and stores it in the ECU 8. In the next control routine, in S101, the predetermined temperature learned by the execution of the previous control routine is read from the ECU 8, and it is determined whether or not the rich spike control can be executed. Even if it does in this way, the effect of the present invention can be produced.

上記実施例では、排気へ燃料供給する燃料添加弁を有する構成であった。しかし、本発明は、内燃機関の気筒内又は吸気ポート内へ燃料を噴射する燃料噴射弁を用いて、排気の排出と共に燃料噴射を行うこと(アフター噴射)による燃料供給にも適用できる。   In the above embodiment, the fuel addition valve for supplying fuel to the exhaust gas is provided. However, the present invention can also be applied to fuel supply by performing fuel injection together with exhaust emission (after injection) using a fuel injection valve that injects fuel into a cylinder or an intake port of an internal combustion engine.

本発明に係る排気浄化装置は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。   The exhaust emission control device according to the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the scope of the present invention.

排気浄化装置を適用する内燃機関とその吸排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine to which an exhaust gas purification apparatus is applied, and its intake / exhaust system. 空燃比低下制御における制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine in air fuel ratio fall control. 空燃比低下制御における空燃比低下時の空燃比変化を示す図である。It is a figure which shows the air fuel ratio change at the time of the air fuel ratio fall in air fuel ratio fall control. 空燃比低下制御における空燃比変化を示す図である。It is a figure which shows the air fuel ratio change in air fuel ratio fall control. 空燃比低下制御における制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine in air fuel ratio fall control.

符号の説明Explanation of symbols

1 内燃機関
2 吸気通路
3 エアフロメータ
4 排気通路
5 NOx触媒
6 燃料添加弁
7 空燃比センサ
8 ECU
1 Internal combustion engine 2 Intake passage 3 Air flow meter 4 Exhaust passage 5 NOx catalyst 6 Fuel addition valve 7 Air-fuel ratio sensor 8 ECU

Claims (9)

内燃機関の排気に燃料を供給して排気の空燃比を低下させる空燃比低下制御を行うことで、排気浄化触媒の性能を再生する内燃機関の排気浄化装置において、
内燃機関の排気通路中の特定部位の壁温を推定し、当該推定壁温が所定温度以上となると空燃比低下制御の実行を許可し、前記推定壁温が前記所定温度より低いと空燃比低下制御の実行を禁止する実行許可判定手段と、
実行中の空燃比低下制御における空燃比低下時の空燃比変化の傾きに基づいて、次回の前記実行許可判定手段による前記空燃比低下制御の可否判定について前記推定壁温の補正又は前記所定温度の変更を行う補正変更手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine that regenerates the performance of an exhaust gas purification catalyst by performing air-fuel ratio lowering control that lowers the air-fuel ratio of the exhaust gas by supplying fuel to the exhaust gas of the internal combustion engine,
The wall temperature of a specific part in the exhaust passage of the internal combustion engine is estimated, and execution of air-fuel ratio reduction control is permitted when the estimated wall temperature exceeds a predetermined temperature, and the air-fuel ratio decreases when the estimated wall temperature is lower than the predetermined temperature. Execution permission determination means for prohibiting execution of control;
Based on the gradient of the air-fuel ratio change at the time of air-fuel ratio decrease during the air-fuel ratio decrease control that is being executed, the estimated wall temperature correction or the predetermined temperature Correction changing means for changing, and
An exhaust emission control device for an internal combustion engine, comprising:
前記補正変更手段は、前記空燃比変化の傾きの絶対値が第1所定値よりも小さい場合には、次回の前記実行許可判定手段による前記空燃比低下制御の可否判定について前記推定壁温を低温側へ補正することを特徴とする請求項1に記載の内燃機関の排気浄化装置。   When the absolute value of the gradient of the air-fuel ratio change is smaller than a first predetermined value, the correction changing unit lowers the estimated wall temperature for the next determination of whether or not the air-fuel ratio decrease control is performed by the execution permission determining unit. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the correction is performed to the side. 前記補正変更手段は、前記空燃比変化の傾きの絶対値が第1所定値よりも小さい場合には、次回の前記実行許可判定手段による前記空燃比低下制御の可否判定について前記所定温度を高温側へ変更することを特徴とする請求項1に記載の内燃機関の排気浄化装置。   When the absolute value of the gradient of the air-fuel ratio change is smaller than a first predetermined value, the correction changing means sets the predetermined temperature to a higher temperature side for the next determination of whether or not the air-fuel ratio lowering control is performed by the execution permission determining means. The exhaust emission control device for an internal combustion engine according to claim 1, wherein 前記補正変更手段は、前記空燃比変化の傾きの絶対値が第2所定値よりも大きい場合には、次回の前記実行許可判定手段による前記空燃比低下制御の可否判定について前記推定壁温を高温側へ補正することを特徴とする請求項1に記載の内燃機関の排気浄化装置。   When the absolute value of the gradient of the air-fuel ratio change is greater than a second predetermined value, the correction change unit increases the estimated wall temperature for the next determination of whether or not the air-fuel ratio decrease control is performed by the execution permission determination unit. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the correction is performed to the side. 前記補正変更手段は、前記空燃比変化の傾きの絶対値が第2所定値よりも大きい場合には、次回の前記実行許可判定手段による前記空燃比低下制御の可否判定について前記所定温度を低温側へ変更することを特徴とする請求項1に記載の内燃機関の排気浄化装置。   When the absolute value of the gradient of the air-fuel ratio change is greater than a second predetermined value, the correction changing means sets the predetermined temperature to a low temperature side for the next determination of whether or not the air-fuel ratio decrease control is performed by the execution permission determining means. The exhaust emission control device for an internal combustion engine according to claim 1, wherein 前記第1所定値は、空燃比低下制御の実行の度に吸入空気量に基づいて変更されることを特徴とする請求項2又は3に記載の内燃機関の排気浄化装置。   4. The exhaust gas purification apparatus for an internal combustion engine according to claim 2, wherein the first predetermined value is changed based on an intake air amount every time the air-fuel ratio reduction control is executed. 前記第2所定値は、空燃比低下制御の実行の度に吸入空気量に基づいて変更されることを特徴とする請求項4又は5に記載の内燃機関の排気浄化装置。   6. The exhaust gas purification apparatus for an internal combustion engine according to claim 4, wherein the second predetermined value is changed based on the intake air amount every time the air-fuel ratio lowering control is executed. 内燃機関の排気に燃料を供給して排気の空燃比を低下させる空燃比低下制御を行うことで、排気浄化触媒の性能を再生する内燃機関の排気浄化装置において、
内燃機関の排気通路中の特定部位の壁温を推定し、当該推定壁温に基づいて空燃比低下制御における燃料の供給量を算出する供給量算出手段を備え、
前記供給量算出手段は、実行中の空燃比低下制御における空燃比低下時の空燃比変化の傾きに基づいて、前記推定壁温の補正を行うことで、次回の空燃比低下制御についての燃料の供給量を変更することを特徴とする内燃機関の排気浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine that regenerates the performance of an exhaust gas purification catalyst by performing air-fuel ratio lowering control that lowers the air-fuel ratio of the exhaust gas by supplying fuel to the exhaust gas of the internal combustion engine,
A supply amount calculating means for estimating a wall temperature of a specific part in the exhaust passage of the internal combustion engine and calculating a fuel supply amount in the air-fuel ratio reduction control based on the estimated wall temperature;
The supply amount calculation means corrects the estimated wall temperature based on the slope of the air-fuel ratio change at the time of air-fuel ratio decrease in the air-fuel ratio decrease control that is being executed, so that the fuel for the next air-fuel ratio decrease control is corrected. An exhaust emission control device for an internal combustion engine, characterized in that the supply amount is changed.
内燃機関の排気に燃料を供給して排気の空燃比を低下させる空燃比低下制御を行うことで、排気浄化触媒の性能を再生する内燃機関の排気浄化装置において、
実行中の空燃比低下制御における空燃比低下時の空燃比変化の傾きの絶対値が第3所定値よりも小さい場合には、実行中の空燃比低下制御を中止する制御中止手段を備えることを特徴とする内燃機関の排気浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine that regenerates the performance of an exhaust gas purification catalyst by performing air-fuel ratio lowering control that lowers the air-fuel ratio of the exhaust gas by supplying fuel to the exhaust gas of the internal combustion engine,
A control stopping means for stopping the air-fuel ratio lowering control being executed when the absolute value of the slope of the air-fuel ratio change at the time of air-fuel ratio lowering is smaller than the third predetermined value in the air-fuel ratio lowering control being executed; An exhaust gas purification apparatus for an internal combustion engine characterized by the above.
JP2006110929A 2006-04-13 2006-04-13 Exhaust emission control device of internal combustion engine Withdrawn JP2007285156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006110929A JP2007285156A (en) 2006-04-13 2006-04-13 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006110929A JP2007285156A (en) 2006-04-13 2006-04-13 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007285156A true JP2007285156A (en) 2007-11-01

Family

ID=38757180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006110929A Withdrawn JP2007285156A (en) 2006-04-13 2006-04-13 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007285156A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128564A1 (en) * 2009-05-08 2010-11-11 トヨタ自動車株式会社 Exhaust gas purifying device for internal combustion engine
US9885304B2 (en) * 2014-12-02 2018-02-06 Nissan Motor Co., Ltd. Vehicle control system for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128564A1 (en) * 2009-05-08 2010-11-11 トヨタ自動車株式会社 Exhaust gas purifying device for internal combustion engine
US9885304B2 (en) * 2014-12-02 2018-02-06 Nissan Motor Co., Ltd. Vehicle control system for internal combustion engine

Similar Documents

Publication Publication Date Title
JP2014037787A (en) Exhaust emission control system for internal combustion engine
US10690073B2 (en) Exhaust purification system and catalyst regeneration method
US10677136B2 (en) Internal combustion engine control device
JP4890209B2 (en) Exhaust gas purification device for internal combustion engine
JP2007321614A (en) Exhaust emission control device of internal combustion engine
JP6476930B2 (en) Exhaust purification system
JP2007239472A (en) Catalyst temperature estimation device for internal combustion engine
JP2016061145A (en) Exhaust emission control system
JP2005105871A (en) Catalyst control device and catalyst deterioration determining device for internal combustion engine
JP2007285156A (en) Exhaust emission control device of internal combustion engine
US10677128B2 (en) Exhaust purification system and catalyst regeneration method
US10392986B2 (en) Exhaust purification system, and control method for exhaust purification system
US10233807B2 (en) Exhaust purification system and catalyst regeneration method
JP2005337029A (en) Exhaust emission control device for internal combustion engine
JP4389609B2 (en) Exhaust gas purification device for internal combustion engine
JP2007255209A (en) Exhaust emission control device of internal combustion engine
WO2017047678A1 (en) Catalyst deterioration degree estimation device
JP2009250210A (en) Exhaust emission control device of internal combustion engine
JP2005090388A (en) Exhaust emission purification controller for internal combustion engine
US10675587B2 (en) Exhaust purification system
JP2016176404A (en) Exhaust emission control system
JP6398505B2 (en) Exhaust purification system
JP2010249113A (en) Exhaust emission control system of internal combustion engine
JP2010209830A (en) Control device for internal combustion engine
JP2016142167A (en) Exhaust emission control system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707