WO2017047678A1 - Catalyst deterioration degree estimation device - Google Patents

Catalyst deterioration degree estimation device Download PDF

Info

Publication number
WO2017047678A1
WO2017047678A1 PCT/JP2016/077205 JP2016077205W WO2017047678A1 WO 2017047678 A1 WO2017047678 A1 WO 2017047678A1 JP 2016077205 W JP2016077205 W JP 2016077205W WO 2017047678 A1 WO2017047678 A1 WO 2017047678A1
Authority
WO
WIPO (PCT)
Prior art keywords
nox
catalyst
amount
calculation
exhaust
Prior art date
Application number
PCT/JP2016/077205
Other languages
French (fr)
Japanese (ja)
Inventor
輝男 中田
隆行 坂本
長岡 大治
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2017047678A1 publication Critical patent/WO2017047678A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters

Definitions

  • This disclosure relates to a catalyst deterioration degree estimation device.
  • a NOx occlusion reduction type catalyst is known as a catalyst for reducing and purifying nitrogen compounds (NOx) in exhaust gas discharged from an internal combustion engine.
  • the NOx occlusion reduction catalyst occludes NOx contained in the exhaust when the exhaust is in a lean atmosphere, and harmless NOx occluded by hydrocarbons contained in the exhaust when the exhaust is in a rich atmosphere. And release. For this reason, when the NOx occlusion amount of the catalyst reaches a predetermined amount, etc., a recovery process is periodically performed to restore the NOx occlusion capacity of the NOx occlusion reduction type catalyst by making exhaust rich by exhaust pipe injection or post injection. It is necessary to execute (see, for example, Patent Documents 1 and 2).
  • Patent Document 3 discloses a method of executing correction parameter calculation during lean operation and not executing correction parameter calculation during rich operation.
  • Patent Document 4 discloses a system that calculates a correction coefficient when the catalyst temperature is lower than a predetermined value.
  • Patent Document 5 discloses a control device that calculates a NOx correction coefficient when the engine is in steady operation and the NOx sensor value is stable.
  • Japanese Unexamined Patent Publication No. 2008-202425 Japanese Unexamined Patent Publication No. 2007-16713 Japanese Unexamined Patent Publication No. 2004-270469 Japanese Unexamined Patent Publication No. 2007-162603 International Publication No. 2014/083626
  • the deterioration correction coefficient can be calculated by integrating the difference between the estimated value and the detected value of the NOx amount on the exhaust downstream side of the NOx storage reduction catalyst. In order to improve the accuracy of correction using the deterioration correction coefficient, it is desirable to take the integration time as long as possible.
  • the technique of the present disclosure aims to increase the accuracy of correction using a deterioration correction coefficient.
  • the technology of the present disclosure is provided in an exhaust passage of an internal combustion engine, stores NOx in exhaust in an exhaust lean state, and reduces and purifies NOx stored in an exhaust rich state, and the NOx And a NOx sensor provided downstream of the exhaust passage relative to the storage reduction catalyst, and a catalyst deterioration degree estimation device for an exhaust purification system, the NOx reduction catalyst based on an operating state of the internal combustion engine.
  • a calculation unit that estimates the amount of NOx contained in the exhaust gas that has passed, and calculates the degree of deterioration of the NOx storage reduction catalyst based on the difference between the estimated amount of NOx and the actual amount of NOx detected by the NOx sensor;
  • a calculation control unit that controls the calculation of the degree of deterioration of the calculation unit based on at least one of the operating state of the internal combustion engine and the state of the exhaust passage of the internal combustion engine; Equipped with a.
  • FIG. 1 is an overall configuration diagram showing an exhaust purification system according to the present embodiment.
  • FIG. 2 is a timing chart for explaining the SOx purge control according to the present embodiment.
  • FIG. 3 is a block diagram showing the MAF target value setting process during SOx purge lean control according to the present embodiment.
  • FIG. 4 is a block diagram showing a target injection amount setting process during SOx purge rich control according to the present embodiment.
  • FIG. 5 is a timing chart illustrating the catalyst temperature adjustment control of the SOx purge control according to the present embodiment.
  • FIG. 6 is a timing chart for explaining the NOx purge control according to the present embodiment.
  • FIG. 7 is a block diagram showing a start process of NOx purge control according to the present embodiment.
  • FIG. 8 is a block diagram for explaining deterioration correction coefficient calculation processing according to the present embodiment.
  • FIG. 9 is a diagram schematically illustrating the calculation start condition.
  • FIG. 10 is a block diagram showing the MAF target value setting process during NOx purge lean control according to the present embodiment.
  • FIG. 11 is a block diagram illustrating a target injection amount setting process during NOx purge rich control according to the present embodiment.
  • each cylinder of a diesel engine (hereinafter simply referred to as an engine) 10 that is an example of an internal combustion engine has an in-cylinder injector that directly injects high-pressure fuel stored in a common rail (not shown) into each cylinder. 11 are provided.
  • the fuel injection amount and fuel injection timing of these in-cylinder injectors 11 are controlled according to an instruction signal input from an electronic control unit (an example of a control unit according to the present disclosure, hereinafter referred to as an ECU) 50.
  • an electronic control unit an example of a control unit according to the present disclosure, hereinafter referred to as an ECU 50.
  • An intake passage 12 for introducing fresh air is connected to the intake manifold 10A of the engine 10, and an exhaust passage 13 for connecting exhaust to the outside is connected to the exhaust manifold 10B.
  • an air cleaner 14 an intake air amount sensor (hereinafter referred to as MAF sensor) 40, a compressor 20A of the variable displacement supercharger 20, an intercooler 15, an intake throttle valve 16 and the like are provided in order from the intake upstream side.
  • MAF sensor intake air amount sensor
  • the exhaust passage 13 is provided with a turbine 20B of the variable displacement supercharger 20, an exhaust aftertreatment device 30 and the like in order from the exhaust upstream side.
  • reference numeral 41 denotes an engine speed sensor
  • reference numeral 42 denotes an accelerator opening sensor
  • reference numeral 46 denotes a boost pressure sensor.
  • the engine speed sensor 41 and the accelerator opening sensor 42 are used as sensors for grasping the operating state of the engine 10.
  • the EGR device 21 includes an EGR passage 22 that connects the exhaust manifold 10B and the intake manifold 10A, an EGR cooler 23 that cools the EGR gas, and an EGR valve 24 that adjusts the EGR amount.
  • the exhaust aftertreatment device 30 is configured by arranging an oxidation catalyst 31, a NOx occlusion reduction type catalyst 32, and a particulate filter (hereinafter simply referred to as a filter) 33 in order from the exhaust upstream side in a case 30A.
  • the exhaust passage 13 upstream of the oxidation catalyst 31 is provided with an exhaust injector 34 that injects unburned fuel (mainly HC) into the exhaust passage 13 in accordance with an instruction signal input from the ECU 50. Yes.
  • the oxidation catalyst 31 is formed, for example, by carrying an oxidation catalyst component on the surface of a ceramic carrier such as a honeycomb structure.
  • a ceramic carrier such as a honeycomb structure.
  • the NOx occlusion reduction type catalyst 32 is formed, for example, by supporting an alkali metal or the like on the surface of a ceramic carrier such as a honeycomb structure.
  • the NOx occlusion reduction type catalyst 32 occludes NOx in the exhaust when the exhaust air-fuel ratio is in a lean state, and occludes with a reducing agent (HC or the like) contained in the exhaust when the exhaust air-fuel ratio is in a rich state. NOx is reduced and purified.
  • the filter 33 is formed, for example, by arranging a large number of cells partitioned by porous partition walls along the flow direction of the exhaust gas and alternately plugging the upstream side and the downstream side of these cells. .
  • the filter 33 collects PM in the exhaust gas in the pores and surfaces of the partition walls, and when the estimated amount of PM deposition reaches a predetermined amount, so-called filter forced regeneration is performed in which the PM is burned and removed.
  • Filter forced regeneration is performed by supplying unburned fuel to the upstream side oxidation catalyst 31 by exhaust pipe injection or post injection, and raising the exhaust temperature flowing into the filter 33 to the PM combustion temperature.
  • the first exhaust temperature sensor 43 is provided upstream of the oxidation catalyst 31 and detects the exhaust temperature (catalyst inlet temperature) flowing into the oxidation catalyst 31.
  • the second exhaust temperature sensor 44 is provided between the NOx storage reduction catalyst 32 and the filter 33 and detects the exhaust temperature flowing into the filter 33.
  • the NOx / lambda sensor 45 is an example of a NOx sensor according to the present disclosure. In the present embodiment, the NOx / lambda sensor 45 is provided on the downstream side of the filter 33, and the NOx value and lambda value (hereinafter, also referred to as excess air ratio) of the exhaust gas that has passed through the NOx storage reduction catalyst 32. To detect.
  • the ECU 50 performs various controls of the engine 10 and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like. In order to perform these various controls, the sensor values of the sensors 40 to 46 are input to the ECU 50.
  • the ECU 50 includes the filter regeneration control unit 51, the SOx purge control unit 60, and the NOx purge control unit 70 as some functional elements. Each of these functional elements will be described as being included in the ECU 50 which is an integral hardware, but any one of these may be provided in separate hardware.
  • the filter regeneration control unit 51 estimates the PM accumulation amount of the filter 33 from the travel distance of the vehicle or the differential pressure across the filter detected by a differential pressure sensor (not shown), and the estimated PM accumulation amount exceeds a predetermined upper limit threshold. And the regeneration flag F DPF is turned on (see time t 1 in FIG. 2). When the regeneration flag F DPF is turned on, an instruction signal for performing exhaust pipe injection is transmitted to the exhaust injector 34, or an instruction signal for performing post injection is transmitted to each in-cylinder injector 11, and the exhaust gas is exhausted. The temperature is raised to the PM combustion temperature (for example, about 550 ° C.).
  • the regeneration flag F DPF is, PM deposition estimation amount is turned off drops to a predetermined lower limit threshold indicating the burn off (determination threshold value) (see time t 2 in FIG. 2).
  • the SOx purge control unit 60 makes the exhaust rich and raises the exhaust temperature to a sulfur desorption temperature (for example, about 600 ° C.) to recover the NOx occlusion reduction type catalyst 32 from SOx poisoning (hereinafter, this control). (Referred to as SOx purge control).
  • FIG. 2 shows a timing chart of the SOx purge control of this embodiment.
  • SOx purge flag F SP to start SOx purge control is turned on at the same time off the regeneration flag F DPF (see time t 2 in FIG. 2).
  • F DPF regeneration flag
  • the enrichment by the SOx purge control is performed by adjusting the excess air ratio to the lean side from the theoretical air-fuel ratio equivalent value (about 1.0) from the steady operation (for example, about 1.5) by the air system control.
  • SOx purge lean control for reducing to 1 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the first target excess air ratio to the second target excess air ratio on the rich side (for example, about 0) This is realized by using together with the SOx purge rich control that lowers to .9). Details of the SOx purge lean control and the SOx purge rich control will be described below.
  • FIG. 3 is a block diagram illustrating a process for setting the MAF target value MAF SPL_Trgt during the SOx purge lean control.
  • the first target excess air ratio setting map 61 is a map that is referred to based on the engine speed Ne and the accelerator opening Q (the fuel injection amount of the engine 10), and the engine speed Ne, the accelerator opening Q,
  • the excess air ratio target value ⁇ SPL_Trgt (first target excess air ratio) at the time of SOx purge lean control corresponding to is preset based on experiments or the like.
  • the excess air ratio target value ⁇ SPL_Trgt at the time of SOx purge lean control is read from the first target excess air ratio setting map 61 using the engine speed Ne and the accelerator opening Q as input signals, and is sent to the MAF target value calculation unit 62. Entered. Further, the MAF target value calculation unit 62 calculates the MAF target value MAF SPL_Trgt during the SOx purge lean control based on the following formula (1).
  • Q fnl_cord represents the fuel injection amount (excluding post injection)
  • Ro Fuel represents the fuel specific gravity
  • AFR sto represents the stoichiometric air-fuel ratio
  • Maf_corr represents the MAF correction coefficient.
  • the MAF correction coefficient Maf_corr is read from a correction coefficient setting map (not shown) using the engine speed Ne and the accelerator opening Q as input signals.
  • a MAF correction coefficient Maf_corr indicating the sensor characteristics of the MAF sensor 40 corresponding to the engine speed Ne and the accelerator opening Q is set in advance based on experiments or the like.
  • MAF target value MAF SPL_Trgt calculated by the MAF target value calculation unit 62, when the SOx purge flag F SP is turned on (see time t 2 in FIG. 2) is input to the lamp unit 63.
  • the ramp processing unit 63 reads the ramp coefficient from each of the ramp coefficient maps 63A and 63B using the engine speed Ne and the accelerator opening Q as input signals, and uses the MAF target ramp value MAF SPL_Trgt_Ramp to which the ramp coefficient is added as the valve control unit 64. To enter.
  • the valve control unit 64 throttles the intake throttle valve 16 to the close side and opens the EGR valve 24 to the open side so that the actual MAF value MAF Act input from the MAF sensor 40 becomes the MAF target ramp value MAF SPL_Trgt_Ramp. Execute control.
  • the MAF target value MAF SPL_Trgt is set based on the excess air ratio target value ⁇ SPL_Trgt read from the first target excess air ratio setting map 61 and the fuel injection amount of each injector 11,
  • the air system operation is feedback-controlled based on the MAF target value MAF SPL_Trgt .
  • FIG. 4 is a block diagram showing processing for setting the target injection amount Q SPR_Trgt (injection amount per unit time) of exhaust pipe injection or post injection in SOx purge rich control.
  • the second target excess air ratio setting map 65 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and at the time of SOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q.
  • the excess air ratio target value ⁇ SPR_Trgt (second target excess air ratio) is set in advance based on experiments or the like.
  • the excess air ratio target value ⁇ SPR_Trgt at the time of SOx purge rich control is read from the second target excess air ratio setting map 65 using the engine speed Ne and the accelerator opening Q as input signals, and an injection quantity target value calculation unit 66. Further, the injection amount target value calculation unit 66 calculates the target injection amount Q SPR_Trgt during the SOx purge rich control based on the following formula (2).
  • MAF SPL_Trgt MAF SPL_Trgt ⁇ Maf_corr / ( ⁇ SPR_Trgt ⁇ Ro Fuel ⁇ AFR sto ) ⁇ Q fnl_corrd (2)
  • MAF SPL_Trgt is the MAF target value at the SOx purge lean, and is input from the above-described MAF target value calculation unit 62.
  • Q fnl_cord represents the fuel injection amount (excluding post injection) before application of MAF tracking control
  • Ro Fuel represents fuel specific gravity
  • AFR sto represents the theoretical air-fuel ratio
  • Maf_corr represents the MAF correction coefficient.
  • the target injection amount Q SPR_Trgt calculated by the injection amount target value calculation unit 66 is transmitted as an injection instruction signal to the exhaust injector 34 or each in-cylinder injector 11 when a SOx purge rich flag F SPR described later is turned on.
  • the target injection amount Q SPR_Trgt is set based on the air excess rate target value ⁇ SPR_Trgt read from the second target air excess rate setting map 65 and the fuel injection amount of each injector 11. It has become.
  • the sensor value of the lambda sensor is not used.
  • the exhaust can be effectively reduced to a desired excess air ratio required for SOx purge rich control.
  • the exhaust temperature (hereinafter also referred to as catalyst temperature) flowing into the NOx occlusion reduction type catalyst 32 during the SOx purge control is the SOx that performs exhaust pipe injection or post injection as shown at times t 2 to t 4 in FIG.
  • the purge rich flag F SPR is controlled by alternately switching on / off (rich / lean).
  • the SOx purge rich flag FSPR is turned off, the catalyst temperature is lowered by stopping the exhaust pipe injection or the post injection (hereinafter, this period is referred to as an interval TF_INT ).
  • the injection period TF_INJ is set by reading values corresponding to the engine speed Ne and the accelerator opening Q from an injection period setting map (not shown) created in advance by experiments or the like.
  • an injection period required to reliably reduce the excess air ratio of exhaust gas obtained in advance through experiments or the like to the second target excess air ratio is set according to the operating state of the engine 10. ing.
  • the interval T F_INT is set by feedback control when the SOx purge rich flag F SPR at which the catalyst temperature is highest is switched from on to off. Specifically, the proportional control for changing the input signal in proportion to the deviation ⁇ T between the target catalyst temperature and the estimated catalyst temperature when the SOx purge rich flag FSPR is turned off, and the time integral value of the deviation ⁇ T are proportional. This is processed by PID control constituted by integral control for changing the input signal and differential control for changing the input signal in proportion to the time differential value of the deviation ⁇ T.
  • the target catalyst temperature is set at a temperature at which SOx can be removed from the NOx storage reduction catalyst 32.
  • the estimated catalyst temperature is, for example, the inlet temperature of the oxidation catalyst 31 detected by the first exhaust temperature sensor 43, and the oxidation catalyst 31. Further, it may be estimated based on the amount of HC / CO heat generated inside the NOx storage reduction catalyst 32, the amount of heat released to the outside air, and the like.
  • the injection period TF_INJ for raising the catalyst temperature and lowering the excess air ratio to the second target excess air ratio is set from the map referred to based on the operating state of the engine 10,
  • the interval TF_INT for lowering the catalyst temperature is processed by PID control. This makes it possible to reliably reduce the excess air ratio to the target excess ratio while effectively maintaining the catalyst temperature during the SOx purge control within a desired temperature range necessary for the purge.
  • SOx purge control (1) SOx purge flag F from on the SP injection quantity of the exhaust pipe injection or post injection accumulated, when the amount of the cumulative injected has reached the predetermined upper limit threshold amount, of (2) SOx purge control When the elapsed time counted from the start reaches a predetermined upper threshold time, (3) calculation is performed based on a predetermined model formula including the operating state of the engine 10 and the sensor value of the NOx / lambda sensor 45 as input signals.
  • SOx purge flag F SP is terminated by turning off the (time t 4 in FIG. 2 , reference time t n in FIG. 5).
  • the SOx purge control end condition is provided with the upper limit of the cumulative injection amount and the elapsed time
  • the fuel consumption amount when the SOx purge does not progress due to a decrease in the exhaust temperature or the like. Can be effectively prevented from becoming excessive.
  • FIG. 6 shows a timing chart of the NOx purge control of this embodiment.
  • the NOx purge control unit 70 restores the NOx storage capability of the NOx storage reduction catalyst 32 by making the exhaust atmosphere rich and detoxifying and releasing NOx stored in the NOx storage reduction catalyst 32 by reduction purification. Execute control.
  • FIG. 7 is a block diagram showing a start process of NOx purge control by the NOx purge control unit 70.
  • the NOx purge control unit 70 includes a NOx purge start determination unit 111, a NOx occlusion amount estimation unit 113, an occlusion amount threshold map 114, a catalyst temperature estimation unit 115, an occlusion amount threshold correction unit 116, a purification rate calculation unit 117, and an interval target value map. 118, an interval target value correction unit 119, and a deterioration degree estimation unit 120 are included as some functional elements.
  • the start condition determined by the NOx purge start determination unit 111 for example, (1) when an operation signal is input from a forced rich switch (not shown), (2) NOx occlusion amount estimation of the NOx occlusion reduction type catalyst 32 is estimated.
  • the value m_NOx increases to a value equal to or greater than the predetermined storage amount threshold value STR_thr_NOx
  • the NOx purification rate NOx_pur% in the NOx storage reduction type catalyst 32 decreases below the predetermined purification rate threshold value
  • (4) Idling (5)
  • the engine 10 rotates at a predetermined rotation speed threshold value or higher and the load on the engine 10 is equal to or higher than the predetermined load threshold value
  • (6) the estimated catalyst temperature Temp_LNT is Although the case where the low temperature state which is less than a predetermined catalyst temperature threshold is continuing over predetermined time is mentioned, it is not limited to these.
  • the NOx occlusion amount estimated value m_NOx used for the determination of the start condition is estimated by the NOx occlusion amount estimation unit 113.
  • the NOx occlusion amount estimated value m_NOx is calculated based on the following formula (3), for example.
  • NOx occlusion amount estimated value m_NOx engine-out NOx amount x occlusion efficiency based on catalyst temperature x occlusion efficiency based on NOx accumulation rate (3)
  • the engine-out NOx amount is acquired from an engine-out NOx map using the engine speed Ne and the accelerator opening Q as input signals.
  • the engine-out NOx map is created in advance by experiments or the like. Further, the engine-out NOx amount can be obtained by other methods such as a NOx sensor or a model formula.
  • the storage efficiency (0 ⁇ C ⁇ 1) based on the catalyst temperature is acquired from a T_STR map using the estimated catalyst temperature Temp_LNT estimated by the catalyst temperature estimation unit 115 as an input signal.
  • the T_STR map is created in advance by experiments or the like.
  • the storage efficiency (0 ⁇ C ⁇ 1) based on the NOx accumulation rate is acquired from the Fill_STR map using the NOx accumulation rate NOx_LEV as an input signal.
  • the Fill_STR map is created in advance by experiments or the like.
  • the NOx accumulation rate NOx_LEV is a ratio of the NOx accumulation amount NOx_STR accumulated in the NOx occlusion reduction type catalyst 32 at that time to the maximum NOx occlusion amount.
  • the NOx accumulation amount_STR is obtained by subtracting the NOx reduction amount from the immediately preceding NOx storage amount. In these maps, correction can be made as appropriate using MAF, engine-out NOx, or the like.
  • NOx storage amount threshold STR _Thr_NOx used for determining the start conditions are set by the storage amount threshold value map 114 referenced based on the estimated catalyst temperature Temp _LNT the NOx occlusion-reduction catalyst 32.
  • the estimated catalyst temperature Temp_LNT is estimated by the catalyst temperature estimation unit 115.
  • the estimated catalyst temperature Temp_LNT is estimated based on, for example, the inlet temperature of the oxidation catalyst 31 detected by the first exhaust temperature sensor 43, the HC / CO heat generation amount inside the oxidation catalyst 31 and the NOx storage reduction catalyst 32, and the like. Is done.
  • the NOx storage amount threshold value STR_thr_NOx set based on the storage amount threshold map 114 is corrected by the storage amount threshold value correcting unit 116.
  • the occlusion amount threshold value correction unit 116 multiplies the NOx occlusion amount threshold value STR_thr_NOx by a deterioration correction coefficient (deterioration degree) obtained by the deterioration degree estimation unit 120. The calculation of the deterioration correction coefficient will be described later.
  • the NOx purification rate NOx_pur% used for the determination of the start condition is calculated by the purification rate calculation unit 117.
  • the NOx purification rate NOx_pur% is obtained, for example, by dividing the NOx amount on the downstream side of the catalyst detected by the NOx / lambda sensor 45 by the NOx emission amount on the upstream side of the catalyst estimated from the operating state of the engine 10 or the like. It is done.
  • the interval target value Int_tgr used for the start determination is set in an interval target value map 118 that is referred to based on the engine speed Ne and the accelerator opening Q.
  • the interval target value Int_tgr is corrected by the interval target value correction unit 119.
  • the interval target value correction unit 119 performs a shortening correction that shortens as the degree of deterioration of the NOx storage reduction catalyst 32 increases. This shortening correction is performed by multiplying the NOx occlusion amount threshold value STR_thr_NOx by a deterioration correction coefficient (deterioration degree) obtained by the deterioration degree estimation unit 120.
  • FIG. 8 is a block diagram for explaining the calculation process of the deterioration correction coefficient.
  • the degradation degree estimation unit 120 includes a calculation start condition determination unit 121, an engine-out NOxs acquisition unit 122, an exit NOx estimation unit 123, and a correction coefficient calculation unit 124 as some functional elements.
  • the calculation start condition determining unit 121 determines whether or not the deterioration correction coefficient calculation start condition is satisfied. If the condition is satisfied, the engine out NOx calculating unit 122, the outlet NOx estimating unit 123, and the correction coefficient calculating unit. A permission signal for permitting execution of the calculation process is output to 124. For example, the voltage of the permission signal is set to H level. Each of the units 122, 123, and 124 starts the process on the condition that the output of the permission signal is started, and executes the process over the output period of the permission signal. Each unit 122, 123, and 124 stops processing in a period during which the permission signal is not output (for example, a period in which the signal is at the L level). The determination of the calculation start condition by the calculation start condition determination unit 121 will be described later.
  • the engine-out NOx acquisition unit 122 acquires the NOx amount (engine-out NOx amount) contained in the exhaust discharged from the engine 10 based on the operating state of the engine 10.
  • the engine-out NOx amount is acquired from an engine-out NOx amount map using the engine speed Ne and the accelerator opening Q as input signals.
  • the engine-out NOx amount map is prepared in advance by experiments or the like.
  • the engine-out NOx amount may be obtained from a model formula or may be obtained by other methods.
  • the outlet NOx estimating unit 123 estimates the NOx amount (exit NOx estimated amount) contained in the exhaust gas that has passed through the NOx storage reduction catalyst 32.
  • the estimated outlet NOx amount is calculated by subtracting the NOx storage amount estimated by the NOx storage amount estimation unit 113 from the engine out NOx amount acquired by the engine out NOx acquisition unit 122.
  • the correction coefficient calculation unit 124 calculates a deterioration correction coefficient for correcting the estimated value to the detected value with respect to the NOx amount contained in the exhaust gas that has passed through the NOx storage reduction catalyst 32.
  • the deterioration correction coefficient in the present embodiment is calculated by time-integrating a difference obtained by subtracting the actual NOx amount based on the detected value of the NOx / lambda sensor 45 from the exit NOx estimated amount estimated by the exit NOx estimating unit 123.
  • the calculated deterioration correction coefficient is used for threshold correction in the occlusion amount threshold correction unit 116 or used for target value correction in the interval target value correction unit 119.
  • FIG. 9 is a diagram schematically illustrating the calculation start condition by the calculation start condition determining unit (calculation control unit) 121.
  • a solid line of code m _NOx is NOx occlusion amount estimation value
  • dotted line code NOx _Act is actual NOx amount based on the detected value of the NOx / lambda sensors 45
  • the amount of NOx estimated by the unit 123 and the two-dot chain line of the symbol NOx_Err is an error between the actual NOx amount and the estimated NOx amount.
  • An arrow with a symbol T_AL is a permission period for the deterioration correction calculation.
  • the calculation start condition determination unit 121 starts calculating the deterioration correction coefficient on condition that the NOx occlusion amount estimated value m_NOx is equal to or less than a predetermined threshold NOx_TH1 .
  • the threshold value NOx_TH1 in the present embodiment is 20% of the occlusion amount threshold value STR_thr_NOx , but is not limited to this value.
  • NOx occlusion amount estimation value m _NOx is time t3 to reach a predetermined threshold NOx _TH1. For this reason, the calculation process of the deterioration correction coefficient is started in a period from time t0 to time t3 when the engine is started.
  • the deterioration correction coefficient calculation process is started on the condition that the NOx occlusion amount estimated value m_NOx is equal to or less than the predetermined threshold NOx_TH1 (the NOx occlusion amount estimated value m_NOx exceeds the predetermined threshold NOx_TH1) .
  • the calculation process is not started until the NOx occlusion amount estimated value m_NOx becomes equal to or less than the predetermined threshold NOx_TH1 ), thereby improving the accuracy of correction of the calculated deterioration correction coefficient.
  • the deterioration correction coefficient is calculated by integrating the difference between the estimated value and the detected value of the NOx amount contained in the exhaust gas that has passed through the NOx storage reduction catalyst 32.
  • the lower the NOx occlusion amount estimated value m_NOx at the start of calculation the longer the period until the NOx occlusion amount estimated value m_NOx reaches the occlusion amount threshold STR_thr_NOx , and the difference between the estimated value and the detected value becomes clearer. Because it becomes.
  • the calculation start condition determination unit 121 prohibits the calculation of the deterioration correction coefficient for a predetermined period from when the engine 10 is started until the NOx / lambda sensor 45 can effectively detect the NOx amount.
  • the NOx / lambda sensor 45 of this embodiment includes a heater (not shown), but energization of the heater is performed in a state where moisture adhering to the sensor is removed. For this reason, after the engine 10 is started, energization of the heater is started on the condition that the exhaust temperature has reached a predetermined drying temperature (for example, 100 ° C.). At the same time, detection of the NOx amount by the NOx / lambda sensor 45 is started. In the example of FIG.
  • the standby period from the start of energization to the heater (start of detection by the NOx / lambda sensor 45) to the start of the calculation process of the deterioration correction coefficient it may be a predetermined period as described above, or may be NOx / lambda.
  • a condition may be that the amount of change per unit time of the sensor 45 is equal to or less than a determination threshold value indicating a stable state of detection.
  • the calculation start condition determination unit 121 calculates the deterioration correction coefficient until a predetermined period elapses after the end of the above-described SOx purge rich control or until a predetermined period elapses after the end of NOx purge rich control described later. Is prohibited. This is because a large error occurs in the estimated value of the NOx discharge amount immediately after the end of each rich control. Therefore, in the present embodiment, the calculation process of the deterioration correction coefficient is started on the condition that the time necessary for stabilizing the detected value has elapsed. In the example of FIG. 9, the calculation of the deterioration correction coefficient is prohibited with the standby period from the end time t4 to the time t5 of the NOx purge rich control.
  • this waiting period it is good also as a period until the variation
  • the enrichment by the NOx purge control is performed on the lean side of the excess air ratio from the stoichiometric air-fuel ratio equivalent value (about 1.0) from the time of steady operation (for example, about 1.5) by the air system control.
  • NOx purge lean control for reducing to 3 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the third target excess air ratio to the fourth target excess air ratio on the rich side (for example, about 0) .9) and NOx purge rich control for reducing the pressure to 9).
  • the details of the NOx purge lean control and the NOx purge rich control will be described below.
  • FIG. 10 is a block diagram showing a process for setting the MAF target value MAF NPL_Trgt during the NOx purge lean control.
  • the third target excess air ratio setting map 71 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge lean control corresponding to the engine speed Ne and the accelerator opening Q.
  • the excess air ratio target value ⁇ NPL_Trgt (third excess air ratio) is set in advance based on experiments or the like.
  • the excess air ratio target value ⁇ NPL_Trgt at the time of NOx purge lean control is read from the third target excess air ratio setting map 71 using the engine speed Ne and the accelerator opening Q as input signals, and is sent to the MAF target value calculation unit 72. Entered. Further, the MAF target value calculation unit 72 calculates the MAF target value MAF NPL_Trgt at the time of NOx purge lean control based on the following formula (4).
  • MAF NPL_Trgt ⁇ NPL_Trgt ⁇ Q fnl_corrd ⁇ Ro Fuel ⁇ AFR sto / Maf_corr (4)
  • Q fnl_cord represents the fuel injection amount (excluding post injection)
  • Ro Fuel represents the fuel specific gravity
  • AFR sto represents the stoichiometric air-fuel ratio
  • Maf_corr represents the MAF correction coefficient.
  • the MAF target value MAF NPL_Trgt calculated by the MAF target value calculation unit 72 is input to the ramp processing unit 73 when the NOx purge flag F NP is turned on (see time t 1 in FIG. 6).
  • the ramp processing unit 73 reads the ramp coefficient from the ramp coefficient maps 73A and 73B using the engine speed Ne and the accelerator opening Q as input signals, and calculates the MAF target ramp value MAF NPL_Trgt_Ramp to which the ramp coefficient is added as a valve control unit 74. To enter.
  • the valve control unit 74 throttles the intake throttle valve 16 to the close side and opens the EGR valve 24 to the open side so that the actual MAF value MAF Act input from the MAF sensor 40 becomes the MAF target ramp value MAF NPL_Trgt_Ramp. Execute control.
  • the MAF target value MAF NPL_Trgt is set based on the excess air ratio target value ⁇ NPL_Trgt read from the third target excess air ratio setting map 71 and the fuel injection amount of each injector 11,
  • the air system operation is feedback-controlled based on the MAF target value MAF NPL_Trgt .
  • FIG. 11 is a block diagram showing processing for setting a target injection amount Q NPR_Trgt (injection amount per unit time) for exhaust pipe injection or post injection in NOx purge rich control.
  • the fourth target excess air ratio setting map 75 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q.
  • the air excess rate target value ⁇ NPR_Trgt (fourth target air excess rate) is set in advance based on experiments or the like.
  • the excess air ratio target value ⁇ NPR_Trgt at the time of NOx purge rich control is read from the fourth target excess air ratio setting map 75 using the engine speed Ne and the accelerator opening Q as input signals, and the injection amount target value calculation section 76 is performed. Is input. Further, the injection amount target value calculation unit 76 calculates a target injection amount Q NPR_Trgt at the time of NOx purge rich control based on the following formula (5).
  • MAF NPL_Trgt MAF NPL_Trgt ⁇ Maf_corr / ( ⁇ NPR_Trgt ⁇ Ro Fuel ⁇ AFR sto ) ⁇ Q fnl_corrd (5)
  • MAF NPL_Trgt is a NOx purge lean MAF target value, and is input from the above-described MAF target value calculation unit 72.
  • Q fnl_corrd represents the fuel injection amount (excluding post injection)
  • Ro Fuel represents the fuel specific gravity
  • AFR sto represents the stoichiometric air-fuel ratio
  • Maf_corr represents the MAF correction coefficient.
  • the target injection amount Q NPR_Trgt that is calculated by the injection amount target value computing unit 76, NOx purge flag F SP When turned on, is sent as the injection instruction signal to the exhaust pipe injector 34 or the injectors 11 (time of FIG. 6 t 1 ). The transmission of this injection instruction signal is continued until the NOx purge flag F NP is turned off (time t 2 in FIG. 6) by the end determination of NOx purge control described later.
  • the target injection amount Q NPR_Trgt is set based on the air excess rate target value ⁇ NPR_Trgt read from the fourth target air excess rate setting map 75 and the fuel injection amount of each injector 11. It has become.
  • the sensor value of the lambda sensor is not used. It is possible to effectively reduce the exhaust gas to a desired excess air ratio required for NOx purge rich control.
  • NOx purge control (1) when the NOx purge flag F NP is turned on, the amount of exhaust pipe injection or post injection is accumulated, and when this cumulative injection amount reaches a predetermined upper limit threshold amount, (2) NOx purge control When the elapsed time counted from the start reaches a predetermined upper threshold time, (3) calculation is performed based on a predetermined model formula including the operating state of the engine 10 and the sensor value of the NOx / lambda sensor 45 as input signals.
  • the NOx purge flag F NP is turned off and the process ends (time t 2 in FIG. 6). reference).
  • the cumulative injection amount and the upper limit of the elapsed time are provided in the end condition of the NOx purge control, so that the fuel consumption amount is reduced when the NOx purge is not successful due to a decrease in the exhaust temperature or the like. It is possible to reliably prevent the excess.
  • the catalyst deterioration degree estimation device of the present disclosure is useful in that the accuracy of correction using a deterioration correction coefficient can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

This catalyst deterioration degree estimation device for an exhaust purification system provided with a NOx occlusion/reduction catalyst (32), and a NOx sensor (45) provided further downstream an exhaust passage than the NOx occlusion/reduction catalyst (32), is provided with: a calculation unit (120) which estimates, on the basis of the operation state of an internal combustion engine (10), the NOx amount included in exhaust that has passed through the NOx reduction catalyst (32), and calculates, on the basis of the difference between the estimated NOx amount and the actual NOx amount detected by the NOx sensor (45), the deterioration degree of the NOx occlusion/reduction catalyst (32); and a calculation control unit (121) which controls the calculation of the deterioration degree by the calculation unit (120) on the basis of the operation state of the internal combustion engine (10) and/or the state of the exhaust passage of the internal combustion engine (10).

Description

触媒劣化度合推定装置Catalyst degradation degree estimation device
 本開示は、触媒劣化度合推定装置に関する。 This disclosure relates to a catalyst deterioration degree estimation device.
 従来、内燃機関から排出される排気中の窒素化合物(NOx)を還元浄化する触媒として、NOx吸蔵還元型触媒が知られている。NOx吸蔵還元型触媒は、排気がリーン雰囲気のときに排気中に含まれるNOxを吸蔵すると共に、排気がリッチ雰囲気のときに排気中に含まれる炭化水素で吸蔵していたNOxを還元浄化により無害化して放出する。このため、触媒のNOx吸蔵量が所定量に達した場合などには、排気管噴射やポスト噴射によって排気をリッチ状態にし、NOx吸蔵還元型触媒のNOx吸蔵能力を回復させる回復処理を定期的に実行する必要がある(例えば、特許文献1,2参照)。 Conventionally, a NOx occlusion reduction type catalyst is known as a catalyst for reducing and purifying nitrogen compounds (NOx) in exhaust gas discharged from an internal combustion engine. The NOx occlusion reduction catalyst occludes NOx contained in the exhaust when the exhaust is in a lean atmosphere, and harmless NOx occluded by hydrocarbons contained in the exhaust when the exhaust is in a rich atmosphere. And release. For this reason, when the NOx occlusion amount of the catalyst reaches a predetermined amount, etc., a recovery process is periodically performed to restore the NOx occlusion capacity of the NOx occlusion reduction type catalyst by making exhaust rich by exhaust pipe injection or post injection. It is necessary to execute (see, for example, Patent Documents 1 and 2).
 NOx吸蔵還元型触媒は、継続的な使用によってNOxの吸蔵性能が劣化する傾向があるため、劣化を補正するための劣化補正係数が取得される。補正の精度を高めるため、特定の条件の下で劣化補正係数の取得を実行する技術が開示されている。例えば、特許文献3には、リーン運転中に補正パラメータの計算を実行し、リッチ運転中には補正パラメータの計算を実行しない方法が開示されている。特許文献4には、触媒温度が所定値よりも低い場合に補正係数を算出するシステムが開示されている。特許文献5には、エンジンが定常運転中でNOxセンサ値が安定している場合に、NOx補正係数を算出する制御装置が開示されている。 Since the NOx occlusion reduction type catalyst tends to deteriorate the NOx occlusion performance by continuous use, a deterioration correction coefficient for correcting the deterioration is acquired. In order to increase the accuracy of correction, a technique for executing acquisition of a deterioration correction coefficient under a specific condition is disclosed. For example, Patent Document 3 discloses a method of executing correction parameter calculation during lean operation and not executing correction parameter calculation during rich operation. Patent Document 4 discloses a system that calculates a correction coefficient when the catalyst temperature is lower than a predetermined value. Patent Document 5 discloses a control device that calculates a NOx correction coefficient when the engine is in steady operation and the NOx sensor value is stable.
日本国特開2008-202425号公報Japanese Unexamined Patent Publication No. 2008-202425 日本国特開2007-16713号公報Japanese Unexamined Patent Publication No. 2007-16713 日本国特開2004-270469号公報Japanese Unexamined Patent Publication No. 2004-270469 日本国特開2007-162603号公報Japanese Unexamined Patent Publication No. 2007-162603 国際公開第2014/083626号International Publication No. 2014/083626
 劣化補正係数は、NOx吸蔵還元型触媒よりも排気下流側におけるNOx量の推定値と検出値の差を積分することで算出できる。劣化補正係数による補正の精度を高めるためには、積分時間をできるだけ長くとることが望ましい。 The deterioration correction coefficient can be calculated by integrating the difference between the estimated value and the detected value of the NOx amount on the exhaust downstream side of the NOx storage reduction catalyst. In order to improve the accuracy of correction using the deterioration correction coefficient, it is desirable to take the integration time as long as possible.
 本開示の技術は、劣化補正係数による補正の精度を高めることを目的とする。 The technique of the present disclosure aims to increase the accuracy of correction using a deterioration correction coefficient.
 本開示の技術は、内燃機関の排気通路に設けられ、排気リーン状態で排気中のNOxを吸蔵すると共に、排気リッチ状態で吸蔵されていたNOxを還元浄化するNOx吸蔵還元型触媒と、前記NOx吸蔵還元型触媒よりも前記排気通路の下流側に設けられたNOxセンサと、を備える排気浄化システムの触媒劣化度合推定装置であって、前記内燃機関の運転状態に基づいて前記NOx還元型触媒を通過した排気に含まれるNOx量を推定し、当該推定されるNOx量と前記NOxセンサで検出される実NOx量との差に基づき、前記NOx吸蔵還元型触媒の劣化度合を算出する算出部と、前記内燃機関の運転状態と前記内燃機関の排気通路の状態のうち少なくとも一方に基づいて、前記算出部の前記劣化度合の算出を制御する算出制御部と、を備える。 The technology of the present disclosure is provided in an exhaust passage of an internal combustion engine, stores NOx in exhaust in an exhaust lean state, and reduces and purifies NOx stored in an exhaust rich state, and the NOx And a NOx sensor provided downstream of the exhaust passage relative to the storage reduction catalyst, and a catalyst deterioration degree estimation device for an exhaust purification system, the NOx reduction catalyst based on an operating state of the internal combustion engine. A calculation unit that estimates the amount of NOx contained in the exhaust gas that has passed, and calculates the degree of deterioration of the NOx storage reduction catalyst based on the difference between the estimated amount of NOx and the actual amount of NOx detected by the NOx sensor; A calculation control unit that controls the calculation of the degree of deterioration of the calculation unit based on at least one of the operating state of the internal combustion engine and the state of the exhaust passage of the internal combustion engine; Equipped with a.
 本開示の技術によれば、劣化補正係数による補正の精度を高めることができる。 According to the technique of the present disclosure, it is possible to improve the accuracy of correction using the deterioration correction coefficient.
図1は、本実施形態に係る排気浄化システムを示す全体構成図である。FIG. 1 is an overall configuration diagram showing an exhaust purification system according to the present embodiment. 図2は、本実施形態に係るSOxパージ制御を説明するタイミングチャート図である。FIG. 2 is a timing chart for explaining the SOx purge control according to the present embodiment. 図3は、本実施形態に係るSOxパージリーン制御時のMAF目標値の設定処理を示すブロック図である。FIG. 3 is a block diagram showing the MAF target value setting process during SOx purge lean control according to the present embodiment. 図4は、本実施形態に係るSOxパージリッチ制御時の目標噴射量の設定処理を示すブロック図である。FIG. 4 is a block diagram showing a target injection amount setting process during SOx purge rich control according to the present embodiment. 図5は、本実施形態に係るSOxパージ制御の触媒温度調整制御を説明するタイミングチャート図である。FIG. 5 is a timing chart illustrating the catalyst temperature adjustment control of the SOx purge control according to the present embodiment. 図6は、本実施形態に係るNOxパージ制御を説明するタイミングチャート図である。FIG. 6 is a timing chart for explaining the NOx purge control according to the present embodiment. 図7は、本実施形態に係るNOxパージ制御の開始処理を示すブロック図である。FIG. 7 is a block diagram showing a start process of NOx purge control according to the present embodiment. 図8は、本実施形態に係る劣化補正係数の算出処理を説明するブロック図である。FIG. 8 is a block diagram for explaining deterioration correction coefficient calculation processing according to the present embodiment. 図9は、算出開始条件を模式的に説明する図である。FIG. 9 is a diagram schematically illustrating the calculation start condition. 図10は、本実施形態に係るNOxパージリーン制御時のMAF目標値の設定処理を示すブロック図である。FIG. 10 is a block diagram showing the MAF target value setting process during NOx purge lean control according to the present embodiment. 図11は、本実施形態に係るNOxパージリッチ制御時の目標噴射量の設定処理を示すブロック図である。FIG. 11 is a block diagram illustrating a target injection amount setting process during NOx purge rich control according to the present embodiment.
 以下、添付図面に基づいて、本開示の一実施形態に係る排気浄化システムを説明する。 Hereinafter, an exhaust purification system according to an embodiment of the present disclosure will be described based on the accompanying drawings.
 図1に示すように、内燃機関の一例であるディーゼルエンジン(以下、単にエンジンという)10の各気筒には、図示しないコモンレールに畜圧された高圧燃料を各気筒内に直接噴射する筒内インジェクタ11がそれぞれ設けられている。これら筒内インジェクタ11の燃料噴射量や燃料噴射タイミングは、電子制御ユニット(本開示に係る制御部の一例、以下ECUという)50から入力される指示信号に応じてコントロールされる。 As shown in FIG. 1, each cylinder of a diesel engine (hereinafter simply referred to as an engine) 10 that is an example of an internal combustion engine has an in-cylinder injector that directly injects high-pressure fuel stored in a common rail (not shown) into each cylinder. 11 are provided. The fuel injection amount and fuel injection timing of these in-cylinder injectors 11 are controlled according to an instruction signal input from an electronic control unit (an example of a control unit according to the present disclosure, hereinafter referred to as an ECU) 50.
 エンジン10の吸気マニホールド10Aには新気を導入する吸気通路12が接続され、排気マニホールド10Bには排気を外部に導出する排気通路13が接続されている。吸気通路12には、吸気上流側から順にエアクリーナ14、吸入空気量センサ(以下、MAFセンサという)40、可変容量型過給機20のコンプレッサ20A、インタークーラ15、吸気スロットルバルブ16等が設けられている。排気通路13には、排気上流側から順に可変容量型過給機20のタービン20B、排気後処理装置30等が設けられている。なお、図1中において、符号41はエンジン回転数センサ、符号42はアクセル開度センサ、符号46はブースト圧センサをそれぞれ示している。そして、エンジン回転数センサ41及びアクセル開度センサ42は、エンジン10の運転状態を把握するためのセンサとして用いられる。 An intake passage 12 for introducing fresh air is connected to the intake manifold 10A of the engine 10, and an exhaust passage 13 for connecting exhaust to the outside is connected to the exhaust manifold 10B. In the intake passage 12, an air cleaner 14, an intake air amount sensor (hereinafter referred to as MAF sensor) 40, a compressor 20A of the variable displacement supercharger 20, an intercooler 15, an intake throttle valve 16 and the like are provided in order from the intake upstream side. ing. The exhaust passage 13 is provided with a turbine 20B of the variable displacement supercharger 20, an exhaust aftertreatment device 30 and the like in order from the exhaust upstream side. In FIG. 1, reference numeral 41 denotes an engine speed sensor, reference numeral 42 denotes an accelerator opening sensor, and reference numeral 46 denotes a boost pressure sensor. The engine speed sensor 41 and the accelerator opening sensor 42 are used as sensors for grasping the operating state of the engine 10.
 EGR装置21は、排気マニホールド10Bと吸気マニホールド10Aとを接続するEGR通路22と、EGRガスを冷却するEGRクーラ23と、EGR量を調整するEGRバルブ24とを備えている。 The EGR device 21 includes an EGR passage 22 that connects the exhaust manifold 10B and the intake manifold 10A, an EGR cooler 23 that cools the EGR gas, and an EGR valve 24 that adjusts the EGR amount.
 排気後処理装置30は、ケース30A内に排気上流側から順に酸化触媒31、NOx吸蔵還元型触媒32、パティキュレートフィルタ(以下、単にフィルタという)33を配置して構成されている。また、酸化触媒31よりも上流側の排気通路13には、ECU50から入力される指示信号に応じて、排気通路13内に未燃燃料(主にHC)を噴射する排気インジェクタ34が設けられている。 The exhaust aftertreatment device 30 is configured by arranging an oxidation catalyst 31, a NOx occlusion reduction type catalyst 32, and a particulate filter (hereinafter simply referred to as a filter) 33 in order from the exhaust upstream side in a case 30A. The exhaust passage 13 upstream of the oxidation catalyst 31 is provided with an exhaust injector 34 that injects unburned fuel (mainly HC) into the exhaust passage 13 in accordance with an instruction signal input from the ECU 50. Yes.
 酸化触媒31は、例えば、ハニカム構造体等のセラミック製担体表面に酸化触媒成分を担持して形成されている。酸化触媒31は、排気インジェクタ34の排気管噴射又は筒内インジェクタ11のポスト噴射によって未燃燃料が供給されると、これを酸化して排気温度を上昇させる。 The oxidation catalyst 31 is formed, for example, by carrying an oxidation catalyst component on the surface of a ceramic carrier such as a honeycomb structure. When the unburned fuel is supplied by the exhaust pipe injection of the exhaust injector 34 or the post injection of the in-cylinder injector 11, the oxidation catalyst 31 oxidizes this and raises the exhaust temperature.
 NOx吸蔵還元型触媒32は、例えば、ハニカム構造体等のセラミック製担体表面にアルカリ金属等を担持して形成されている。このNOx吸蔵還元型触媒32は、排気空燃比がリーン状態のときに排気中のNOxを吸蔵すると共に、排気空燃比がリッチ状態のときに排気中に含まれる還元剤(HC等)で吸蔵したNOxを還元浄化する。 The NOx occlusion reduction type catalyst 32 is formed, for example, by supporting an alkali metal or the like on the surface of a ceramic carrier such as a honeycomb structure. The NOx occlusion reduction type catalyst 32 occludes NOx in the exhaust when the exhaust air-fuel ratio is in a lean state, and occludes with a reducing agent (HC or the like) contained in the exhaust when the exhaust air-fuel ratio is in a rich state. NOx is reduced and purified.
 フィルタ33は、例えば、多孔質性の隔壁で区画された多数のセルを排気の流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して形成されている。フィルタ33は、排気中のPMを隔壁の細孔や表面に捕集すると共に、PM堆積推定量が所定量に達すると、これを燃焼除去するいわゆるフィルタ強制再生が実行される。フィルタ強制再生は、排気管噴射又はポスト噴射によって上流側の酸化触媒31に未燃燃料を供給し、フィルタ33に流入する排気温度をPM燃焼温度まで昇温することで行われる。 The filter 33 is formed, for example, by arranging a large number of cells partitioned by porous partition walls along the flow direction of the exhaust gas and alternately plugging the upstream side and the downstream side of these cells. . The filter 33 collects PM in the exhaust gas in the pores and surfaces of the partition walls, and when the estimated amount of PM deposition reaches a predetermined amount, so-called filter forced regeneration is performed in which the PM is burned and removed. Filter forced regeneration is performed by supplying unburned fuel to the upstream side oxidation catalyst 31 by exhaust pipe injection or post injection, and raising the exhaust temperature flowing into the filter 33 to the PM combustion temperature.
 第1排気温度センサ43は、酸化触媒31よりも上流側に設けられており、酸化触媒31に流入する排気温度(触媒入口温度)を検出する。第2排気温度センサ44は、NOx吸蔵還元型触媒32とフィルタ33との間に設けられており、フィルタ33に流入する排気温度を検出する。NOx/ラムダセンサ45は、本開示に係るNOxセンサの一例である。本実施形態において、NOx/ラムダセンサ45は、フィルタ33よりも下流側に設けられており、NOx吸蔵還元型触媒32を通過した排気のNOx値及びラムダ値(以下、空気過剰率ともいう)を検出する。 The first exhaust temperature sensor 43 is provided upstream of the oxidation catalyst 31 and detects the exhaust temperature (catalyst inlet temperature) flowing into the oxidation catalyst 31. The second exhaust temperature sensor 44 is provided between the NOx storage reduction catalyst 32 and the filter 33 and detects the exhaust temperature flowing into the filter 33. The NOx / lambda sensor 45 is an example of a NOx sensor according to the present disclosure. In the present embodiment, the NOx / lambda sensor 45 is provided on the downstream side of the filter 33, and the NOx value and lambda value (hereinafter, also referred to as excess air ratio) of the exhaust gas that has passed through the NOx storage reduction catalyst 32. To detect.
 ECU50は、エンジン10等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。これら各種制御を行うため、ECU50にはセンサ類40~46のセンサ値が入力される。また、ECU50は、フィルタ再生制御部51と、SOxパージ制御部60と、NOxパージ制御部70とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。 The ECU 50 performs various controls of the engine 10 and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like. In order to perform these various controls, the sensor values of the sensors 40 to 46 are input to the ECU 50. In addition, the ECU 50 includes the filter regeneration control unit 51, the SOx purge control unit 60, and the NOx purge control unit 70 as some functional elements. Each of these functional elements will be described as being included in the ECU 50 which is an integral hardware, but any one of these may be provided in separate hardware.
 [フィルタ再生制御]
 フィルタ再生制御部51は、車両の走行距離、あるいは図示しない差圧センサで検出されるフィルタ前後差圧からフィルタ33のPM堆積量を推定すると共に、このPM堆積推定量が所定の上限閾値を超えると再生フラグFDPFをオンにする(図2の時刻t参照)。再生フラグFDPFがオンにされると、排気インジェクタ34に排気管噴射を実行させる指示信号が送信されるか、あるいは、各筒内インジェクタ11にポスト噴射を実行させる指示信号が送信されて、排気温度をPM燃焼温度(例えば、約550℃)まで昇温させる。この再生フラグFDPFは、PM堆積推定量が燃焼除去を示す所定の下限閾値(判定閾値)まで低下するとオフにされる(図2の時刻t参照)。なお、再生フラグFDPFをオフにする判定閾値は、例えば、フィルタ再生開始(FDPF=1)からの上限経過時間や上限累積噴射量を基準にしてもよい。
[Filter regeneration control]
The filter regeneration control unit 51 estimates the PM accumulation amount of the filter 33 from the travel distance of the vehicle or the differential pressure across the filter detected by a differential pressure sensor (not shown), and the estimated PM accumulation amount exceeds a predetermined upper limit threshold. And the regeneration flag F DPF is turned on (see time t 1 in FIG. 2). When the regeneration flag F DPF is turned on, an instruction signal for performing exhaust pipe injection is transmitted to the exhaust injector 34, or an instruction signal for performing post injection is transmitted to each in-cylinder injector 11, and the exhaust gas is exhausted. The temperature is raised to the PM combustion temperature (for example, about 550 ° C.). The regeneration flag F DPF is, PM deposition estimation amount is turned off drops to a predetermined lower limit threshold indicating the burn off (determination threshold value) (see time t 2 in FIG. 2). The determination threshold value for turning off the regeneration flag F DPF may be based on, for example, the upper limit elapsed time or the upper limit cumulative injection amount from the start of filter regeneration (F DPF = 1).
 [SOxパージ制御]
 SOxパージ制御部60は、排気をリッチ状態にして排気温度を硫黄離脱温度(例えば、約600℃)まで上昇させて、NOx吸蔵還元型触媒32をSOx被毒から回復させる制御(以下、この制御をSOxパージ制御という)を実行する。
[SOx purge control]
The SOx purge control unit 60 makes the exhaust rich and raises the exhaust temperature to a sulfur desorption temperature (for example, about 600 ° C.) to recover the NOx occlusion reduction type catalyst 32 from SOx poisoning (hereinafter, this control). (Referred to as SOx purge control).
 図2は、本実施形態のSOxパージ制御のタイミングチャートを示している。図2に示すように、SOxパージ制御を開始するSOxパージフラグFSPは、再生フラグFDPFのオフと同時にオンにされる(図2の時刻t参照)。これにより、フィルタ33の再生によって排気温度を上昇させた状態からSOxパージ制御に効率よく移行することが可能となり、燃料消費量を効果的に低減することができる。 FIG. 2 shows a timing chart of the SOx purge control of this embodiment. As shown in FIG. 2, SOx purge flag F SP to start SOx purge control is turned on at the same time off the regeneration flag F DPF (see time t 2 in FIG. 2). As a result, it is possible to efficiently shift to the SOx purge control from the state in which the exhaust gas temperature has been raised by the regeneration of the filter 33, and the fuel consumption can be effectively reduced.
 本実施形態において、SOxパージ制御によるリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第1目標空気過剰率(例えば、約1.3)まで低下させるSOxパージリーン制御と、噴射系制御によって空気過剰率を第1目標空気過剰率からリッチ側の第2目標空気過剰率(例えば、約0.9)まで低下させるSOxパージリッチ制御とを併用することで実現される。以下、SOxパージリーン制御及び、SOxパージリッチ制御の詳細について説明する。 In the present embodiment, the enrichment by the SOx purge control is performed by adjusting the excess air ratio to the lean side from the theoretical air-fuel ratio equivalent value (about 1.0) from the steady operation (for example, about 1.5) by the air system control. SOx purge lean control for reducing to 1 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the first target excess air ratio to the second target excess air ratio on the rich side (for example, about 0) This is realized by using together with the SOx purge rich control that lowers to .9). Details of the SOx purge lean control and the SOx purge rich control will be described below.
 [SOxパージリーン制御の空気系制御]
 図3は、SOxパージリーン制御時のMAF目標値MAFSPL_Trgtの設定処理を示すブロック図である。第1目標空気過剰率設定マップ61は、エンジン回転数Ne及びアクセル開度Q(エンジン10の燃料噴射量)に基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したSOxパージリーン制御時の空気過剰率目標値λSPL_Trgt(第1目標空気過剰率)が予め実験等に基づいて設定されている。
[Air system control for SOx purge lean control]
FIG. 3 is a block diagram illustrating a process for setting the MAF target value MAF SPL_Trgt during the SOx purge lean control. The first target excess air ratio setting map 61 is a map that is referred to based on the engine speed Ne and the accelerator opening Q (the fuel injection amount of the engine 10), and the engine speed Ne, the accelerator opening Q, The excess air ratio target value λ SPL_Trgt (first target excess air ratio) at the time of SOx purge lean control corresponding to is preset based on experiments or the like.
 まず、第1目標空気過剰率設定マップ61から、エンジン回転数Ne及びアクセル開度Qを入力信号としてSOxパージリーン制御時の空気過剰率目標値λSPL_Trgtが読み取られて、MAF目標値演算部62に入力される。さらに、MAF目標値演算部62では、以下の数式(1)に基づいてSOxパージリーン制御時のMAF目標値MAFSPL_Trgtが演算される。 First, the excess air ratio target value λ SPL_Trgt at the time of SOx purge lean control is read from the first target excess air ratio setting map 61 using the engine speed Ne and the accelerator opening Q as input signals, and is sent to the MAF target value calculation unit 62. Entered. Further, the MAF target value calculation unit 62 calculates the MAF target value MAF SPL_Trgt during the SOx purge lean control based on the following formula (1).
 MAFSPL_Trgt=λSPL_Trgt×Qfnl_corrd×RoFuel×AFRsto/Maf_corr・・・(1)
 数式(1)において、Qfnl_corrdは燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrはMAF補正係数をそれぞれ示している。
MAF SPL_Trgt = λ SPL_Trgt × Q fnl_corrd × Ro Fuel × AFR sto / Maf_corr (1)
In Equation (1), Q fnl_cord represents the fuel injection amount (excluding post injection), Ro Fuel represents the fuel specific gravity, AFR sto represents the stoichiometric air-fuel ratio, and Maf_corr represents the MAF correction coefficient.
 MAF補正係数Maf_corrは、エンジン回転数Ne及びアクセル開度Qを入力信号として補正係数設定マップ(不図示)から読み取られる。補正係数設定マップには、エンジン回転数Neとアクセル開度Qとに対応したMAFセンサ40のセンサ特性を示すMAF補正係数Maf_corrが予め実験等に基づいて設定されている。 The MAF correction coefficient Maf_corr is read from a correction coefficient setting map (not shown) using the engine speed Ne and the accelerator opening Q as input signals. In the correction coefficient setting map, a MAF correction coefficient Maf_corr indicating the sensor characteristics of the MAF sensor 40 corresponding to the engine speed Ne and the accelerator opening Q is set in advance based on experiments or the like.
 MAF目標値演算部62によって演算されたMAF目標値MAFSPL_Trgtは、SOxパージフラグFSPがオン(図2の時刻t参照)になるとランプ処理部63に入力される。ランプ処理部63は、各ランプ係数マップ63A,63Bからエンジン回転数Ne及びアクセル開度Qを入力信号としてランプ係数を読み取ると共に、このランプ係数を付加したMAF目標ランプ値MAFSPL_Trgt_Rampをバルブ制御部64に入力する。 MAF target value MAF SPL_Trgt calculated by the MAF target value calculation unit 62, when the SOx purge flag F SP is turned on (see time t 2 in FIG. 2) is input to the lamp unit 63. The ramp processing unit 63 reads the ramp coefficient from each of the ramp coefficient maps 63A and 63B using the engine speed Ne and the accelerator opening Q as input signals, and uses the MAF target ramp value MAF SPL_Trgt_Ramp to which the ramp coefficient is added as the valve control unit 64. To enter.
 バルブ制御部64は、MAFセンサ40から入力される実MAF値MAFActがMAF目標ランプ値MAFSPL_Trgt_Rampとなるように、吸気スロットルバルブ16を閉側に絞ると共に、EGRバルブ24を開側に開くフィードバック制御を実行する。 The valve control unit 64 throttles the intake throttle valve 16 to the close side and opens the EGR valve 24 to the open side so that the actual MAF value MAF Act input from the MAF sensor 40 becomes the MAF target ramp value MAF SPL_Trgt_Ramp. Execute control.
 このように、本実施形態では、第1目標空気過剰率設定マップ61から読み取られる空気過剰率目標値λSPL_Trgtと、各インジェクタ11の燃料噴射量とに基づいてMAF目標値MAFSPL_Trgtを設定し、このMAF目標値MAFSPL_Trgtに基づいて空気系動作をフィードバック制御するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をSOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。 Thus, in the present embodiment, the MAF target value MAF SPL_Trgt is set based on the excess air ratio target value λ SPL_Trgt read from the first target excess air ratio setting map 61 and the fuel injection amount of each injector 11, The air system operation is feedback-controlled based on the MAF target value MAF SPL_Trgt . Thus, without providing a lambda sensor upstream of the NOx storage reduction catalyst 32, or even when a lambda sensor is provided upstream of the NOx storage reduction catalyst 32, the sensor value of the lambda sensor is not used. The exhaust can be effectively reduced to a desired excess air ratio required for SOx purge lean control.
 また、MAF目標値MAFSPL_Trgtにエンジン10の運転状態に応じて設定されるランプ係数を付加することで、吸入空気量の急激な変化によるエンジン10の失火やトルク変動によるドライバビリティーの悪化等を効果的に防止することができる。 Further, by adding a ramp coefficient that is set according to the operating state of the engine 10 to the MAF target value MAF SPL_Trgt , it is possible to prevent misfire of the engine 10 due to a sudden change in the intake air amount, deterioration of drivability due to torque fluctuation, and the like. It can be effectively prevented.
 [SOxパージリッチ制御の燃料噴射量設定]
 図4は、SOxパージリッチ制御における排気管噴射又はポスト噴射の目標噴射量QSPR_Trgt(単位時間当たりの噴射量)の設定処理を示すブロック図である。第2目標空気過剰率設定マップ65は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したSOxパージリッチ制御時の空気過剰率目標値λSPR_Trgt(第2目標空気過剰率)が予め実験等に基づいて設定されている。
[Fuel injection amount setting for SOx purge rich control]
FIG. 4 is a block diagram showing processing for setting the target injection amount Q SPR_Trgt (injection amount per unit time) of exhaust pipe injection or post injection in SOx purge rich control. The second target excess air ratio setting map 65 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and at the time of SOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q. Of the excess air ratio target value λ SPR_Trgt (second target excess air ratio) is set in advance based on experiments or the like.
 まず、第2目標空気過剰率設定マップ65から、エンジン回転数Ne及びアクセル開度Qを入力信号としてSOxパージリッチ制御時の空気過剰率目標値λSPR_Trgtが読み取られて、噴射量目標値演算部66に入力される。さらに、噴射量目標値演算部66では、以下の数式(2)に基づいてSOxパージリッチ制御時の目標噴射量QSPR_Trgtが演算される。 First, the excess air ratio target value λ SPR_Trgt at the time of SOx purge rich control is read from the second target excess air ratio setting map 65 using the engine speed Ne and the accelerator opening Q as input signals, and an injection quantity target value calculation unit 66. Further, the injection amount target value calculation unit 66 calculates the target injection amount Q SPR_Trgt during the SOx purge rich control based on the following formula (2).
 QSPR_Trgt=MAFSPL_Trgt×Maf_corr/(λSPR_Trgt×RoFuel×AFRsto)-Qfnl_corrd・・・(2)
 数式(2)において、MAFSPL_TrgtはSOxパージリーン時のMAF目標値であって、前述のMAF目標値演算部62から入力される。また、Qfnl_corrdはMAF追従制御適用前の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrはMAF補正係数をそれぞれ示している。
Q SPR_Trgt = MAF SPL_Trgt × Maf_corr / (λ SPR_Trgt × Ro Fuel × AFR sto ) −Q fnl_corrd (2)
In Expression (2), MAF SPL_Trgt is the MAF target value at the SOx purge lean, and is input from the above-described MAF target value calculation unit 62. Q fnl_cord represents the fuel injection amount (excluding post injection) before application of MAF tracking control, Ro Fuel represents fuel specific gravity, AFR sto represents the theoretical air-fuel ratio, and Maf_corr represents the MAF correction coefficient.
 噴射量目標値演算部66によって演算された目標噴射量QSPR_Trgtは、後述するSOxパージリッチフラグFSPRがオンになると、排気インジェクタ34又は、各筒内インジェクタ11に噴射指示信号として送信される。 The target injection amount Q SPR_Trgt calculated by the injection amount target value calculation unit 66 is transmitted as an injection instruction signal to the exhaust injector 34 or each in-cylinder injector 11 when a SOx purge rich flag F SPR described later is turned on.
 このように、本実施形態では、第2目標空気過剰率設定マップ65から読み取られる空気過剰率目標値λSPR_Trgtと、各インジェクタ11の燃料噴射量とに基づいて目標噴射量QSPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をSOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。 As described above, in this embodiment, the target injection amount Q SPR_Trgt is set based on the air excess rate target value λ SPR_Trgt read from the second target air excess rate setting map 65 and the fuel injection amount of each injector 11. It has become. Thus, without providing a lambda sensor upstream of the NOx storage reduction catalyst 32, or even when a lambda sensor is provided upstream of the NOx storage reduction catalyst 32, the sensor value of the lambda sensor is not used. The exhaust can be effectively reduced to a desired excess air ratio required for SOx purge rich control.
 [SOxパージ制御の触媒温度調整制御]
 SOxパージ制御中にNOx吸蔵還元型触媒32に流入する排気温度(以下、触媒温度ともいう)は、図2の時刻t~tに示すように、排気管噴射又はポスト噴射を実行するSOxパージリッチフラグFSPRのオン・オフ(リッチ・リーン)を交互に切り替えることで制御される。SOxパージリッチフラグFSPRがオン(FSPR=1)にされると、排気管噴射又はポスト噴射によって触媒温度は上昇する(以下、この期間を噴射期間TF_INJという)。一方、SOxパージリッチフラグFSPRがオフにされると、排気管噴射又はポスト噴射の停止によって触媒温度は低下する(以下、この期間をインターバルTF_INTという)。
[Catalyst temperature adjustment control for SOx purge control]
The exhaust temperature (hereinafter also referred to as catalyst temperature) flowing into the NOx occlusion reduction type catalyst 32 during the SOx purge control is the SOx that performs exhaust pipe injection or post injection as shown at times t 2 to t 4 in FIG. The purge rich flag F SPR is controlled by alternately switching on / off (rich / lean). When the SOx purge rich flag F SPR is turned on (F SPR = 1), the catalyst temperature rises by exhaust pipe injection or post injection (hereinafter, this period is referred to as an injection period TF_INJ ). On the other hand, when the SOx purge rich flag FSPR is turned off, the catalyst temperature is lowered by stopping the exhaust pipe injection or the post injection (hereinafter, this period is referred to as an interval TF_INT ).
 本実施形態において、噴射期間TF_INJは、予め実験等により作成した噴射期間設定マップ(不図示)からエンジン回転数Ne及びアクセル開度Qに対応する値を読み取ることで設定される。この噴射時間設定マップには、予め実験等によって求めた排気の空気過剰率を第2目標空気過剰率まで確実に低下させるのに必要となる噴射期間が、エンジン10の運転状態に応じて設定されている。 In the present embodiment, the injection period TF_INJ is set by reading values corresponding to the engine speed Ne and the accelerator opening Q from an injection period setting map (not shown) created in advance by experiments or the like. In this injection time setting map, an injection period required to reliably reduce the excess air ratio of exhaust gas obtained in advance through experiments or the like to the second target excess air ratio is set according to the operating state of the engine 10. ing.
 インターバルTF_INTは、触媒温度が最も高くなるSOxパージリッチフラグFSPRがオンからオフに切り替えられた際に、フィードバック制御によって設定される。具体的には、SOxパージリッチフラグFSPRがオフされた際の目標触媒温度と推定触媒温度との偏差ΔTに比例して入力信号を変化させる比例制御と、偏差ΔTの時間積分値に比例して入力信号を変化させる積分制御と、偏差ΔTの時間微分値に比例して入力信号を変化させる微分制御とで構成されるPID制御によって処理される。目標触媒温度は、NOx吸蔵還元型触媒32からSOxを離脱可能な温度で設定され、推定触媒温度は、例えば、第1排気温度センサ43で検出される酸化触媒31の入口温度と、酸化触媒31及びNOx吸蔵還元型触媒32の内部でのHC・CO発熱量、外気への放熱量等に基づいて推定すればよい。 The interval T F_INT is set by feedback control when the SOx purge rich flag F SPR at which the catalyst temperature is highest is switched from on to off. Specifically, the proportional control for changing the input signal in proportion to the deviation ΔT between the target catalyst temperature and the estimated catalyst temperature when the SOx purge rich flag FSPR is turned off, and the time integral value of the deviation ΔT are proportional. This is processed by PID control constituted by integral control for changing the input signal and differential control for changing the input signal in proportion to the time differential value of the deviation ΔT. The target catalyst temperature is set at a temperature at which SOx can be removed from the NOx storage reduction catalyst 32. The estimated catalyst temperature is, for example, the inlet temperature of the oxidation catalyst 31 detected by the first exhaust temperature sensor 43, and the oxidation catalyst 31. Further, it may be estimated based on the amount of HC / CO heat generated inside the NOx storage reduction catalyst 32, the amount of heat released to the outside air, and the like.
 図5の時刻tに示すように、フィルタ再生の終了(FDPF=0)によってSOxパージフラグFSPがオンされると、SOxパージリッチフラグFSPRもオンにされ、さらに前回のSOxパージ制御時にフィードバック計算されたインターバルTF_INTも一旦リセットされる。すなわち、フィルタ再生直後の初回は、噴射期間設定マップで設定した噴射期間TF_INJ_1に応じて排気管噴射又はポスト噴射が実行される(図5の時刻t~t参照)。このように、SOxパージリーン制御を行うことなくSOxパージリッチ制御からSOxパージ制御を開始するので、フィルタ再生で上昇した排気温度を低下させることなく、速やかにSOxパージ制御に移行され、燃料消費量を低減することができる。 As shown at time t 1 in FIG. 5, when the SOx purge flag F SP by ends (F DPF = 0) of the filter regeneration is turned on, SOx purge rich flag F SPR also turned on, further in the previous SOx purge control The interval T F_INT calculated by feedback is also reset once. That is, the first time immediately after the regeneration of the filter, the exhaust pipe injection or the post injection is executed in accordance with the injection period TF_INJ_1 set in the injection period setting map (see times t 1 to t 2 in FIG. 5). As described above, since the SOx purge control is started from the SOx purge rich control without performing the SOx purge lean control, the SOx purge control is promptly transferred to the fuel consumption amount without lowering the exhaust temperature increased by the filter regeneration. Can be reduced.
 次いで、噴射期間TF_INJ_1の経過によってSOxパージリッチフラグFSPRがオフになると、PID制御によって設定されたインターバルTF_INT_1が経過するまで、SOxパージリッチフラグFSPRはオフとされる(図5の時刻t~t参照)。さらに、インターバルTF_INT_1の経過によってSOxパージリッチフラグFSPRがオンにされると、再び噴射期間TF_INJ_2に応じた排気管噴射又はポスト噴射が実行される(図5の時刻t~t参照)。その後、これらSOxパージリッチフラグFSPRのオン・オフの切り替えは、後述するSOxパージ制御の終了判定によってSOxパージフラグFSPがオフ(図5の時刻t参照)にされるまで繰り返し実行される。 Then, when the SOx purge rich flag F SPR is turned off with the passage of the injection period T F_INJ_1, until interval T F_INT_1 set by PID control has elapsed, SOx purge rich flag F SPR is turned off (time in FIG. 5 t 2 to t 3 ). Further, when the SOx purge rich flag F SPR is turned on as the interval TF_INT_1 elapses, the exhaust pipe injection or the post injection according to the injection period TF_INJ_2 is executed again (see times t 3 to t 4 in FIG. 5). ). Thereafter, the switching on and off of these SOx purge rich flag F SPR is repeatedly executed until the SOx purge flag F SP is turned off (see time t n in FIG. 5) by the completion judgment of the SOx purge control described later.
 このように、本実施形態では、触媒温度を上昇させると共に空気過剰率を第2目標空気過剰率まで低下させる噴射期間TF_INJをエンジン10の運転状態に基づいて参照されるマップから設定すると共に、触媒温度を降下させるインターバルTF_INTをPID制御によって処理するようになっている。これにより、SOxパージ制御中の触媒温度をパージに必要な所望の温度範囲に効果的に維持しつつ、空気過剰率を目標過剰率まで確実に低下させることが可能になる。 As described above, in the present embodiment, the injection period TF_INJ for raising the catalyst temperature and lowering the excess air ratio to the second target excess air ratio is set from the map referred to based on the operating state of the engine 10, The interval TF_INT for lowering the catalyst temperature is processed by PID control. This makes it possible to reliably reduce the excess air ratio to the target excess ratio while effectively maintaining the catalyst temperature during the SOx purge control within a desired temperature range necessary for the purge.
 [SOxパージ制御の終了判定]
 SOxパージ制御は、(1)SOxパージフラグFSPのオンから排気管噴射又はポスト噴射の噴射量を累積し、この累積噴射量が所定の上限閾値量に達した場合、(2)SOxパージ制御の開始から計時した経過時間が所定の上限閾値時間に達した場合、(3)エンジン10の運転状態やNOx/ラムダセンサ45のセンサ値等を入力信号として含む所定のモデル式に基づいて演算されるNOx吸蔵還元型触媒32のSOx吸着量がSOx除去成功を示す所定の閾値まで低下した場合の何れかの条件が成立すると、SOxパージフラグFSPをオフにして終了される(図2の時刻t、図5の時刻t参照)。
[Determining completion of SOx purge control]
SOx purge control, (1) SOx purge flag F from on the SP injection quantity of the exhaust pipe injection or post injection accumulated, when the amount of the cumulative injected has reached the predetermined upper limit threshold amount, of (2) SOx purge control When the elapsed time counted from the start reaches a predetermined upper threshold time, (3) calculation is performed based on a predetermined model formula including the operating state of the engine 10 and the sensor value of the NOx / lambda sensor 45 as input signals. If any of the conditions in the case of SOx adsorption amount of NOx occlusion-reduction catalyst 32 has decreased to a predetermined threshold value indicating a SOx removal success is established, SOx purge flag F SP is terminated by turning off the (time t 4 in FIG. 2 , reference time t n in FIG. 5).
 このように、本実施形態では、SOxパージ制御の終了条件に累積噴射量及び、経過時間の上限を設けたことで、SOxパージが排気温度の低下等によって進捗しなかった場合に、燃料消費量が過剰になることを効果的に防止することができる。 As described above, in this embodiment, when the SOx purge control end condition is provided with the upper limit of the cumulative injection amount and the elapsed time, the fuel consumption amount when the SOx purge does not progress due to a decrease in the exhaust temperature or the like. Can be effectively prevented from becoming excessive.
 [NOxパージ制御]
 図6は、本実施形態のNOxパージ制御のタイミングチャートを示している。NOxパージ制御部70は、排気をリッチ雰囲気にしてNOx吸蔵還元型触媒32に吸蔵されているNOxを還元浄化により無害化して放出することで、NOx吸蔵還元型触媒32のNOx吸蔵能力を回復させる制御を実行する。
[NOx purge control]
FIG. 6 shows a timing chart of the NOx purge control of this embodiment. The NOx purge control unit 70 restores the NOx storage capability of the NOx storage reduction catalyst 32 by making the exhaust atmosphere rich and detoxifying and releasing NOx stored in the NOx storage reduction catalyst 32 by reduction purification. Execute control.
 [NOxパージ制御の開始処理]
 図7は、NOxパージ制御部70によるNOxパージ制御の開始処理を示すブロック図である。NOxパージ制御部70は、NOxパージ開始判定部111、NOx吸蔵量推定部113、吸蔵量閾値マップ114、触媒温度推定部115、吸蔵量閾値補正部116、浄化率演算部117、インターバル目標値マップ118、インターバル目標値補正部119、劣化度合推定部120を一部の機能要素として有する。
[NOx purge control start processing]
FIG. 7 is a block diagram showing a start process of NOx purge control by the NOx purge control unit 70. The NOx purge control unit 70 includes a NOx purge start determination unit 111, a NOx occlusion amount estimation unit 113, an occlusion amount threshold map 114, a catalyst temperature estimation unit 115, an occlusion amount threshold correction unit 116, a purification rate calculation unit 117, and an interval target value map. 118, an interval target value correction unit 119, and a deterioration degree estimation unit 120 are included as some functional elements.
 NOxパージ開始判定部111は、予め定められた開始条件の何れかが成立した場合、前回のNOxパージの制御終了からの経過時間Int_Timeがインターバル目標値補正部119から入力されたインターバル目標値Int_tgrを経過したことを条件に、NOxパージを開始すると判定し、NOxパージフラグFNPをオン(FNP=1)に設定してNOxパージ制御を開始させる(図6の時刻t参照)。 The NOx purge start determination unit 111 receives the interval target value Int in which the elapsed time Int_Time from the end of the previous NOx purge control is input from the interval target value correction unit 119 when any of the predetermined start conditions is satisfied. It is determined that the NOx purge is started on the condition that _tgr has elapsed, the NOx purge flag F NP is set to ON (F NP = 1), and the NOx purge control is started (see time t 1 in FIG. 6).
 NOxパージ開始判定部111で判定される開始条件としては、例えば、(1)強制リッチスイッチ(不図示)から操作信号が入力された場合、(2)NOx吸蔵還元型触媒32のNOx吸蔵量推定値m_NOxが所定の吸蔵量閾値STR_thr_NOx以上に増加した場合、(3)NOx吸蔵還元型触媒32でのNOx浄化率NOx_pur%が所定の浄化率閾値以下に低下した場合、(4)アイドリングが所定期間に亘って行われている場合、(5)エンジン10が所定の回転数閾値以上で回転し、エンジン10に対する負荷が所定の負荷閾値以上の場合、(6)触媒推定温度Temp_LNTが所定の触媒温度閾値未満である低温状態が、所定時間に亘って継続している場合が挙げられるが、これらに限定されるものではない。 As the start condition determined by the NOx purge start determination unit 111, for example, (1) when an operation signal is input from a forced rich switch (not shown), (2) NOx occlusion amount estimation of the NOx occlusion reduction type catalyst 32 is estimated. When the value m_NOx increases to a value equal to or greater than the predetermined storage amount threshold value STR_thr_NOx , (3) When the NOx purification rate NOx_pur% in the NOx storage reduction type catalyst 32 decreases below the predetermined purification rate threshold value, (4) Idling (5) When the engine 10 rotates at a predetermined rotation speed threshold value or higher and the load on the engine 10 is equal to or higher than the predetermined load threshold value, (6) the estimated catalyst temperature Temp_LNT is Although the case where the low temperature state which is less than a predetermined catalyst temperature threshold is continuing over predetermined time is mentioned, it is not limited to these.
 開始条件の判定に用いられるNOx吸蔵量推定値m_NOxは、NOx吸蔵量推定部113によって推定される。NOx吸蔵量推定値m_NOxは、例えば以下の数式(3)に基づいて演算される。 The NOx occlusion amount estimated value m_NOx used for the determination of the start condition is estimated by the NOx occlusion amount estimation unit 113. The NOx occlusion amount estimated value m_NOx is calculated based on the following formula (3), for example.
 NOx吸蔵量推定値m_NOx=エンジンアウトNOx量×触媒温度に基づく吸蔵効率×NOx蓄積率に基づく吸蔵効率・・・(3)
 なお、エンジンアウトNOx量は、エンジン回転数Ne及びアクセル開度Qを入力信号とするエンジンアウトNOxマップから取得される。エンジンアウトNOxマップは、実験等によって予め作製されている。また、エンジンアウトNOx量は、NOxセンサやモデル式など他の方法で取得することもできる。
NOx occlusion amount estimated value m_NOx = engine-out NOx amount x occlusion efficiency based on catalyst temperature x occlusion efficiency based on NOx accumulation rate (3)
The engine-out NOx amount is acquired from an engine-out NOx map using the engine speed Ne and the accelerator opening Q as input signals. The engine-out NOx map is created in advance by experiments or the like. Further, the engine-out NOx amount can be obtained by other methods such as a NOx sensor or a model formula.
 触媒温度に基づく吸蔵効率(0<C≦1)は、触媒温度推定部115で推定された触媒推定温度Temp_LNTを入力信号とするT_STRマップから取得される。T_STRマップは、実験等によって予め作製されている。 The storage efficiency (0 <C ≦ 1) based on the catalyst temperature is acquired from a T_STR map using the estimated catalyst temperature Temp_LNT estimated by the catalyst temperature estimation unit 115 as an input signal. The T_STR map is created in advance by experiments or the like.
 NOx蓄積率に基づく吸蔵効率(0<C≦1)は、NOx蓄積率NOx_LEVを入力信号とするFill_STRマップから取得される。Fill_STRマップは、実験等によって予め作製されている。そして、NOx蓄積率NOx_LEVは、その時点でNOx吸蔵還元型触媒32に蓄積されているNOx蓄積量NOx_STRの、最大NOx吸蔵量に対する比率である。なお、NOx蓄積量_STRは、直前のNOx吸蔵量からNOx還元量を減算することで求められる。これらのマップでは、さらにMAFやエンジンアウトNOxなどによって適宜補正することもできる。 The storage efficiency (0 <C ≦ 1) based on the NOx accumulation rate is acquired from the Fill_STR map using the NOx accumulation rate NOx_LEV as an input signal. The Fill_STR map is created in advance by experiments or the like. The NOx accumulation rate NOx_LEV is a ratio of the NOx accumulation amount NOx_STR accumulated in the NOx occlusion reduction type catalyst 32 at that time to the maximum NOx occlusion amount. The NOx accumulation amount_STR is obtained by subtracting the NOx reduction amount from the immediately preceding NOx storage amount. In these maps, correction can be made as appropriate using MAF, engine-out NOx, or the like.
 開始条件の判定に用いられるNOx吸蔵量閾値STR_thr_NOxは、NOx吸蔵還元型触媒32の触媒推定温度Temp_LNTに基づいて参照される吸蔵量閾値マップ114で設定される。触媒推定温度Temp_LNTは、触媒温度推定部115によって推定される。触媒推定温度Temp_LNTは、例えば、第1排気温度センサ43で検出される酸化触媒31の入口温度、酸化触媒31及びNOx吸蔵還元型触媒32の内部でのHC・CO発熱量等に基づいて推定される。 NOx storage amount threshold STR _Thr_NOx used for determining the start conditions are set by the storage amount threshold value map 114 referenced based on the estimated catalyst temperature Temp _LNT the NOx occlusion-reduction catalyst 32. The estimated catalyst temperature Temp_LNT is estimated by the catalyst temperature estimation unit 115. The estimated catalyst temperature Temp_LNT is estimated based on, for example, the inlet temperature of the oxidation catalyst 31 detected by the first exhaust temperature sensor 43, the HC / CO heat generation amount inside the oxidation catalyst 31 and the NOx storage reduction catalyst 32, and the like. Is done.
 吸蔵量閾値マップ114に基づいて設定されたNOx吸蔵量閾値STR_thr_NOxは、吸蔵量閾値補正部116によって補正される。吸蔵量閾値補正部116は、NOx吸蔵量閾値STR_thr_NOxに、劣化度合推定部120によって求められる劣化補正係数(劣化度合)を乗算することで行われる。なお、劣化補正係数の算出については、後で説明する。 The NOx storage amount threshold value STR_thr_NOx set based on the storage amount threshold map 114 is corrected by the storage amount threshold value correcting unit 116. The occlusion amount threshold value correction unit 116 multiplies the NOx occlusion amount threshold value STR_thr_NOx by a deterioration correction coefficient (deterioration degree) obtained by the deterioration degree estimation unit 120. The calculation of the deterioration correction coefficient will be described later.
 開始条件の判定に用いられるNOx浄化率NOx_pur%は、浄化率演算部117によって演算される。NOx浄化率NOx_pur%は、例えば、NOx/ラムダセンサ45で検出される触媒下流側のNOx量を、エンジン10の運転状態等から推定される触媒上流側のNOx排出量で除算することで求められる。 The NOx purification rate NOx_pur% used for the determination of the start condition is calculated by the purification rate calculation unit 117. The NOx purification rate NOx_pur% is obtained, for example, by dividing the NOx amount on the downstream side of the catalyst detected by the NOx / lambda sensor 45 by the NOx emission amount on the upstream side of the catalyst estimated from the operating state of the engine 10 or the like. It is done.
 開始判定に用いられるインターバル目標値Int_tgrは、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるインターバル目標値マップ118で設定される。このインターバル目標値Int_tgrは、インターバル目標値補正部119によって補正される。インターバル目標値補正部119は、NOx吸蔵還元型触媒32の劣化度合が大きくなるほど短縮させる短縮補正を実行する。この短縮補正は、NOx吸蔵量閾値STR_thr_NOxに、劣化度合推定部120によって求められる劣化補正係数(劣化度合)を乗算することで行われる。 The interval target value Int_tgr used for the start determination is set in an interval target value map 118 that is referred to based on the engine speed Ne and the accelerator opening Q. The interval target value Int_tgr is corrected by the interval target value correction unit 119. The interval target value correction unit 119 performs a shortening correction that shortens as the degree of deterioration of the NOx storage reduction catalyst 32 increases. This shortening correction is performed by multiplying the NOx occlusion amount threshold value STR_thr_NOx by a deterioration correction coefficient (deterioration degree) obtained by the deterioration degree estimation unit 120.
 [劣化補正係数の算出]
 図8は、劣化補正係数の算出処理を説明するブロック図である。同図に示すように、劣化度合推定部120は、算出開始条件判定部121、エンジンアウトNOxs取得部122、出口NOx推定部123、補正係数算出部124を一部の機能要素として有する。
[Calculation of deterioration correction coefficient]
FIG. 8 is a block diagram for explaining the calculation process of the deterioration correction coefficient. As shown in the figure, the degradation degree estimation unit 120 includes a calculation start condition determination unit 121, an engine-out NOxs acquisition unit 122, an exit NOx estimation unit 123, and a correction coefficient calculation unit 124 as some functional elements.
 算出開始条件判定部121は、劣化補正係数の算出開始条件が成立したか否かを判定し、条件が成立した場合には、エンジンアウトNOx算出部122、出口NOx推定部123、補正係数算出部124に対して算出処理の実行を許可する許可信号を出力する。例えば、許可信号の電圧をHレベルに設定する。各部122、123、124は、許可信号の出力が開始されたことを条件に処理を開始し、許可信号の出力期間に亘って処理を実行する。また、各部122、123、124は、許可信号が出力されていない期間(例えば信号がLレベルの期間)において処理を停止する。なお、算出開始条件判定部121による算出開始条件の判定については後で説明する。 The calculation start condition determining unit 121 determines whether or not the deterioration correction coefficient calculation start condition is satisfied. If the condition is satisfied, the engine out NOx calculating unit 122, the outlet NOx estimating unit 123, and the correction coefficient calculating unit. A permission signal for permitting execution of the calculation process is output to 124. For example, the voltage of the permission signal is set to H level. Each of the units 122, 123, and 124 starts the process on the condition that the output of the permission signal is started, and executes the process over the output period of the permission signal. Each unit 122, 123, and 124 stops processing in a period during which the permission signal is not output (for example, a period in which the signal is at the L level). The determination of the calculation start condition by the calculation start condition determination unit 121 will be described later.
 エンジンアウトNOx取得部122は、エンジン10の運転状態に基づいて、エンジン10から排出される排気に含まれるNOx量(エンジンアウトNOx量)を取得する。本実施形態において、エンジンアウトNOx量は、エンジン回転数Ne及びアクセル開度Qを入力信号とするエンジンアウトNOx量マップから取得される。エンジンアウトNOx量マップは、実験等によって予め作製される。なお、エンジンアウトNOx量に関し、モデル式から求めてもよいし、他の手法によって求めてもよい。 The engine-out NOx acquisition unit 122 acquires the NOx amount (engine-out NOx amount) contained in the exhaust discharged from the engine 10 based on the operating state of the engine 10. In the present embodiment, the engine-out NOx amount is acquired from an engine-out NOx amount map using the engine speed Ne and the accelerator opening Q as input signals. The engine-out NOx amount map is prepared in advance by experiments or the like. The engine-out NOx amount may be obtained from a model formula or may be obtained by other methods.
 出口NOx推定部123は、NOx吸蔵還元型触媒32を通過した排気に含まれるNOx量(出口NOx推定量)を推定する。本実施形態において、出口NOx推定量は、エンジンアウトNOx取得部122で取得されたエンジンアウトNOx量からNOx吸蔵量推定部113で推定されたNOx吸蔵量を減算することで算出される。 The outlet NOx estimating unit 123 estimates the NOx amount (exit NOx estimated amount) contained in the exhaust gas that has passed through the NOx storage reduction catalyst 32. In the present embodiment, the estimated outlet NOx amount is calculated by subtracting the NOx storage amount estimated by the NOx storage amount estimation unit 113 from the engine out NOx amount acquired by the engine out NOx acquisition unit 122.
 補正係数算出部124は、NOx吸蔵還元型触媒32を通過した排気に含まれるNOx量に関し、推定値を検出値に補正するための劣化補正係数を算出する。本実施形態における劣化補正係数は、出口NOx推定部123で推定された出口NOx推定量から、NOx/ラムダセンサ45の検出値に基づく実NOx量を減算した差分を、時間積分することで算出される。前述したように、算出された劣化補正係数は、吸蔵量閾値補正部116での閾値補正に用いられたり、インターバル目標値補正部119での目標値補正に用いられる。 The correction coefficient calculation unit 124 calculates a deterioration correction coefficient for correcting the estimated value to the detected value with respect to the NOx amount contained in the exhaust gas that has passed through the NOx storage reduction catalyst 32. The deterioration correction coefficient in the present embodiment is calculated by time-integrating a difference obtained by subtracting the actual NOx amount based on the detected value of the NOx / lambda sensor 45 from the exit NOx estimated amount estimated by the exit NOx estimating unit 123. The As described above, the calculated deterioration correction coefficient is used for threshold correction in the occlusion amount threshold correction unit 116 or used for target value correction in the interval target value correction unit 119.
 [算出開始条件の判定]
 図9は、算出開始条件判定部(算出制御部)121による算出開始条件を模式的に説明する図である。同図において、符号m_NOxの実線はNOx吸蔵量推定値であり、符号NOx_actの点線はNOx/ラムダセンサ45の検出値に基づく実NOx量であり、符号NOx_Estの一点鎖線は出口NOx推定部123による推定NOx量であり、符号NOx_Errの二点鎖線は実NOx量と推定NOx量の誤差である。また、符号T_ALの矢印は、劣化補正計算の許可期間である。
[Judgment of calculation start condition]
FIG. 9 is a diagram schematically illustrating the calculation start condition by the calculation start condition determining unit (calculation control unit) 121. In the figure, a solid line of code m _NOx is NOx occlusion amount estimation value, dotted line code NOx _Act is actual NOx amount based on the detected value of the NOx / lambda sensors 45, dashed line code NOx _Est exit NOx estimated The amount of NOx estimated by the unit 123, and the two-dot chain line of the symbol NOx_Err is an error between the actual NOx amount and the estimated NOx amount. An arrow with a symbol T_AL is a permission period for the deterioration correction calculation.
 算出開始条件判定部121は、NOx吸蔵量推定値m_NOxが所定の閾値NOx_TH1以下であることを条件に劣化補正係数の算出を開始する。本実施形態における閾値NOx_TH1は、吸蔵量閾値STR_thr_NOxの20%であるが、この値に限定されるものではない。同図の例では、NOx吸蔵量推定値m_NOxが所定の閾値NOx_TH1に到達するのが時刻t3である。このため、エンジン始動時の時刻t0から時刻t3までの期間に、劣化補正係数の算出処理が開始される。 The calculation start condition determination unit 121 starts calculating the deterioration correction coefficient on condition that the NOx occlusion amount estimated value m_NOx is equal to or less than a predetermined threshold NOx_TH1 . The threshold value NOx_TH1 in the present embodiment is 20% of the occlusion amount threshold value STR_thr_NOx , but is not limited to this value. In the example of FIG, NOx occlusion amount estimation value m _NOx is time t3 to reach a predetermined threshold NOx _TH1. For this reason, the calculation process of the deterioration correction coefficient is started in a period from time t0 to time t3 when the engine is started.
 このように、NOx吸蔵量推定値m_NOxが所定の閾値NOx_TH1以下であることを条件に、劣化補正係数の算出処理を開始させる(NOx吸蔵量推定値m_NOxが所定の閾値NOx_TH1を超えている場合は、NOx吸蔵量推定値m_NOxが所定の閾値NOx_TH1以下になるまで算出処理を開始させない)ことで、算出された劣化補正係数について補正の精度を高めることができる。これは、劣化補正係数が、NOx吸蔵還元型触媒32を通過した排気に含まれるNOx量の、推定値と検出値の差の積分で算出されるためである。この場合、算出開始時点のNOx吸蔵量推定値m_NOxが低いほど、NOx吸蔵量推定値m_NOxが吸蔵量閾値STR_thr_NOxに達するまでの期間を長くでき、推定値と検出値の差が明確になるからである。 Thus, the deterioration correction coefficient calculation process is started on the condition that the NOx occlusion amount estimated value m_NOx is equal to or less than the predetermined threshold NOx_TH1 (the NOx occlusion amount estimated value m_NOx exceeds the predetermined threshold NOx_TH1) . In such a case, the calculation process is not started until the NOx occlusion amount estimated value m_NOx becomes equal to or less than the predetermined threshold NOx_TH1 ), thereby improving the accuracy of correction of the calculated deterioration correction coefficient. This is because the deterioration correction coefficient is calculated by integrating the difference between the estimated value and the detected value of the NOx amount contained in the exhaust gas that has passed through the NOx storage reduction catalyst 32. In this case, the lower the NOx occlusion amount estimated value m_NOx at the start of calculation, the longer the period until the NOx occlusion amount estimated value m_NOx reaches the occlusion amount threshold STR_thr_NOx , and the difference between the estimated value and the detected value becomes clearer. Because it becomes.
 なお、算出開始条件判定部121は、エンジン10の始動時から、NOx/ラムダセンサ45によるNOx量の有効な検出が行えるまでの所定期間に亘って、劣化補正係数の算出を禁止する。本実施形態のNOx/ラムダセンサ45はヒータ(不図示)を備えているが、センサに付着した水分が除去された状態でヒータへの通電が実行される。このため、エンジン10の始動後、排気温度が所定の乾燥温度(例えば100℃)に達したことを条件にヒータへの通電が開始される。あわせて、NOx/ラムダセンサ45によるNOx量の検出が開始される。図9の例では、時刻t1にてヒータへの通電とNOx量の検出が開始されている。ここで、符号NOx_actの点線で示すように、検出の開始直後はNOx量の検出値が安定しないため、劣化補正係数の算出に用いると誤差が大きくなってしまう。そこで、本実施形態では、検出値の安定に必要な時間が経過したことを条件に、劣化補正係数の算出処理を開始させている。同図の例では、時刻t2から劣化補正係数の算出処理を開始させている。その結果、劣化補正係数の算出精度を高めることができる。 The calculation start condition determination unit 121 prohibits the calculation of the deterioration correction coefficient for a predetermined period from when the engine 10 is started until the NOx / lambda sensor 45 can effectively detect the NOx amount. The NOx / lambda sensor 45 of this embodiment includes a heater (not shown), but energization of the heater is performed in a state where moisture adhering to the sensor is removed. For this reason, after the engine 10 is started, energization of the heater is started on the condition that the exhaust temperature has reached a predetermined drying temperature (for example, 100 ° C.). At the same time, detection of the NOx amount by the NOx / lambda sensor 45 is started. In the example of FIG. 9, energization of the heater and detection of the NOx amount are started at time t1. Here, as indicated by the dotted line with the symbol NOx_act , the detected value of the amount of NOx is not stable immediately after the start of detection, so that the error becomes large when used for calculating the deterioration correction coefficient. Therefore, in the present embodiment, the calculation process of the deterioration correction coefficient is started on the condition that the time necessary for stabilizing the detected value has elapsed. In the example of the figure, the calculation process of the deterioration correction coefficient is started from time t2. As a result, the calculation accuracy of the deterioration correction coefficient can be increased.
 また、ヒータへの通電開始(NOx/ラムダセンサ45による検出開始)から劣化補正係数の算出処理を開始するまでの待機期間に関し、上記のように予め定めた所定期間としてもよいし、NOx/ラムダセンサ45の単位時間あたりの変化量が検出の安定状態を示す判断閾値以下になったことを条件としてもよい。 Further, regarding the standby period from the start of energization to the heater (start of detection by the NOx / lambda sensor 45) to the start of the calculation process of the deterioration correction coefficient, it may be a predetermined period as described above, or may be NOx / lambda. A condition may be that the amount of change per unit time of the sensor 45 is equal to or less than a determination threshold value indicating a stable state of detection.
 また、算出開始条件判定部121は、前述したSOxパージリッチ制御の終了から所定期間が経過するまで、或いは、後述するNOxパージリッチ制御の終了から所定期間が経過するまでは、劣化補正係数の算出を禁止する。これは、各リッチ制御の終了直後は、NOx吐き出し量の推定値に大きな誤差が生じるためである。そこで、本実施形態では、検出値の安定に必要な時間が経過したことを条件に、劣化補正係数の算出処理を開始させている。図9の例では、NOxパージリッチ制御の終了時刻t4から時刻t5までを待機期間として、劣化補正係数の算出を禁止させている。これにより、劣化補正係数の算出精度を高めることができる。なお、この待機期間に関し、NOx吸蔵量推定値m_NOxにおける単位時間あたりの変化量が、安定状態を示す判断閾値以下になるまでの期間としてもよい。 The calculation start condition determination unit 121 calculates the deterioration correction coefficient until a predetermined period elapses after the end of the above-described SOx purge rich control or until a predetermined period elapses after the end of NOx purge rich control described later. Is prohibited. This is because a large error occurs in the estimated value of the NOx discharge amount immediately after the end of each rich control. Therefore, in the present embodiment, the calculation process of the deterioration correction coefficient is started on the condition that the time necessary for stabilizing the detected value has elapsed. In the example of FIG. 9, the calculation of the deterioration correction coefficient is prohibited with the standby period from the end time t4 to the time t5 of the NOx purge rich control. Thereby, the calculation accuracy of the deterioration correction coefficient can be increased. In addition, regarding this waiting period, it is good also as a period until the variation | change_quantity per unit time in NOx occlusion amount estimated value m_NOx becomes below the determination threshold value which shows a stable state.
 このように本実施形態では、劣化補正係数の算出精度を高めることができるので、NOx吸蔵還元型触媒32について、劣化補正係数による補正の精度を高めることができる。 Thus, in this embodiment, since the calculation accuracy of the deterioration correction coefficient can be increased, the accuracy of correction using the deterioration correction coefficient for the NOx storage reduction catalyst 32 can be increased.
 [NOxパージ制御によるリッチ化]
 本実施形態において、NOxパージ制御によるリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第3目標空気過剰率(例えば、約1.3)まで低下させるNOxパージリーン制御と、噴射系制御によって空気過剰率を第3目標空気過剰率からリッチ側の第4目標空気過剰率(例えば、約0.9)まで低下させるNOxパージリッチ制御とを併用することで実現される。以下、NOxパージリーン制御及び、NOxパージリッチ制御の詳細について説明する。
[Richening by NOx purge control]
In the present embodiment, the enrichment by the NOx purge control is performed on the lean side of the excess air ratio from the stoichiometric air-fuel ratio equivalent value (about 1.0) from the time of steady operation (for example, about 1.5) by the air system control. NOx purge lean control for reducing to 3 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the third target excess air ratio to the fourth target excess air ratio on the rich side (for example, about 0) .9) and NOx purge rich control for reducing the pressure to 9). The details of the NOx purge lean control and the NOx purge rich control will be described below.
 [NOxパージリーン制御のMAF目標値設定]
 図10は、NOxパージリーン制御時のMAF目標値MAFNPL_Trgtの設定処理を示すブロック図である。第3目標空気過剰率設定マップ71は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリーン制御時の空気過剰率目標値λNPL_Trgt(第3目標空気過剰率)が予め実験等に基づいて設定されている。
[NOF purge lean control MAF target value setting]
FIG. 10 is a block diagram showing a process for setting the MAF target value MAF NPL_Trgt during the NOx purge lean control. The third target excess air ratio setting map 71 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge lean control corresponding to the engine speed Ne and the accelerator opening Q. The excess air ratio target value λ NPL_Trgt (third excess air ratio) is set in advance based on experiments or the like.
 まず、第3目標空気過剰率設定マップ71から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリーン制御時の空気過剰率目標値λNPL_Trgtが読み取られて、MAF目標値演算部72に入力される。さらに、MAF目標値演算部72では、以下の数式(4)に基づいてNOxパージリーン制御時のMAF目標値MAFNPL_Trgtが演算される。 First, the excess air ratio target value λ NPL_Trgt at the time of NOx purge lean control is read from the third target excess air ratio setting map 71 using the engine speed Ne and the accelerator opening Q as input signals, and is sent to the MAF target value calculation unit 72. Entered. Further, the MAF target value calculation unit 72 calculates the MAF target value MAF NPL_Trgt at the time of NOx purge lean control based on the following formula (4).
 MAFNPL_Trgt=λNPL_Trgt×Qfnl_corrd×RoFuel×AFRsto/Maf_corr・・・(4)
 数式(4)において、Qfnl_corrdは燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrはMAF補正係数をそれぞれ示している。
MAF NPL_Trgt = λ NPL_Trgt × Q fnl_corrd × Ro Fuel × AFR sto / Maf_corr (4)
In Equation (4), Q fnl_cord represents the fuel injection amount (excluding post injection), Ro Fuel represents the fuel specific gravity, AFR sto represents the stoichiometric air-fuel ratio, and Maf_corr represents the MAF correction coefficient.
 MAF目標値演算部72によって演算されたMAF目標値MAFNPL_Trgtは、NOxパージフラグFNPがオン(図6の時刻t参照)になるとランプ処理部73に入力される。ランプ処理部73は、各ランプ係数マップ73A,Bからエンジン回転数Ne及びアクセル開度Qを入力信号としてランプ係数を読み取ると共に、このランプ係数を付加したMAF目標ランプ値MAFNPL_Trgt_Rampをバルブ制御部74に入力する。 The MAF target value MAF NPL_Trgt calculated by the MAF target value calculation unit 72 is input to the ramp processing unit 73 when the NOx purge flag F NP is turned on (see time t 1 in FIG. 6). The ramp processing unit 73 reads the ramp coefficient from the ramp coefficient maps 73A and 73B using the engine speed Ne and the accelerator opening Q as input signals, and calculates the MAF target ramp value MAF NPL_Trgt_Ramp to which the ramp coefficient is added as a valve control unit 74. To enter.
 バルブ制御部74は、MAFセンサ40から入力される実MAF値MAFActがMAF目標ランプ値MAFNPL_Trgt_Rampとなるように、吸気スロットルバルブ16を閉側に絞ると共に、EGRバルブ24を開側に開くフィードバック制御を実行する。 The valve control unit 74 throttles the intake throttle valve 16 to the close side and opens the EGR valve 24 to the open side so that the actual MAF value MAF Act input from the MAF sensor 40 becomes the MAF target ramp value MAF NPL_Trgt_Ramp. Execute control.
 このように、本実施形態では、第3目標空気過剰率設定マップ71から読み取られる空気過剰率目標値λNPL_Trgtと、各インジェクタ11の燃料噴射量とに基づいてMAF目標値MAFNPL_Trgtを設定し、このMAF目標値MAFNPL_Trgtに基づいて空気系動作をフィードバック制御するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。 Thus, in the present embodiment, the MAF target value MAF NPL_Trgt is set based on the excess air ratio target value λ NPL_Trgt read from the third target excess air ratio setting map 71 and the fuel injection amount of each injector 11, The air system operation is feedback-controlled based on the MAF target value MAF NPL_Trgt . Thus, without providing a lambda sensor upstream of the NOx storage reduction catalyst 32, or even when a lambda sensor is provided upstream of the NOx storage reduction catalyst 32, the sensor value of the lambda sensor is not used. It is possible to effectively reduce the exhaust gas to a desired excess air ratio required for NOx purge lean control.
 また、MAF目標値MAFNPL_Trgtにエンジン10の運転状態に応じて設定されるランプ係数を付加することで、吸入空気量の急激な変化によるエンジン10の失火やトルク変動によるドライバビリティーの悪化等を効果的に防止することができる。 Further, by adding a ramp coefficient that is set according to the operating state of the engine 10 to the MAF target value MAF NPL_Trgt , it is possible to prevent misfire of the engine 10 due to a sudden change in the intake air amount, deterioration of drivability due to torque fluctuation, and the like. It can be effectively prevented.
 [NOxパージリッチ制御の燃料噴射量設定]
 図11は、NOxパージリッチ制御における排気管噴射又はポスト噴射の目標噴射量QNPR_Trgt(単位時間当たりの噴射量)の設定処理を示すブロック図である。第4目標空気過剰率設定マップ75は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgt(第4目標空気過剰率)が予め実験等に基づいて設定されている。
[NOx purge rich control fuel injection amount setting]
FIG. 11 is a block diagram showing processing for setting a target injection amount Q NPR_Trgt (injection amount per unit time) for exhaust pipe injection or post injection in NOx purge rich control. The fourth target excess air ratio setting map 75 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q. The air excess rate target value λ NPR_Trgt (fourth target air excess rate) is set in advance based on experiments or the like.
 まず、第4目標空気過剰率設定マップ75から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgtが読み取られて噴射量目標値演算部76に入力される。さらに、噴射量目標値演算部76では、以下の数式(5)に基づいてNOxパージリッチ制御時の目標噴射量QNPR_Trgtが演算される。 First, the excess air ratio target value λ NPR_Trgt at the time of NOx purge rich control is read from the fourth target excess air ratio setting map 75 using the engine speed Ne and the accelerator opening Q as input signals, and the injection amount target value calculation section 76 is performed. Is input. Further, the injection amount target value calculation unit 76 calculates a target injection amount Q NPR_Trgt at the time of NOx purge rich control based on the following formula (5).
 QNPR_Trgt=MAFNPL_Trgt×Maf_corr/(λNPR_Trgt×RoFuel×AFRsto)-Qfnl_corrd・・・(5)
 数式(5)において、MAFNPL_TrgtはNOxパージリーンMAF目標値であって、前述のMAF目標値演算部72から入力される。また、Qfnl_corrdは燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrはMAF補正係数をそれぞれ示している。
Q NPR_Trgt = MAF NPL_Trgt × Maf_corr / (λ NPR_Trgt × Ro Fuel × AFR sto ) −Q fnl_corrd (5)
In Expression (5), MAF NPL_Trgt is a NOx purge lean MAF target value, and is input from the above-described MAF target value calculation unit 72. Q fnl_corrd represents the fuel injection amount (excluding post injection), Ro Fuel represents the fuel specific gravity, AFR sto represents the stoichiometric air-fuel ratio, and Maf_corr represents the MAF correction coefficient.
 噴射量目標値演算部76によって演算される目標噴射量QNPR_Trgtは、NOxパージフラグFSPがオンになると、排気管噴射装置34又は各インジェクタ11に噴射指示信号として送信される(図6の時刻t)。この噴射指示信号の送信は、後述するNOxパージ制御の終了判定によってNOxパージフラグFNPがオフ(図6の時刻t)にされるまで継続される。 The target injection amount Q NPR_Trgt that is calculated by the injection amount target value computing unit 76, NOx purge flag F SP When turned on, is sent as the injection instruction signal to the exhaust pipe injector 34 or the injectors 11 (time of FIG. 6 t 1 ). The transmission of this injection instruction signal is continued until the NOx purge flag F NP is turned off (time t 2 in FIG. 6) by the end determination of NOx purge control described later.
 このように、本実施形態では、第4目標空気過剰率設定マップ75から読み取られる空気過剰率目標値λNPR_Trgtと、各インジェクタ11の燃料噴射量とに基づいて目標噴射量QNPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。 As described above, in this embodiment, the target injection amount Q NPR_Trgt is set based on the air excess rate target value λ NPR_Trgt read from the fourth target air excess rate setting map 75 and the fuel injection amount of each injector 11. It has become. Thus, without providing a lambda sensor upstream of the NOx storage reduction catalyst 32, or even when a lambda sensor is provided upstream of the NOx storage reduction catalyst 32, the sensor value of the lambda sensor is not used. It is possible to effectively reduce the exhaust gas to a desired excess air ratio required for NOx purge rich control.
 [NOxパージ制御の終了判定]
 NOxパージ制御は、(1)NOxパージフラグFNPのオンから排気管噴射又はポスト噴射の噴射量を累積し、この累積噴射量が所定の上限閾値量に達した場合、(2)NOxパージ制御の開始から計時した経過時間が所定の上限閾値時間に達した場合、(3)エンジン10の運転状態やNOx/ラムダセンサ45のセンサ値等を入力信号として含む所定のモデル式に基づいて演算されるNOx吸蔵還元型触媒32のNOx吸蔵量がNOx除去成功を示す所定の閾値まで低下した場合の何れかの条件が成立すると、NOxパージフラグFNPをオフにして終了される(図6の時刻t参照)。
[Determining completion of NOx purge control]
In the NOx purge control, (1) when the NOx purge flag F NP is turned on, the amount of exhaust pipe injection or post injection is accumulated, and when this cumulative injection amount reaches a predetermined upper limit threshold amount, (2) NOx purge control When the elapsed time counted from the start reaches a predetermined upper threshold time, (3) calculation is performed based on a predetermined model formula including the operating state of the engine 10 and the sensor value of the NOx / lambda sensor 45 as input signals. If any of the conditions in the case where the NOx occlusion amount of the NOx occlusion reduction type catalyst 32 decreases to a predetermined threshold value indicating successful removal of NOx is satisfied, the NOx purge flag F NP is turned off and the process ends (time t 2 in FIG. 6). reference).
 このように、本実施形態では、NOxパージ制御の終了条件に累積噴射量及び、経過時間の上限を設けたことで、NOxパージが排気温度の低下等によって成功しなかった場合に燃料消費量が過剰になることを確実に防止することができる。 As described above, in the present embodiment, the cumulative injection amount and the upper limit of the elapsed time are provided in the end condition of the NOx purge control, so that the fuel consumption amount is reduced when the NOx purge is not successful due to a decrease in the exhaust temperature or the like. It is possible to reliably prevent the excess.
 [その他]
 なお、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
[Others]
It should be noted that the present disclosure is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the spirit of the present disclosure.
 本出願は、2015年09月18日付で出願された日本国特許出願(特願2015-185757)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2015-185757) filed on September 18, 2015, the contents of which are incorporated herein by reference.
 本開示の触媒劣化度合推定装置は、劣化補正係数による補正の精度を高めることができるという点において有用である。 The catalyst deterioration degree estimation device of the present disclosure is useful in that the accuracy of correction using a deterioration correction coefficient can be increased.
 10 エンジン
 11 筒内インジェクタ
 12 吸気通路
 13 排気通路
 16 吸気スロットルバルブ
 24 EGRバルブ
 31 酸化触媒
 32 NOx吸蔵還元型触媒
 33 フィルタ
 34 排気インジェクタ
 40 MAFセンサ
 45 NOx/ラムダセンサ
 50 ECU
DESCRIPTION OF SYMBOLS 10 Engine 11 In-cylinder injector 12 Intake passage 13 Exhaust passage 16 Intake throttle valve 24 EGR valve 31 Oxidation catalyst 32 NOx occlusion reduction type catalyst 33 Filter 34 Exhaust injector 40 MAF sensor 45 NOx / lambda sensor 50 ECU

Claims (4)

  1.  内燃機関の排気通路に設けられ、排気リーン状態で排気中のNOxを吸蔵すると共に、排気リッチ状態で吸蔵されていたNOxを還元浄化するNOx吸蔵還元型触媒と、前記NOx吸蔵還元型触媒よりも前記排気通路の下流側に設けられたNOxセンサと、を備える排気浄化システムの触媒劣化度合推定装置であって、
     前記内燃機関の運転状態に基づいて前記NOx還元型触媒を通過した排気に含まれるNOx量を推定し、当該推定されるNOx量と前記NOxセンサで検出される実NOx量との差に基づき、前記NOx吸蔵還元型触媒の劣化度合を算出する算出部と、
     前記内燃機関の運転状態と前記内燃機関の排気通路の状態のうち少なくとも一方に基づいて、前記算出部の前記劣化度合の算出を制御する算出制御部と、を備える
     触媒劣化度合推定装置。
    More than the NOx occlusion reduction type catalyst provided in the exhaust passage of the internal combustion engine, which occludes NOx in the exhaust gas in the exhaust lean state and reduces and purifies NOx occluded in the exhaust rich state, and the NOx occlusion reduction type catalyst A NOx sensor provided downstream of the exhaust passage, and a catalyst deterioration degree estimating device for an exhaust purification system comprising:
    Estimating the amount of NOx contained in the exhaust gas that has passed through the NOx reduction catalyst based on the operating state of the internal combustion engine, and based on the difference between the estimated NOx amount and the actual NOx amount detected by the NOx sensor, A calculation unit for calculating the degree of deterioration of the NOx storage reduction catalyst;
    A catalyst deterioration degree estimation device, comprising: a calculation control unit that controls calculation of the deterioration degree of the calculation unit based on at least one of an operating state of the internal combustion engine and an exhaust passage state of the internal combustion engine.
  2.  前記算出制御部は、前記内燃機関の始動時から、前記NOxセンサによるNOx量の有効な検出が行えるまでの所定期間に亘って、前記劣化度合の算出を禁止する
     請求項1に記載の触媒劣化度合推定装置。
    2. The catalyst deterioration according to claim 1, wherein the calculation control unit prohibits the calculation of the deterioration degree for a predetermined period from when the internal combustion engine is started until the NOx amount can be effectively detected by the NOx sensor. Degree estimation device.
  3.  前記算出制御部は、排気をリッチ状態にして前記NOx吸蔵還元型触媒のNOx浄化能力を回復させる触媒再生処理が実行された際に、当該触媒再生処理の実行時から所定期間に亘って、前記劣化度合の算出を禁止する
     請求項1又は2に記載の触媒劣化度合推定装置。
    When the catalyst regeneration process is executed to restore the NOx purification ability of the NOx occlusion reduction catalyst by setting the exhaust to a rich state, the calculation control unit is configured to perform the predetermined period from the execution time of the catalyst regeneration process. The catalyst deterioration degree estimation apparatus according to claim 1 or 2, wherein calculation of the deterioration degree is prohibited.
  4.  前記内燃機関の運転状態に基づいて、前記NOx吸蔵還元型触媒に吸蔵された吸蔵NOx量を推定する推定部をさらに備え、
     前記算出制御部は、前記所定期間の経過により前記算出部が前記劣化度合の算出を開始する際に、前記推定部によって推定される前記吸蔵NOx量が所定の閾値を超えている場合は、前記劣化度合の算出開始を禁止する
     請求項1から3の何れ一項に記載の触媒劣化度合推定装置。
    An estimation unit for estimating the amount of NOx occluded in the NOx occlusion reduction catalyst based on the operating state of the internal combustion engine;
    The calculation control unit, when the storage unit NOx amount estimated by the estimation unit exceeds a predetermined threshold when the calculation unit starts calculating the degree of deterioration as the predetermined period elapses, The catalyst deterioration degree estimation device according to any one of claims 1 to 3, wherein start of calculation of the deterioration degree is prohibited.
PCT/JP2016/077205 2015-09-18 2016-09-15 Catalyst deterioration degree estimation device WO2017047678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-185757 2015-09-18
JP2015185757A JP2017057842A (en) 2015-09-18 2015-09-18 Catalyst deterioration degree estimation device

Publications (1)

Publication Number Publication Date
WO2017047678A1 true WO2017047678A1 (en) 2017-03-23

Family

ID=58288882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077205 WO2017047678A1 (en) 2015-09-18 2016-09-15 Catalyst deterioration degree estimation device

Country Status (2)

Country Link
JP (1) JP2017057842A (en)
WO (1) WO2017047678A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10865689B2 (en) * 2018-09-21 2020-12-15 Cummins Inc. Systems and methods for diagnosis of NOx storage catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221028A (en) * 2001-01-22 2002-08-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2004270469A (en) * 2003-03-05 2004-09-30 Mitsubishi Fuso Truck & Bus Corp Device and method for estimating occlusion amount of nox occluded catalyst
JP2009228680A (en) * 2009-07-09 2009-10-08 Denso Corp Deterioration detector for exhaust emission control catalyst
WO2015046273A1 (en) * 2013-09-25 2015-04-02 トヨタ自動車株式会社 Malfunction diagnosis device for exhaust-gas purification device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221028A (en) * 2001-01-22 2002-08-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2004270469A (en) * 2003-03-05 2004-09-30 Mitsubishi Fuso Truck & Bus Corp Device and method for estimating occlusion amount of nox occluded catalyst
JP2009228680A (en) * 2009-07-09 2009-10-08 Denso Corp Deterioration detector for exhaust emission control catalyst
WO2015046273A1 (en) * 2013-09-25 2015-04-02 トヨタ自動車株式会社 Malfunction diagnosis device for exhaust-gas purification device

Also Published As

Publication number Publication date
JP2017057842A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
EP3266999B1 (en) Exhaust purification system and catalyst regeneration method
JP2016223294A (en) Exhaust emission control system
WO2016117573A1 (en) EXHAUST GAS PURIFICATION SYSTEM, AND NOx PURIFICATION CAPACITY RESTORATION METHOD
WO2016039452A1 (en) Exhaust gas purification system
WO2016039451A1 (en) Exhaust gas purification system
JP6439334B2 (en) Exhaust purification system
JP6455237B2 (en) Exhaust purification system
JP6418014B2 (en) Exhaust purification system
WO2016117568A1 (en) EXHAUST GAS PURIFICATION SYSTEM, AND NOx PURIFICATION CAPACITY RESTORATION METHOD
WO2017047678A1 (en) Catalyst deterioration degree estimation device
WO2016098895A1 (en) EXHAUST PURIFICATION SYSTEM AND NOx PURIFICATION CAPACITY RECOVERY METHOD
WO2016152391A1 (en) Exhaust purification system and catalyst control method
JP6604034B2 (en) Exhaust purification device
JP6405816B2 (en) Exhaust purification system
WO2016117519A1 (en) Exhaust gas purification system, and nox purification capacity restoration method
WO2016039450A1 (en) Exhaust-gas-cleaning system and method of controlling same
WO2016039453A1 (en) Exhaust-gas-cleaning system and method for controlling the same
WO2016125742A1 (en) EXHAUST GAS PURIFICATION SYSTEM AND NOx PURIFICATION CAPACITY RECOVERY METHOD
JP2016176404A (en) Exhaust emission control system
JP6435730B2 (en) Control device for internal combustion engine
JP6455070B2 (en) Exhaust purification system
WO2016117517A1 (en) Exhaust gas purification system, and nox purification capacity restoration method
WO2016039454A1 (en) Exhaust cleaning system
WO2017010542A1 (en) Storage amount estimation device
JP2016133022A (en) Exhaust emission control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846549

Country of ref document: EP

Kind code of ref document: A1