JP3998514B2 - サイリスタ - Google Patents

サイリスタ Download PDF

Info

Publication number
JP3998514B2
JP3998514B2 JP2002159255A JP2002159255A JP3998514B2 JP 3998514 B2 JP3998514 B2 JP 3998514B2 JP 2002159255 A JP2002159255 A JP 2002159255A JP 2002159255 A JP2002159255 A JP 2002159255A JP 3998514 B2 JP3998514 B2 JP 3998514B2
Authority
JP
Japan
Prior art keywords
conductive region
semiconductor substrate
electrode
thyristor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002159255A
Other languages
English (en)
Other versions
JP2004006478A (ja
Inventor
昌明 冨田
長谷川新次
一典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2002159255A priority Critical patent/JP3998514B2/ja
Publication of JP2004006478A publication Critical patent/JP2004006478A/ja
Application granted granted Critical
Publication of JP3998514B2 publication Critical patent/JP3998514B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する分野】
本発明は、サイリスタ、特に異常電圧又は異常電流から電子回路系を保護するサージ防護素子等に用いるサイリスタに関するものである。
【0002】
【従来の技術】
サイリスタは、電話回線などの通信回線に発生した異常電圧や異常電流から電子回路を保護するサージ防護素子として、通信業界等で幅広く用いられている。
【0003】
図2は、従来技術に係るサイリスタを示す断面図である。図2において、1は半導体基板導電領域、2は第1N型導電領域、3は第2N型導電領域、4は第1P型導電領域、5は第2P型導電領域、10は第1電極、11は第2電極、21,22,23,24は絶縁体、90は第1N型導電領域2と半導体基板導電領域1の境界面、91は第2N型導電領域3と半導体基板導電領域1の境界面、100は半導体基板である。また、図3は、図2に示したサイリスタの順方向特性を示すグラフである。
【0004】
半導体基板100は、P型の導電型を有するものである。第1N型導電領域2及び第2N型導電領域3は、半導体基板100内部に不純物拡散によって形成されたN型の導電型を有するものである。第1P型導電領域4及び第2P型導電領域5は、半導体基板100内部に不純物拡散によって形成されたP型の導電型を有するものである。第1電極10及び第2電極11は、半導体基板100の両主面に形成された電極である。ここで、第1電極10は、第1P型導電領域4と第1N型導電領域2の双方と電気的に接続される。また、第2電極11は、第2P型導電領域5と第2N型導電領域3の双方と電気的に接続される。
【0005】
図2に示したサイリスタにおいて、半導体基板100の第1N型導電領域2を設けた面の側(以下、上面側とする。これ以降に説明する他のサイリスタについても、半導体基板100の第1N型導電領域2を設けた面の側を上面側とする。)を、第2N型導電領域3を設けた面の側(以下、下面側とする。これ以降に説明する他のサイリスタについても、半導体基板100の第2N型導電領域3を設けた面の側を下面側とする。)に対して正の電位とする電圧の印加方向を順方向(これ以降に説明する他のサイリスタの電圧の印加方向についても、この方向を順方向とする。)とする。逆に、上面側を下面側に対して負の電位とする電圧の印加方向を逆方向(これ以降に説明する他のサイリスタの電圧の印加方向についても、この方向を逆方向とする。)とする。
【0006】
図3は、図2に示したサイリスタの順方向の電気的特性を示すグラフである。図3に示すように、順方向においては、第1P型導電領域4をエミッタ、第1N型導電領域2をベース、半導体基板導電領域1をコレクタとするPNPトランジスタと、第2N型導電領域3をエミッタ、半導体基板導電領域1をベース、第1N型導電領域2をコレクタとするNPNトランジスタの間で電子と正孔の交換が行なわれて、オフ状態からオン状態へ移行する点弧動作が行なわれる。
【0007】
すなわち、最初オフ状態にあった図2のサイリスタにおいて、第1電極10と第2電極11との間に印加される順方向電圧が、図3のブレークオーバー電圧Vbに達すると雪崩降伏或いはパンチスルーにより電流が流れるようになる。すなわち、逆バイアス状態にある第1N型導電領域2と半導体基板導電領域1の境界面90及び境界面90近傍において、電子と正孔の交換が活発に行なわれるようになる。そして、前記のPNPトランジスタのベースと前記のNPNトランジスタのコレクタが共通の第1N型導電領域2であるため、サイリスタが点弧してオン状態へ遷移する。前記したブレークオーバー電圧に達したときに空乏層が最大に広がることは言うまでもないことである。
【0008】
なお、PNPN構造からなるサイリスタが点弧動作してオフ状態からオン状態へ移行することは周知の事実であるので、ここでは内部動作のより詳細な説明については省略するが、図2に示す構造では第1N型導電領域2のおおよそ片側半分と第1電極10が電気的に接触するため、雪崩降伏によって点弧動作が開始する場合、点弧の引き金となる電流は、第1P型導電領域4が位置する第1N型導電領域2の周辺の片側から当該第1N型導電領域2の中央付近に向かって流れる。
【0009】
以上のような点弧動作を行うサイリスタは、前記したように、ブレークオーバー電圧Vbでサージ電圧を抑圧するが、雷誘導サージのようにかなり速い電気的サージに対してもその応答が他のサージ防護素子、例えば避雷管や金属酸化物バリスタなどと比較して非常に速いために、高い信頼性を要求される通信ネットワーク系の電子機器のように雷誘導サージを拾い易いところでは殆ど利用されている状況にある。
【0010】
また、半導体材料で出来ているため、サージ電流によって消耗するところがなく長期間に亘って信頼性を維持することが可能であるという保守上の大きな利点を有している。
【0011】
ところが、このような利点を有するサイリスタにおいても、通信速度が向上するに従って、その静電容量が無視出来なくなりつつある。すなわち通信線の品質劣化に繋がる静電容量を出来るだけ小さくしたいという要求が出てきている。この要求に応えるには、前記した静電容量は、主に第1N型導電領域2と半導体基板導電領域1の境界面90に発生する空乏層に起因するため、単純には、空乏層が電界方向に対して出来るだけ広くなるようにするか、サイリスタ全体を小さくして静電容量を低減すればよい。
【0012】
しかしながら、前記した空乏層の拡大はブレークオーバー電圧が高くなるという欠点があり単純には実現出来ない。
【0013】
また、サイリスタ全体を小さくすると、それに従って導通面積が小さくなりサージ耐量も低下してしまうという欠点がある。従って、サージ耐量が出来るだけ大きくなるような工夫がいろいろとなされているが、これには限界がある。
【0014】
【発明が解決しようとする課題】
本発明は、従来構造のサイリスタをさらに改良して、ブレークオーバー電圧を大きく変えずに静電容量を低下させることを目的としている。
【0015】
【課題を解決するための手段】
上記課題を解決するための手段として、本発明は、第1導電型の半導体基板の一方の面に露出させて形成してなる該半導体基板とは反対型の第2導電型の第1の導電領域と、前記一方の面に露出させると共に前記第1の導電領域内に形成してなる第1導電型の第2の導電領域と、前記半導体基板の前記一方の面に背向する他方の面に露出させて形成してなる第2導電型の第3の導電領域と、前記第1の導電領域の縁辺部の近傍に形成してなる第4の導電領域と、前記第1の導電領域と前記第2の導電領域との双方又は前記第2の導電領域のみと接するように形成してなる第1の電極を有するサイリスタにおいて、前記第4の導電領域は、前記半導体基板を平面的に見たときに前記第1の電極と部分的に重なり合うか又は前記第1の電極の近傍にあり、且つ、その降伏電界強度が前記半導体基板の降伏電界強度より小さいことを特徴とするものとした。
【0016】
前記した構成においては、図2に示したサイリスタの構造と比較すると、順方向のブレークオーバー電圧が第1の導電領域(図2では第1N型導電領域2に相当)と、半導体基板の導電領域を形成していない部分(図2では半導体基板導電領域1に相当)の境界面(図2では境界面90に相当)及びその近傍では決定されにくくなり、静電容量を低下させるために半導体基板の第1乃至第6の導電領域を形成していない部分の抵抗率を大きくして電界方向に対して空乏層を広げることが出来るようになる。すなわち、前記した構成においては、第4の導電領域でブレークオーバー電圧が決定される。逆方向のブレークオーバー電圧も順方向の場合と同様に、第3の導電領域(図2では第2N型導電領域3に相当)と、半半導体基板の導電領域を形成していない部分(図2では半導体基板導電領域1に相当)の境界面(図2では境界面91に相当)及びその近傍では決定されにくくなり、第6の導電領域で決定されることは言うまでもないことである。
【0017】
よって、図2に示した従来構造と比較して、ブレークオーバー電圧を従来水準に保ったまま、電界方向に垂直に空乏層を広げることが出来るようになると共に導通面積はほぼ一定に出来るようになる。従って、他の特性はそれほど犠牲にせずに静電容量を小さくすることが出来るようになる。
【0018】
また、本発明は、以上の構成において、前記第4の導電領域或いは前記第6の導電領域を第1導電型とし、その降伏電界強度が前記半導体基板の降伏電界強度と同じか或いは略同じとしてもよい。この構成においても、新たに加えられた第4導電領域或いは第6の導電領域でブレークオーバー電圧が主に決定される。従って、他の特性はそれほど犠牲にせずに静電容量を小さくすることが出来る。
【0019】
第4の導電領域は、ゲルマニウム−シリコン合金、又はシリコン、ゲルマニウム若しくはゲルマニウム−シリコン合金のいずれか二つ以上を積層した多層膜からなるようにしてもよい。
また、第6の導電領域は、ゲルマニウム−シリコン合金、又はシリコン、ゲルマニウム若しくはゲルマニウム−シリコン合金のいずれか二つ以上を積層した多層膜からなるようにしてもよい。この場合、ゲルマニウム−シリコン合金又はゲルマニウムは、小さい電界強度で雪崩崩壊を生じ易いので、ブレークオーバー電圧を所定電圧に設定することが容易になる。
【0020】
また、本発明は、以上の構成において、前記一方の面に露出させると共に前記第2の導電領域を貫通するように形成してなる第2導電型の第7の導電領域を形成し、前記第1の電極が前記第1の導電領域、前記第2の導電領域、前記第7の導電領域と接するようにしてもよい。この場合、上面側で所謂ショートエミッタ構造が形成される。
【0021】
また、本発明は、以上の構成において、前記他方の面に露出させると共に前記第5の導電領域を貫通するように形成してなる第2導電型の第8の導電領域を形成し、前記第2の電極が前記第3の導電領域、前記第5の導電領域、前記第8の導電領域と接するようにしてもよい。この場合、下面側で所謂ショートエミッタ構造が形成される。
【0022】
さらに、本発明は、以上の構成において、前記第4の導電領域、前記第6の導電領域、前記第7の導電領域、前記第8の導電領域のいずれか1つまたは2つ以上が複数あってもよい。
【0023】
【発明の実施の形態】
以下に、本発明の第1の実施の形態に係るサイリスタを図面に基づいて詳細に説明する。図1は、本発明の第1の実施の形態に係るサイリスタを示す断面図である。図1において、1は半導体基板導電領域、2は第1N型導電領域、3は第2N型導電領域、4は第1P型導電領域、5は第2P型導電領域、10は第1電極、11は第2電極、21,22,23,24は絶縁体、30,35はブレークオーバー電圧決定導電領域、90は第1N型導電領域2と半導体基板導電領域1の境界面、91は第2N型導電領域3と半導体基板導電領域1の境界面、100は半導体基板である。
【0024】
半導体基板100は、角筒形を有するシリコンで、P型の導電型を有する。半導体基板100に、第1N型導電領域2、第2N型導電領域3を形成する。また、第1N型導電領域2内に第1P型導電領域4、第2N型導電領域3内に第2P型導電領域5を形成する。ここで第1N型導電領域2と第1P型導電領域4は第1電極10と電気的に接続され、第2N型導電領域3と第2P型導電領域5は第2電極11と電気的に接続される。さらに、半導体基板100を平面的に見て、第1電極10の端部及びその端部近傍がブレークオーバー電圧決定導電領域30と互いに重なり合うように配置され、第2電極11の端部及びその端部近傍がブレークオーバー電圧決定導電領域35と互いに重なり合うように配置される。ブレークオーバー電圧決定導電領域30は、第1N型導電領域2の外周部近傍に配置し、ブレークオーバー電圧決定導電領域35は、第2N型導電領域3の外周部近傍に配置する。ブレークオーバー電圧決定導電領域30,35は、半導体基板100の縁辺付近に島状に形成される。また、第1P型導電領域4と第2P型導電領域5は、適当なマスクを用いてP型の不純物を外部から導入後、高温拡散によって形成される。
【0025】
ブレークオーバー電圧決定導電領域30は、ゲルマニウムをスパッタ後にパターニングして、半導体基板100を平面的に見て、第1電極10の端部及びその端部近傍がブレークオーバー電圧決定導電領域30と互いに重なり合うようにする工程を設けて形成する。さらに半導体基板導電領域1と同じ導電型となるようイオン注入で不純物を導入し高温拡散を実施する。同様に、ブレークオーバー電圧決定導電領域35は、ゲルマニウムをスパッタ後にパターニングして、半導体基板100を平面的に見て、第2電極11の端部及びその端部近傍がブレークオーバー電圧決定導電領域35と互いに重なり合うようにする工程を設けて形成する。さらに半導体基板導電領域1と同じ導電型となるようイオン注入で不純物を導入し高温拡散を実施する。ここでブレークオーバー電圧決定導電領域30,35と半導体基板導電領域1の境界とその近傍にはゲルマニウム−シリコン合金化合物SiGe(1 −X )が形成される。
【0026】
また、第1N型導電領域2及び第2N型導電領域3は、各々上面側と下面側からN型の不純物を導入した後、高温拡散によって形成されるが、設計によっては同一のマスクによって形成してもよいという製造上の利点がある。また必要に応じて、第1電極10と第2電極11と接する領域の導電率を大きくするために別のマスクによって第1N型導電領域2及び第2N型導電領域3を形成することも勿論可能である。例えば、第1N型導電領域2及び第2N型導電領域3の不純物拡散を実施した後で、第1N型導電領域2及び第2N型導電領域3のなかで第1電極10及び第2電極11と接する領域の抵抗値を小さくするために、別途N型の高濃度の不純物を導入した後、高温拡散を行ってもよい。他の導電領域も必要に応じて複数の拡散によって形成してよいが、普通は1回である。
【0027】
N型とP型の不純物拡散工程が全て終了した後、酸化膜などの絶縁体21,22,23,24を積層して形成し、さらにエッチングで第1電極10,第2電極11のための窓空けを行う。このとき、第1電極10の端部及びその端部近傍が、半導体基板100を平面的に見てブレークオーバー電圧決定導電領域30に重なるようにすると共に、第2電極11の端部及びその端部近傍が、半導体基板100を平面的に見てブレークオーバー電圧決定導電領域35に重なるように配置する。
【0028】
なお、絶縁体21,22,23,24は、通常は酸化膜などで形成する。特性上問題がないならば気体や真空で構成することも可能であるが、複数の絶縁体からなる多層構造で形成してもよい。第1電極10とブレークオーバー電圧決定導電領域30の間に絶縁体22があるため、ブレークオーバー電圧の設計上、絶縁体の誘電率などを考慮して、適当な材料の組み合わせで絶縁体を最適化してもよい。その場合、絶縁体の厚みも当然関係してくる。また、ブレークオーバー電圧決定導電領域30は、帯状に形成することが好ましいが、分割して複数形成してもよいし、リング状に配置することも可能である。また、独立した小さい島状の領域を多数配置するようにしてもよい。また、ブレークオーバー電圧を設定する効果はやや落ちるが、ブレークオーバー電圧決定導電領域30は、第1電極10の端部と重ならずに、その近傍に位置するように形成することも可能である。同様に、第2電極11とブレークオーバー電圧決定導電領域35の間に絶縁体23があるため、ブレークオーバー電圧の設計上、絶縁体の誘電率などを考慮して、適当な材料の組み合わせで絶縁体を最適化してもよい。その場合、絶縁体の厚みも当然関係してくる。また、ブレークオーバー電圧決定導電領域35は、帯状に形成することが好ましいが、分割して複数形成してもよいし、リング状に配置することも可能である。また、独立した小さい島状の領域を多数配置するようにしてもよい。また、ブレークオーバー電圧を設定する効果はやや落ちるが、ブレークオーバー電圧決定導電領域35は、第2電極11の端部と重ならずに、その近傍に位置するように形成することも可能である。さらに、半導体基板100の形状も、角筒形に限られるものではなく、円筒形など他の形状であってもよい。
【0029】
また、本実施の形態では、ゲルマニウム材料をスパッタしてブレークオーバー電圧決定導電領域30,35を形成したが、ゲルマニウム−シリコン合金をスパッタで形成した後にパターニングしてもよい。また、ブレークオーバー電圧決定導電領域30,35については、さらに他の構成を採用することも可能である。図5は、ブレークオーバー電圧決定導電領域の第1の変形例を示す断面図である。図6は、ブレークオーバー電圧決定導電領域の第2の変形例を示す断面図である。図6において、31,36はシリコン層、32,37はゲルマニウム層を示し、その他の符号は図1に示したものと同じものを示す。
【0030】
図5に示しているブレークオーバー電圧決定導電領域30,35は、半導体基板100に適当なマスクを用いてゲルマニウムをイオン注入し、ゲルマニウム−シリコン合金を形成している。この場合、イオン注入のドーズ量は1×1016cm 2以上であり、加速電圧は20〜60keVの範囲で行うのがよい。ゲルマニウムとシリコンとは任意の組成で固溶することが知られており、ゲルマニウム−シリコン合金を形成する場合のゲルマニウム及びシリコンの組成比は任意に設定することが出来る。また、イオン注入の場合、平坦性に優れ、半導体基板100表面の凹凸が小さいことから、絶縁体22,23の形成が容易になることがある。さらに、図67に示すように、絶縁体22,23の形成を容易にするために、シリコンとゲルマニウムを交互に積層し、シリコンが表面に露出するようにした多層膜としてもよい。以上の他に、真空蒸着のような物理的成膜を行ってもよいし、プラズマCVDのような化学気相成膜(CVD)法を行ってもよく、要するに良質なブレークオーバー電圧決定導電領域30,35の形成手段として有効であれば何でも構わない。
【0031】
続けて、本発明の第1の実施の形態に係るサイリスタの動作の特徴点について説明する。図1に示されるように、本発明の第1の実施の形態に係るサイリスタは、順逆両方向で点弧動作するように形成している。従って、基本的な動作は順逆どちらも同じであり、以下の説明では順方向について説明することにする。順方向のブレークオーバー電圧と逆方向のブレークオーバー電圧は同じ値にすることも出来るし、異なる値とすることも出来る。図1に示される構造においては、順方向に電圧が印加されると、半導体基板導電領域1及びブレークオーバー電圧決定導電領域30内で最も電界強度が大きくなる部位が、半導体基板100を平面的に見て第1電極10の端部の真下付近のブレークオーバー電圧決定導電領域30の表面とその近傍となる。すなわち、この最も電界強度が大きくなる位置はブレークオーバー電圧決定導電領域30内になる。ここで、文献にもよるが、シリコン材料の降伏電界強度は約3×10〔V/cm〕であるのに対してゲルマニウムは約8×10〔V/cm〕と小さい。すなわち、シリコンよりゲルマニウムの方がより小さい電界強度で雪崩降伏を生じ易い。
【0032】
従って、本発明の第1の実施の形態に係るサイリスタのブレークオーバー電圧は、主にブレークオーバー電圧決定導電領域30の配置とその導電率の分布に依存して変化することとなり、半導体基板導電領域1の導電率等とは殆ど無関係になるという大きな利点がある。これは、ブレークオーバー電圧に関する設計と静電容量を低下させるための設計とが各々独立して出来るようになることを意味する。
【0033】
また、図2に示した従来技術に係るサイリスタの構造では、既に述べたように、順方向に電圧が印加された場合、第1N型導電領域2と半導体基板導電領域1からなる接合が逆バイアスとなり静電容量を決定していたため、半導体基板導電領域1の抵抗率を大きくして静電容量を小さくするとブレークオーバー電圧が大きくなる。しかしながら、本発明では、半導体基板100内の最大電界強度領域が第1N型導電領域2と半導体基板導電領域1からなる接合から離れた位置となるため、半導体基板導電領域1の抵抗率を大きくしても、ブレークオーバー電圧は従来技術に係るサイリスタと同等のままに出来る。
【0034】
さらに、前記したようにゲルマニウムは降伏電界強度が小さいため、シリコンで形成する場合より、より小さいブレークオーバー電圧を実現し易い。すなわち、半導体基板導電領域1の抵抗率をより大きくして静電容量を小さくすることが容易である。また、ブレークオーバー電圧決定導電領域30の導電型は半導体基板導電領域1と同じ導電型であることが望ましいが、前記したようにゲルマニウムは降伏電界強度が小さいため、逆の導電型やノンドープとすることも出来る。
【0035】
従って、本発明の第1の実施の形態に係るサイリスタは、半導体基板導電領域1の抵抗率を大きくすればするほど、電圧が印加されたときに空乏層が電界方向に広がり易くなり、その結果静電容量を小さくすることが出来るという利点がある。なお、半導体基板導電領域1の抵抗率を大きくするに従って、チャネル電流が問題になるような場合は、高耐圧半導体装置でよく実施されるように、半導体基板100の端部及びその近傍に別途チャネルストッパを配置すればよい。
【0036】
以上のように、本発明の第1の実施の形態に係るサイリスタの構造によれば、ブレークオーバー電圧を大きく変えずに静電容量を小さくすることが出来る。
【0037】
本発明の第2の実施の形態に係るサイリスタを図面に基づいて説明する。図4は、本発明の第2の実施の形態に係るサイリスタを示す断面図である。図4において、1は半導体基板導電領域、2は第1N型導電領域、3は第2N型導電領域、4は第1P型導電領域、5は第2P型導電領域、10は第1電極、11は第2電極、21,22,23,24は絶縁体、30,35はブレークオーバー電圧決定導電領域、41は第1孔状導電領域、51は第2孔状導電領域、90は第1N型導電領域2と半導体基板導電領域1の境界面、91は第2N型導電領域3と半導体基板導電領域1の境界面、100は半導体基板である。
【0038】
図4に示されるように、本発明の第2の実施の形態に係るサイリスタは、本発明の第1の実施の形態に係るサイリスタにおいて第1孔状導電領域と第2孔状導電領域がある場合で、通常はショートエミッタ構造と言われるがショートゲート構造と言うこともある。基本動作は第1の実施の形態に係るサイリスタと変わるところはない。ここで絶縁体21,22,23,24は、酸化膜で約0.6μm厚とした。電極材料は、それらの絶縁膜と密着性のよいものとしている。第1孔状導電領域と第2孔状導電領域は単数でも複数でも構わないが、通常はサージ耐量が大きくなるように形状や配置を決定する。
【0039】
従って、本発明の第2の実施の形態における構造では、ブレークオーバー電圧を大きく変えずに静電容量を小さくすることが出来る。
【0040】
くわえて、本発明の第3の実施の形態に係るサイリスタを図面に基づいて説明する。図7は、本発明の第3の実施の形態に係るサイリスタを示す断面図である。図7において、1は半導体基板導電領域、2は第1N型導電領域、3は第2N型導電領域、4は第1P型導電領域、10は第1電極、11は第2電極、21,22,23,24は絶縁体、30,35はブレークオーバー電圧決定導電領域、90は第1N型導電領域2と半導体基板導電領域1の境界面、91は第2N型導電領域3と半導体基板導電領域1の境界面、100は半導体基板である。
【0041】
本発明の第3の実施の形態に係るサイリスタは、ショックレーダイオードとも呼ばれるサイリスタである。順方向電圧が印加されたときブレークオーバー電圧が決定される位置は、本発明の第1及び第2の実施の形態に係るサイリスタと同じで、第1N型導電領域2と半導体基板導電領域1からなる接合から離れた位置となる。従って、本発明の第3の実施の形態における構造においても、ブレークオーバー電圧を大きく変えずに静電容量を小さくすることが出来る。
【0042】
【発明の効果】
このように本発明によれば、最大電界強度領域が、従来構造に係るサイリスタとは異なって、半導体基板を平面的に見たときに電極と部分的に重なり合うか又は電極の近傍にあり、且つ、その降伏電界強度が半導体基板の降伏電界強度より小さい第4の導電領域及びその近傍内或いは第6の導電領域及びその近傍内となり、ブレークオーバー電圧に無関係に半導体基板の抵抗率を決定することが出来る。従って、半導体基板の抵抗率を大きくして電界方向に空乏層を広げることが出来るようになり、静電容量を小さくすることが出来る。そのため、従来技術に係るサイリスタよりも、同じブレークオーバー電圧でより静電容量の小さいサイリスタを実現することが容易になる。
【0043】
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態に係るサイリスタを示す断面図である。
【図2】 従来技術に係るサイリスタを示す断面図である。
【図3】 図2に示したサイリスタの順方向の電気的特性を示すグラフである。
【図4】 本発明の第2の実施の形態に係るサイリスタを示す断面図である。
【図5】 ブレークオーバー電圧決定導電領域の第1の変形例を示す断面図である。
【図6】 ブレークオーバー電圧決定導電領域の第2の変形例を示す断面図である。
【図7】 本発明の第3の実施の形態に係るサイリスタを示す断面図である。
【符号の簡単な説明】
1 半導体基板導電領域
2 第1N型導電領域
3 第2N型導電領域
4 第1P型導電領域
5 第2P型導電領域
10 第1電極
11 第2電極
21 絶縁体
22 絶縁体
23 絶縁体
24 絶縁体
30 ブレークオーバー電圧決定導電領域
31 シリコン層
32 ゲルマニウム層
35 ブレークオーバー電圧決定導電領域
36 シリコン層
37 ゲルマニウム層
41 第1孔状導電領域
51 第2孔状導電領域
90 第1N型導電領域2と半導体基板導電領域1の境界面
91 第2N型導電領域3と半導体基板導電領域1の境界面
100 半導体基板

Claims (7)

  1. 第1導電型の半導体基板の一方の面に露出させて形成してなる該半導体基板とは反対型の第2導電型の第1の導電領域と、
    前記一方の面に露出させると共に前記第1の導電領域内に形成してなる第1導電型の第2の導電領域と、
    前記半導体基板の前記一方の面に背向する他方の面に露出させて形成してなる第2導電型の第3の導電領域と、
    前記第1の導電領域の縁辺部の近傍に形成してなる第4の導電領域と、
    前記第1の導電領域と前記第2の導電領域との双方又は前記第2の導電領域のみと接するように形成してなる第1の電極を有するサイリスタにおいて、
    前記第4の導電領域は、前記半導体基板を平面的に見たときに前記第1の電極と部分的に重なり合うか又は前記第1の電極の近傍にあり、且つ、その降伏電界強度が前記半導体基板の降伏電界強度より小さいことを特徴とするサイリスタ。
  2. さらに、前記他方の面に露出させると共に前記第3の導電領域内に形成してなる第1導電型の第5の導電領域と、前記第3の導電領域の縁辺部の近傍に形成してなる第6の導電領域と、前記第3の導電領域と前記第5の導電領域の双方又はどちらか一方と接するように形成してなる第2の電極を有し、
    前記第6の導電領域は、前記半導体基板を平面的に見たときに前記第2の電極と部分的に重なり合うか又は前記第2の電極の近傍にあり、且つ、その降伏電界強度が前記半導体基板の降伏電界強度より小さいことを特徴とする請求項1に記載のサイリスタ。
  3. 前記第4の導電領域と前記第6の導電領域の双方又はどちらか一方は、第1導電型の導電型を有し、その降伏電界強度が前記半導体基板の降伏電界強度と等しいか又は略等しいことを特徴とする請求項2に記載のサイリスタ。
  4. 前記第4の導電領域は、ゲルマニウム−シリコン合金、又はシリコン、ゲルマニウム若しくはゲルマニウム−シリコン合金のいずれか二つ以上を積層した多層膜からなることを特徴とする請求項1記載のサイリスタ。
  5. 前記第6の導電領域は、ゲルマニウム−シリコン合金、又はシリコン、ゲルマニウム若しくはゲルマニウム−シリコン合金のいずれか二つ以上を積層した多層膜からなることを特徴とする請求項2記載のサイリスタ。
  6. さらに、前記一方の面に露出させると共に前記第2の導電領域を貫通するように形成してなる第2導電型の第7の導電領域を有し、前記第1の電極が前記第1の導電領域、前記第2の導電領域、前記第7の導電領域と接することを特徴とする請求項1乃至請求項5に記載のサイリスタ。
  7. さらに、前記他方の面に露出させると共に前記第5の導電領域を貫通するように形成してなる第2導電型の第8の導電領域を有し、前記第2の電極が前記第3の導電領域、前記第5の導電領域、前記第8の導電領域と接することを特徴とする請求項2、請求項3および請求項5に記載のサイリスタ。
JP2002159255A 2002-05-31 2002-05-31 サイリスタ Expired - Fee Related JP3998514B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002159255A JP3998514B2 (ja) 2002-05-31 2002-05-31 サイリスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002159255A JP3998514B2 (ja) 2002-05-31 2002-05-31 サイリスタ

Publications (2)

Publication Number Publication Date
JP2004006478A JP2004006478A (ja) 2004-01-08
JP3998514B2 true JP3998514B2 (ja) 2007-10-31

Family

ID=30429106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002159255A Expired - Fee Related JP3998514B2 (ja) 2002-05-31 2002-05-31 サイリスタ

Country Status (1)

Country Link
JP (1) JP3998514B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110010602B (zh) * 2019-04-09 2023-11-28 捷捷半导体有限公司 一种低击穿电压放电管及其制作方法

Also Published As

Publication number Publication date
JP2004006478A (ja) 2004-01-08

Similar Documents

Publication Publication Date Title
KR101394913B1 (ko) 트렌치 소자분리를 사용한 래치업 없는 버티컬 tvs 다이오드 어레이 구조
US10199482B2 (en) Apparatus for electrostatic discharge protection
JPH09246552A (ja) 重畳されたフィールドプレート構造を有する電力半導体装置およびその製造方法
EP0615287B1 (en) Dielectric isolated bipolar transistor
US20220376119A1 (en) Semiconductor protection device
JP2004207733A (ja) サブコレクタとしての多数キャリア蓄積層を有するバイポーラ・トランジスタ
CN111785717B (zh) Scr静电保护结构及其形成方法
JP2000294778A (ja) 半導体装置
JP3998514B2 (ja) サイリスタ
JP4260414B2 (ja) サイリスタ
JP3963751B2 (ja) サイリスタ
TW201640679A (zh) 矽控整流器
JP4907341B2 (ja) サイリスタ
US5608236A (en) Semiconductor device
US5500377A (en) Method of making surge suppressor switching device
JP6658560B2 (ja) 半導体装置
JP2003282865A (ja) サイリスタ
US7436003B2 (en) Vertical thyristor for ESD protection and a method of fabricating a vertical thyristor for ESD protection
JP3103665B2 (ja) 半導体装置
JP2004228177A (ja) 半導体装置及びサイリスタ
TWI742221B (zh) 溝槽金氧半導體元件及其製造方法
JPS59110132A (ja) 誘電体分離構造を有する半導体集積回路装置
JPS6048906B2 (ja) 集積回路装置用保護回路
JP3998498B2 (ja) サイリスタ
JPH04368170A (ja) 半導体保護回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees