JP3998374B2 - Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method - Google Patents
Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method Download PDFInfo
- Publication number
- JP3998374B2 JP3998374B2 JP19912299A JP19912299A JP3998374B2 JP 3998374 B2 JP3998374 B2 JP 3998374B2 JP 19912299 A JP19912299 A JP 19912299A JP 19912299 A JP19912299 A JP 19912299A JP 3998374 B2 JP3998374 B2 JP 3998374B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- thermoplastic resin
- temperature
- pressure
- foam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/40—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
- B29B7/42—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
- B29B7/426—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix with consecutive casings or screws, e.g. for charging, discharging, mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/72—Measuring, controlling or regulating
- B29B7/726—Measuring properties of mixture, e.g. temperature or density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/74—Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
- B29B7/7404—Mixing devices specially adapted for foamable substances
- B29B7/7409—Mixing devices specially adapted for foamable substances with supply of gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/82—Heating or cooling
- B29B7/823—Temperature control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/86—Component parts, details or accessories; Auxiliary operations for working at sub- or superatmospheric pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/94—Liquid charges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0012—Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0022—Combinations of extrusion moulding with other shaping operations combined with cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/285—Feeding the extrusion material to the extruder
- B29C48/295—Feeding the extrusion material to the extruder in gaseous form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/32—Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/362—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using static mixing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/375—Plasticisers, homogenisers or feeders comprising two or more stages
- B29C48/385—Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92019—Pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92209—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92323—Location or phase of measurement
- B29C2948/92361—Extrusion unit
- B29C2948/92409—Die; Nozzle zone
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Molding Of Porous Articles (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、溶融した熱可塑性樹脂に超臨界二酸化炭素を添加する方法と、当該添加方法を用いた熱可塑性樹脂発泡体の製造方法に関する。更に詳しくは、発泡剤として二酸化炭素を用い、品質一定の熱可塑性樹脂発泡体を得るための製造方法に関する。
【0002】
【従来の技術】
熱可塑性樹脂発泡体は、化学発泡剤やガス発泡剤を用いて製造する方法が知られている。化学発泡法は、一般に原料ペレットと、成形温度で分解してガスを発生する低分子量の有機発泡剤を混合し、押出機で該発泡剤の分解温度以上に加熱することにより発泡成形する方法である。この方法は、分解温度を発泡助剤等を添加することによって、容易に調整できる上に、比較的均一な独立気泡を有する発泡体を得ることができる。しかし、これらの発泡剤は、コストが高いことに加えて、発泡体中に残存する発泡剤の分解残留物や未分解発泡剤のために、発泡体の変色、臭気の発生、食品衛生上の問題等を生じる。また、化学発泡剤が原因である押出機のダイスの汚れ、およびそれに伴う成形不良についても問題になっている。
【0003】
これに対し、物理発泡剤を用いたガス発泡法は、押出機で樹脂を溶融したところに、ブタン、ペンタン、ジクロロジフロロメタンのような低沸点有機化合物を添加し、混練した後、低圧域に放出することにより発泡成形する方法である。この方法に用いられる低沸点有機化合物は、樹脂に対して親和性があるため溶解性に優れ、また、保持性にも優れていることから、高倍率発泡体を得ることができるという特徴を持っている。しかしながら、これらの発泡剤は、コストが高いことに加え、可燃性や毒性等の危険性を有しており、大気汚染の問題を生じる可能性を持っている。また、ジクロロジフロロメタンをはじめとするフロン系ガスはオゾン層破壊の環境問題から全廃の方向へ進んでいる。
【0004】
このような従来法の問題点を解決する為に、クリーンでコストがかからない炭酸ガス、窒素等の不活性ガスを発泡剤とする方法が数多く提案されている。しかしながら、不活性ガスは樹脂との親和性が低いことから、溶解性に乏しい。このため発泡体は、気泡径が大きく、不均一で、気泡密度が小さいため、外観性、機械的強度、断熱性等の点に問題があった。また、不活性ガスを安定的に成形機内に添加する方法が確立しておらず、製品に発泡むらが生じ、品質の一定な発泡体を得ることが困難であった。
【0005】
一般に不活性ガス、特に二酸化炭素を用いて熱可塑性樹脂発泡体を製造する場合、ガスボンベから減圧弁を介して直接気体を添加する方法がある。しかし、該方法では、発泡剤添加部における樹脂圧力の変動のため、発泡剤流量に変動を生じ、この結果、製品に発泡むらを生じ、品質の一定な発泡体を得ることができない。また、該方法では、発泡剤添加部における樹脂圧力が、ガスボンベ圧力より高い場合は、発泡剤を添加することができない。
【0006】
米国特許5158986号公報には、発泡剤として超臨界流体を用い、これを熱可塑性樹脂に含浸させることにより、発泡体を得る技術が開示されている。超臨界流体は、液体に近い優れた溶解性と、気体に近い優れた拡散性を有するため樹脂への溶解性が高く、また樹脂中での拡散速度も大きいことから、短時間で発泡剤を樹脂中に含浸させることが可能となる。この公報では、熱可塑性樹脂を押出機によりシート化し、超臨界状態の二酸化炭素で満たされた加圧室に導入し、該シート中に二酸化炭素を含浸させた後、大気圧下の発泡室においてヒーターで加熱し発泡させ、発泡体を得る方法と、押出機で樹脂を溶融したところへ超臨界状態の二酸化炭素を含浸させ、シート状に押し出した成形体を加圧室に導入し、その圧力変化によりセル核が生成し、加熱冷却により、発泡体を得る方法が提案されている。
【0007】
しかしながらこれらの方法では、大規模な高圧設備が必要であり、莫大な設備コストを要し、作業効率も悪く、工業化するのは困難である。また前者の方法では、シート状の成形体に直接含浸させるため、二酸化炭素を成形体に完全に含浸させるには長時間を要し、後者の方法では、溶融樹脂中に含浸させるために、前者の方法よりは二酸化炭素の浸透速度は速いが、押出機1台の混練だけでは、二酸化炭素の相溶化を行う事ことは困難であった。
【0008】
本発明者らは、特願平9−185268号明細書において、超臨界状態の二酸化炭素および/または窒素を発泡剤として使用する、熱可塑性樹脂発泡体の発泡押出成形による製造方法を提案した。
【0009】
該発明では、連続可塑化装置内で樹脂組成物の溶融物中に発泡剤を混合する方法として気体状態の二酸化炭素および/または窒素を気体で加圧状態で注入する方法、液体状態の二酸化炭素および/または窒素をプランジャーポンプで注入する方法が例示されている。この方法では、米国特許5158986号公報記載の方法では実質的に工業生産に適用できない、超臨界状態の二酸化炭素の押出機内への添加を、簡単な工程および設備で実施することが可能である。
しかしながら本発明者らのさらなる研究により、昇圧ポンプ周辺の温度や、昇圧ポンプに注入される二酸化炭素の温度により、昇圧ポンプから吐出される二酸化炭素の量、圧力が変動する場合のあることが明らかとなってきた。また当該発明には、発泡倍率10倍を越えた発泡体の製造は開示されていない。
【0010】
この他に臨界圧力以上で発泡剤を添加する方法として、特開平1−222922号明細書には、不活性ガスの圧力を減圧弁を介して添加部溶融樹脂圧力以上、9.8MPa以下の範囲に調整した後、押出機内に注入し、熱可塑性樹脂発泡体を得る製造方法が提案されている。しかしながら、該方法も9.8MPa以上の樹脂圧力の場合、発泡剤を添加することができない。よって、添加部溶融樹脂圧力を9.8MPa以下に制御しなければならないため、使用材料、成形機、および成形条件に大きな制約を受け、該方法で得られる発泡製品はかなり限定されたものとなる。
更に二酸化炭素を発泡剤として用いた場合、9.8MPa以下での成形機への添加では、添加量に限界があり、高発泡倍率の製品は得られない。また、溶融樹脂中への二酸化炭素の溶解性が悪く、溶解するまで多くの時間を要し、得られる発泡体は、気泡径が大きく、不均一で、気泡密度が小さい。
【0011】
また特公平6−41161号明細書には、加圧した二酸化炭素を臨界温度以上に維持してタンクに溜めた後、減圧して9.8MPa以上の圧力で流量制御しながら押出機内に注入し、熱可塑性樹脂発泡体を得る製造方法が提案されている。
しかしながら、該方法についても、二酸化炭素添加量に限界があり、二酸化炭素添加量が2重量%を越えると、系内に安定添加できなくなる旨の記載がある。
そのため、高発泡倍率の製品を得ようとすると、製品に発泡むらを生じ、品質の一定な発泡体を得ることが困難であった。また、設備が大規模で複雑なため、膨大なコストと設置場所を要する。更に二酸化炭素の流量制御が難しいといった問題があった。
このように、これまで発泡剤として二酸化炭素を用いた場合、所定量を成形機内の溶融した熱可塑性樹脂へ安定的に添加することが難しく、そのため品質の一定な発泡体を得ること、とりわけ高発泡倍率の発泡体を品質一定で製造することは困難であった。
【0012】
【発明が解決しようとする課題】
本発明は、発泡剤として二酸化炭素を用い、均一気泡で発泡ムラのない熱可塑性樹脂発泡体を製造するため、発泡剤である二酸化炭素の所定量を安定的に成形機内の溶融した熱可塑性樹脂に添加する方法と、当該添加方法を用いた熱可塑性樹脂発泡体の製造方法を提供するためになされたものである。
【0013】
【課題を解決するための手段】
本発明者らは、発泡剤として二酸化炭素を用い、品質一定の熱可塑性樹脂発泡体を得るため、所定量の二酸化炭素を成形機内の溶融した熱可塑性樹脂へ安定的に添加し得る方法について鋭意研究を重ねた結果、二酸化炭素を定量ポンプで二酸化炭素の臨界圧力以上に昇圧して、定量的に成形機(4)内へ送るため、二酸化炭素を液体状態に維持したまま定量ポンプに注入する必要があることを見いだし、本発明に至った。
【0014】
すなわち本発明は、以下の発明及び実施態様を包含する。
(A) 液化二酸化炭素ボンベ(1)から二酸化炭素を液体状態に維持したまま定量ポンプ(2)に注入し、二酸化炭素を定量ポンプ(2)で昇圧して吐出する際に、該定量ポンプ入り口側の温度を制御し、且つ出口側の該二酸化炭素の吐出圧力を保圧弁(3)の圧力設定により、該二酸化炭素の臨界圧力(7.4MPa)〜40MPaの範囲の任意の圧力に制御して、吐出量が変動することなく吐出した後、二酸化炭素の臨界温度(31℃)以上に昇温して超臨界二酸化炭素としてから、溶融した熱可塑性樹脂に添加することを特徴とする、超臨界二酸化炭素の添加方法。
【0015】
(B) 超臨界状態の二酸化炭素を、溶融した熱可塑性樹脂に添加する際に、成形機(4)の二酸化炭素添加部の溶融樹脂圧力があらかじめ二酸化炭素の臨界圧力(7.4MPa)以上であることを特徴とする、(A)記載の超臨界二酸化炭素の添加方法。
【0016】
(C) 液化二酸化炭素ボンベ(1)から定量ポンプ(2)に注入される液化二酸化炭素が、定量ポンプ(2)の入口側の温度が−30〜15℃の範囲内で一定温度となるよう制御することを特徴とする、(A)または(B)のいずれか1項に記載の超臨界二酸化炭素の添加方法。
【0017】
(D) 液化二酸化炭素ボンベ(1)から定量ポンプ(2)までの流路を冷媒温度が−60〜0℃の範囲内で一定温度とした冷媒循環機で冷却することを特徴とする(A)〜(C)のいずれか1項に記載の超臨界二酸化炭素の添加方法。
【0018】
(E) 定量ポンプ(2)の容積効率を60〜95%の範囲内で一定容積効率となるよう制御することを特徴とする(A)〜(D)のいずれか1項に記載の超臨界二酸化炭素の添加方法。
【0019】
(F) 液化二酸化炭素ボンベ(1)がサイホン式のボンベであることを特徴とする(A)〜(E)のいずれか1項に記載の超臨界二酸化炭素の添加方法。
【0020】
(G) (i)溶融した熱可塑性樹脂に発泡剤を添加するラインを有する連続可塑化装置内で、熱可塑性樹脂の融点あるいは可塑化温度以上の温度で、熱可塑性樹脂を溶融し、二酸化炭素を熱可塑性樹脂100重量部当たり0.1〜30重量部添加し、前記熱可塑性樹脂と二酸化炭素の相溶状態の溶融熱可塑性樹脂組成物を形成するガス溶解工程、
(ii)前記二酸化炭素の臨界圧力以上の圧力を維持したまま該溶融熱可塑性樹脂組成物を、連続可塑化装置の先端部で該溶融熱可塑性樹脂組成物の可塑化温度以上で、該溶融熱可塑性樹脂組成物の可塑化温度より50℃高い温度以下の温度で、かつ前記ガス溶解工程における溶融温度以下の温度に下げる冷却工程、
(iii)連続可塑化装置先端部に接続した該溶融熱可塑性樹脂組成物の最適発泡温度に設定したダイスから該溶融熱可塑性樹脂組成物を吐出することで、圧力を二酸化炭素の前記臨界圧力以下の圧力に低下することによりセル核を発生させる核生成工程と、
(iv)押出された熱可塑性樹脂発泡体を、速やかに熱可塑性樹脂の結晶化温度またはガラス転移温度以下に冷却する発泡制御工程からなる、熱可塑性樹脂発泡体の製造方法において、
(i)のガス溶解工程における二酸化炭素の添加方法が、(A)記載の二酸化炭素の添加方法であることを特徴とする、熱可塑性樹脂発泡体の製造方法。
【0021】
(H) (i)溶融した熱可塑性樹脂に発泡剤を添加するラインを有する樹脂可塑化シリンダー(23)内で、熱可塑性樹脂の融点あるいは可塑化温度以上の温度で熱可塑性樹脂100重量部を溶融し、二酸化炭素を熱可塑性樹脂100重量部当たり0.1〜30重量部添加し、熱可塑性樹脂と二酸化炭素の相溶状態の溶融熱可塑性樹脂組成物を形成するガス溶解工程、
(ii)樹脂可塑化シリンダー(23)内で、該溶融熱可塑性樹脂組成物を該溶融熱可塑性樹脂組成物の可塑化温度以上で、該溶融熱可塑性樹脂組成物の可塑化温度より50℃高い温度以下の温度で、かつ前記ガス溶解工程における溶融温度以下の温度に下げる冷却工程、
(iii)射出装置(29)により、冷却した該溶融熱可塑性樹脂組成物を計量し、金型(30)内に充填する計量射出工程、及び、
(iv)金型(30)内の圧力を低下することにより、セル核を発生させ、発泡倍率を制御する発泡制御工程からなる、熱可塑性樹脂発泡体の製造方法において、(i)のガス溶解工程における二酸化炭素の添加方法が、(A)記載の二酸化炭素の添加方法であることを特徴とする、熱可塑性樹脂発泡体の製造方法。
【0022】
(I) 発泡制御工程を、溶融熱可塑性樹脂組成物を射出したのちに金型(30)内に充填した高圧ガスの脱ガスおよび/または金型(30)のコアの少なくとも一部の後退で行う(H)記載の熱可塑性樹脂発泡体の製造方法。
【0023】
(J) 超臨界状態の二酸化炭素を、溶融した熱可塑性樹脂に添加する際に、成形機(4)の二酸化炭素添加部の溶融樹脂圧力があらかじめ二酸化炭素の臨界圧力(7.4MPa)以上であることを特徴とする、(G)〜(I)のいずれか1項に記載の熱可塑性樹脂発泡体の製造方法。
【0024】
(K) 液化二酸化炭素ボンベ(1)から定量ポンプ(2)に注入される液化二酸化炭素が、定量ポンプ(2)の入口で−30〜15℃の範囲内で一定温度となるよう制御することを特徴とする、(G)〜(J)のいずれか1項に記載の熱可塑性樹脂発泡体の製造方法。
【0025】
(L) 液化二酸化炭素ボンベ(1)から定量ポンプ(2)までの流路を冷媒温度が−60〜0℃の範囲内で一定温度とした冷媒循環機で冷却することを特徴とする、(G)〜(K)のいずれか1項に記載の熱可塑性樹脂発泡体の製造方法。
【0026】
(M) 定量ポンプ(2)の容積効率を60〜95%の範囲内で一定容積効率となるよう制御することを特徴とする、(G)〜(L)のいずれか1項に記載の熱可塑性樹脂発泡体の製造方法。
【0027】
(N) 液化二酸化炭素ボンベ(1)がサイホン式のボンベであることを特徴とする、(G)〜(M)のいずれか1項に記載の熱可塑性樹脂発泡体の製造方法。
【0028】
(O) 前記溶融熱可塑性樹脂組成物が、さらに無機微粉末、脂肪族カルボン酸およびその誘導体あるいは化学発泡剤からなる群より選ばれる、少なくとも1種の添加剤を含むことを特徴とする、(G)〜(N)のいずれか1項に記載の熱可塑性樹脂発泡体の製造方法。
【0029】
(P) 無機微粉末がタルクであることを特徴とする、(O)記載の熱可塑性樹脂発泡体の製造方法。
【0030】
(Q) 脂肪族カルボン酸誘導体がステアリン酸亜鉛であることを特徴とする、(O)記載の熱可塑性樹脂発泡体の製造方法。
【0031】
(R) 熱分解により二酸化炭素および/または窒素を含む気体を発生する化学発泡剤が、重曹および/またはクエン酸であることを特徴とする、(O)記載の熱可塑性樹脂発泡体の製造方法。
【0032】
(S) 発泡倍率が5〜100倍である、請求項(G)〜(R)のいずれか1項に記載の製造方法により製造される、熱可塑性樹脂発泡体。
【0033】
【発明の実施の形態】
発明者らは、上記目的の達成のため検討を行なった。本発明のために設計された装置および方法について図1を用いて説明する。
なお本発明の明細書中において、ポンプの容積効率とは、下記の式1によって算出したものである。
【0034】
【数1】
η=Q/Qth×100(%) (式1)
ここで、η、Q、およびQthは、下記の通りである。
ηは、容積効率(%)
Qは、実際にポンプが吐出した量(l/min)
Qthは、理論吐出量(l/min)
理論吐出量Qthは、下記の式2によって算出したものである。
【0035】
【数2】
Qth=(πD2LN/4)×10−6 (式2)
ここで、D、L、およびNは、下記の通りである。
Dは、ポンププランジャー径またはポンプピストン径(mm)
Lは、ポンプストローク長(mm)
Nは、ポンプ回転数(rpm)
【0036】
液化二酸化炭素ボンベ(1)より、二酸化炭素を液体の状態で定量ポンプ(2)に注入する。ここで二酸化炭素を液体の状態で、確実にポンプに注入するためには、サイホン式の液化二酸化炭素ボンベ(1)を使用するのが好ましい。これはボンベ内の二酸化炭素の液相部分から直接取り出せるようにするためである。更に液化二酸化炭素ボンベ(1)から定量ポンプ(2)までの流路距離をできるだけ短くし、冷媒循環機(5)にて該流路を二重管等で冷却する。この時の冷媒として、エチレングリコール水溶液やメタノール水溶液を使用するのが好ましい。冷媒循環機(5)の温度は、−60℃〜0℃に設定するのが好ましい。ここで、0℃以上とすると、液状二酸化炭素が気化し易い状態となり、容積効率が低くなる上に安定せず、定量添加できなくなる。また、−60℃以下とすると、液状二酸化炭素が固化し易い状態となり、容積効率が安定せず、定量添加できなくなる。
また、チェック弁を含めた定量ポンプ(2)本体にも熱交換が極力ないよう、保温材等を施し、温度一定にすることが好ましい。
また更に、ボンベ圧力を一定に保つために、15〜30℃の範囲内に一定温度に維持した場所に液化二酸化炭素ボンベ(1)を設置することが好ましい。
【0037】
液体状態を維持した二酸化炭素は、定量ポンプ(2)により注入昇圧する際に、二酸化炭素の圧力を保圧弁(3)の圧力設定により、該二酸化炭素の臨界圧力(7.4MPa)〜40MPaの範囲の任意の一定圧力に制御して、吐出量が変動することなく吐出する。ここで、二酸化炭素の臨界圧力(7.4MPa)以下とすると、相変化が生じるため、容積効率が安定せず、定量添加できなくなる。また、40MPa以上にすると、容積効率が低くなる上に安定せず、定量添加できなくなる。
【0038】
従来、二酸化炭素を定量ポンプ(2)で添加する場合、キャビテーションを起こしてしまい、定量的に添加するのは困難とされてきた。そこで本発明者らは、鋭意研究を重ね、保圧弁(3)を設け、圧力設定することにより定量的な添加が可能となることを見出した。さらには、定量ポンプ(2)入口側の温度、および定量ポンプ(2)出口側の吐出圧力を上述の条件範囲内で一定に制御することで、定量ポンプ(2)の容積効率が60%〜95%の範囲内で一定に制御できることを見いだした。通常、定量ポンプは、容積効率が95%以上で制御するのが一般的であるが、二酸化炭素を95%以上の容積効率で添加することは、非常に困難とされている。本発明では、容積効率が60%〜95%の範囲で一定に制御し、吐出量を安定させる方法を見いだしたのである。
【0039】
使用する定量ポンプ(2)としては、液漏れを防止するために、高耐圧プランジャーシールを施し、正確に流出方向を制御するために、ダブルボールチェック弁を使用しているプランジャーポンプが好ましい。
また、定量ポンプ(2)から保圧弁(3)の流路間温度を一定に保つため、保温材等を施すことが好ましい。
【0040】
次に、定量的かつ安定的に吐出された二酸化炭素を成形機(4)内の溶融した熱可塑性樹脂に添加するまでの流路間でヒーター等により臨界温度(31℃)以上に昇温する。更に成形機(4)の添加部溶融樹脂圧力をあらかじめ二酸化炭素の臨界圧力(7.4MPa)以上に昇圧しておく。このように保圧弁(3)から成形機(4)までの流路間で臨界温度以上、臨界圧力以上の二酸化炭素、つまり超臨界二酸化炭素の状態としてから、成形機(4)内の溶融した熱可塑性樹脂に添加する。従来のように、二酸化炭素を気体状態や液体状態で溶融した熱可塑性樹脂中に添加する方法と比べて、本発明の方法のように、超臨界状態とすることで、二酸化炭素の樹脂中への溶解性が飛躍的に向上するため、気泡径が均一な発泡体を安定的に生産でき、また定量的に多量の二酸化炭素を添加することが容易であるため、高い発泡倍率を有する発泡体をも安定的かつ容易に生産できる。
【0041】
二酸化炭素の添加量の確認は、流量計(7)やボンベ重量減少速度の測定等で行うが、好ましくは、流量計(7)で行う。流量計(7)としては、高精度で、流体の温度、圧力、粘度、密度等に影響を受けない直接質量流量計を使用するのが好ましい。設置場所としては、成形機直前が最も好ましいが、定量ポンプ(2)の入口側や出口側など、特に限定されない。
また、流量計(7)が感知した二酸化炭素流量を定量ポンプ(2)へフィードバックし、所定流量の制御を行う方法は、発泡体を安定生産する上でより好ましい。
【0042】
本発明の方法により,所定量の二酸化炭素を成形機(4)内の溶融した熱可塑性樹脂へ定量的かつ安定的に添加でき、その結果、品質一定の熱可塑性樹脂発泡体の製造が可能になる。
なお本明細書において、熱可塑性樹脂には、熱可塑性樹脂に必要に応じて添加する熱分解型発泡剤、脂肪族カルボン酸およびその誘導体、無機微粉末等を添加した、熱可塑性樹脂組成物も包含される。また溶融熱可塑性樹脂組成物とは、発泡剤である二酸化炭素と溶融状態にある前記熱可塑性樹脂とが、均一に混合した状態を意味する。
また定量ポンプとは、ポンプの吐出能力の範囲内で任意に設定した二酸化炭素添加量で、連続して安定に溶融した熱可塑性樹脂に添加することができるポンプを意味する。
【0043】
本発明の実施態様を図により以下に説明する。図1〜2において、(1)は液化二酸化炭素ボンベ、(2)は定量ポンプ、(3)は保圧弁、(4)は成形機、(5)は冷媒循環器、(6)はヒーター、(7)は流量計、(8)はホッパー、(9)は第1押出機、(10)はスクリュウ、(11)は連結部、(12)は第2押出機、(13)はダイス、(14)はマンドレルである。
【0044】
本発明における、超臨界二酸化炭素の添加方法が適用可能な樹脂加工成形機については、特に制限はなく、押出成形、射出成形、ブロー成形、押出ブロー成形、射出ブロー成形、インフレーション成形、スタンピングモールド成形、圧縮成形、ビーズ成形、RIM成形等、公知の樹脂加工方法に使用される成形機を適用することができ、本明細書中に記載の連続可塑化装置、樹脂可塑化シリンダーはこれらの成形機に含まれる。また、オートクレーブ内の熱可塑性樹脂中に二酸化炭素を含浸させた後、発泡体を得る方法についても本発明の超臨界二酸化炭素の添加方法を使用できる。
【0045】
また本発明の超臨界二酸化炭素の添加方法あるいは熱可塑性樹脂発泡体の製造方法は、製造されうる製品形状においても特に限定されるものではない。例えば押出成形において得られる熱可塑性樹脂発泡体の製品形状についてもシート状、板状、角材状、パイプ状、チューブ状、円柱状、楕円状、ストランド状、フィラメント状、ネット状、異形押出、多層押出、電線被覆等、特に限定されない。
【0046】
本発明の超臨界二酸化炭素の添加方法を用いた押出成形による熱可塑性樹脂発泡体の製造方法について図2を用いて説明する。
【0047】
連続可塑化装置の入り口側を構成する、溶融した熱可塑性樹脂に発泡剤を添加するラインを有する第1押出機(9)に熱可塑性樹脂を装入し、加熱溶融しながら超臨界状態の二酸化炭素を添加し、熱可塑性樹脂と発泡剤の相溶状態の溶融熱可塑性樹脂組成物を形成する。
この時前述の超臨界状態の二酸化炭素の添加方法により、超臨界状態の二酸化炭素を定量的に添加する。この時の溶融樹脂圧力は、二酸化炭素の臨界圧力(7.4MPa)〜40MPaの範囲であることが好ましい。
この後該溶融熱可塑性樹脂組成物は、連続可塑化装置の出口側を構成する第2押出機(12)へと移送され発泡に最適な温度条件まで徐々に温度を下げていく。このとき第2押出機(12)先端部までの圧力及び温度条件が、二酸化炭素の臨界圧力以上および臨界温度以上の超臨界状態である必要がある。
好ましくは第1押出機(9)と第2押出機(12)との連結部(11)に、混合部を有するアダプターを設けられる。これによって溶融した熱可塑性樹脂と二酸化炭素の混合をさらに進行させ、熱可塑性樹脂と二酸化炭素の相溶状態の形成が容易になること、および該アダプターで温度制御することにより溶融熱可塑性樹脂組成物を、この後の発泡に適した粘度になるよう冷却することが容易となる。
【0048】
この混合部を有するアダプターの種類は特に制限は無いが、溶融熱可塑性樹脂組成物の混練および冷却を行うことができるスタティックミキサーを内蔵するアダプターが好適に用いられる。
しかしながら第1押出機(9)内において、充分に該溶融熱可塑性樹脂組成物の相溶状態が形成でき、最適発泡温度まで冷却が可能であれば、連続可塑化装置を第2押出機(12)を用いるタンデム型発泡押出機とする必要はなく、1台の押出機のみでも良い。
【0049】
次に該溶融熱可塑性樹脂組成物を最適発泡温度に設定した連続可塑化装置先端部に接続したダイス(13)へと移送し、圧力を低下させて発泡を開始させる。
【0050】
本発明に用いられる熱可塑性樹脂としては、成形機(4)内で可塑化できる熱可塑性樹脂であれば特に制限無く使用でき、例えばスチレン系樹脂、(例えば、ポリスチレン、ブタジエン・スチレン共重合体、アクリロニトリル・スチレン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体等)、ABS樹脂、ポリエチレン、ポリプロピレン、エチレン−プロピレン樹脂、エチレン−エチルアクリレート樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリブテン、ポリカーボネート、ポリアセタール、ポリフェニレンオキシド、ポリビニルアルコール、ポリメチルメタクリレート、飽和ポリエステル樹脂(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、生分解性ポリエステル樹脂(例えば、ポリ乳酸のようなヒドロキシカルボン酸縮合物、ポリブチレンサクシネートのようなジオールとジカルボン酸の縮合物等)ポリアミド樹脂、ポリイミド樹脂、フッ素樹脂、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、ポリエーテルエーテルケトン、液晶ポリマー等の1種または2種以上の混合物が挙げられる。これらの熱可塑性樹脂中では、スチレン系樹脂、ポリオレフィン系樹脂が好ましく、特にポリスチレン、ポリプロピレン、ポリエチレンが好ましい。
【0051】
それぞれの熱可塑性樹脂は、加工温度付近で測定するメルトフローインデックスが0.05〜60g/10分、好ましくは0.1〜40g/10分、さらに好ましくは0.2〜20g/10分の程度の範囲にあることが好ましい。この場合の測定条件、即ち、測定温度や荷重はASTMで規定された条件が目安となり、例えばポリプロピレンの場合は、温度230℃、荷重21.18N、ポリエチレンの場合は、温度190℃、荷重21.18Nであり、その他ASTM D1238に定められた測定条件に従って測定する。
【0052】
メルトフローインデックスが上記下限範囲付近以上では、溶融時の樹脂粘度が適当で、成形機(4)の負荷が過大とならず、加工が容易である。また上記上限範囲付近以下であれば、熱可塑性樹脂が発泡時のガス圧に耐える粘度を保持でき、破泡を生じないで良好な外観を維持することができる。この目安によって使用する熱可塑性樹脂のメルトフローインデックスは適宜選択することができる。
使用する熱可塑性樹脂のメルトフローインデックスの選択は目的によって当業者が適当に選択することができる。
【0053】
本発明に発泡剤として用いられる超臨界状態の二酸化炭素は、熱可塑性樹脂100重量部に対して、0.1〜30重量部、好ましくは0.2〜20重量部が使用される。
発泡剤が0.1重量部以下では十分な発泡倍率が得られず、また30重量部以上においては、添加した二酸化炭素の膨張力が大きいため、発泡体表面に水膨れ状の外観不良が生じたり、また所望の形状に賦形するには、冷却工程の時間を長くする必要があり、生産に要する時間が長くなるために生産効率が低下する。
これら二酸化炭素は、溶融した熱可塑性樹脂中への溶解性、浸透性、拡散性等の観点から、成形機内部で超臨界状態となっている必要がある。
【0054】
また本発明では、熱分解により二酸化炭素および/または窒素を発生する熱分解型発泡剤の1種またはそれ以上を発泡を均一にする発泡核剤として超臨界二酸化炭素と併用することも可能であり、熱分解型発泡剤としてアゾジカルボンアミド、N,N−ジニトロソペンタテトラミン、アゾビスイソブチロニトリル、クエン酸、重曹等が例示される。熱分解型発泡剤を使用する場合、その使用量は熱可塑性樹脂100重量部に対して0.01〜10重量部である。
【0055】
本発明に用いる熱可塑性樹脂に、得られる発泡体が破泡することなく、表面外観良好とするために、各種添加剤の1種又はそれ以上を添加することが可能であるが、これら添加剤としては通常の発泡成形で使用されている公知のものが使用できるが、例えば脂肪族カルボン酸およびその誘導体が好適に用いられる。
また脂肪族カルボン酸およびその誘導体としては、脂肪族カルボン酸、酸無水物、アルカリ金属塩、アルカリ土類金属塩等が挙げられる。脂肪族カルボン酸としては、炭素数3〜30の脂肪族カルボン酸が好適であり、例えばラウリン酸、ステアリン酸、クロトン酸、オレイン酸、マレイン酸、グルタル酸、モンタン酸等が好適であり、樹脂中への分散性、溶解性、表面外観改良の効果等の観点から、ステアリン酸、ステアリン酸誘導体、モンタン酸およびモンタン酸の誘導体が好ましく、さらにはステアリン酸のアルカリ金属塩およびアルカリ土類金属塩、なかでもステアリン酸亜鉛、ステアリン酸カルシウムが特に好ましい。
【0056】
これら添加剤の添加量は熱可塑性樹脂100重量部に対して0.01〜10重量部、好ましくは0.05〜8重量部、さらに好ましくは0.1〜5重量部の範囲にあることが好ましい。
添加剤の添加量が、0.01重量部以上では発泡体の破泡を防止することが容易であり、また10重量部以下では、樹脂が発泡時のガス圧に耐えるだけの粘度を保持でき、破泡を生じないで、表面外観を良好にすることができる。
【0057】
また本発明には熱可塑性樹脂の添加剤として、発泡核剤として作用する無機微粉末を使用することが可能だが、無機微粉末としては、タルク、炭酸カルシウム、クレー、酸化マグネシウム、酸化亜鉛、ガラスビーズ、ガラスパウダー、酸化チタン、カーボンブラック、無水シリカ等があげられ、好ましくはタルク、炭酸カルシウム、酸化チタン、無水シリカであり、特に好ましくはタルクであり、その粒径は50μm以下である必要があり、好ましくは10μm以下、さらに好ましくは5μm以下である。
【0058】
無機微粉末の粒径が50μm以下のものを使用すれば、発泡体の表面外観が良好となる。
無機微粉末を添加する場合の添加量は、熱可塑性樹脂100重量部に対して0.01〜40重量部、好ましくは0.05〜20重量部、さらに好ましくは0.05〜10重量部、より好ましくは0.1〜5重量部の範囲にあることが好ましい。
無機微粉末の添加量が0.01部以上、また40重量部以下では、発泡体の表面外観が良好であるため好ましい。
【0059】
熱可塑性樹脂に必要に応じて熱分解型発泡剤、脂肪族カルボン酸およびその誘導体、無機微粉末等を添加した、上記熱可塑性樹脂組成物には、本発明の特性を損なわない範囲において、例示した無機微粉末、脂肪族カルボン酸およびその誘導体以外に、各種エラストマー、スチレン系樹脂、(例えば、ポリスチレン、ブタジエン・スチレン共重合体、アクリロニトリル・スチレン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体等)、ABS樹脂、ポリエチレン、ポリプロピレン、エチレン−プロピレン樹脂、エチレン−エチルアクリレート樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリブテン、ポリカーボネート、ポリアセタール、ポリフェニレンオキシド、ポリビニルアルコール、ポリメチルメタクリレート、飽和ポリエステル樹脂(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、生分解性ポリエステル樹脂(例えば、ポリ乳酸のようなヒドロキシカルボン酸縮合物、ポリブチレンサクシネートのようなジオールとジカルボン酸の縮合物等)、ポリアミド樹脂、ポリイミド樹脂、フッ素樹脂、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、ポリエーテルエーテルケトン、液晶ポリマー等の1種または2種以上の混合物等の樹脂、過酸化物、硫黄、プロセスオイル、付着防止剤、可塑剤、顔料、安定剤、充填剤、金属粉等を目的、用途に応じ適宜使用することが可能である。
【0060】
本発明の熱可塑性樹脂発泡体の原料となる熱可塑性樹脂組成物の製造方法については特に制限はなく、通常公知の方法を採用することができる。例えば、熱可塑性樹脂と、前記添加剤等を高速攪拌機等で均一混合した後、十分な混練能力のある一軸あるいは多軸の押出機、混合ロール、ニーダー、ブラベンダー等で溶融混練する方法等で製造できる。
また熱可塑性樹脂と必要により前記添加剤等を均一混合した状態で使用することも差し支えない。
【0061】
本発明の押出成形による熱可塑性樹脂発泡体の製造方法における、熱可塑性樹脂および超臨界二酸化炭素の相溶状態を形成するガス溶解工程とは、連続可塑化装置の入り口側を構成する第1押出機(9)内で熱可塑性樹脂を加熱溶融したのち、該溶融した熱可塑性樹脂中に前述の超臨界二酸化炭素の添加方法により、超臨界状態の二酸化炭素を添加し、均一に混合する工程である。
【0062】
冷却工程とは、連続可塑化装置の出口側にて、溶融熱可塑性樹脂組成物を冷却し、発泡に適した粘度になる様調整する工程である。
核生成工程とは、該溶融熱可塑性樹脂組成物をダイス(13)において、圧力を二酸化炭素の臨界圧力以下の圧力に圧力低下することで、二酸化炭素を過飽和状態にし、過飽和状態になった該溶融熱可塑性樹脂組成物に多数のセル核を発生させる工程である。
【0063】
発泡制御工程とは発泡シート(15)を速やかに、樹脂のガラス転移温度あるいは結晶化温度以下に冷却して、発生したセルの成長を制御し、所望の発泡倍率に制御する工程である。
【0064】
これらのうち少なくともガス溶解工程及び冷却工程は、特開平8−11190号公報記載の特許請求の範囲及び各実施例に記載の方法に準じ、以下の様に行う。
熱可塑性樹脂を、ホッパー(8)より連続可塑化装置の入り口側を構成する第1押出機(9)内に添加し、熱可塑性樹脂の融点あるいは可塑化温度以上の温度で溶融する。この時の温度としては、100〜450℃で加熱溶融させる。また、二酸化炭素は、液化二酸化炭素ボンベ(1)より定量ポンプ(2)に注入され、そこで昇圧され、圧力制御された二酸化炭素を第1押出機(9)内の溶融した熱可塑性樹脂に添加する。
このとき、第1押出機(9)内に存在する二酸化炭素が、溶融した熱可塑性樹脂に対する溶解拡散を大幅に高め、短時間で熱可塑性樹脂中に浸透することを可能とするため、系内を該二酸化炭素の臨界圧力以上および臨界温度以上に維持する。
【0065】
また、第1押出機(9)内に添加される二酸化炭素は、第1押出機(9)内に添加される以前に昇温昇圧され、超臨界状態となってから添加される。
第1押出機(9)内で溶融した熱可塑性樹脂と二酸化炭素とがスクリュウ(10)により混練され、熱可塑性樹脂と二酸化炭素の相溶状態を形成させる。
相溶後冷却工程において、連続可塑化装置の出口側を構成する第2押出機(12)先端の温度制御で、溶融熱可塑性樹脂組成物を、該溶融熱可塑性樹脂組成物の可塑化温度以上で、該溶融熱可塑性樹脂組成物の可塑化温度より50℃高い温度以下の温度で、かつ前記ガス溶解工程における溶融温度以下の温度に冷却する。この時の温度としては、50〜300℃好ましくは80〜280℃で且つ溶融熱可塑性樹脂組成物の可塑化温度以上に冷却し、この後の発泡に適した粘度になるよう調整する。
【0066】
本発明の実施態様を図により以下に説明する。図1〜2において、(1)は液化二酸化炭素ボンベ、(2)は定量ポンプ、(8)はホッパー、(9)は第1押出機、(10)はスクリュウ、(11)は連結部、(12)は第2押出機、(13)はダイス、(14)はマンドレル、(15)は発泡シートである。
【0067】
図2において、ガス溶解工程において、熱可塑性樹脂100重量部を、ホッパー(8)より連続可塑化装置の入り口側を構成する第1押出機(9)内に添加し、加熱溶融させる。また、二酸化炭素は、液化二酸化炭素ボンベ(1)より温度制御されて定量ポンプ(2)に注入され、そこで昇圧され、保圧弁(3)の設定圧力に圧力制御された二酸化炭素0.1〜30重量部が第1押出機(9)内の溶融熱可塑性樹脂組成物中に添加され、ガス溶解工程を行う。このとき、第1押出機(9)内に存在する二酸化炭素が、溶融した熱可塑性樹脂に対する溶解拡散を大幅に高め、短時間で熱可塑性樹脂中に浸透することを可能とするため、系内は該二酸化炭素の臨界圧力以上および臨界温度以上に維持されている必要がある。
【0068】
二酸化炭素の場合、臨界圧力は7.4MPa、臨界温度は31℃であり、第1押出機(9)内は、圧力が7.4〜40MPa、好ましくは10〜30MPaの範囲、温度は100〜450℃、好ましくは110〜280℃の範囲が好ましい。 また、第1押出機(9)内で溶融した熱可塑性樹脂に添加される二酸化炭素は、添加される以前に昇温昇圧され、超臨界状態となってから添加される。
【0069】
第1押出機(9)内で溶融した熱可塑性樹脂と超臨界二酸化炭素とがスクリュウ(10)により混練され、熱可塑性樹脂と超臨界二酸化炭素の相溶状態を形成させる。
相溶後冷却工程において、熱可塑性樹脂に対する二酸化炭素の溶解性を高めるため、溶融熱可塑性樹脂組成物を連続可塑化装置の出口側を構成する第2押出機(12)へと送入し、臨界圧力以上を維持したまま発泡に適した温度まで下げていく。
このときの温度は、50〜300℃、好ましくは80〜280℃で且つ溶融熱可塑性樹脂組成物の可塑化温度以上の温度を保って冷却し、この後の発泡に適した粘度になる様に温度を調整する。
【0070】
この第2押出機(12)を用いた冷却工程は、発泡に適した温度条件に無理なく近づけるための工程である。この工程で十分に冷却することにより、連続的かつ安定的な、熱可塑性樹脂発泡体の製造が可能となる。ただし連続可塑化装置として第1押出機(9)だけで該溶融熱可塑性樹脂組成物を発泡に適した温度まで十分に冷却可能な装置を使用する場合は、連続可塑化装置の出口側として第2押出機(12)を連結する必要はなく、単一の押出機で発泡体を製造することも可能である。
【0071】
また該溶融熱可塑性樹脂組成物の二酸化炭素の溶解状態を向上させるために、第1押出機(9)と第2押出機(12)の連結部(11)にスタティックミキサー等の混練部を接続しておくとより好ましい。
【0072】
次に溶融熱可塑性樹脂組成物を最適発泡温度に設定した連続可塑化装置の出口側に接続したダイス(13)へと移送し、発泡を開始させる。ダイス出口で制御された条件で圧力低下させて二酸化炭素を過飽和状態にする。
過飽和状態になった溶融熱可塑性樹脂組成物は、熱的不安定状態になり多数のセルを発生する。一般的にガスが含まれている樹脂のガラス転移温度は、ガスの含浸量に比例して低下することが知られているが、ダイス(13)内の温度は、ガスが含浸した樹脂のガラス転移温度以上であることが好ましい。
発泡を開始した該溶融熱可塑性樹脂組成物は、ダイス(13)出口より押し出される。
【0073】
次に発泡制御工程として冷却装置(14)を通して、この発泡シート(15)を速やかに熱可塑性樹脂のガラス転移温度あるいは結晶化温度以下に冷却して、発生したセルの成長を制御し、微細で多数のセルを均一に有する熱可塑性樹脂発泡体を吐出ムラ無く安定的に製造する。例えば、サーキュラーダイス(13)から押し出された溶融熱可塑性樹脂組成物は、吐出と同時に発泡を開始するが、サーキュラーダイス(13)の先に設置された円筒状水冷式マンドレル(14)に被せることで、円筒状に賦形された発泡体は、該マンドレル(14)に沿って冷却されながら進行した後、カッター刃によって切断され、発泡熱可塑性樹脂シートを得る。
【0074】
本発明においては、ガス溶解工程、冷却工程が終了するまでは、常に発泡剤の臨界圧力以上の圧力を維持し、溶融熱可塑性樹脂組成物が熱可塑性樹脂とガスに分離してしまうことのないようにする必要がある。
この方法で得られる熱可塑性樹脂発泡体の製品形状は、シート状、丸棒状、板状、角材状、パイプ状等、特に限定されない。
【0075】
本発明の超臨界二酸化炭素の添加方法を用いた、射出成形による熱可塑性樹脂発泡体を製造する方法の一例について図3を用いて説明する。溶融した熱可塑性樹脂に発泡剤を添加するラインを有する樹脂可塑化シリンダー(23)に、開閉バルブ(27)を介して射出プランジャー(28)を有する射出装置(29)を接続する。この樹脂可塑化シリンダー(23)に熱可塑性樹脂を送入し、加熱溶融しながら前述の本発明の超臨界二酸化炭素の添加方法により超臨界二酸化炭素を添加し、相溶状態の溶融熱可塑性樹脂組成物を形成する。
【0076】
この後該溶融熱可塑性樹脂組成物は、射出プランジャー(28)を有する射出装置(29)へと送入される。送入された後、開閉バルブ(27)を閉じることで、樹脂可塑化シリンダー(23)と射出装置(29)は互いに独立した状態となる。樹脂可塑化シリンダー(23)は、射出装置(29)が計量射出工程を行っている間も停止することなく、連続的に溶融熱可塑性樹脂組成物を形成する。なお射出装置(29)に計量しないため、樹脂可塑化シリンダー(23)内の圧力は上昇するが、圧力の上昇によって溶融熱可塑性樹脂組成物の相溶状態が壊れることはないので、ガス溶解工程、冷却工程を継続することに問題はない。しかしながら樹脂可塑化シリンダー(23)の耐圧能力に問題が生じる場合には、開閉バルブ(27)の作動で溶融熱可塑性樹脂組成物を系外に排出できる装置としておくことも、本発明の主旨を逸脱しない。
【0077】
一方射出装置(29)は計量終了後射出を行うが、通常の射出成形機においては、計量終了後背圧が一旦切れてしまうが、本発明においては、計量開始から射出終了まで発泡剤と熱可塑性樹脂とが分離することのないように、常に背圧をかけた状態に維持する。この時の背圧は、発泡剤と熱可塑性樹脂が分離しない最低限の圧力であれば良いが、発泡剤の臨界圧力以上である必要がある。
この様にして、樹脂可塑化シリンダー(23)内で形成された溶融熱可塑性樹脂組成物は、発泡剤と熱可塑性樹脂が相分離することなく、金型(30)内へ射出される。
【0078】
金型(30)内では、溶融熱可塑性樹脂組成物を射出したのちに、金型(30)内に充填した高圧ガスの脱ガスおよび/または金型(30)コアの一部あるいは全部を後退することで発泡制御工程を行う。
【0079】
また本発明の実施態様の一つを図4に示す。溶融した熱可塑性樹脂に発泡剤を添加するラインを有する樹脂可塑化シリンダー(23)と、射出プランジャー(28)を有する射出装置(29)の間に、開閉バルブ(27)を介して射出装置(29)と接続される該樹脂可塑化シリンダー(23)の流出路に接続された、混合部を有するアダプター(24)を設けることは、溶融した熱可塑性樹脂と二酸化炭素の混合をさらに進行させ、熱可塑性樹脂と二酸化炭素の相溶状態の形成が容易になること、および該アダプター(24)の温度制御により溶融熱可塑性樹脂組成物を、この後の射出、発泡に適した粘度になるよう冷却することが容易となる。この混合部を有するアダプター(24)については特に制限は無いが、溶融熱可塑性樹脂組成物の混練および冷却を行うことからスタティックミキサーを内蔵するアダプターが好適に用いられる。
【0080】
また本発明の実施態様の一つを図5に示す。射出プランジャー(28)を有する射出装置(29)の前に、開閉バルブ(27)を介して射出装置(29)と接続される、プランジャーを有する樹脂アキュームレータ装置(26)を設けることで、計量終了後、該開閉バルブ(27)が閉に切り替わり、該射出プランジャー(28)によって、金型(30)内への射出を行う間、樹脂可塑化シリンダー(23)から送られてくる溶融熱可塑性樹脂組成物は、該開閉バルブ(27)直前に備えられている樹脂アキュームレータ装置(26)へと送られ、該溶融熱可塑性樹脂組成物の流入によって、樹脂アキュームレータ装置(26)のプランジャーが後退するという該樹脂アキュームレータ装置(26)の制御により、装置系内を所定圧力に維持しやすく、溶融熱可塑性樹脂組成物の相溶状態の維持が容易であり、発泡体の表面が良好になるため好ましい。
【0081】
また本発明の実施態様の一つを図6に示す。さらに同様にプランジャーを有する樹脂アキュームレータ装置(26)に代えてもう一台の射出プランジャー(28)を有する射出装置(29)を設けることも可能であり、装置系内を所定圧力に維持しやすく、溶融熱可塑性樹脂組成物の相溶状態の維持が容易であり、発泡体の表面外観が良好になるため好ましい。
【0082】
図3〜6に示した、樹脂可塑化シリンダーと射出装置が独立した射出成形機の場合には、熱可塑性樹脂と発泡剤が分離することのないよう、系内圧力を維持することが容易であるため、本発明が目的とする熱可塑性樹脂発泡体の製造が容易であるが、ガスを溶解し冷却しながら計量射出する間、常に背圧をかけることのできる射出成形機であれば、図7に示した様なインラインスクリュー型の射出成形機でも、本発明の熱可塑性樹脂発泡体を製造可能である。
【0083】
本発明における熱可塑性樹脂および超臨界二酸化炭素の相溶状態を形成するガス溶解工程とは、図3に示した熱可塑性樹脂発泡体の製造方法の例においては、樹脂可塑化シリンダー(23)内で熱可塑性樹脂を加熱溶融したのち、溶融した該熱可塑性樹脂中に前述の本発明の超臨界二酸化炭素の添加方法により、超臨界二酸化炭素を添加し、均一に混合する工程である。
【0084】
冷却工程とは、溶融熱可塑性樹脂組成物を冷却し、射出、発泡に適した粘度になる様調整する工程である。
該ガス溶解工程および冷却工程は、図4に示した熱可塑性樹脂発泡体の製造方法の例においては、樹脂可塑化シリンダー(23)およびアダプター(24)で行う。また図5に示した熱可塑性樹脂発泡体の製造方法の例においては、樹脂可塑化シリンダー(23)、アダプター(24)および樹脂アキュームレータ装置(26)で行う。
【0085】
計量射出工程とは、射出、発泡に適した粘度になる様、温度制御された溶融熱可塑性樹脂組成物を射出装置(29)に計量し、該射出プランジャー(28)で射出を行う工程であり、発泡制御工程とは、金型(30)内に射出された溶融熱可塑性樹脂組成物を加圧下より圧力低下させ、セル核を発生させかつ発泡倍率を制御する工程である。これらのうち少なくとも、ガス溶解工程および冷却工程は、特開平8−11190号公報記載の方法に準じ、以下の様に行う。(この工程については上記特開平8−11190号公報に記載されており、この内容を引用することによってここに明細書に組み込まれる。)
熱可塑性樹脂を、ホッパー(8)より樹脂可塑化シリンダー(23)内に送入し、熱可塑性樹脂の融点あるいは可塑化温度以上の温度で溶融する。この時の温度としては、100〜450℃で加熱溶融させる。また、二酸化炭素は、液化二酸化炭素ボンベ(1)より定量ポンプ(2)に注入され、そこで昇圧され、保圧弁(3)の設定圧力に圧力制御された二酸化炭素を樹脂可塑化シリンダー(23)内の溶融した熱可塑性樹脂中に添加する。このとき、樹脂可塑化シリンダー(23)内に存在する二酸化炭素が、溶融した該熱可塑性樹脂に対する溶解拡散を大幅に高め、短時間で溶融した熱可塑性樹脂中に浸透することを可能とするため、系内を該二酸化炭素の臨界圧力以上および臨界温度以上に維持する必要がある。
また、樹脂可塑化シリンダー(23)内の溶融した熱可塑性樹脂に添加される以前に昇温昇圧され、超臨界状態となってから添加される。
【0086】
樹脂可塑化シリンダー(23)内で溶融した熱可塑性樹脂と二酸化炭素とがスクリュウ(10)により混練され、熱可塑性樹脂と二酸化炭素の相溶状態を形成させる。相溶後冷却工程において、樹脂可塑化シリンダー(23)先端の温度制御で、溶融熱可塑性樹脂組成物を該溶融熱可塑性樹脂組成物の可塑化温度以上、該溶融熱可塑性樹脂組成物の可塑化温度より50℃高い温度以下でかつ前記ガス溶解工程における溶融温度以下の温度に冷却する。この時の温度としては、50〜300℃、好ましくは80〜280℃で且つ溶融熱可塑性樹脂組成物の可塑化温度以上に冷却し、この後の射出、発泡に適した粘度になるよう調整する。
【0087】
本発明の一例を図により説明する。図3〜6において、(1)は液化二酸化炭素ボンベ、(2)は定量ポンプ、(8)はホッパー、(10)はスクリュウ、(22)はインライン式射出成形機、(23)は樹脂可塑化シリンダー、(24)はアダプター、(25)は樹脂アキュームレータプランジャー、(26)は樹脂アキュームレータ装置、(27)は開閉バルブ、(28)は射出プランジャー、(29)は射出装置、(30)は金型、(31)はガスボンベ、(32)は圧力制御バルブ、(33)は開閉バルブである。
【0088】
図3において、ガス溶解工程において、熱可塑性樹脂100重量部を、ホッパー(8)より樹脂可塑化シリンダー(23)内に送入し、加熱溶融させる。また、二酸化炭素は、液化二酸化炭素ボンベ(1)より温度制御されて定量ポンプ(2)に注入され、そこで昇圧され、保圧弁(3)の設定圧力に圧力制御された超臨界二酸化炭素は、樹脂可塑化シリンダー(23)内の溶融した熱可塑性樹脂中に添加され、ガス溶解工程を行う。このとき、樹脂可塑化シリンダー(23)内に存在する二酸化炭素が、熱可塑性樹脂に対する溶解拡散を大幅に高め、短時間で熱可塑性樹脂中に浸透することを可能とするため、系内は該二酸化炭素の臨界圧力以上および臨界温度以上に維持されている必要がある。
【0089】
二酸化炭素の場合、臨界圧力は7.4MPa、臨界温度は31℃であり、樹脂可塑化シリンダー(23)内は、圧力が7.4〜40MPa、好ましくは10〜30MPaの範囲が、温度は100〜450℃、好ましくは110〜280℃の範囲が好ましい。
また、発泡剤である二酸化炭素は樹脂可塑化シリンダー(23)内の溶融した熱可塑性樹脂に添加される以前に昇温昇圧され、超臨界状態となってから添加される。
【0090】
樹脂可塑化シリンダー(23)内で溶融した熱可塑性樹脂と二酸化炭素とがスクリュウ(10)により混練され、熱可塑性樹脂と二酸化炭素の相溶状態を形成させる。相溶後冷却工程において、樹脂可塑化シリンダー(23)先端の温度制御で、溶融熱可塑性樹脂組成物を50〜300℃、好ましくは80〜280℃で且つ該溶融熱可塑性樹脂組成物の可塑化温度以上に冷却し、この後の射出、発泡に適した粘度になるよう調整する。
【0091】
射出、発泡に適した粘度になる様に温度制御された溶融熱可塑性樹脂組成物は、計量射出工程において、開閉バルブ(27)を介して接続された射出プランジャー(28)を有する射出装置(29)へと送られる。該開閉バルブ(27)が開にあるとき、溶融熱可塑性樹脂組成物の射出装置(29)内への流入で、該射出プランジャー(28)の後退によって計量される。
【0092】
インラインスクリュウ型、プランジャー型等いずれの形式の射出成形機も、通常の射出成形装置においては、計量終了後に直ちに背圧は停止するが、本発明では、この時該射出装置(29)内で、溶融熱可塑性樹脂組成物が、発泡剤と熱可塑性樹脂とに分離しないよう、また溶融熱可塑性樹脂組成物が発泡しないよう、射出終了後まで背圧をかけ系内圧力を制御し続ける必要がある。このときの背圧は、発泡剤と熱可塑性樹脂とに分離しないため、また溶融熱可塑性樹脂組成物が発泡しないための最低限の圧力を維持すれば良いが、二酸化炭素の臨界圧力以上である必要がある。ガス溶解工程、冷却工程および計量射出工程の一連の工程が終了するまでは、常に圧力を維持し、溶融熱可塑性樹脂組成物が熱可塑性樹脂とガスに分離してしまうことのないようにする必要がある。
【0093】
計量終了後、該開閉バルブ(27)が閉に切り替わり、該射出プランジャー(28)によって、金型(30)内への射出を行う。計量後射出を行う前に該射出プランジャー(28)をサックバックさせることで、射出装置(29)内の圧力をわずかに低下させることでセル核の生成を誘発する方法も好適に用いられる。
【0094】
射出される直前の金型(30)内には、ガスボンベ(31)あるいは昇圧ポンプより圧力制御バルブ(32)を介して注入される高圧ガスを所定の圧力で充填しておく。例えば、高圧ガスとして窒素を使用する場合、発泡剤として使用する二酸化炭素の臨界圧力以上の圧力であることが好ましい。
予め金型内に高圧ガスを充填しておくことで、金型内に射出された溶融熱可塑性樹脂組成物は発泡することなく金型内に充填され表面外観が良好となる。
【0095】
発泡制御工程において、該高圧ガスを充填させた金型(30)内に熱可塑性樹脂と二酸化炭素の相溶状態を形成した溶融熱可塑性樹脂組成物を射出する。 射出後、金型(30)内に充填した高圧ガスを急速に抜くことにより、金型(30)内に急激な圧力低下を生じさせる。該工程により、熱可塑性樹脂に含浸しているガスは、過飽和状態となり、多数のセル核が生じる。
また金型(30)内で急激な圧力低下を生じさせる方法として、金型(30)内に熱可塑性樹脂と二酸化炭素の相溶状態を形成した溶融熱可塑性樹脂組成物を射出したのち、コアの一部または全部を後退させ、金型(30)内の容量を急激に増し、金型(30)内に急激な圧力低下を生じさせる方法も好適に用いられる。
【0096】
発泡倍率は、金型(30)温度、金型(30)内圧力、または金型内のコア後退量により制御することが可能であり、所望の発泡倍率の熱可塑性樹脂発泡体を得る。
これら発泡を制御する方法はそれぞれ単独であっても十分な発泡制御効果が得られるが、2つの方法を併用することには何ら支障はない。
【0097】
図4に示すように、溶融した熱可塑性樹脂に発泡剤を添加するラインを有する樹脂可塑化シリンダー(23)と、射出プランジャー(28)を有する射出装置(29)の間に、開閉バルブ(27)を介して射出装置(29)と接続される該樹脂可塑化シリンダー(23)の流出路に接続された、混合部を有するアダプター(24)を設けることは、溶融した熱可塑性樹脂と二酸化炭素の混合をさらに進行させ、熱可塑性樹脂と二酸化炭素の相溶状態の形成が容易になること、および該アダプター(24)の温度制御により溶融熱可塑性樹脂組成物を、この後の射出、発泡に適した粘度になるよう冷却することが容易となり、ガス溶解工程および冷却工程が容易に行えることから好ましい。この混合部を有するアダプター(24)については特に制限は無いが、溶融熱可塑性樹脂組成物の混練および冷却を行うことからスタティックミキサーを内蔵するアダプターが好適に用いられる。
【0098】
また図5に示すように、射出プランジャー(28)を有する射出装置(29)の前に、開閉バルブ(27)を介して射出装置(29)と接続される、プランジャーを有する樹脂アキュームレータ装置(26)を設けることは、計量終了後、該開閉バルブ(27)が閉に切り替わり、該射出プランジャー(28)によって、金型(30)内への射出を行う間、樹脂可塑化シリンダー(23)から送られてくる溶融熱可塑性樹脂組成物は、該開閉バルブ(27)直前に備えられている樹脂アキュームレータ装置(26)へと送られ、該溶融熱可塑性樹脂組成物の流入によって、樹脂アキュームレータ装置(26)のプランジャーが後退するという該樹脂アキュームレータ装置(26)の制御により、装置系内を所定圧力に維持しやすく、溶融熱可塑性樹脂組成物の相溶状態の維持が容易であり、発泡体の表面外観が良好になるため好ましい。
【0099】
また図6に示すように、プランジャーを有する樹脂アキュームレータ装置(26)に代えてもう一台の射出プランジャー(28)を有する射出装置(29)を設けることも、装置系内を所定圧力に維持しやすく、溶融熱可塑性樹脂組成物の相溶状態の維持が容易であり、発泡体の表面外観が良好になるため好ましい。
【0100】
また図3〜6に示した樹脂可塑化シリンダーと射出装置が独立した射出成形機の場合には、熱可塑性樹脂と発泡剤が分離することのないよう、系内圧力を維持することが容易であるため、本発明が目的とする熱可塑性樹脂発泡体の製造が容易であるが、ガスを溶解し冷却しながら計量射出する間、常に背圧をかけることのできる射出成形機であれば、図7に示したインラインスクリュー型の射出成形機でも、本発明の熱可塑性樹脂発泡体を製造可能である。
【0101】
本発明の超臨界二酸化炭素の添加方法により、熱可塑性樹脂発泡体の製造において、液化二酸化炭素を液体の状態で定量ポンプ(2)に注入し、定量ポンプ(2)の容積効率を60%〜95%の範囲内で一定容積効率となるよう維持し、保圧弁(3)の設定で定量ポンプ(2)の吐出圧力を二酸化炭素の臨界圧力(7.4MPa)〜40MPaの範囲内で一定圧力となるよう制御し吐出した後、二酸化炭素の臨界温度(31℃)以上に昇温して超臨界二酸化炭素としてから成形機(4)内へ添加すること、さらには成形機(4)の二酸化炭素添加部の溶融樹脂圧力があらかじめ二酸化炭素の臨界圧力(7.4MPa)以上とすることで、所定量の二酸化炭素を成形機内へ安定的に添加し、均一気泡で発泡ムラのない熱可塑性樹脂発泡体を品質一定で成形することが可能になる。
【0102】
また本発明の押出成形による熱可塑性樹脂発泡体の製造方法では、発泡剤である超臨界二酸化炭素の所定量を定量的かつ安定的に溶融した熱可塑性樹脂に添加することが可能なため、連続可塑化装置の入り口側を構成する第1押出機(9)内の溶融した熱可塑性樹脂に添加し、十分に混練したのち、熱可塑性樹脂と二酸化炭素の相溶状態を形成し、連続可塑化装置の出口側において超臨界状態を維持したまま、溶融熱可塑性樹脂組成物の温度を下げ、制御しながら急激な圧力低下により発泡を開始し、冷却装置で発泡倍率を制御することにより、低発泡製品から高発泡製品の熱可塑性樹脂発泡体が品質一定で製造可能となる。
【0103】
さらに本発明の射出成形による熱可塑性樹脂発泡体の製造方法では、発泡剤である超臨界二酸化炭素の所定量を定量的かつ安定的に溶融した熱可塑性樹脂に添加することが可能なため、樹脂可塑化シリンダー(23)内の溶融した熱可塑性樹脂に二酸化炭素を添加し十分に混練したのち、射出装置(29)に計量し射出成形し、その間常に背圧をかけることから、相溶状態の溶融熱可塑性樹脂組成物の形成および該溶融熱可塑性樹脂組成物の相溶状態の維持が容易であるため、発泡体の表面外観が良好になり、低発泡製品から高発泡製品の熱可塑性樹脂発泡体が品質一定で製造可能となる。
【0104】
以下実施例にて本発明を説明するが、本発明の内容はこれに限定されるものではない。
図1は本発明の超臨界二酸化炭素の添加方法の一例を示す概略構成図である。
図2〜7は、本発明の熱可塑性樹脂発泡体の製造方法の一例を示す概略構成図である。
【0105】
図8は、比較例4の熱可塑性樹脂発泡体の製造方法を示す概略構成図である。
図9は、比較例5の熱可塑性樹脂発泡体の製造方法を示す概略構成図である。
図10は、比較例6の熱可塑性樹脂発泡体の製造方法を示す概略構成図である。
【0106】
【実施例】
なお、実施例および比較例に記した物性評価は次の方法にしたがって実施した。
1)表面外観
発泡体の表面が目視観察で一様で均一な場合を○、水膨れ状の膨れがある等、著しく不良の場合を×とした。
2)発泡倍率
寸法が30mm×30mmの熱可塑性樹脂発泡体の密度を電子密度計を用いて測定し、原料熱可塑性樹脂の密度に対する割合を算出し、小数点以下第2位を四捨五入した値を発泡倍率とした。
3)平均セル径
走査型電子顕微鏡により撮影した発泡体の断面写真を画像処理し、円相当径を算出し、その値を平均セル径とした。
4)加熱寸法変形
測定サンプルとして60mm×60mmの発泡体を用い、セル径が100〜400μmと分布のある市販のPS10倍発泡体を対比として、80℃の温水に10分間浸漬した。浸漬後23℃、湿度50%の環境に2時間放置し状態調節を行った後、サンプルの寸法を測定し寸法変化率を求めた。対比のサンプルは0.73%収縮していた。対比の発泡体よりも変化率の少ないものを○、それ以外を×とした。
5)安定生産性
実施例1〜5および比較例1〜8では押出発泡を連続8時間、実施例6〜8および比較例9〜12は射出発泡を連続2時間それぞれ行い、その間に二酸化炭素添加量、発泡倍率に変化が無く、添加部樹脂圧力の変動が1MPa以下の場合を○、それ以外を×をした。
【0107】
実施例1
成形機(4)として、図2に示したスクリュウ径50mmの第1押出機(9)とスクリュウ径65mmの第2押出機(12)を有するタンデム型の押出機を使用した。二酸化炭素添加部は、第1押出機の中央付近に設けた。熱可塑性樹脂として、ポリスチレン樹脂ペレット(日本ポリスチレン(株)製日本ポリスチG690N)100部とタルク1.5部の混合物を使用した。該材料をホッパー(8)より第1押出機(9)に添加し、220℃で加熱溶融させた。
【0108】
二酸化炭素は、サイホン式の液化二酸化炭素ボンベ(1)を使用し、液相部分から直接取り出せるようにした。液化二酸化炭素ボンベ(1)からプランジャーポンプ(2)までの流路を冷媒循環機(5)を用いて、−12℃に調節したエチレングリコール水溶液で冷却し、二酸化炭素を液体状態でプランジャーポンプ(2)まで注入できるようにした。この時二酸化炭素の温度は、−5℃であった。次に注入した液状二酸化炭素を1kg/時間となるようプランジャーポンプ(2)を制御し、プランジャーポンプ(2)の吐出圧力を30MPaとなるよう保圧弁(3)にて調整した。このとき、プランジャーポンプ(2)の容積効率は、65%で一定となった。次に保圧弁(3)から第1押出機(9)の二酸化炭素添加部までのラインを50℃となるようヒーターで加熱し、二酸化炭素を第1押出機(9)内の溶融したポリスチレンに添加した。このときの添加部の溶融樹脂圧力は20MPaであった。つまり、該溶融ポリスチレンに溶解する直前の二酸化炭素は、温度が50℃以上、圧力が20MPaである超臨界状態の二酸化炭素となっている。
このようにして、溶融ポリスチレン100重量部に対して超臨界二酸化炭素を5重量部の割合で第1押出機(9)内に添加し、スクリュウで均一に混合させた。
次にこの混合物を第2押出機(12)へ送り、樹脂温度を150℃に調整し、20kg/時間の押出量でダイス(13)より押し出した。このときのダイス(13)圧力は、19MPaであった。ダイス(13)としては、出口隙間が0.5mm、直径が80mmのサーキュラーダイス(13)を使用した。押し出されたポリスチレンは、ダイス(13)から出たと同時に発泡し、ダイス(13)の先に設置された円筒状水冷式マンドレル(14)に被せる。円筒状に賦形された発泡ポリスチレンは、該マンドレル(14)に沿って冷却されながら進行させた後、カッター刃によって切断し、発泡ポリスチレンシートを作製した。得られた発泡ポリスチレンシートは、幅630mm、厚さ1.5mmで、外観流麗であった。発泡体の評価結果を表1に示す。 均一な平均セル径で表面外観良好、高発泡倍率の発泡体であった。また、該発泡押出テストを8時間連続運転し続けたところ、二酸化炭素添加部の樹脂圧力が、ペレット食い込み差やロット変化等の外乱によって0.5MPaの範囲で変動したが、二酸化炭素添加量、発泡シートの外観、寸法、発泡倍率のいずれも変化なく、品質一定で成形することができた。
【0109】
実施例2
本実施例は、実施例1と同様に実施したが、液状二酸化炭素を1.8kg/時間となるようプランジャーポンプ(2)を制御し、溶融ポリスチレン100重量部に対して超臨界二酸化炭素を9重量部の割合で第1押出機(9)内に添加し、スクリュウで均一に混合させた。次にこの混合物を第2押出機(12)へ送り、樹脂温度を120℃に調整し、20kg/時間の押出量でダイス(13)より押し出した。このときのダイス圧力は、25MPaであった。得られた発泡ポリスチレンシートは、幅630mm、厚さ1.5mmで、外観流麗であった。発泡体の評価結果を表1に示す。 均一な平均セル径で表面外観良好、高発泡倍率の発泡体であった。また、該発泡押出テストを8時間連続運転し続けたところ、二酸化炭素添加部の樹脂圧力が、ペレット食い込み差やロット変化等の外乱によって0.5MPaの範囲で変動したが、二酸化炭素添加量、発泡シートの外観、寸法、発泡倍率のいずれも変化なく、品質一定で成形することができた。
【0110】
実施例3
本実施例は、実施例1と同様に実施したが、液化二酸化炭素ボンベ(1)からプランジャーポンプ(2)までの流路を冷媒循環機(5)を用いて、−20℃に設定したエチレングリコール水溶液で冷却した。この時二酸化炭素の温度は、−10℃であった。またこの時、プランジャーポンプ(2)の容積効率は、75%で一定となった。得られた発泡ポリスチレンシートは、実施例1と同等のものであった。また、該発泡押出テストを8時間連続運転し続けたところ、実施例1と同様に品質一定で成形することができた。
【0111】
実施例4
本実施例は、実施例1と同様に実施したが、プランジャーポンプ(2)の吐出圧力を25MPaとなるよう保圧弁(3)にて調整した。このとき、プランジャーポンプ(2)の容積効率は、70%で一定となった。得られた発泡ポリスチレンシートは、実施例1と同等のものであった。また、該発泡押出テストを8時間連続運転し続けたところ、実施例1と同様に品質一定で成形することができた。
【0112】
実施例5
本実施例は、実施例1と同様に実施したが、保圧弁(3)から第1押出機(9)の二酸化炭素添加部までのラインを100℃となるようヒーターで加熱した。得られた発泡ポリスチレンシートは、実施例1と同等のものであった。また、該発泡押出テストを8時間連続運転し続けたところ、実施例1と同様に品質一定で成形することができた。
【0113】
【表1】
【0114】
比較例1
本比較例は、実施例1と同様に実施したが、液化二酸化炭素ボンベ(1)からプランジャーポンプ(2)までの流路を冷却せず、常温(23℃)で該発泡押出テストを行った。二酸化炭素は、気体状態でプランジャーポンプ(2)に送られるため、完全にキャビテーションを起こし、ポンプの容積効率は、0%となって、第1押出機(9)へ二酸化炭素をほとんど添加できなかった。よって、樹脂温度も所定温度に低下できず、得られた押出物もほとんど発泡していなかった。したがって、加熱寸法変形は測定していない。
【0115】
比較例2
本比較例は、実施例1と同様に実施したが、プランジャーポンプ(2)の吐出圧力を6MPaとなるよう保圧弁(3)にて調整した。このときの添加部の溶融樹脂圧力は20MPaであったため、結果的に、プランジャーポンプ(2)出口側の吐出圧力は20MPaとなった。即ち保圧弁(3)の設定で圧力が一定に制御された、とは言えない状態で添加された。得られた発泡ポリスチレンシートは、幅630mmで、外観流麗であり、この発泡体の断面を走査型電子顕微鏡で観察したところ、セルが均一に分散していた。しかし、該発泡押出テストを5時間連続運転し続けたところ、(削除あり)二酸化炭素添加部の樹脂圧力が、1MPaの範囲で変動したため、厚さは、1.4mm〜1.5mmの範囲で、密度は、0.069〜0.071g/cm3の範囲で変動していた。よって長時間品質一定で成形することができなかった。
【0116】
比較例3
本比較例は、実施例1と同様に実施したが、プランジャーポンプ(2)の吐出圧力を45MPaとなるよう保圧弁(3)にて調整した。このとき、プランジャーポンプ(2)の容積効率は、55%〜60%の範囲で変動し、安定しなかった。液状二酸化炭素の添加を1kg/時間となるようプランジャーポンプ(2)を制御したが、添加量が安定せず、溶融ポリスチレン100重量部に対して超臨界二酸化炭素が1時間当たり4.5〜5重量部の範囲で変動した状態で、第1押出機内に添加する結果となった。得られた発泡ポリスチレンシートは、幅630mmで、外観流麗であり、この発泡体の断面を走査型電子顕微鏡で観察したところ、セルが均一に分散していた。しかし、該発泡押出テストを3時間連続運転し続けたところ、厚さは、1.4mm〜1.6mmの範囲で、密度は、0.068〜0.072g/cm3の範囲で変動しており、また、二酸化炭素添加部圧力およびダイス圧力が1MPaの範囲で変動していた。よって長時間品質一定で成形することができなかった。
【0117】
比較例4
本比較例は、実施例1と同様に実施したが、図8に示すように、プランジャーポンプ(2)で昇圧せず、ボンベ圧(6MPa)のみで二酸化炭素を第1押出機(9)内へ添加した。二酸化炭素添加部樹脂圧力が20MPaとボンベ圧より高いため、第1押出機(9)内に二酸化炭素をほとんど添加できなかった。よって、樹脂温度も所定温度に低下できず、得られた押出物もほとんど発泡していなかった。したがって、加熱寸法変形は測定していない。
【0118】
比較例5
本比較例は、図9に示すように、液化二酸化炭素ボンベ(1)の出口部に減圧弁(17)を介して3.4MPaとし、直接質量流量計(7)を介して、第1押出機(9)内に添加した。二酸化炭素の添加部樹脂圧力が20MPaとボンベ圧より高いため、第1押出機(9)内に二酸化炭素を殆ど添加できなかった。よって樹脂温度も所定温度に低下できず、得られた押出物も殆ど発泡していなかった。
【0119】
比較例6
本比較例は、実施例1と同様に実施したが、図10に示すようにサイホン式の液化二酸化炭素ボンベ(1)に代え、気層部分から取り出すタイプの二酸化炭素ボンベ(16)を使用した。第1圧縮機(18)で、6.5MPaに上昇させ、ついで、第2圧縮機(19)で31MPaに上昇させ、50℃に制御したタンク(20)を31MPaの圧力で貯蔵した。次にタンク(20)内の二酸化炭素を減圧弁(17)に通し、ここで27MPaに減圧し、直接質量流量計(7)をみながら、流量調節器(21)にて二酸化炭素を1kg/時間になるように調節し、第1押出機内(9)に添加した。しかしながら、添加量が安定せず、溶融ポリスチレン100重量部に対して二酸化炭素が1時間当たり4〜6重量部の範囲で変動した状態で、第1押出機(9)に添加する結果となった。得られた発泡ポリスチレンシートは、幅630mmで、外観流麗であったが、この発泡体の断面を走査型電子顕微鏡で観察したところ、セル径分布が不均一であった。また該発泡押出テストを1時間連続運転し続けたところ、厚さは1.3〜1.6mmの範囲で、密度は0.062〜0.072g/cm3の範囲で変動しており、また二酸化炭素添加部圧力およびダイス圧力が1MPaの範囲で変動していた。よって品質一定で成形することができなかった。したがって、加熱寸法変形は測定していない。
【0120】
【表2】
【0121】
実施例6
成形機(4)として、図3に示した口径30mm、L/D=30のスクリュウ(10)を持つ樹脂可塑化シリンダー(23)を使用した。二酸化炭素添加部は、樹脂可塑化シリンダー(23)の中央付近に設けた。熱可塑性樹脂として、ポリスチレン樹脂ペレット(日本ポリスチレン(株)製日本ポリスチG690N)100部とタルク1.5部の混合物を使用し、該材料をホッパー(8)より樹脂可塑化シリンダー(23)に添加し、250℃で加熱溶融させた。
【0122】
二酸化炭素は、サイホン式の液化二酸化炭素ボンベ(1)を使用し、液相部分から直接取り出せるようにした。液化二酸化炭素ボンベ(1)からプランジャーポンプ(2)までの流路を冷媒循環機(5)を用いて、−12℃に調節したエチレングリコール水溶液で冷却し、二酸化炭素を液体状態でプランジャーポンプ(2)まで注入できるようにした。この時二酸化炭素の温度は、−5℃であった。次に注入した液状二酸化炭素がポリスチレン樹脂100重量部に対して10重量部となるようプランジャーポンプ(2)を制御し、プランジャーポンプ(2)の吐出圧力を30MPaとなるよう保圧弁(3)にて調整した。このとき、プランジャーポンプ(2)の容積効率は、65%で一定となった。次に保圧弁(3)から樹脂可塑化シリンダー(23)の二酸化炭素添加部までのラインを50℃となるようヒーターで加熱し、二酸化炭素を樹脂可塑化シリンダー(23)内に添加した。このときの添加部の溶融樹脂圧力は20MPaであった。つまり、該溶融ポリスチレンに溶解する直前の二酸化炭素は、温度が50℃以上、圧力が20MPaである超臨界状態の二酸化炭素となっている。
【0123】
このようにして、完全に溶融したポリスチレンに対して超臨界二酸化炭素を添加した。樹脂可塑化シリンダー(23)内で二酸化炭素と溶融ポリスチレンを混練溶解させ、溶融ポリスチレンの温度を徐々に180℃まで冷却し、180℃に設定した射出装置(29)へ計量後、40℃に設定した金型(30)内に射出した。このとき、射出される直前の金型(30)内には、窒素ガスを8MPaの圧力下で充填しておいた。射出終了後、金型(30)内に充填した窒素ガスを1秒間で抜き、さらに発泡倍率を10倍程度とするために、キャビティーの寸法が、60×60×1(厚み)mmである金型(30)のコアを9mm後退させ、熱可塑性樹脂発泡体である平板(60mm×60mm×10mm)を得た。
発泡体の評価結果を表3に示す。 均一な平均セル径で表面外観良好、高発泡倍率の発泡体であった。また、該発泡射出テストを2時間連続運転し続けたところ、二酸化炭素添加部の樹脂圧力が、ペレット食い込み差やロット変化等の外乱によって0.5MPaの範囲で変動したが、二酸化炭素添加量、発泡体の外観、寸法、発泡倍率のいずれも変化なく、品質一定で成形することができた。
【0124】
実施例7
実施例6において、金型(30)のコアの後退量を14mmとし、設定倍率を15倍程度とした以外は実施例1に従い熱可塑性樹脂発泡体である平板(60mm×60mm×15mm)を得た。
発泡体の評価結果を表3に示す。均一な平均セル径で表面外観良好、高発泡倍率の発泡体であった。また、該発泡射出テストを2時間連続運転し続けたところ、二酸化炭素添加部の樹脂圧力が、ペレット食い込み差やロット変化等の外乱によって0.5MPaの範囲で変動したが、二酸化炭素添加量、発泡体の外観、寸法、発泡倍率のいずれも変化なく、品質一定で成形することができた。
【0125】
実施例8
実施例6において、金型(30)のコアの後退量を19mmとし、設定倍率を20倍とした以外は実施例1に従い熱可塑性樹脂発泡体である平板(60mm×60mm×20mm)を得た。
発泡体の評価結果を表3に示す。 均一な平均セル径で表面外観良好、高発泡倍率の発泡体であった。また、該発泡射出テストを2時間連続運転し続けたところ、二酸化炭素添加部の樹脂圧力が、ペレット食い込み差やロット変化等の外乱によって0.5MPaの範囲で変動したが、二酸化炭素添加量、発泡体の外観、寸法、発泡倍率のいずれも変化なく、品質一定で成形することができた。
【0126】
【表3】
【0127】
比較例7
本比較例は、実施例6と同様に実施したが、液化二酸化炭素ボンベ(1)からプランジャーポンプ(2)までの流路を冷却せず、常温(23℃)で該発泡射出テストを行った。二酸化炭素は、気体状態でプランジャーポンプ(2)に送られるため、完全にキャビテーションを起こし、ポンプの容積効率は、0%となって、樹脂可塑化シリンダー(23)内へ二酸化炭素をほとんど添加できなかった。よって、樹脂温度も所定温度に低下できず、得られた成形物もほとんど発泡していなかった。
【0128】
比較例8
本比較例は、実施例6と同様に実施したが、プランジャーポンプ(2)で昇圧せず、ボンベ圧(6MPa)のみで二酸化炭素を樹脂可塑化シリンダー(23)内へ添加した。二酸化炭素添加部樹脂圧力が20MPaとボンベ圧より高いため、樹脂可塑化シリンダー(23)内に二酸化炭素をほとんど添加できなかった。よって、樹脂温度も所定温度に低下できず、得られた成形物もほとんど発泡していなかった。
【0129】
比較例9
本比較例は、実施例6と同様に実施したが、サイホン式の液化二酸化炭素ボンベ(1)に代え、気層部分から取り出すタイプの二酸化炭素ボンベ(16)を使用した。第1圧縮機(18)で、6.5MPaに上昇させ、ついで、第2圧縮機(19)で31MPaに上昇させ、50℃に制御したタンク(20)を31MPaの圧力で貯蔵した。次にタンク(20)内の二酸化炭素を減圧弁(17)に通し、ここで27MPaに減圧し、直接質量流量計(7)をみながら、流量調節器(21)にて二酸化炭素がポリスチレン樹脂に対して10重量部になるように調節し、樹脂可塑化シリンダー(23)内に添加した。しかしながら、添加量が安定せず、溶融ポリスチレン100重量部に対して二酸化炭素が1時間当たり8〜11重量部の範囲で変動した状態で、樹脂可塑化シリンダー(23)内に添加する結果となった。
得られた発泡体は、表面外観良好であった。しかし、該発泡射出テストを1時間連続運転し続けたところ、二酸化炭素添加部圧力が1MPaの範囲で変動していた。よって品質一定で成形することができなかった。
【0130】
【表4】
【0131】
【発明の効果】
本発明を用いることにより、所定量の二酸化炭素を成形機(4)内の溶融した熱可塑性樹脂へ定量的かつ安定的に添加できるようになり、その結果、低発泡製品から高発泡製品の熱可塑性樹脂発泡体が品質一定で製造可能となる。また二酸化炭素の添加量を容易にかつ自由に制御可能となるため、低発泡品から高発泡品まで製造可能となる。更に従来のフロンやブタンの代替として二酸化炭素を用いることから、大気汚染やオゾン層破壊の心配もなく、安全性にも優れている。
【図面の簡単な説明】
【図1】本発明の超臨界二酸化炭素の添加方法の一例を示す概略構成図
【図2】本発明の熱可塑性樹脂発泡体の製造方法の一例を示す概略構成図。
【図3】本発明の熱可塑性樹脂発泡体の製造方法の一例を示す概略構成図。
【図4】本発明の熱可塑性樹脂発泡体の製造方法の一例を示す概略構成図。
【図5】本発明の熱可塑性樹脂発泡体の製造方法の一例を示す概略構成図。
【図6】本発明の熱可塑性樹脂発泡体の製造方法の一例を示す概略構成図。
【図7】本発明の熱可塑性樹脂発泡体の製造方法の一例を示す概略構成図。
【図8】比較例4の熱可塑性樹脂発泡体の製造方法を示す概略構成図。
【図9】比較例5の熱可塑性樹脂発泡体の製造方法を示す概略構成図。
【図10】比較例6の熱可塑性樹脂発泡体の製造方法を示す概略構成図。
【符号の説明】
(1)液化二酸化炭素ボンベ
(2)定量ポンプ
(3)保圧弁
(4)成形機
(5)冷媒循環器
(6)ヒーター
(7)流量計
(8)ホッパー
(9)第1押出機
(10)スクリュウ
(11)連結部
(12)第2押出機
(13)ダイス
(14)マンドレル
(15)発泡シート
(16)二酸化炭素ボンベ
(17)減圧弁
(18)第1圧縮機
(19)第2圧縮機
(20)タンク
(21)流量調節器
(22)インライン式射出成形機
(23)樹脂可塑化シリンダー
(24)アダプター
(25)樹脂アキュムレータプランジャー
(26)樹脂アキュムレータ装置
(27)開閉バルブ
(28)射出プランジャー
(29)射出装置
(30)金型
(31)ガスボンベ
(32)圧力制御バルブ
(33)開閉バルブ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for adding supercritical carbon dioxide to a molten thermoplastic resin, and a method for producing a thermoplastic resin foam using the addition method. More specifically, the present invention relates to a production method for obtaining a thermoplastic resin foam having a constant quality using carbon dioxide as a foaming agent.
[0002]
[Prior art]
A method for producing a thermoplastic resin foam using a chemical foaming agent or a gas foaming agent is known. The chemical foaming method is generally a method of foam molding by mixing raw material pellets and a low molecular weight organic foaming agent that decomposes at the molding temperature to generate gas and heating it above the decomposition temperature of the foaming agent with an extruder. is there. In this method, the decomposition temperature can be easily adjusted by adding a foaming aid or the like, and a foam having relatively uniform closed cells can be obtained. However, these foaming agents are not only costly, but also due to decomposition residues of the foaming agent remaining in the foam and undecomposed foaming agents, discoloration of the foam, generation of odor, and food hygiene Problems arise. Another problem is the contamination of the extruder die caused by the chemical foaming agent, and the molding defects associated therewith.
[0003]
On the other hand, in the gas foaming method using a physical foaming agent, a low-boiling organic compound such as butane, pentane or dichlorodifluoromethane is added to the melted resin with an extruder and kneaded. This is a method of foam molding by releasing the resin. The low boiling point organic compound used in this method has a characteristic of being able to obtain a high-magnification foam because it has an affinity for the resin and thus has excellent solubility and excellent retention. ing. However, these foaming agents are not only expensive, but also have dangers such as flammability and toxicity, and may cause air pollution problems. In addition, chlorodifluoromethane and other chlorofluorocarbon gases are being abolished due to environmental problems of ozone layer destruction.
[0004]
In order to solve such problems of the conventional method, many methods have been proposed in which an inert gas such as carbon dioxide and nitrogen that is clean and inexpensive is used as a blowing agent. However, the inert gas has poor solubility because of its low affinity with the resin. For this reason, since the foam has a large bubble diameter, non-uniformity, and a low bubble density, there are problems in terms of appearance, mechanical strength, heat insulation, and the like. Further, a method for stably adding an inert gas into the molding machine has not been established, and uneven foaming occurs in the product, making it difficult to obtain a foam having a constant quality.
[0005]
In general, when producing a thermoplastic resin foam using an inert gas, particularly carbon dioxide, there is a method in which gas is directly added from a gas cylinder through a pressure reducing valve. However, in this method, the foaming agent flow rate fluctuates due to fluctuations in the resin pressure at the foaming agent addition section, resulting in uneven foaming in the product, and a foam having a constant quality cannot be obtained. Moreover, in this method, when the resin pressure in the foaming agent addition part is higher than the gas cylinder pressure, the foaming agent cannot be added.
[0006]
US Pat. No. 5,158,986 discloses a technique for obtaining a foam by impregnating a thermoplastic resin with a supercritical fluid as a foaming agent. Supercritical fluids have excellent solubility close to that of liquids and excellent diffusibility close to that of gas, so they have high solubility in the resin and a high diffusion rate in the resin. The resin can be impregnated. In this publication, a thermoplastic resin is formed into a sheet by an extruder, introduced into a pressure chamber filled with supercritical carbon dioxide, impregnated with carbon dioxide in the sheet, and then in a foaming chamber under atmospheric pressure. A method of obtaining foam by heating with a heater and a resin melted by an extruder, impregnated with carbon dioxide in a supercritical state, and introducing the molded product extruded into a sheet into a pressurizing chamber. A method has been proposed in which cell nuclei are generated by change and a foam is obtained by heating and cooling.
[0007]
However, these methods require large-scale high-pressure equipment, enormous equipment costs, poor work efficiency, and are difficult to industrialize. In the former method, since the sheet-like molded body is directly impregnated, it takes a long time to completely impregnate the molded body with carbon dioxide. In the latter method, the former is impregnated in the molten resin. Although the carbon dioxide permeation rate was faster than that of the above method, it was difficult to compatibilize the carbon dioxide only by kneading one extruder.
[0008]
In the specification of Japanese Patent Application No. 9-185268, the present inventors have proposed a method for producing a thermoplastic resin foam by foam extrusion using supercritical carbon dioxide and / or nitrogen as a foaming agent.
[0009]
In the present invention, as a method of mixing the foaming agent into the melt of the resin composition in the continuous plasticizer, a method of injecting carbon dioxide and / or nitrogen in a gaseous state under pressure, a carbon dioxide in a liquid state And / or a method of injecting nitrogen with a plunger pump is illustrated. In this method, supercritical carbon dioxide can be added into an extruder in a simple process and equipment, which is not substantially applicable to industrial production by the method described in US Pat. No. 5,158,986.
However, further research by the present inventors revealed that the amount of carbon dioxide discharged from the booster pump and the pressure may vary depending on the temperature around the booster pump and the temperature of carbon dioxide injected into the booster pump. It has become. The invention does not disclose the production of a foam having an expansion ratio exceeding 10 times.
[0010]
In addition, as a method for adding a foaming agent at a critical pressure or higher, JP-A-1-222922 discloses that the pressure of the inert gas is in the range of the added part molten resin pressure or higher and 9.8 MPa or lower via a pressure reducing valve. A production method has been proposed in which a thermoplastic resin foam is obtained after being adjusted to be poured into an extruder. However, this method also cannot add a foaming agent when the resin pressure is 9.8 MPa or more. Therefore, since the added part molten resin pressure must be controlled to 9.8 MPa or less, the material used, the molding machine, and molding conditions are greatly limited, and the foamed products obtained by this method are considerably limited. .
Further, when carbon dioxide is used as a foaming agent, addition to a molding machine at 9.8 MPa or less has a limit on the amount of addition, and a product with a high foaming ratio cannot be obtained. In addition, the solubility of carbon dioxide in the molten resin is poor, and it takes a long time to dissolve. The resulting foam has a large bubble diameter, non-uniformity, and low bubble density.
[0011]
In Japanese Patent Publication No. 6-411161, pressurized carbon dioxide is maintained at a critical temperature or higher and stored in a tank, and then decompressed and injected into the extruder while controlling the flow rate at a pressure of 9.8 MPa or higher. A manufacturing method for obtaining a thermoplastic resin foam has been proposed.
However, this method also has a limitation in the amount of carbon dioxide added, and there is a description that when the amount of carbon dioxide added exceeds 2% by weight, it cannot be stably added to the system.
For this reason, when trying to obtain a product with a high expansion ratio, uneven foaming occurs in the product, and it is difficult to obtain a foam having a constant quality. Moreover, since the facilities are large and complex, enormous costs and installation locations are required. Furthermore, there is a problem that it is difficult to control the flow rate of carbon dioxide.
Thus, when carbon dioxide has been used as a foaming agent, it is difficult to stably add a predetermined amount to a molten thermoplastic resin in a molding machine, and thus obtaining a foam with a constant quality, especially high It was difficult to produce a foam having a foaming ratio with a constant quality.
[0012]
[Problems to be solved by the invention]
The present invention uses carbon dioxide as a foaming agent and produces a thermoplastic resin foam with uniform bubbles and no foaming unevenness. Therefore, a predetermined amount of carbon dioxide as a foaming agent is stably melted in a molding machine. And a method for producing a thermoplastic resin foam using the addition method.
[0013]
[Means for Solving the Problems]
In order to obtain a thermoplastic resin foam having a constant quality by using carbon dioxide as a foaming agent, the present inventors have earnestly devised a method capable of stably adding a predetermined amount of carbon dioxide to a molten thermoplastic resin in a molding machine. As a result of repeated research, carbon dioxide is boosted above the critical pressure of carbon dioxide with a metering pump and sent quantitatively into the molding machine (4), so carbon dioxide is injected into the metering pump while maintaining a liquid state. It was found that there was a need, and the present invention was reached.
[0014]
That is, the present invention includes the following inventions and embodiments.
(A) When injecting carbon dioxide from the liquefied carbon dioxide cylinder (1) into the metering pump (2) while maintaining the liquid state, and boosting the carbon dioxide with the metering pump (2) and discharging it, Control the temperature on the inlet side of the metering pump and Of carbon dioxide vomit The pressure is controlled to an arbitrary pressure within the range of the critical pressure (7.4 MPa) to 40 MPa of the carbon dioxide by setting the pressure of the holding valve (3). A method for adding supercritical carbon dioxide, wherein the temperature is raised to a critical temperature (31 ° C.) or higher to form supercritical carbon dioxide and then added to a molten thermoplastic resin.
[0015]
(B) When carbon dioxide in a supercritical state is added to the molten thermoplastic resin, the molten resin pressure in the carbon dioxide addition part of the molding machine (4) is higher than the critical pressure of carbon dioxide (7.4 MPa) in advance. The method for adding supercritical carbon dioxide according to (A), which is characterized in that it exists.
[0016]
(C) The liquefied carbon dioxide injected from the liquefied carbon dioxide cylinder (1) into the metering pump (2) is the inlet of the metering pump (2). Side temperature is The method for adding supercritical carbon dioxide according to any one of (A) and (B), wherein the temperature is controlled to be constant within a range of −30 to 15 ° C.
[0017]
(D) The flow path from the liquefied carbon dioxide cylinder (1) to the metering pump (2) is cooled by a refrigerant circulator having a constant temperature in the range of −60 to 0 ° C. (A The method for adding supercritical carbon dioxide according to any one of (1) to (C).
[0018]
(E) The supercriticality according to any one of (A) to (D), wherein the volumetric efficiency of the metering pump (2) is controlled to be a constant volumetric efficiency within a range of 60 to 95%. How to add carbon dioxide.
[0019]
(F) The method for adding supercritical carbon dioxide according to any one of (A) to (E), wherein the liquefied carbon dioxide cylinder (1) is a siphon type cylinder.
[0020]
(G) (i) In a continuous plasticizer having a line for adding a foaming agent to a molten thermoplastic resin, the thermoplastic resin is melted at a temperature equal to or higher than the melting point of the thermoplastic resin or the plasticizing temperature, and carbon dioxide Is added in an amount of 0.1 to 30 parts by weight per 100 parts by weight of the thermoplastic resin to form a molten thermoplastic resin composition in a compatible state of the thermoplastic resin and carbon dioxide,
(Ii) While maintaining a pressure equal to or higher than the critical pressure of carbon dioxide, the molten thermoplastic resin composition is heated at the tip of a continuous plasticizer at a temperature equal to or higher than the plasticizing temperature of the molten thermoplastic resin composition. A cooling step for lowering the temperature to 50 ° C. or higher than the plasticizing temperature of the plastic resin composition and to a temperature not higher than the melting temperature in the gas dissolving step,
(Iii) By discharging the molten thermoplastic resin composition from a die set at the optimum foaming temperature of the molten thermoplastic resin composition connected to the tip of the continuous plasticizer, the pressure is less than the critical pressure of carbon dioxide. A nucleation step of generating cell nuclei by lowering to a pressure of
(Iv) In the method for producing a thermoplastic resin foam, comprising a foam control step of quickly cooling the extruded thermoplastic resin foam to a temperature below the crystallization temperature or glass transition temperature of the thermoplastic resin,
The method for producing a thermoplastic resin foam according to (i), wherein the carbon dioxide addition method in the gas dissolving step is the carbon dioxide addition method described in (A).
[0021]
(H) (i) In a resin plasticizing cylinder (23) having a line for adding a foaming agent to a molten thermoplastic resin, 100 parts by weight of the thermoplastic resin at a temperature equal to or higher than the melting point of the thermoplastic resin or the plasticizing temperature. Melting, adding 0.1 to 30 parts by weight of carbon dioxide per 100 parts by weight of the thermoplastic resin, and forming a molten thermoplastic resin composition in a compatible state of the thermoplastic resin and carbon dioxide,
(Ii) In the resin plasticizing cylinder (23), the molten thermoplastic resin composition is higher than the plasticizing temperature of the molten thermoplastic resin composition by 50 ° C higher than the plasticizing temperature of the molten thermoplastic resin composition. A cooling step for lowering the temperature to a temperature not higher than the temperature and lower than the melting temperature in the gas melting step,
(Iii) a metering / injecting step of metering the cooled molten thermoplastic resin composition with the injection device (29) and filling the mold (30); and
(Iv) In the method for producing a thermoplastic resin foam, which comprises a foam control step of generating cell nuclei and controlling the expansion ratio by lowering the pressure in the mold (30), (i) gas dissolution The method for producing a thermoplastic resin foam, wherein the carbon dioxide addition method in the step is the carbon dioxide addition method described in (A).
[0022]
(I) The foaming control step is performed by degassing the high-pressure gas filled in the mold (30) after injecting the molten thermoplastic resin composition and / or retreating at least a part of the core of the mold (30). The manufacturing method of the thermoplastic resin foam as described in (H).
[0023]
(J) When carbon dioxide in the supercritical state is added to the molten thermoplastic resin, the molten resin pressure in the carbon dioxide addition part of the molding machine (4) is higher than the critical pressure of carbon dioxide (7.4 MPa) in advance. The method for producing a thermoplastic resin foam according to any one of (G) to (I), wherein:
[0024]
(K) Control that the liquefied carbon dioxide injected from the liquefied carbon dioxide cylinder (1) into the metering pump (2) has a constant temperature within a range of −30 to 15 ° C. at the inlet of the metering pump (2). The method for producing a thermoplastic resin foam according to any one of (G) to (J), wherein:
[0025]
(L) The flow path from the liquefied carbon dioxide cylinder (1) to the metering pump (2) is cooled by a refrigerant circulator having a constant temperature within a range of −60 to 0 ° C. The method for producing a thermoplastic resin foam according to any one of G) to (K).
[0026]
(M) The heat according to any one of (G) to (L), wherein the volumetric efficiency of the metering pump (2) is controlled to be a constant volumetric efficiency within a range of 60 to 95%. A method for producing a plastic resin foam.
[0027]
(N) The method for producing a thermoplastic resin foam according to any one of (G) to (M), wherein the liquefied carbon dioxide cylinder (1) is a siphon type cylinder.
[0028]
(O) The molten thermoplastic resin composition further includes at least one additive selected from the group consisting of inorganic fine powder, aliphatic carboxylic acid and derivatives thereof, or a chemical foaming agent. The method for producing a thermoplastic resin foam according to any one of G) to (N).
[0029]
(P) The method for producing a thermoplastic resin foam according to (O), wherein the inorganic fine powder is talc.
[0030]
(Q) The method for producing a thermoplastic resin foam according to (O), wherein the aliphatic carboxylic acid derivative is zinc stearate.
[0031]
(R) The method for producing a thermoplastic resin foam according to (O), wherein the chemical foaming agent that generates a gas containing carbon dioxide and / or nitrogen by pyrolysis is sodium bicarbonate and / or citric acid. .
[0032]
(S) The thermoplastic resin foam manufactured by the manufacturing method of any one of Claims (G)-(R) whose expansion ratio is 5 to 100 times.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
The inventors have studied to achieve the above object. The apparatus and method designed for the present invention will be described with reference to FIG.
In the specification of the present invention, the volumetric efficiency of the pump is calculated by the following
[0034]
[Expression 1]
η = Q / Qth × 100 (%) (Formula 1)
Here, η, Q, and Qth are as follows.
η is volumetric efficiency (%)
Q is the amount actually discharged by the pump (l / min)
Qth is the theoretical discharge rate (l / min)
The theoretical discharge amount Qth is calculated by the
[0035]
[Expression 2]
Qth = (πD2LN / 4) × 10 −6 (Formula 2)
Here, D, L, and N are as follows.
D is the pump plunger diameter or pump piston diameter (mm)
L is the pump stroke length (mm)
N is the pump speed (rpm)
[0036]
Carbon dioxide is injected into the metering pump (2) in a liquid state from the liquefied carbon dioxide cylinder (1). Here, in order to reliably inject carbon dioxide into the pump in a liquid state, it is preferable to use a siphon type liquefied carbon dioxide cylinder (1). This is to enable direct removal from the liquid phase portion of carbon dioxide in the cylinder. Further, the flow path distance from the liquefied carbon dioxide cylinder (1) to the metering pump (2) is made as short as possible, and the flow path is cooled with a double pipe or the like in the refrigerant circulator (5). As the refrigerant at this time, an ethylene glycol aqueous solution or a methanol aqueous solution is preferably used. The temperature of the refrigerant circulator (5) is preferably set to −60 ° C. to 0 ° C. Here, when the temperature is 0 ° C. or higher, liquid carbon dioxide is easily vaporized, the volumetric efficiency is lowered, and the liquid carbon dioxide is not stable and cannot be quantitatively added. On the other hand, when the temperature is -60 ° C. or lower, the liquid carbon dioxide is easily solidified, the volumetric efficiency is not stable, and the quantitative addition cannot be performed.
In addition, it is preferable to keep the temperature constant by applying a heat insulating material or the like so that the metering pump (2) body including the check valve also has no heat exchange.
Furthermore, in order to keep the cylinder pressure constant, it is preferable to install the liquefied carbon dioxide cylinder (1) in a place maintained at a constant temperature within a range of 15 to 30 ° C.
[0037]
When the carbon dioxide maintained in the liquid state is injected and pressurized by the metering pump (2), the pressure of the carbon dioxide is set to the pressure of the holding valve (3), and the critical pressure (7.4 MPa) to 40 MPa of the carbon dioxide is set. The discharge is controlled without changing the discharge amount by controlling the pressure within an arbitrary range. Here, when the pressure is less than the critical pressure (7.4 MPa) of carbon dioxide, a phase change occurs, so that the volumetric efficiency is not stable and quantitative addition cannot be performed. On the other hand, when the pressure is 40 MPa or more, the volumetric efficiency is lowered, and the volumetric efficiency is not stable and the quantitative addition cannot be performed.
[0038]
Conventionally, when carbon dioxide is added by a metering pump (2), cavitation has occurred, and it has been difficult to quantitatively add carbon dioxide. Therefore, the present inventors have conducted extensive research and found that quantitative addition is possible by providing a pressure holding valve (3) and setting the pressure. Furthermore, by controlling the temperature on the inlet side of the metering pump (2) and the discharge pressure on the outlet side of the metering pump (2) to be constant within the above-mentioned condition range, the volumetric efficiency of the metering pump (2) is 60% to It was found that it can be controlled within a range of 95%. Normally, the metering pump is generally controlled with a volumetric efficiency of 95% or higher, but it is very difficult to add carbon dioxide with a volumetric efficiency of 95% or higher. In the present invention, a method has been found in which the volumetric efficiency is controlled to be constant within a range of 60% to 95% and the discharge amount is stabilized.
[0039]
As the metering pump (2) to be used, a plunger pump using a double ball check valve for providing a high pressure resistant plunger seal to accurately control the outflow direction in order to prevent liquid leakage is preferable. .
Moreover, in order to keep the temperature between the flow paths of the metering pump (2) and the pressure retaining valve (3) constant, it is preferable to apply a heat retaining material or the like.
[0040]
Next, the temperature is raised above the critical temperature (31 ° C.) by a heater or the like between the flow paths until the carbon dioxide discharged quantitatively and stably is added to the molten thermoplastic resin in the molding machine (4). . Further, the pressure of the molten resin added to the molding machine (4) is previously increased to a critical pressure (7.4 MPa) or more of carbon dioxide. In this way, after the state of carbon dioxide above the critical temperature and above the critical pressure, that is, supercritical carbon dioxide, is melted in the molding machine (4) between the flow paths from the pressure holding valve (3) to the molding machine (4). Add to thermoplastic resin. Compared to the conventional method of adding carbon dioxide to a thermoplastic resin melted in a gaseous state or a liquid state, as in the method of the present invention, a supercritical state is achieved, whereby carbon dioxide is introduced into the resin. The foam has a high expansion ratio because it can stably produce a foam having a uniform cell diameter and can easily add a large amount of carbon dioxide quantitatively. Can be produced stably and easily.
[0041]
The amount of carbon dioxide added is confirmed by measuring the flow meter (7), the cylinder weight reduction rate, or the like, but preferably using the flow meter (7). As the flow meter (7), it is preferable to use a direct mass flow meter that is highly accurate and is not affected by the temperature, pressure, viscosity, density, etc. of the fluid. The installation location is most preferably just before the molding machine, but is not particularly limited, such as the inlet side or the outlet side of the metering pump (2).
Further, a method of feeding back the carbon dioxide flow rate sensed by the flow meter (7) to the metering pump (2) and controlling the predetermined flow rate is more preferable for stable production of foam.
[0042]
According to the method of the present invention, a predetermined amount of carbon dioxide can be quantitatively and stably added to the molten thermoplastic resin in the molding machine (4), and as a result, a thermoplastic resin foam having a constant quality can be produced. Become.
In this specification, a thermoplastic resin composition to which a thermoplastic resin is added a pyrolytic foaming agent, an aliphatic carboxylic acid and a derivative thereof, an inorganic fine powder, and the like, which are added to the thermoplastic resin as necessary. Is included. The molten thermoplastic resin composition means a state where carbon dioxide as a foaming agent and the thermoplastic resin in a molten state are uniformly mixed.
The metering pump means a pump that can be added to a thermoplastic resin that is continuously and stably melted at an amount of carbon dioxide added arbitrarily within the range of the discharge capacity of the pump.
[0043]
Embodiments of the present invention will be described below with reference to the drawings. 1-2, (1) is a liquefied carbon dioxide cylinder, (2) is a metering pump, (3) is a pressure holding valve, (4) is a molding machine, (5) is a refrigerant circulator, (6) is a heater, (7) is a flow meter, (8) is a hopper, (9) is a first extruder, (10) is a screw, (11) is a connecting part, (12) is a second extruder, (13) is a die, (14) is a mandrel.
[0044]
In the present invention, the resin processing molding machine to which the supercritical carbon dioxide addition method can be applied is not particularly limited, and is extrusion molding, injection molding, blow molding, extrusion blow molding, injection blow molding, inflation molding, stamping mold molding. , Compression molding, bead molding, RIM molding, and other molding machines used in known resin processing methods can be applied, and the continuous plasticizing apparatus and resin plasticizing cylinder described in this specification are those molding machines. include. Also, the supercritical carbon dioxide addition method of the present invention can be used as a method of obtaining a foam after impregnating a thermoplastic resin in an autoclave with carbon dioxide.
[0045]
Further, the method for adding supercritical carbon dioxide or the method for producing a thermoplastic resin foam of the present invention is not particularly limited in the shape of a product that can be produced. For example, the product shape of the thermoplastic resin foam obtained in extrusion molding is also sheet, plate, square, pipe, tube, column, ellipse, strand, filament, net, profile extrusion, multilayer There is no particular limitation such as extrusion and wire coating.
[0046]
A method for producing a thermoplastic resin foam by extrusion using the method for adding supercritical carbon dioxide of the present invention will be described with reference to FIG.
[0047]
The first extruder (9) having a line for adding a foaming agent to the molten thermoplastic resin constituting the inlet side of the continuous plasticizing apparatus is charged with the thermoplastic resin, and heated and melted in a supercritical state. Carbon is added to form a molten thermoplastic resin composition in a compatible state of the thermoplastic resin and the foaming agent.
At this time, the supercritical carbon dioxide is quantitatively added by the above-described supercritical carbon dioxide addition method. The molten resin pressure at this time is preferably in the range of the critical pressure (7.4 MPa) to 40 MPa of carbon dioxide.
Thereafter, the molten thermoplastic resin composition is transferred to the second extruder (12) constituting the outlet side of the continuous plasticizer, and the temperature is gradually lowered to the optimum temperature condition for foaming. At this time, the pressure and temperature conditions up to the tip of the second extruder (12) need to be in a supercritical state at or above the critical pressure of carbon dioxide and above the critical temperature.
Preferably, an adapter having a mixing part is provided at the connecting part (11) between the first extruder (9) and the second extruder (12). As a result, mixing of the molten thermoplastic resin and carbon dioxide further proceeds to facilitate the formation of a compatible state between the thermoplastic resin and carbon dioxide, and by controlling the temperature with the adapter, the molten thermoplastic resin composition Can be easily cooled to a viscosity suitable for subsequent foaming.
[0048]
The type of the adapter having the mixing part is not particularly limited, but an adapter incorporating a static mixer capable of kneading and cooling the molten thermoplastic resin composition is preferably used.
However, if the melted thermoplastic resin composition can be sufficiently formed in the first extruder (9) and can be cooled to the optimum foaming temperature, the continuous plasticizer is connected to the second extruder (12). It is not necessary to use a tandem type foaming extruder using the above), and only one extruder may be used.
[0049]
Next, the molten thermoplastic resin composition is transferred to a die (13) connected to the tip of a continuous plasticizer set at an optimum foaming temperature, and foaming is started by reducing the pressure.
[0050]
As the thermoplastic resin used in the present invention, any thermoplastic resin that can be plasticized in the molding machine (4) can be used without particular limitation. For example, a styrene-based resin (for example, polystyrene, butadiene / styrene copolymer, Acrylonitrile / styrene copolymer, acrylonitrile / butadiene / styrene copolymer, etc.), ABS resin, polyethylene, polypropylene, ethylene-propylene resin, ethylene-ethyl acrylate resin, polyvinyl chloride, polyvinylidene chloride, polybutene, polycarbonate, polyacetal, Polyphenylene oxide, polyvinyl alcohol, polymethyl methacrylate, saturated polyester resin (eg, polyethylene terephthalate, polybutylene terephthalate, etc.), biodegradable polyester resin (eg, polylactic acid, etc.) Condensate of droxycarboxylic acid, condensate of diol and dicarboxylic acid such as polybutylene succinate) Polyamide resin, polyimide resin, fluororesin, polysulfone, polyethersulfone, polyarylate, polyetheretherketone, liquid crystal polymer, etc. Or a mixture of two or more thereof. Among these thermoplastic resins, styrene resins and polyolefin resins are preferable, and polystyrene, polypropylene, and polyethylene are particularly preferable.
[0051]
Each thermoplastic resin has a melt flow index measured in the vicinity of the processing temperature of 0.05 to 60 g / 10 minutes, preferably 0.1 to 40 g / 10 minutes, more preferably about 0.2 to 20 g / 10 minutes. It is preferable that it exists in the range. The measurement conditions in this case, that is, the measurement temperature and the load are the conditions stipulated by ASTM. For example, in the case of polypropylene, the temperature is 230 ° C. and the load is 21.18 N. 18N, and measured according to other measurement conditions defined in ASTM D1238.
[0052]
When the melt flow index is near the lower limit range, the resin viscosity at the time of melting is appropriate, the load on the molding machine (4) is not excessive, and the processing is easy. Moreover, if it is below the said upper limit range, the thermoplastic resin can maintain the viscosity which can endure the gas pressure at the time of foaming, and it can maintain a favorable external appearance, without producing a bubble breakage. The melt flow index of the thermoplastic resin to be used can be appropriately selected according to this guideline.
The selection of the melt flow index of the thermoplastic resin to be used can be appropriately selected by those skilled in the art depending on the purpose.
[0053]
The supercritical carbon dioxide used as a foaming agent in the present invention is used in an amount of 0.1 to 30 parts by weight, preferably 0.2 to 20 parts by weight, based on 100 parts by weight of the thermoplastic resin.
When the foaming agent is 0.1 parts by weight or less, a sufficient foaming ratio cannot be obtained. When the foaming agent is 30 parts by weight or more, the expansion force of the added carbon dioxide is large, resulting in a blistering appearance defect on the foam surface. In addition, in order to form a desired shape, it is necessary to lengthen the time of the cooling process, and the time required for production becomes long, so that the production efficiency is lowered.
These carbon dioxides need to be in a supercritical state inside the molding machine from the viewpoints of solubility in molten thermoplastic resin, permeability, diffusibility, and the like.
[0054]
In the present invention, one or more pyrolytic foaming agents that generate carbon dioxide and / or nitrogen by thermal decomposition can be used in combination with supercritical carbon dioxide as a foam nucleating agent that makes foaming uniform. Examples of the thermally decomposable foaming agent include azodicarbonamide, N, N-dinitrosopentatetramine, azobisisobutyronitrile, citric acid, and sodium bicarbonate. When using a thermal decomposition type foaming agent, the usage-amount is 0.01-10 weight part with respect to 100 weight part of thermoplastic resins.
[0055]
One or more of various additives can be added to the thermoplastic resin used in the present invention so that the resulting foam does not break and the surface appearance is good. For example, an aliphatic carboxylic acid and derivatives thereof are preferably used.
Examples of aliphatic carboxylic acids and derivatives thereof include aliphatic carboxylic acids, acid anhydrides, alkali metal salts, alkaline earth metal salts and the like. As the aliphatic carboxylic acid, an aliphatic carboxylic acid having 3 to 30 carbon atoms is preferable, for example, lauric acid, stearic acid, crotonic acid, oleic acid, maleic acid, glutaric acid, montanic acid, etc. are preferable, and resin From the viewpoint of dispersibility in the medium, solubility, surface appearance improvement effect, etc., stearic acid, stearic acid derivatives, montanic acid and montanic acid derivatives are preferred, and further, alkali metal salts and alkaline earth metal salts of stearic acid Of these, zinc stearate and calcium stearate are particularly preferred.
[0056]
The addition amount of these additives is 0.01 to 10 parts by weight, preferably 0.05 to 8 parts by weight, and more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the thermoplastic resin. preferable.
When the additive is added in an amount of 0.01 parts by weight or more, it is easy to prevent foam from breaking, and when it is 10 parts by weight or less, the resin can maintain a viscosity sufficient to withstand the gas pressure during foaming. The surface appearance can be improved without causing bubble breakage.
[0057]
In the present invention, an inorganic fine powder that acts as a foam nucleating agent can be used as an additive for the thermoplastic resin. Examples of the inorganic fine powder include talc, calcium carbonate, clay, magnesium oxide, zinc oxide, and glass. Examples include beads, glass powder, titanium oxide, carbon black, anhydrous silica, and the like, preferably talc, calcium carbonate, titanium oxide, and anhydrous silica, and particularly preferably talc, and the particle size must be 50 μm or less. Yes, preferably 10 μm or less, more preferably 5 μm or less.
[0058]
If the inorganic fine powder having a particle size of 50 μm or less is used, the surface appearance of the foam is improved.
The amount of inorganic fine powder added is 0.01 to 40 parts by weight, preferably 0.05 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, based on 100 parts by weight of the thermoplastic resin. More preferably, it is in the range of 0.1 to 5 parts by weight.
An addition amount of the inorganic fine powder of 0.01 part or more and 40 parts by weight or less is preferable because the surface appearance of the foam is good.
[0059]
The above thermoplastic resin composition in which a pyrolytic foaming agent, an aliphatic carboxylic acid and its derivative, an inorganic fine powder, etc. are added to the thermoplastic resin as necessary is exemplified in the range not impairing the characteristics of the present invention. In addition to inorganic fine powders, aliphatic carboxylic acids and derivatives thereof, various elastomers, styrene resins (for example, polystyrene, butadiene / styrene copolymers, acrylonitrile / styrene copolymers, acrylonitrile / butadiene / styrene copolymers, etc. ), ABS resin, polyethylene, polypropylene, ethylene-propylene resin, ethylene-ethyl acrylate resin, polyvinyl chloride, polyvinylidene chloride, polybutene, polycarbonate, polyacetal, polyphenylene oxide, polyvinyl alcohol, polymethyl methacrylate, saturated polyester Resin (for example, polyethylene terephthalate, polybutylene terephthalate, etc.), biodegradable polyester resin (for example, hydroxycarboxylic acid condensate such as polylactic acid, diol and dicarboxylic acid condensate such as polybutylene succinate), Resin such as polyamide resin, polyimide resin, fluororesin, polysulfone, polyethersulfone, polyarylate, polyetheretherketone, liquid crystal polymer, etc., peroxide, sulfur, process oil, adhesion Inhibitors, plasticizers, pigments, stabilizers, fillers, metal powders and the like can be appropriately used depending on the purpose and application.
[0060]
There is no restriction | limiting in particular about the manufacturing method of the thermoplastic resin composition used as the raw material of the thermoplastic resin foam of this invention, Usually a well-known method is employable. For example, a method of uniformly mixing a thermoplastic resin and the above additives with a high-speed stirrer, etc., and then melt-kneading with a single-screw or multi-screw extruder having sufficient kneading ability, a mixing roll, a kneader, a Brabender, etc. Can be manufactured.
Further, it may be used in a state where the thermoplastic resin and, if necessary, the above-mentioned additives and the like are uniformly mixed.
[0061]
In the method for producing a thermoplastic resin foam by extrusion molding according to the present invention, the gas dissolution step for forming a compatible state of the thermoplastic resin and supercritical carbon dioxide is the first extrusion constituting the inlet side of the continuous plasticizer. In the step of heating and melting the thermoplastic resin in the machine (9), adding carbon dioxide in a supercritical state to the molten thermoplastic resin by the above-described supercritical carbon dioxide addition method, and mixing them uniformly. is there.
[0062]
The cooling step is a step of cooling the molten thermoplastic resin composition on the outlet side of the continuous plasticizer and adjusting the viscosity so as to be suitable for foaming.
In the nucleation step, the molten thermoplastic resin composition is reduced to a pressure below the critical pressure of carbon dioxide in the dice (13), so that the carbon dioxide is supersaturated and the supersaturated state is reached. This is a step of generating a large number of cell nuclei in the molten thermoplastic resin composition.
[0063]
The foaming control step is a step of quickly cooling the foamed sheet (15) below the glass transition temperature or crystallization temperature of the resin to control the growth of the generated cells and to control the foaming ratio to a desired value.
[0064]
Among these, at least the gas dissolving step and the cooling step are performed as follows in accordance with the method described in the claims and examples of JP-A-8-11190.
The thermoplastic resin is added from the hopper (8) into the first extruder (9) constituting the inlet side of the continuous plasticizer, and melted at a temperature equal to or higher than the melting point of the thermoplastic resin or the plasticizing temperature. As temperature at this time, it is heated and melted at 100 to 450 ° C. Carbon dioxide is injected from the liquefied carbon dioxide cylinder (1) into the metering pump (2) where the pressure is increased and the pressure-controlled carbon dioxide is added to the molten thermoplastic resin in the first extruder (9). To do.
At this time, the carbon dioxide present in the first extruder (9) greatly enhances the dissolution and diffusion of the molten thermoplastic resin, and can penetrate into the thermoplastic resin in a short time. Is maintained above the critical pressure and above the critical temperature of the carbon dioxide.
[0065]
Further, the carbon dioxide added to the first extruder (9) is heated and raised before being added to the first extruder (9), and is added after becoming a supercritical state.
The thermoplastic resin and carbon dioxide melted in the first extruder (9) are kneaded by the screw (10) to form a compatible state of the thermoplastic resin and carbon dioxide.
In the cooling step after the compatibilization, the temperature of the tip of the second extruder (12) constituting the outlet side of the continuous plasticizer is controlled so that the molten thermoplastic resin composition is equal to or higher than the plasticizing temperature of the molten thermoplastic resin composition. Then, it is cooled to a temperature not higher than 50 ° C. higher than the plasticizing temperature of the molten thermoplastic resin composition and not higher than the melting temperature in the gas melting step. The temperature at this time is 50 to 300 ° C., preferably 80 to 280 ° C., is cooled to a temperature equal to or higher than the plasticizing temperature of the molten thermoplastic resin composition, and is adjusted to have a viscosity suitable for subsequent foaming.
[0066]
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2, (1) is a liquefied carbon dioxide cylinder, (2) is a metering pump, (8) is a hopper, (9) is a first extruder, (10) is a screw, (11) is a connecting part, (12) is a second extruder, (13) is a die, (14) is a mandrel, and (15) is a foam sheet.
[0067]
In FIG. 2, in the gas dissolving step, 100 parts by weight of a thermoplastic resin is added from the hopper (8) into the first extruder (9) constituting the inlet side of the continuous plasticizer, and is heated and melted. Carbon dioxide is temperature-controlled from a liquefied carbon dioxide cylinder (1) and injected into a metering pump (2) where the pressure is increased and the pressure is controlled to the set pressure of the pressure holding valve (3) 0.1 to 30 parts by weight is added to the molten thermoplastic resin composition in the first extruder (9) to perform a gas dissolution step. At this time, the carbon dioxide present in the first extruder (9) greatly enhances the dissolution and diffusion of the molten thermoplastic resin, and can penetrate into the thermoplastic resin in a short time. Must be maintained above the critical pressure and above the critical temperature of the carbon dioxide.
[0068]
In the case of carbon dioxide, the critical pressure is 7.4 MPa, the critical temperature is 31 ° C., and the pressure in the first extruder (9) is 7.4 to 40 MPa, preferably 10 to 30 MPa, and the temperature is 100 to 100 ° C. A range of 450 ° C., preferably 110 to 280 ° C. is preferred. Further, carbon dioxide added to the thermoplastic resin melted in the first extruder (9) is heated and pressure-increased before being added, and is added after becoming a supercritical state.
[0069]
The thermoplastic resin and supercritical carbon dioxide melted in the first extruder (9) are kneaded by the screw (10) to form a compatible state of the thermoplastic resin and supercritical carbon dioxide.
In the cooling step after the compatibility, in order to increase the solubility of carbon dioxide in the thermoplastic resin, the molten thermoplastic resin composition is fed to the second extruder (12) constituting the outlet side of the continuous plasticizer, The temperature is lowered to a temperature suitable for foaming while maintaining the critical pressure or higher.
The temperature at this time is 50 to 300 ° C., preferably 80 to 280 ° C. and kept at a temperature equal to or higher than the plasticizing temperature of the molten thermoplastic resin composition so that the viscosity becomes suitable for subsequent foaming. Adjust the temperature.
[0070]
The cooling process using the second extruder (12) is a process for reasonably approaching temperature conditions suitable for foaming. By sufficiently cooling in this step, it is possible to produce a continuous and stable thermoplastic resin foam. However, when an apparatus capable of sufficiently cooling the molten thermoplastic resin composition to a temperature suitable for foaming is used as the continuous plasticizer only by the first extruder (9), the second plasticizer is used as the outlet side of the continuous plasticizer. It is not necessary to connect two extruders (12), and it is also possible to produce a foam with a single extruder.
[0071]
In order to improve the dissolved state of carbon dioxide in the molten thermoplastic resin composition, a kneading part such as a static mixer is connected to the connecting part (11) of the first extruder (9) and the second extruder (12). More preferably.
[0072]
Next, the molten thermoplastic resin composition is transferred to a die (13) connected to the outlet side of the continuous plasticizer set at the optimum foaming temperature, and foaming is started. The carbon dioxide is supersaturated by reducing the pressure under conditions controlled at the die outlet.
The molten thermoplastic resin composition in a supersaturated state becomes thermally unstable and generates a large number of cells. In general, it is known that the glass transition temperature of a resin containing gas decreases in proportion to the amount of gas impregnation, but the temperature in the die (13) is the glass of resin impregnated with gas. It is preferable that the temperature is not lower than the transition temperature.
The molten thermoplastic resin composition that has started foaming is extruded from the outlet of the die (13).
[0073]
Next, as a foam control step, the foam sheet (15) is quickly cooled to below the glass transition temperature or crystallization temperature of the thermoplastic resin through a cooling device (14) to control the growth of the generated cells. A thermoplastic resin foam having a large number of cells uniformly is stably produced without discharge unevenness. For example, the molten thermoplastic resin composition extruded from the circular die (13) starts foaming at the same time as discharging, but is put on a cylindrical water-cooled mandrel (14) installed at the tip of the circular die (13). Then, the foam shaped into a cylindrical shape proceeds while being cooled along the mandrel (14), and is then cut by a cutter blade to obtain a foamed thermoplastic resin sheet.
[0074]
In the present invention, the pressure equal to or higher than the critical pressure of the blowing agent is always maintained until the gas dissolution step and the cooling step are completed, and the molten thermoplastic resin composition is not separated into the thermoplastic resin and the gas. It is necessary to do so.
The product shape of the thermoplastic resin foam obtained by this method is not particularly limited, such as a sheet shape, a round bar shape, a plate shape, a square shape, and a pipe shape.
[0075]
An example of a method for producing a thermoplastic resin foam by injection molding using the supercritical carbon dioxide addition method of the present invention will be described with reference to FIG. An injection device (29) having an injection plunger (28) is connected to a resin plasticizing cylinder (23) having a line for adding a foaming agent to the molten thermoplastic resin via an opening / closing valve (27). The thermoplastic resin is fed into the resin plasticizing cylinder (23), and supercritical carbon dioxide is added by the above-described supercritical carbon dioxide addition method of the present invention while being heated and melted. Form a composition.
[0076]
Thereafter, the molten thermoplastic resin composition is fed into an injection device (29) having an injection plunger (28). After the feeding, the resin plasticizing cylinder (23) and the injection device (29) become independent from each other by closing the open / close valve (27). The resin plasticizing cylinder (23) continuously forms a molten thermoplastic resin composition without stopping while the injection device (29) is performing the metering injection process. In addition, since the pressure in the resin plasticizing cylinder (23) rises because it is not measured in the injection device (29), the compatibility state of the molten thermoplastic resin composition is not broken by the increase in pressure. There is no problem in continuing the cooling process. However, if there is a problem with the pressure resistance capability of the resin plasticizing cylinder (23), the gist of the present invention is to provide a device that can discharge the molten thermoplastic resin composition out of the system by operating the on-off valve (27). Do not depart.
[0077]
On the other hand, the injection device (29) performs injection after the completion of metering. However, in a normal injection molding machine, the back pressure is temporarily cut after the metering is completed. In the present invention, the foaming agent and the thermoplastic are used from the start of metering to the end of the metering. Always keep the back pressure applied so that the resin does not separate. The back pressure at this time may be a minimum pressure at which the foaming agent and the thermoplastic resin are not separated, but needs to be equal to or higher than the critical pressure of the foaming agent.
In this manner, the molten thermoplastic resin composition formed in the resin plasticizing cylinder (23) is injected into the mold (30) without phase separation of the foaming agent and the thermoplastic resin.
[0078]
In the mold (30), after injecting the molten thermoplastic resin composition, the high pressure gas filled in the mold (30) is degassed and / or part or all of the mold (30) core is retracted. By doing so, the foam control step is performed.
[0079]
One embodiment of the present invention is shown in FIG. Between the resin plasticizing cylinder (23) having a line for adding a foaming agent to the molten thermoplastic resin and the injection device (29) having an injection plunger (28), an injection device is provided via an on-off valve (27). Providing an adapter (24) having a mixing section connected to the outflow passage of the resin plasticizing cylinder (23) connected to (29) further advances the mixing of the molten thermoplastic resin and carbon dioxide. The formation of a compatible state of the thermoplastic resin and carbon dioxide is facilitated, and the temperature of the adapter (24) is controlled so that the molten thermoplastic resin composition has a viscosity suitable for subsequent injection and foaming. It becomes easy to cool. Although there is no restriction | limiting in particular about the adapter (24) which has this mixing part, Since the kneading | mixing and cooling of a molten thermoplastic resin composition are performed, the adapter incorporating a static mixer is used suitably.
[0080]
One embodiment of the present invention is shown in FIG. By providing a resin accumulator device (26) having a plunger connected to the injection device (29) via an opening / closing valve (27) before the injection device (29) having the injection plunger (28), After completion of the measurement, the opening / closing valve (27) is switched to the closed state, and the melt sent from the resin plasticizing cylinder (23) while being injected into the mold (30) by the injection plunger (28). The thermoplastic resin composition is sent to the resin accumulator device (26) provided immediately before the opening / closing valve (27), and the plunger of the resin accumulator device (26) is introduced by the inflow of the molten thermoplastic resin composition. By controlling the resin accumulator device (26) to retreat, the inside of the device system can be easily maintained at a predetermined pressure, and the compatible state of the molten thermoplastic resin composition can be maintained. Maintenance is easy and preferable because the surface of the foam is improved.
[0081]
One embodiment of the present invention is shown in FIG. Similarly, an injection device (29) having another injection plunger (28) can be provided in place of the resin accumulator device (26) having a plunger, and the inside of the device system is maintained at a predetermined pressure. It is easy to maintain a compatible state of the molten thermoplastic resin composition, and is preferable because the surface appearance of the foam is improved.
[0082]
In the case of an injection molding machine in which the resin plasticizing cylinder and the injection device shown in FIGS. 3 to 6 are independent, it is easy to maintain the system pressure so that the thermoplastic resin and the foaming agent are not separated. Therefore, it is easy to produce the thermoplastic resin foam targeted by the present invention, but if it is an injection molding machine that can always apply back pressure during metered injection while melting and cooling the gas, The thermoplastic resin foam of the present invention can also be produced by an inline screw type injection molding machine as shown in FIG.
[0083]
The gas dissolving step for forming a compatible state of the thermoplastic resin and supercritical carbon dioxide in the present invention refers to the inside of the resin plasticizing cylinder (23) in the example of the method for producing the thermoplastic resin foam shown in FIG. In this step, after the thermoplastic resin is heated and melted, the supercritical carbon dioxide is added to the molten thermoplastic resin by the supercritical carbon dioxide addition method of the present invention described above and mixed uniformly.
[0084]
The cooling step is a step of cooling the molten thermoplastic resin composition and adjusting the viscosity to be suitable for injection and foaming.
The gas dissolving step and the cooling step are performed by a resin plasticizing cylinder (23) and an adapter (24) in the example of the method for producing a thermoplastic resin foam shown in FIG. Moreover, in the example of the manufacturing method of the thermoplastic resin foam shown in FIG. 5, it carries out with the resin plasticizing cylinder (23), the adapter (24), and the resin accumulator apparatus (26).
[0085]
The metering injection process is a process in which a molten thermoplastic resin composition whose temperature is controlled so as to have a viscosity suitable for injection and foaming is measured into an injection device (29) and injection is performed by the injection plunger (28). The foaming control step is a step of reducing the pressure of the molten thermoplastic resin composition injected into the mold (30) under pressure to generate cell nuclei and controlling the expansion ratio. Among these, at least the gas dissolving step and the cooling step are performed as follows according to the method described in JP-A-8-11190. (This process is described in the above-mentioned JP-A-8-11190, which is incorporated herein by reference.)
The thermoplastic resin is fed from the hopper (8) into the resin plasticizing cylinder (23) and melted at a temperature equal to or higher than the melting point of the thermoplastic resin or the plasticizing temperature. As temperature at this time, it is heated and melted at 100 to 450 ° C. Carbon dioxide is injected from the liquefied carbon dioxide cylinder (1) into the metering pump (2), where the pressure is increased and the carbon dioxide pressure-controlled to the set pressure of the pressure holding valve (3) is converted into a resin plasticizing cylinder (23). Add to the molten thermoplastic resin inside. At this time, carbon dioxide present in the resin plasticizing cylinder (23) greatly enhances the dissolution and diffusion of the molten thermoplastic resin and allows it to penetrate into the molten thermoplastic resin in a short time. It is necessary to maintain the inside of the system above the critical pressure and the critical temperature of the carbon dioxide.
Further, before being added to the molten thermoplastic resin in the resin plasticizing cylinder (23), the temperature is raised and the pressure is increased, and the superplastic state is added.
[0086]
The thermoplastic resin and carbon dioxide melted in the resin plasticizing cylinder (23) are kneaded by the screw (10) to form a compatible state of the thermoplastic resin and carbon dioxide. In the cooling step after compatibilization, the temperature of the tip of the resin plasticizing cylinder (23) is controlled so that the molten thermoplastic resin composition is plasticized at a temperature equal to or higher than the plasticizing temperature of the molten thermoplastic resin composition. Cooling to a temperature not higher than 50 ° C. and lower than the melting temperature in the gas melting step. The temperature at this time is 50 to 300 ° C., preferably 80 to 280 ° C., and is cooled to a temperature equal to or higher than the plasticizing temperature of the molten thermoplastic resin composition, and adjusted to have a viscosity suitable for subsequent injection and foaming. .
[0087]
An example of the present invention will be described with reference to the drawings. 3 to 6, (1) is a liquefied carbon dioxide cylinder, (2) is a metering pump, (8) is a hopper, (10) is a screw, (22) is an in-line injection molding machine, and (23) is a plastic resin (24) is an adapter, (25) is a resin accumulator plunger, (26) is a resin accumulator device, (27) is an open / close valve, (28) is an injection plunger, (29) is an injection device, (30 ) Is a mold, (31) is a gas cylinder, (32) is a pressure control valve, and (33) is an open / close valve.
[0088]
In FIG. 3, in the gas dissolving step, 100 parts by weight of a thermoplastic resin is fed from the hopper (8) into the resin plasticizing cylinder (23) and melted by heating. Carbon dioxide is temperature-controlled from the liquefied carbon dioxide cylinder (1) and injected into the metering pump (2), where the pressure is increased and the supercritical carbon dioxide pressure-controlled to the set pressure of the pressure holding valve (3) is It is added to the molten thermoplastic resin in the resin plasticizing cylinder (23), and a gas dissolution step is performed. At this time, the carbon dioxide present in the resin plasticizing cylinder (23) greatly enhances the dissolution and diffusion to the thermoplastic resin, and can penetrate into the thermoplastic resin in a short time. It must be maintained above the critical pressure of carbon dioxide and above the critical temperature.
[0089]
In the case of carbon dioxide, the critical pressure is 7.4 MPa, the critical temperature is 31 ° C., and the pressure in the resin plasticizing cylinder (23) is 7.4 to 40 MPa, preferably 10 to 30 MPa, and the temperature is 100 The range of ˜450 ° C., preferably 110 to 280 ° C. is preferred.
Carbon dioxide, which is a foaming agent, is heated and raised before being added to the molten thermoplastic resin in the resin plasticizing cylinder (23), and is added after reaching a supercritical state.
[0090]
The thermoplastic resin and carbon dioxide melted in the resin plasticizing cylinder (23) are kneaded by the screw (10) to form a compatible state of the thermoplastic resin and carbon dioxide. In the cooling step after the compatibilization, the temperature of the tip of the resin plasticizing cylinder (23) is controlled so that the molten thermoplastic resin composition is 50 to 300 ° C., preferably 80 to 280 ° C. and the molten thermoplastic resin composition is plasticized. Cool above temperature and adjust to a viscosity suitable for subsequent injection and foaming.
[0091]
The molten thermoplastic resin composition whose temperature is controlled so as to have a viscosity suitable for injection and foaming is an injection device having an injection plunger (28) connected via an on-off valve (27) in a metering injection process ( 29). When the on-off valve (27) is open, the molten thermoplastic resin composition is metered by the retraction of the injection plunger (28) as it flows into the injection device (29).
[0092]
In any type of injection molding machine such as an inline screw type or a plunger type, the back pressure is stopped immediately after the completion of measurement in a normal injection molding device. In order to prevent the molten thermoplastic resin composition from separating into the foaming agent and the thermoplastic resin, and to prevent the molten thermoplastic resin composition from foaming, it is necessary to continue to control the internal pressure by applying back pressure until the end of the injection. is there. The back pressure at this time is not separated into the foaming agent and the thermoplastic resin, and it is only necessary to maintain a minimum pressure for preventing the molten thermoplastic resin composition from foaming. There is a need. It is necessary to maintain the pressure at all times until the gas dissolution process, cooling process, and metering injection process are completed, so that the molten thermoplastic resin composition does not separate into thermoplastic resin and gas. There is.
[0093]
After completion of the measurement, the open / close valve (27) is switched to the closed state, and the injection plunger (28) performs injection into the mold (30). A method of inducing the generation of cell nuclei by slightly reducing the pressure in the injection device (29) by sucking back the injection plunger (28) before performing post-metering injection is also suitably used.
[0094]
The mold (30) immediately before being injected is filled with a high pressure gas injected through a pressure control valve (32) from a gas cylinder (31) or a booster pump at a predetermined pressure. For example, when nitrogen is used as the high-pressure gas, the pressure is preferably equal to or higher than the critical pressure of carbon dioxide used as the blowing agent.
By filling the mold with a high-pressure gas in advance, the molten thermoplastic resin composition injected into the mold is filled into the mold without foaming and the surface appearance is improved.
[0095]
In the foaming control step, a molten thermoplastic resin composition in which a compatible state of the thermoplastic resin and carbon dioxide is formed is injected into a mold (30) filled with the high-pressure gas. After injection, a rapid pressure drop is caused in the mold (30) by rapidly removing the high-pressure gas filled in the mold (30). By this step, the gas impregnated in the thermoplastic resin becomes supersaturated and a large number of cell nuclei are generated.
Further, as a method of causing a rapid pressure drop in the mold (30), after injecting a molten thermoplastic resin composition in which a thermoplastic resin and carbon dioxide are compatible in the mold (30), a core is injected. A method in which a part or all of the above is retreated, the capacity in the mold (30) is rapidly increased, and a rapid pressure drop in the mold (30) is preferably used.
[0096]
The expansion ratio can be controlled by the mold (30) temperature, the internal pressure of the mold (30), or the core retraction amount in the mold, and a thermoplastic resin foam having a desired expansion ratio is obtained.
Even if each of these methods for controlling foaming is used alone, a sufficient foaming control effect can be obtained, but there is no problem in using the two methods in combination.
[0097]
As shown in FIG. 4, an opening / closing valve (23) is provided between a resin plasticizing cylinder (23) having a line for adding a foaming agent to a molten thermoplastic resin and an injection device (29) having an injection plunger (28). 27) providing an adapter (24) having a mixing section connected to the outflow passage of the resin plasticizing cylinder (23) connected to the injection device (29) via 27) The mixing of the carbon further proceeds to facilitate the formation of a compatible state between the thermoplastic resin and carbon dioxide, and the temperature of the adapter (24) controls the molten thermoplastic resin composition. It is preferable because it can be easily cooled to a viscosity suitable for the gas, and the gas dissolving step and the cooling step can be easily performed. Although there is no restriction | limiting in particular about the adapter (24) which has this mixing part, Since the kneading | mixing and cooling of a molten thermoplastic resin composition are performed, the adapter incorporating a static mixer is used suitably.
[0098]
Further, as shown in FIG. 5, a resin accumulator device having a plunger connected to the injection device (29) via an opening / closing valve (27) before the injection device (29) having an injection plunger (28). The provision of (26) means that, after the metering is completed, the opening / closing valve (27) is switched to the closed state, and while the injection plunger (28) performs injection into the mold (30), the resin plasticizing cylinder ( 23) The molten thermoplastic resin composition sent from 23) is sent to the resin accumulator device (26) provided immediately before the opening / closing valve (27), and the resin flows into the resin by the inflow of the molten thermoplastic resin composition. By controlling the resin accumulator device (26) such that the plunger of the accumulator device (26) is retracted, it is easy to maintain the inside of the device system at a predetermined pressure, enabling the heat of fusion. Sexual maintenance of the compatible state resin composition is easy and preferable because the surface appearance of the foam is improved.
[0099]
Further, as shown in FIG. 6, instead of the resin accumulator device (26) having a plunger, an injection device (29) having another injection plunger (28) may be provided, so that the inside of the device system is kept at a predetermined pressure. It is preferable because it is easy to maintain, and it is easy to maintain a compatible state of the molten thermoplastic resin composition, and the surface appearance of the foam is improved.
[0100]
In the case of an injection molding machine in which the resin plasticizing cylinder and the injection device shown in FIGS. 3 to 6 are independent, it is easy to maintain the system pressure so that the thermoplastic resin and the foaming agent are not separated. Therefore, it is easy to produce the thermoplastic resin foam targeted by the present invention, but if it is an injection molding machine that can always apply back pressure during metered injection while melting and cooling the gas, The thermoplastic resin foam of the present invention can also be produced by the in-line screw type injection molding machine shown in FIG.
[0101]
By the supercritical carbon dioxide addition method of the present invention, in the production of the thermoplastic resin foam, liquefied carbon dioxide is injected into the metering pump (2) in a liquid state, and the volumetric efficiency of the metering pump (2) is increased from 60% to Maintain constant volume efficiency within the range of 95%, and set the pressure holding valve (3) so that the discharge pressure of the metering pump (2) is constant pressure within the range of carbon dioxide critical pressure (7.4 MPa) to 40 MPa. After being controlled and discharged, the temperature is raised to a temperature higher than the critical temperature of carbon dioxide (31 ° C.) to form supercritical carbon dioxide and then added into the molding machine (4). Further, the carbon dioxide of the molding machine (4) By making the molten resin pressure in the carbon addition part higher than the critical pressure of carbon dioxide (7.4 MPa) in advance, a predetermined amount of carbon dioxide is stably added into the molding machine, and the thermoplastic resin is uniform and has no foaming unevenness. Mold foam with constant quality It becomes possible.
[0102]
Further, in the method for producing a thermoplastic resin foam by extrusion molding according to the present invention, it is possible to add a predetermined amount of supercritical carbon dioxide as a foaming agent quantitatively and stably to a molten thermoplastic resin. Add to the molten thermoplastic resin in the first extruder (9) that constitutes the inlet side of the plasticizer, knead thoroughly, and then form a compatible state of the thermoplastic resin and carbon dioxide to continuously plasticize While maintaining the supercritical state at the outlet side of the device, the temperature of the molten thermoplastic resin composition is lowered, and foaming is started by sudden pressure drop while controlling, and the foaming ratio is controlled by the cooling device, thereby reducing low foaming. High-foamed thermoplastic resin foams can be manufactured from products with consistent quality.
[0103]
Furthermore, in the method for producing a thermoplastic resin foam by injection molding according to the present invention, a predetermined amount of supercritical carbon dioxide as a foaming agent can be added quantitatively and stably to a molten thermoplastic resin. Since carbon dioxide is added to the molten thermoplastic resin in the plasticizing cylinder (23) and thoroughly kneaded, it is weighed and injection-molded into the injection device (29). Since it is easy to form a molten thermoplastic resin composition and to maintain a compatible state of the molten thermoplastic resin composition, the surface appearance of the foam is improved, and a foamed thermoplastic resin from a low foam product to a high foam product is obtained. The body can be manufactured with a constant quality.
[0104]
Hereinafter, the present invention will be described with reference to examples, but the content of the present invention is not limited thereto.
FIG. 1 is a schematic configuration diagram showing an example of the supercritical carbon dioxide addition method of the present invention.
2-7 is a schematic block diagram which shows an example of the manufacturing method of the thermoplastic resin foam of this invention.
[0105]
FIG. 8 is a schematic configuration diagram showing a method for producing the thermoplastic resin foam of Comparative Example 4.
FIG. 9 is a schematic configuration diagram showing a method for producing the thermoplastic resin foam of Comparative Example 5.
FIG. 10 is a schematic configuration diagram showing a method for producing the thermoplastic resin foam of Comparative Example 6.
[0106]
【Example】
In addition, the physical property evaluation described in the Example and the comparative example was implemented in accordance with the following method.
1) Surface appearance
The case where the surface of the foam was uniform and uniform by visual observation was rated as “◯”, and the case where there was a blister like blister was marked as “X”.
2) Foaming ratio
The density of the thermoplastic resin foam having a size of 30 mm × 30 mm was measured using an electronic densimeter, the ratio to the density of the raw thermoplastic resin was calculated, and the value rounded to the first decimal place was taken as the expansion ratio.
3) Average cell diameter
A cross-sectional photograph of the foam taken with a scanning electron microscope was subjected to image processing, the equivalent circle diameter was calculated, and the value was taken as the average cell diameter.
4) Heated dimension deformation
A foam of 60 mm × 60 mm was used as a measurement sample, and a commercially available PS 10-fold foam having a distribution with a cell diameter of 100 to 400 μm was contrasted and immersed in warm water at 80 ° C. for 10 minutes. After immersion, the sample was allowed to stand for 2 hours in an environment of 23 ° C. and a humidity of 50%. The contrast sample was contracted by 0.73%. A sample having a lower change rate than the comparative foam was marked with ◯, and the others were marked with ×.
5) Stable productivity
In Examples 1 to 5 and Comparative Examples 1 to 8, extrusion foaming was continuously performed for 8 hours. In Examples 6 to 8 and Comparative Examples 9 to 12, injection foaming was continuously performed for 2 hours. The case where there was no change and the fluctuation of the added portion resin pressure was 1 MPa or less was marked with ◯, and the others were marked with x.
[0107]
Example 1
As the molding machine (4), the tandem type extruder having the first extruder (9) with a screw diameter of 50 mm and the second extruder (12) with a screw diameter of 65 mm shown in FIG. 2 was used. The carbon dioxide addition part was provided near the center of the first extruder. As a thermoplastic resin, a mixture of 100 parts of polystyrene resin pellets (Nippon Polystyrene G690N manufactured by Nippon Polystyrene Co., Ltd.) and 1.5 parts of talc was used. The material was added from the hopper (8) to the first extruder (9) and melted by heating at 220 ° C.
[0108]
Carbon dioxide was extracted directly from the liquid phase part using a siphon type liquefied carbon dioxide cylinder (1). The flow path from the liquefied carbon dioxide cylinder (1) to the plunger pump (2) is cooled with an ethylene glycol aqueous solution adjusted to −12 ° C. using the refrigerant circulator (5), and the carbon dioxide is plungerd in a liquid state. The pump (2) could be injected. At this time, the temperature of carbon dioxide was −5 ° C. Next, the plunger pump (2) was controlled so that the injected liquid carbon dioxide became 1 kg / hour, and the discharge pressure of the plunger pump (2) was adjusted by the pressure holding valve (3) so as to be 30 MPa. At this time, the volumetric efficiency of the plunger pump (2) was constant at 65%. Next, the line from the holding pressure valve (3) to the carbon dioxide addition part of the first extruder (9) is heated with a heater so as to be 50 ° C., and the carbon dioxide is turned into the molten polystyrene in the first extruder (9). Added. At this time, the molten resin pressure in the addition portion was 20 MPa. That is, carbon dioxide immediately before being dissolved in the molten polystyrene is carbon dioxide in a supercritical state having a temperature of 50 ° C. or higher and a pressure of 20 MPa.
Thus, supercritical carbon dioxide was added into the first extruder (9) at a ratio of 5 parts by weight with respect to 100 parts by weight of the molten polystyrene, and mixed uniformly with a screw.
Next, this mixture was sent to the second extruder (12), the resin temperature was adjusted to 150 ° C., and extruded from the die (13) at an extrusion rate of 20 kg / hour. The die (13) pressure at this time was 19 MPa. As the die (13), a circular die (13) having an exit gap of 0.5 mm and a diameter of 80 mm was used. The extruded polystyrene is foamed at the same time as it comes out of the die (13), and is put on a cylindrical water-cooled mandrel (14) installed at the tip of the die (13). The expanded polystyrene molded into a cylindrical shape was allowed to proceed while being cooled along the mandrel (14), and then cut with a cutter blade to prepare a expanded polystyrene sheet. The obtained expanded polystyrene sheet had a width of 630 mm and a thickness of 1.5 mm, and had a beautiful appearance. The evaluation results of the foam are shown in Table 1. It was a foam having a uniform average cell diameter, a good surface appearance, and a high expansion ratio. Further, when the foaming extrusion test was continuously operated for 8 hours, the resin pressure in the carbon dioxide addition part fluctuated in the range of 0.5 MPa due to disturbance such as pellet biting difference and lot change. The appearance, dimensions, and expansion ratio of the foam sheet were not changed, and it was possible to mold with a constant quality.
[0109]
Example 2
This example was carried out in the same manner as in Example 1, but the plunger pump (2) was controlled so that the liquid carbon dioxide was 1.8 kg / hour, and supercritical carbon dioxide was added to 100 parts by weight of molten polystyrene. It added in the 1st extruder (9) in the ratio of 9 weight part, and was mixed uniformly with the screw. Next, this mixture was sent to the second extruder (12), the resin temperature was adjusted to 120 ° C., and extruded from the die (13) at an extrusion rate of 20 kg / hour. The die pressure at this time was 25 MPa. The obtained expanded polystyrene sheet had a width of 630 mm and a thickness of 1.5 mm, and had a beautiful appearance. The evaluation results of the foam are shown in Table 1. It was a foam having a uniform average cell diameter, a good surface appearance, and a high expansion ratio. Further, when the foaming extrusion test was continuously operated for 8 hours, the resin pressure in the carbon dioxide addition part fluctuated in the range of 0.5 MPa due to disturbance such as pellet biting difference and lot change. The appearance, dimensions, and expansion ratio of the foam sheet were not changed, and it was possible to mold with a constant quality.
[0110]
Example 3
This example was carried out in the same manner as Example 1, but the flow path from the liquefied carbon dioxide cylinder (1) to the plunger pump (2) was set to −20 ° C. using the refrigerant circulator (5). Cooled with aqueous ethylene glycol solution. At this time, the temperature of carbon dioxide was −10 ° C. At this time, the volumetric efficiency of the plunger pump (2) was constant at 75%. The obtained expanded polystyrene sheet was the same as in Example 1. Further, when the foam extrusion test was continuously operated for 8 hours, it was possible to mold with a constant quality as in Example 1.
[0111]
Example 4
This example was carried out in the same manner as Example 1, but was adjusted by the pressure holding valve (3) so that the discharge pressure of the plunger pump (2) was 25 MPa. At this time, the volumetric efficiency of the plunger pump (2) was constant at 70%. The obtained expanded polystyrene sheet was the same as in Example 1. Further, when the foam extrusion test was continuously operated for 8 hours, it was possible to mold with a constant quality as in Example 1.
[0112]
Example 5
This example was carried out in the same manner as in Example 1, but the line from the pressure holding valve (3) to the carbon dioxide addition part of the first extruder (9) was heated with a heater to 100 ° C. The obtained expanded polystyrene sheet was the same as in Example 1. Further, when the foam extrusion test was continuously operated for 8 hours, it was possible to mold with a constant quality as in Example 1.
[0113]
[Table 1]
[0114]
Comparative Example 1
This comparative example was carried out in the same manner as in Example 1, but the foam extrusion test was performed at room temperature (23 ° C.) without cooling the flow path from the liquefied carbon dioxide cylinder (1) to the plunger pump (2). It was. Since carbon dioxide is sent to the plunger pump (2) in a gaseous state, it completely causes cavitation, and the volumetric efficiency of the pump becomes 0%, so that almost no carbon dioxide can be added to the first extruder (9). There wasn't. Therefore, the resin temperature could not be lowered to a predetermined temperature, and the obtained extrudate was hardly foamed. Therefore, heating dimensional deformation is not measured.
[0115]
Comparative Example 2
Although this comparative example was implemented similarly to Example 1, it adjusted with the holding pressure valve (3) so that the discharge pressure of a plunger pump (2) might be set to 6 MPa. Since the molten resin pressure in the addition part at this time was 20 MPa, as a result, the discharge pressure on the outlet side of the plunger pump (2) was 20 MPa. That is, it was added in a state where it cannot be said that the pressure was controlled to be constant by the setting of the pressure holding valve (3). The obtained expanded polystyrene sheet had a width of 630 mm and a beautiful appearance. When the cross section of the foam was observed with a scanning electron microscope, the cells were uniformly dispersed. However, when the foaming extrusion test was continuously operated for 5 hours, the resin pressure in the carbon dioxide added part fluctuated in the range of 1 MPa (with deletion), so the thickness was in the range of 1.4 mm to 1.5 mm. The density fluctuated in the range of 0.069 to 0.071 g /
[0116]
Comparative Example 3
Although this comparative example was implemented similarly to Example 1, it adjusted with the holding pressure valve (3) so that the discharge pressure of a plunger pump (2) might be set to 45 MPa. At this time, the volumetric efficiency of the plunger pump (2) fluctuated in the range of 55% to 60% and was not stable. The plunger pump (2) was controlled so that the addition of liquid carbon dioxide was 1 kg / hour, but the addition amount was not stable, and supercritical carbon dioxide was 4.5 to 100 parts by weight per 100 parts by weight of molten polystyrene. As a result, it was added to the first extruder while fluctuating in the range of 5 parts by weight. The obtained expanded polystyrene sheet had a width of 630 mm and a beautiful appearance. When the cross section of the foam was observed with a scanning electron microscope, the cells were uniformly dispersed. However, when the foam extrusion test was continuously operated for 3 hours, the thickness varied in the range of 1.4 mm to 1.6 mm, and the density varied in the range of 0.068 to 0.072 g /
[0117]
Comparative Example 4
Although this comparative example was implemented similarly to Example 1, as shown in FIG. 8, it does not pressurize with a plunger pump (2), but it is a 1st extruder (9) with only cylinder pressure (6MPa). Added in. Since the resin pressure of the carbon dioxide added part was higher than the cylinder pressure of 20 MPa, almost no carbon dioxide could be added into the first extruder (9). Therefore, the resin temperature could not be lowered to a predetermined temperature, and the obtained extrudate was hardly foamed. Therefore, heating dimensional deformation is not measured.
[0118]
Comparative Example 5
In this comparative example, as shown in FIG. 9, the outlet of the liquefied carbon dioxide cylinder (1) is set to 3.4 MPa via the pressure reducing valve (17), and the first extrusion is directly performed via the mass flow meter (7). Added into machine (9). Since the resin pressure of the addition part of carbon dioxide was higher than the cylinder pressure at 20 MPa, almost no carbon dioxide could be added into the first extruder (9). Therefore, the resin temperature could not be lowered to a predetermined temperature, and the obtained extrudate was hardly foamed.
[0119]
Comparative Example 6
This comparative example was carried out in the same manner as in Example 1, but instead of the siphon type liquefied carbon dioxide cylinder (1) as shown in FIG. . The pressure was raised to 6.5 MPa by the first compressor (18), then raised to 31 MPa by the second compressor (19), and the tank (20) controlled at 50 ° C. was stored at a pressure of 31 MPa. Next, the carbon dioxide in the tank (20) is passed through the pressure reducing valve (17), where the pressure is reduced to 27 MPa, and while directly observing the mass flow meter (7), the carbon dioxide is reduced to 1 kg / The time was adjusted and added to the inside of the first extruder (9). However, the amount of addition was not stable, and the result was that carbon dioxide was added to the first extruder (9) in a state where the amount of carbon dioxide fluctuated in the range of 4 to 6 parts by weight per 100 parts by weight of molten polystyrene. . The obtained expanded polystyrene sheet had a width of 630 mm and a beautiful appearance, but when the cross section of the foam was observed with a scanning electron microscope, the cell diameter distribution was not uniform. When the foam extrusion test was continuously operated for 1 hour, the thickness varied in the range of 1.3 to 1.6 mm, the density varied in the range of 0.062 to 0.072 g /
[0120]
[Table 2]
[0121]
Example 6
As the molding machine (4), a resin plasticizing cylinder (23) having a screw (10) with a diameter of 30 mm and L / D = 30 shown in FIG. 3 was used. The carbon dioxide addition part was provided near the center of the resin plasticizing cylinder (23). As a thermoplastic resin, a mixture of 100 parts of polystyrene resin pellets (Nippon Polystyrene G690N manufactured by Nippon Polystyrene Co., Ltd.) and 1.5 parts of talc is used, and the material is added to the resin plasticizing cylinder (23) from the hopper (8). And heated and melted at 250 ° C.
[0122]
Carbon dioxide was extracted directly from the liquid phase part using a siphon type liquefied carbon dioxide cylinder (1). The flow path from the liquefied carbon dioxide cylinder (1) to the plunger pump (2) is cooled with an ethylene glycol aqueous solution adjusted to −12 ° C. using the refrigerant circulator (5), and the carbon dioxide is plungerd in a liquid state. The pump (2) could be injected. At this time, the temperature of carbon dioxide was −5 ° C. Next, the plunger pump (2) is controlled so that the injected liquid carbon dioxide is 10 parts by weight with respect to 100 parts by weight of the polystyrene resin, and the pressure holding valve (3 is set so that the discharge pressure of the plunger pump (2) becomes 30 MPa. ). At this time, the volumetric efficiency of the plunger pump (2) was constant at 65%. Next, the line from the pressure holding valve (3) to the carbon dioxide addition part of the resin plasticizing cylinder (23) was heated with a heater to 50 ° C., and carbon dioxide was added into the resin plasticizing cylinder (23). At this time, the molten resin pressure in the addition portion was 20 MPa. That is, carbon dioxide immediately before being dissolved in the molten polystyrene is carbon dioxide in a supercritical state having a temperature of 50 ° C. or higher and a pressure of 20 MPa.
[0123]
In this way, supercritical carbon dioxide was added to the completely melted polystyrene. Carbon dioxide and molten polystyrene are kneaded and dissolved in a resin plasticizing cylinder (23), the temperature of the molten polystyrene is gradually cooled to 180 ° C, and weighed to an injection device (29) set at 180 ° C, then set to 40 ° C. Was injected into the mold (30). At this time, the mold (30) immediately before being injected was filled with nitrogen gas under a pressure of 8 MPa. After the injection is finished, the cavity is sized 60 × 60 × 1 (thickness) mm in order to remove the nitrogen gas filled in the mold (30) in 1 second and further increase the expansion ratio to about 10 times. The core of the mold (30) was retracted 9 mm to obtain a flat plate (60 mm × 60 mm × 10 mm) which is a thermoplastic resin foam.
The evaluation results of the foam are shown in Table 3. It was a foam having a uniform average cell diameter, a good surface appearance, and a high expansion ratio. In addition, when the foam injection test was continuously operated for 2 hours, the resin pressure in the carbon dioxide addition part fluctuated in the range of 0.5 MPa due to disturbance such as a difference in the bite of the pellets and a lot change. The appearance, dimensions, and expansion ratio of the foam were not changed, and molding was possible with a constant quality.
[0124]
Example 7
In Example 6, a flat plate (60 mm × 60 mm × 15 mm) which is a thermoplastic resin foam is obtained in accordance with Example 1 except that the retraction amount of the core of the mold (30) is 14 mm and the set magnification is about 15 times. It was.
The evaluation results of the foam are shown in Table 3. It was a foam having a uniform average cell diameter, a good surface appearance, and a high expansion ratio. In addition, when the foam injection test was continuously operated for 2 hours, the resin pressure in the carbon dioxide addition part fluctuated in the range of 0.5 MPa due to disturbance such as a difference in the bite of the pellets and a lot change. The appearance, dimensions, and expansion ratio of the foam were not changed, and molding was possible with a constant quality.
[0125]
Example 8
In Example 6, a flat plate (60 mm × 60 mm × 20 mm) which is a thermoplastic resin foam was obtained according to Example 1 except that the retreat amount of the core of the mold (30) was 19 mm and the set magnification was 20 times. .
The evaluation results of the foam are shown in Table 3. It was a foam having a uniform average cell diameter, a good surface appearance, and a high expansion ratio. In addition, when the foam injection test was continuously operated for 2 hours, the resin pressure in the carbon dioxide addition part fluctuated in the range of 0.5 MPa due to disturbance such as a difference in the bite of the pellets and a lot change. The appearance, dimensions, and expansion ratio of the foam were not changed, and molding was possible with a constant quality.
[0126]
[Table 3]
[0127]
Comparative Example 7
Although this comparative example was carried out in the same manner as in Example 6, the foam injection test was performed at room temperature (23 ° C.) without cooling the flow path from the liquefied carbon dioxide cylinder (1) to the plunger pump (2). It was. Since carbon dioxide is sent to the plunger pump (2) in a gaseous state, it causes complete cavitation, and the volumetric efficiency of the pump becomes 0%, and almost all of the carbon dioxide is added into the resin plasticizing cylinder (23). could not. Therefore, the resin temperature could not be lowered to a predetermined temperature, and the obtained molded product was hardly foamed.
[0128]
Comparative Example 8
This comparative example was carried out in the same manner as in Example 6. However, the pressure was not increased by the plunger pump (2), and carbon dioxide was added into the resin plasticizing cylinder (23) only by the cylinder pressure (6 MPa). Since the resin pressure in the carbon dioxide addition part was 20 MPa, which was higher than the cylinder pressure, almost no carbon dioxide could be added into the resin plasticizing cylinder (23). Therefore, the resin temperature could not be lowered to a predetermined temperature, and the obtained molded product was hardly foamed.
[0129]
Comparative Example 9
Although this comparative example was implemented similarly to Example 6, it replaced with the siphon type | mold liquefied carbon dioxide cylinder (1), and used the carbon dioxide cylinder (16) of the type taken out from an air layer part. The pressure was raised to 6.5 MPa by the first compressor (18), then raised to 31 MPa by the second compressor (19), and the tank (20) controlled at 50 ° C. was stored at a pressure of 31 MPa. Next, the carbon dioxide in the tank (20) is passed through the pressure reducing valve (17), where the pressure is reduced to 27 MPa. The amount was adjusted so as to be 10 parts by weight, and added to the resin plasticizing cylinder (23). However, the addition amount is not stable, and the result is that carbon dioxide is added in the range of 8 to 11 parts by weight per hour with respect to 100 parts by weight of the molten polystyrene and is added into the resin plasticizing cylinder (23). It was.
The obtained foam had good surface appearance. However, when the foam injection test was continuously operated for 1 hour, the pressure of the carbon dioxide added portion fluctuated within the range of 1 MPa. Therefore, it was impossible to mold with a constant quality.
[0130]
[Table 4]
[0131]
【The invention's effect】
By using the present invention, a predetermined amount of carbon dioxide can be quantitatively and stably added to the molten thermoplastic resin in the molding machine (4). As a result, the heat of low foam products to high foam products can be increased. A plastic resin foam can be manufactured with a constant quality. In addition, since the amount of carbon dioxide added can be easily and freely controlled, it is possible to manufacture from low foam products to high foam products. Furthermore, since carbon dioxide is used as a substitute for conventional chlorofluorocarbon and butane, there is no concern about air pollution or ozone layer destruction, and it is excellent in safety.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a supercritical carbon dioxide addition method of the present invention.
FIG. 2 is a schematic configuration diagram showing an example of a method for producing a thermoplastic resin foam according to the present invention.
FIG. 3 is a schematic configuration diagram showing an example of a method for producing a thermoplastic resin foam according to the present invention.
FIG. 4 is a schematic configuration diagram showing an example of a method for producing a thermoplastic resin foam according to the present invention.
FIG. 5 is a schematic configuration diagram showing an example of a method for producing a thermoplastic resin foam according to the present invention.
FIG. 6 is a schematic configuration diagram showing an example of a method for producing a thermoplastic resin foam according to the present invention.
FIG. 7 is a schematic configuration diagram showing an example of a method for producing a thermoplastic resin foam according to the present invention.
8 is a schematic configuration diagram showing a method for producing a thermoplastic resin foam of Comparative Example 4. FIG.
9 is a schematic configuration diagram showing a method for producing a thermoplastic resin foam of Comparative Example 5. FIG.
10 is a schematic configuration diagram showing a method for producing a thermoplastic resin foam of Comparative Example 6. FIG.
[Explanation of symbols]
(1) Liquefied carbon dioxide cylinder
(2) Metering pump
(3) Holding pressure valve
(4) Molding machine
(5) Refrigerant circulator
(6) Heater
(7) Flow meter
(8) Hopper
(9) First extruder
(10) Screw
(11) Connecting part
(12) Second extruder
(13) Dice
(14) Mandrel
(15) Foam sheet
(16) Carbon dioxide cylinder
(17) Pressure reducing valve
(18) First compressor
(19) Second compressor
(20) Tank
(21) Flow controller
(22) In-line injection molding machine
(23) Resin plasticizing cylinder
(24) Adapter
(25) Resin accumulator plunger
(26) Resin accumulator device
(27) Open / close valve
(28) Injection plunger
(29) Injection device
(30) Mold
(31) Gas cylinder
(32) Pressure control valve
(33) Open / close valve
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19912299A JP3998374B2 (en) | 1998-07-16 | 1999-07-13 | Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-202059 | 1998-07-16 | ||
JP20205998 | 1998-07-16 | ||
JP19912299A JP3998374B2 (en) | 1998-07-16 | 1999-07-13 | Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000084968A JP2000084968A (en) | 2000-03-28 |
JP3998374B2 true JP3998374B2 (en) | 2007-10-24 |
Family
ID=26511356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19912299A Expired - Lifetime JP3998374B2 (en) | 1998-07-16 | 1999-07-13 | Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3998374B2 (en) |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001206969A (en) * | 2000-01-25 | 2001-07-31 | Mitsui Chemicals Inc | Olefinic resin foamed sheet for thermoforming, and formed container composed of the foamed sheet |
JP3590559B2 (en) * | 2000-03-14 | 2004-11-17 | 積水化学工業株式会社 | Injection molding equipment for thermoplastic resin molded products |
JP4233240B2 (en) * | 2000-06-22 | 2009-03-04 | 三井化学株式会社 | Injection foam molding method, and injection molding machine and resin composition suitable therefor |
JP4640814B2 (en) * | 2000-06-22 | 2011-03-02 | 三井化学株式会社 | Thermoplastic resin foam |
DE60117322T2 (en) | 2000-06-22 | 2006-11-02 | Mitsui Chemicals, Inc. | Method, apparatus and composition for injection molding foam |
JP2004510021A (en) * | 2000-09-29 | 2004-04-02 | トレクセル・インコーポレーテッド | Fiber filler molding products |
JP2007238958A (en) * | 2000-10-18 | 2007-09-20 | Mitsui Chemicals Inc | Foam of urethane-based thermoplastic elastomer composition and process for producing the foam |
JP2002201301A (en) * | 2000-10-18 | 2002-07-19 | Mitsui Chemicals Inc | Foam of urethane-based thermoplastic elastomer composition, and method for producing the same |
DE10062659B4 (en) * | 2000-12-15 | 2005-09-22 | Demag Ergotech Gmbh | Foaming agent loading and mixing device |
JP3979017B2 (en) * | 2001-02-28 | 2007-09-19 | 三井化学株式会社 | Process for producing modified thermoplastic resin and modified thermoplastic resin |
JP4610782B2 (en) * | 2001-05-01 | 2011-01-12 | 日本ポリウレタン工業株式会社 | Construction method of embankment and manufacturing method of polyurethane foam for civil engineering |
JP2003039474A (en) * | 2001-07-30 | 2003-02-13 | Japan Steel Works Ltd:The | Supplying apparatus for gas for foaming agent, and molding apparatus for thermoplastic resin foamed item and molding method for thermoplastic resin foamed item by use of it |
JP2003291196A (en) * | 2002-03-29 | 2003-10-14 | Kanegafuchi Chem Ind Co Ltd | Production method for polypropylene resin foam |
JP2004107615A (en) * | 2002-07-23 | 2004-04-08 | Mitsui Chemicals Inc | Aliphatic polyester composition foamed material,its preparation process and aliphatic polyester composition foam molded article |
JP4192115B2 (en) * | 2003-05-19 | 2008-12-03 | 株式会社リコー | Method for producing electrophotographic toner by kneading and pulverization method and kneaded material used therefor |
JP2005161596A (en) * | 2003-12-01 | 2005-06-23 | Mitsui Chemicals Inc | Manufacturing method of thermoplastic resin blend |
JP2005284211A (en) * | 2004-03-31 | 2005-10-13 | Kawata Mfg Co Ltd | Method for manufacturing resin fine powder |
JP4563739B2 (en) * | 2004-07-09 | 2010-10-13 | 株式会社日本製鋼所 | Extruded product manufacturing method and manufacturing apparatus |
JP4550646B2 (en) * | 2005-04-06 | 2010-09-22 | 株式会社日本製鋼所 | Method for producing foamed molded article made of thermoplastic resin or mixture thereof |
JP4532374B2 (en) * | 2005-09-15 | 2010-08-25 | 株式会社日本製鋼所 | Method and apparatus for producing thermoplastic resin foam |
JP5117757B2 (en) * | 2007-04-26 | 2013-01-16 | 日東電工株式会社 | Light reflecting member including polyolefin resin foam and method for producing the same |
JP5160336B2 (en) * | 2008-08-07 | 2013-03-13 | テクノポリマー株式会社 | Resin foam molding and method for producing the same |
JP2010270228A (en) * | 2009-05-21 | 2010-12-02 | Sekisui Plastics Co Ltd | Method for producing polypropylene-based resin foam and polypropylene-based resin foam |
EP2746025B1 (en) * | 2011-08-19 | 2017-01-11 | Hitachi Maxell, Ltd. | Kneading device and method for producing thermoplastic resin molded body |
WO2013031989A1 (en) * | 2011-08-31 | 2013-03-07 | 住友化学株式会社 | Method for producing foam molded article, resin material, foam article, heat-insulating member, and fluid retention member |
CN102432910B (en) * | 2011-09-19 | 2013-05-01 | 中山大学 | Supercritical CO2 foaming system used for microporous polymer preparation |
JP6395556B2 (en) * | 2014-10-15 | 2018-09-26 | 旭有機材株式会社 | Mixing apparatus, on-site blowing type foaming machine, and mixing method |
EP3138680B1 (en) * | 2015-09-02 | 2020-05-27 | Plastron S.à.r.l. | Method for the production of hollow articles in a blow-moulding process with reduced cycle time |
JP6566888B2 (en) * | 2016-02-16 | 2019-08-28 | 大陽日酸株式会社 | Impurity analysis method and apparatus |
JP2017144630A (en) * | 2016-02-17 | 2017-08-24 | キョーラク株式会社 | Method for extruding foamed resin, and apparatus for extruding foamed resin |
CN106346684B (en) * | 2016-10-13 | 2018-09-21 | 宁波格林美孚新材料科技有限公司 | A kind of foaming and setting device and its foaming and setting method |
US11806908B2 (en) | 2017-06-05 | 2023-11-07 | Otrajet Inc. | Extruding system and method of extruding |
TWI637987B (en) * | 2017-06-05 | 2018-10-11 | 歐特捷實業股份有限公司 | Supercritical fluid and polymer raw material melt mixing mechanism |
JP6831317B2 (en) * | 2017-11-07 | 2021-02-17 | 株式会社神戸製鋼所 | Mixer |
CN109739285A (en) * | 2019-02-20 | 2019-05-10 | 郑州大学 | A kind of high temperature and pressure foam device of supercritical carbon dioxide |
CN109955423B (en) * | 2019-04-30 | 2024-04-02 | 广东奔迪新材料科技有限公司 | Large-scale ultrahigh-pressure thermoplastic polymer foaming molding device and method |
US11712826B2 (en) * | 2019-07-09 | 2023-08-01 | Otrajet Inc. | Injection molding system and injection molding method |
US11766812B2 (en) | 2019-10-15 | 2023-09-26 | King Steel Machinery Co., Ltd. | Injection molding system and injection molding method |
US11267175B2 (en) | 2019-10-15 | 2022-03-08 | King Steel Machinery Co., Ltd. | Injection molding system |
US12053912B2 (en) | 2020-07-13 | 2024-08-06 | King Steel Machinery Co., Ltd. | Extruding system and method of extruding a mixture of a polymeric material and a blowing agent |
TWI756809B (en) * | 2020-09-02 | 2022-03-01 | 歐特捷實業股份有限公司 | Hybrid method and system therefor |
JP7534280B2 (en) * | 2021-12-03 | 2024-08-14 | トヨタ自動車株式会社 | Manufacturing method of olefin-based resin porous body, manufacturing method of battery separator, and manufacturing device |
CN115216106B (en) * | 2022-02-21 | 2023-09-22 | 道一高分子聚合物(宁波)有限公司 | Preparation process of novel wear-resistant and anti-skid supercritical foaming material |
CN114801013A (en) * | 2022-04-11 | 2022-07-29 | 安徽省众和电仪科技有限公司 | Physical foaming type RS485 communication bus cable production process |
CN115850954A (en) * | 2022-11-22 | 2023-03-28 | 东莞海瑞斯新材料科技有限公司 | Supercritical foaming thermoplastic elastomer material and preparation method and application thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3555986B2 (en) * | 1994-07-01 | 2004-08-18 | 三井化学株式会社 | Method for producing thermoplastic resin foam |
JP4144916B2 (en) * | 1996-04-04 | 2008-09-03 | 三井化学株式会社 | Thermoplastic resin foam injection molded body and method for producing the same |
JP3655436B2 (en) * | 1996-07-10 | 2005-06-02 | 三井化学株式会社 | Thermoplastic resin foam and method for producing the same |
-
1999
- 1999-07-13 JP JP19912299A patent/JP3998374B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000084968A (en) | 2000-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3998374B2 (en) | Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method | |
JP4144916B2 (en) | Thermoplastic resin foam injection molded body and method for producing the same | |
KR100339311B1 (en) | Addition method of supercritical carbon dioxide, and production process of expanded thermoplastic resin product by making use of the addition method | |
US5830393A (en) | Process for preparing expanded product of thermoplastic resin | |
US5997781A (en) | Injection-expansion molded, thermoplastic resin product and production process thereof | |
KR101495452B1 (en) | Polymer pellets containing supercritical fluid and methods of making and using | |
JP5497410B2 (en) | Foam and production method thereof | |
JP4339296B2 (en) | Method for producing thermoplastic resin foam injection molded article | |
JPH0811190A (en) | Production of thermoplastic resin foam | |
JP3655436B2 (en) | Thermoplastic resin foam and method for producing the same | |
JPH1024436A (en) | Thermoplastic resin foam and its manufacture | |
JPH10175249A (en) | Thermoplastic resin foam and its manufacture | |
JP2004307662A (en) | Method for producing crystalline polylactic acid-based resin foam | |
JP2004017285A (en) | Method for molding thin wall foamed molding, thin wall foamed molding and apparatus for molding foamed molding | |
JP4002041B2 (en) | Polyolefin composition foam and method for producing the same | |
JPH1024476A (en) | Thermoplastic resin foam and its production | |
JP2002530497A (en) | Microporous polyvinyl chloride foam | |
JP2004066680A (en) | Storage method for material soaked with gas | |
JP3745846B2 (en) | Production method of biodegradable resin foam sheet | |
JP2002321256A (en) | Mold for foam injection molding and foamed molded product | |
Lu et al. | Current research and patents of polymer foaming | |
JP4550646B2 (en) | Method for producing foamed molded article made of thermoplastic resin or mixture thereof | |
JPH10175248A (en) | Thermoplastic resin foam and its manufacture | |
JP3910723B2 (en) | Method for producing molded thermoplastic resin | |
JP2006002055A (en) | Method for producing polymer alloy molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040914 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070619 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070807 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070807 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3998374 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110817 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120817 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120817 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |