JP3555986B2 - Method for producing thermoplastic resin foam - Google Patents
Method for producing thermoplastic resin foam Download PDFInfo
- Publication number
- JP3555986B2 JP3555986B2 JP15099094A JP15099094A JP3555986B2 JP 3555986 B2 JP3555986 B2 JP 3555986B2 JP 15099094 A JP15099094 A JP 15099094A JP 15099094 A JP15099094 A JP 15099094A JP 3555986 B2 JP3555986 B2 JP 3555986B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- extruder
- producing
- carbon dioxide
- resin foam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/3469—Cell or pore nucleation
- B29C44/348—Cell or pore nucleation by regulating the temperature and/or the pressure, e.g. suppression of foaming until the pressure is rapidly decreased
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/375—Plasticisers, homogenisers or feeders comprising two or more stages
- B29C48/385—Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/375—Plasticisers, homogenisers or feeders comprising two or more stages
- B29C48/39—Plasticisers, homogenisers or feeders comprising two or more stages a first extruder feeding the melt into an intermediate location of a second extruder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92514—Pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92704—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92857—Extrusion unit
- B29C2948/92876—Feeding, melting, plasticising or pumping zones, e.g. the melt itself
- B29C2948/92895—Barrel or housing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92857—Extrusion unit
- B29C2948/92904—Die; Nozzle zone
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Molding Of Porous Articles (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、発泡剤として不活性ガスを用いた熱可塑性樹脂の発泡成形体を得るための製造方法に関する。さらに詳しくは、0.1〜20μmの径を有する微細で多数の気泡を均一に分散させた熱可塑性樹脂発泡体の製造方法に関する。
【0002】
【従来の技術】
熱可塑性樹脂発泡体は、化学発泡剤やガス発泡剤を用いて製造する方法が知られている。化学発泡法は、一般に原料ペレットと、成形温度で分解してガスを発生する低分子量の有機発泡剤を混合し、押出機で該発泡剤の分解温度以上に加熱することにより発泡成形する方法である。この方法は、ガス発生がシャープであり、分解温度も発泡助剤等を添加することによって容易に調整できる上に、微細な独立気泡を有する発泡体を得ることができる。しかし、これらの発泡剤は、コストが高いことに加えて、発泡体中に残存する発泡剤の分解残留物の為に、発泡体の変色、臭気の発生、食品衛生上の問題などを生じる。また、化学発泡剤が原因である押出機のダイスの汚れおよびそれに伴う成形不良についても問題となっている。
【0003】
これに対し、ガス発泡法は、押出機で樹脂を溶融したところに、ブタン、ペンタン、ジクロロジフロロメタンのような低沸点有機化合物を供給し、混練した後、低圧域に放出することにより発泡成形する方法である。この方法に用いられる低沸点有機化合物は、樹脂に対して親和性があるため溶解性に優れ、また、保持性にも優れていることから高倍率発泡体を得ることができるという特徴を持っている。しかしながら、これらの発泡剤はコストが高いことに加え、可燃性や毒性等の危険性を有しており、大気汚染の問題を生じる可能性も持っている。また、ジクロロジフロロメタンをはじめとするフロン系ガスはオゾン層破壊の環境問題から全廃の方向へ進んでいる。
【0004】
このような従来法の問題点を解決するために、クリーンでコストがかからない炭酸ガス、窒素等の不活性ガスを発泡剤とする方法が数多く提案されている。しかしながら、不活性ガスは樹脂との親和性が低いことから、溶解性に乏しい。このため発泡体は、気泡径が大きく、不均一で、気泡密度が小さいため、外観性、機械的強度、熱伝導性、発泡倍率等の点に問題があった。
【0005】
これらの問題点を解決する技術として、米国特許4473665号明細書には、2〜25μmの径を有する微細な気泡を均一に分散させた発泡成形体を得るための製造方法が記載されている。この方法では、まず、加圧下で、不活性ガスを熱可塑性樹脂製シート中に飽和するまで含浸させる。その後、熱可塑性樹脂のガラス転移温度まで加熱してから、減圧を行い、樹脂に含浸しているガスを過飽和状態にして、気泡核を生成し、急冷することによって、気泡の成長を制御する。または、予め、加圧下で不活性ガスを飽和させた熱可塑性樹脂のペレットを押出機により高圧下で押し出し、加圧下で冷却する。その後、加熱減圧し、気泡核を生成し、冷却して気泡径を制御する。これらの方法によって、微細で多数の気泡を有する発泡体を得ることができる。しかし、不活性ガスは樹脂との親和性が低いことから、樹脂中にガスを完全に含浸させるのに十数時間を要してしまい、工業的に実施するのは不可能である。
【0006】
米国特許5158986号明細書には、発泡剤として超臨界流体を用い、これを熱可塑性樹脂に含浸させることにより、極めて微細な気泡径と大きな気泡密度を有する発泡体を得る技術が記述されている。超臨界流体は、温度と圧力を制御することにより、その密度、粘度、拡散係数を劇的に変化させることが可能である。そのため樹脂との溶解性を高めることができ、また、樹脂中での拡散速度も大きくなることから、短時間でガスを樹脂中に含浸させることが可能となる。この方法では、熱可塑性樹脂を押出機によりシート化し、超臨界状態の二酸化炭素で満たされた 加圧室に導入し、該シート中に二酸化炭素を含浸した後、大気圧下の発泡室においてヒーターで加熱し発泡させ、発泡体を得る方法と、押出機で樹脂を溶融したところへ超臨界状態の二酸化炭素を含浸させ、シート状に押し出した成形体を加圧室に導入し、その圧力変化により気泡核を生成し、加熱冷却により、気泡径、気泡密度を制御し、発泡体を得る方法が提案されている。しかしながら、いずれの方法も大規模な高圧設備が必要であり、莫大な設備コストを要し、作業効率も悪く、工業化するのは困難である。また前者の方法は、シート状の成形体に直接含浸させるため、二酸化炭素を成形体に完全に浸透させるには長時間を有し、後者の方法は、溶融樹脂中に含浸させるため、前者の方法よりは二酸化炭素の浸透速度は速いが、押出機一台のみの混練では、二酸化炭素の溶解は不完全であり、微細で多数の気泡を有する発泡体を得ることはできない。
【0007】
【発明が解決しようとする課題】
本発明は、従来法である不活性ガスの樹脂への含浸が長時間を要する工程、または、樹脂への含浸が不完全である工程、および工業化を実施するには大規模な設備を必要とするという問題点を克服し、簡単な工程および設備で、しかも量産しうる、工業的に実施するのに有利な微細で多数の気泡を均一に有する熱可塑性樹脂発泡体の製造方法を提供するためになされたものである。
【0008】
【課題を解決するための手段】
本発明者らは、工業化可能な不活性ガスを用いた微細で多数の気泡を均一に有する熱可塑性樹脂発泡体の製造方法について鋭意研究を重ねた結果、2台の押出機とそれらを繋ぐ混合部を設け、熱可塑性樹脂と不活性ガスとを十分に混練、混合し、完全相溶状態を形成することによって、連続的にしかも短時間で、微細で多数の気泡を均一に有する熱可塑性樹脂発泡体を製造しうることを見いだし、本発明に至った。
【0009】
すなわち本発明は、第1押出機(1)とこれに繋がる混合部を有するアダプター(2)により、溶融した熱可塑性樹脂に発泡剤である二酸化炭素を含浸させ、熱可塑性樹脂と二酸化炭素が完全相溶状態となった溶融体を形成するガス溶解工程と、該溶融体を第2押出機(3)により、圧力を75〜400kg/cm 2 の範囲内で維持したまま、溶融樹脂の温度を下げる冷却工程と、該溶融体の急激な圧力低下により多数の気泡核を発生させる核発生工程(4)と、押出成形された発泡体の気泡径を制御する発泡制御工程(5)からなることを特徴とする微細で多数の気泡を均一に有する熱可塑性樹脂発泡体の製造方法である。
【0010】
本発明に用いられる熱可塑性樹脂としては、ポリスチレン、スチレン共重合体(例えば、ブタジエン・スチレン共重合体、アクリロニトリル・スチレン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体等)、ポリエチレン、ポリプロピレン、エチレン−プロピレン樹脂、エチレン−エチルアクリレート樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリブテン、ポリカーボネート、ポリアセタール、ポリフェニレンオキシド、ポリビニルアルコール、ポリメチルメタクリレート、飽和ポリエステル樹脂(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、生分解性ポリエステル樹脂(例えば、ポリ乳酸のようなヒドロキシカルボン酸縮合物、ポリブチレンサクシネートのようなジオールとジカルボン酸の縮合物等)、ポリアミド樹脂、ポリイミド樹脂、フッ素樹脂、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、ポリエーテルエーテルケトン、液晶ポリマー等の1種または2種以上の混合物が挙げられる。
【0011】
これらの熱可塑性樹脂の中でも、特に、ポリスチレン、スチレン共重合体が好ましい。また、本発明においては、目的を損なわない範囲で、組成物中に、必要に応じて、発泡助剤、顔料、染料、滑剤、抗酸化剤、充填剤、可塑剤、核剤、難燃剤、帯電防止剤、紫外線防止剤、架橋剤、抗菌剤等を添加することができる。
【0012】
本発明に用いられる気泡核となる不活性ガスとしては、二酸化炭素、窒素、アルゴン、ヘリウム等が挙げられるがこれらに限定されない。また、これら単独でも2種以上の混合物でも使用できる。これらのガスの中でも、安全性、熱可塑性樹脂への浸透性の点から考慮して、二酸化炭素および窒素が特に好ましい。
【0013】
本発明の一例を図1で説明する。熱可塑性樹脂をホッパー(6)より第1押出機(1)中に供給し、加熱溶融させる。また、気泡核となる不活性ガスは、ガスボンベ(7)より昇圧ポンプ(8)に輸送され、そこで昇圧される。続いてアキュームレータ(9)において圧力、温度の制御を行い、第1押出機(1)内の溶融樹脂中に供給される。このとき、第1押出機内に存在する不活性ガスが、樹脂に対する溶解拡散を大幅に高め、短時間で樹脂中に浸透することを可能とする臨界圧力以上で、臨界温度以上の超臨界状態であることが好ましい。例えば、二酸化炭素の場合、臨界圧力は75.3kg/cm2、臨界温度は31.35℃であり、押出機内条件は、圧力が75〜400kg/cm2、温度が100〜500℃の範囲内が好ましい。また、第1押出機(1)内に供給する不活性ガスが、すでに超臨界状態であっても構わない。
【0014】
第1押出機(1)のバレル(10)中で不活性ガスと溶融樹脂とがスクリュウ(11)により混練される。次に熱可塑性樹脂に対する不活性ガスの溶解性を高めるため、不活性ガス/熱可塑性樹脂混合溶融体は、第1押出機(1)から圧力、温度を制御した混合部を有するアダプター(2)へと送られ、更に混合される。このアダプター(2)での混合は、スタティックミキサーが好ましい。このアダプター(2)での混合により、樹脂中での不活性ガスの溶解拡散が急速に進行し、該混合溶融体を完全相溶状態である溶融体へと短時間で変化させることが可能となる。このアダプター(2)でのガス溶解工程が行われないと、不活性ガスの溶解が不完全となり、微細で多数の気泡を均一に有する発泡体を得ることが困難となる。なぜなら、微細で多数の気泡の発現は、樹脂に対する不活性ガスの含浸量と相溶性に大きく依存するからである。
【0015】
次に該溶融体を第2押出機(3)へと送入し、圧力を維持したまま発泡に適した温度、すなわち、発泡工程である核生成デバイス(4)内の温度にまで下げていく。この第2押出機(3)を用いた冷却工程は、核生成に適した温度条件に無理なく近づけるための工程である。この工程で十分に冷却することにより、発泡時における発泡体の気泡径を制御しやすくなり、連続的に、しかも安定的に、微細で多数の気泡を均一に有する熱可塑性樹脂発泡体の製造が可能となる。
【0016】
次に該溶融体を核生成デバイス(4)により急激な圧力低下を生じさせ、不活性ガスを過飽和状態にする。過飽和状態になった該溶融体は、熱的不安定状態となり、多数の気泡核を発生させる。また、一般的にガスが含まれている樹脂のガラス転移温度は、ガスの含浸量に比例して、低下することが知られているが、核生成デバイス(4)内の温度は、ガスが含浸した樹脂のガラス転移温度以上であることが好ましい。この核生成した発泡体をシート状に押出成形する。
【0017】
この発泡シートを速やかに冷却して、発生した気泡の成長を制御し、微細で多数の気泡を均一に有する熱可塑性樹脂発泡体を得る。この発泡制御工程では、スチールベルト型冷却装置(5)を用いて、速やかに該熱可塑性樹脂発泡シート(12)を挟み込み、冷却する方法が好ましい。
【0018】
本発明の方法では、発泡剤である不活性ガスを押出機中の溶融樹脂に供給し、2台の押出機とそれらを繋ぐ混合部を有するアダプターを用いて十分に混合していることから、樹脂に対する不活性ガスの溶解拡散速度が向上する。この方法によって、連続的にしかも短時間で、微細で多数の気泡を均一に有する熱可塑性樹脂発泡体の製造が可能となる。
【0019】
【実施例】
以下、実施例にて本発明を説明する。
(実施例1)
ポリスチレン樹脂(三井東圧化学(株)製、トーポレックス555−57)のペレットをホッパーより第1押出機に供給し、200℃で加熱溶融させた。また、気泡核となる二酸化炭素を液化炭酸ガスボンベより昇圧ポンプに輸送し、そこで昇圧した。ガスとなった二酸化炭素を120kg/cm2の圧力で、該樹脂が完全に溶融したところに供給した。第1押出機中で二酸化炭素と溶融樹脂を混練溶解させ、続いてこの二酸化炭素/樹脂混合溶融体は、圧力を100kg/cm2、温度を180℃に制御したスタティックミキサーへと送られ、更に混合した。次に該溶融体を第2押出機へと送入し、徐々に温度を下げていった。このとき、押出機先端の温度を130℃とした。該溶融体を120℃に制御した核生成デバイス内で急激に大気圧まで減圧し発泡させ、シート状に押し出した。該発泡シートをスチールベルト型冷却装置に速やかに挟み込み、十分に冷却することにより、ポリスチレン樹脂発泡シートを得た。
得られたポリスチレン樹脂発泡シートの厚みは約2mmであり、発泡倍率は、約13倍(密度が0.08g/cm3)であった。この発泡体の断面を走査型電子顕微鏡で観察したところ、平均径が約15μmの気泡が均一に分散しており、その気泡密度は約109個/cm3であった。
【0020】
(実施例2)
ポリスチレン樹脂(三井東圧化学(株)製、トーポレックス555−57)のペレットをホッパーより第1押出機に供給し、200℃で加熱溶融させた。また、気泡核となる二酸化炭素を液化炭酸ガスボンベより昇圧ポンプに輸送し、そこで昇圧し、アキュームレータにおいて圧力を120kg/cm2、温度を100℃に調整し、超臨界状態とした。この超臨界状態の二酸化炭素を該樹脂が完全に溶融したところに供給した。第1押出機のバレル中で超臨界状態の二酸化炭素と溶融樹脂を混練溶解させ、続いてこの二酸化炭素/樹脂混合溶融体は、圧力を100kg/cm2、温度を170℃に制御したスタティックミキサーへと送られ、更に混合した。次に該溶融体を第2押出機へと送入し、徐々に温度を下げていった。このとき、押出機先端の温度を115℃とした。該溶融体を105℃に制御した核生成デバイス内で急激に大気圧まで減圧し発泡させた。この発泡樹脂をシート状に押し出し、スチールベルト型冷却装置に速やかに挟み込み、十分に冷却することにより、ポリスチレン樹脂発泡シートを得た。
得られたポリスチレン樹脂発泡シートの厚みは約2mmであり、発泡倍率は、約15倍(密度が0.07g/cm3)であった。この発泡体の断面を走査型電子顕微鏡で観察したところ、平均径が約3μmの気泡が均一に分散しており、その気泡密度は約1011個/cm3であった。
【0021】
(比較例)
図2に示すように、スタティックミキサーと第2押出機を省略し、第1押出機に直接、核生成デバイスを接続し、実施例2と同様にして超臨界状態の二酸化炭素をポリスチレン樹脂が完全に溶融したところに供給した。押出機中で超臨界状態の二酸化炭素と溶融樹脂を混練溶解させ、140℃に制御した核生成デバイス内で急激に大気圧まで減圧し発泡させた。この発泡樹脂をシート状に押し出し、冷却装置を通過させ、十分に冷却することにより、ポリスチレン樹脂発泡シートを得た。
得られたポリスチレン樹脂発泡シートの厚みは約2mmであり、発泡倍率は、約12倍(密度が0.08g/cm3)であった。この発泡体の断面を走査型電子顕微鏡で観察したところ、気泡径分布が大きく、平均気泡径が約100μm、気泡密度が約106個/cm3であった。
【0022】
【発明の効果】
本発明の方法を用いることにより、簡単な工程および設備で、しかも量産しうる、工業的に実施するのに有利な微細で多数の気泡を均一に有する熱可塑性樹脂発泡体の製造が可能となる。また、発泡剤として不活性ガスを用いていることから、大気汚染やオゾン層破壊の心配もなく、安全性にも優れている。
【図面の簡単な説明】
【図1】本発明の熱可塑性樹脂発泡体の製造方法を示す概略構成図。
【図2】比較例の熱可塑性樹脂発泡体の製造方法を示す概略構成図。
【符号の説明】
1 第1押出機
2 アダプター
3 第2押出機
4 核生成デバイス
5 冷却装置
6 ホッパー
7 ガスボンベ
8 昇圧ポンプ
9 アキュームレータ
10 バレル
11 スクリュウ
12 熱可塑性樹脂発泡シート[0001]
[Industrial applications]
The present invention relates to a method for producing a foamed thermoplastic resin article using an inert gas as a foaming agent. More specifically, the present invention relates to a method for producing a thermoplastic resin foam in which a large number of fine cells having a diameter of 0.1 to 20 μm are uniformly dispersed.
[0002]
[Prior art]
A method for producing a thermoplastic resin foam using a chemical foaming agent or a gas foaming agent is known. The chemical foaming method is a method of foaming molding by mixing a raw material pellet and a low-molecular-weight organic blowing agent that decomposes at a molding temperature to generate a gas and heats the extruder to a temperature equal to or higher than the decomposition temperature of the blowing agent. is there. According to this method, the gas generation is sharp, the decomposition temperature can be easily adjusted by adding a foaming aid or the like, and a foam having fine closed cells can be obtained. However, in addition to the high cost, these foaming agents cause discoloration of the foam, generation of odor, food hygiene problems, etc. due to the decomposition residue of the foaming agent remaining in the foam. In addition, dirt on the die of the extruder caused by the chemical foaming agent and defective molding due to the contamination are also problems.
[0003]
In contrast, in the gas foaming method, when a resin is melted by an extruder, a low-boiling organic compound such as butane, pentane, or dichlorodifluoromethane is supplied, kneaded, and then foamed by discharging to a low-pressure region. It is a molding method. The low-boiling organic compound used in this method has a characteristic that it has an affinity for a resin and thus has excellent solubility, and also has an excellent retention, so that a high-magnification foam can be obtained. I have. However, these foaming agents are not only expensive but also have risks such as flammability and toxicity, and may cause air pollution problems. In addition, CFC-based gases such as dichlorodifluoromethane are moving toward total elimination due to environmental problems of depletion of the ozone layer.
[0004]
In order to solve such problems of the conventional methods, there have been proposed many methods using a clean and inexpensive inert gas such as carbon dioxide or nitrogen as a foaming agent. However, the inert gas has poor solubility because of its low affinity with the resin. For this reason, the foam has a large cell diameter, is non-uniform, and has a low cell density, and thus has problems in appearance, mechanical strength, thermal conductivity, expansion ratio, and the like.
[0005]
As a technique for solving these problems, U.S. Pat. No. 4,473,665 describes a production method for obtaining a foam molded article in which fine cells having a diameter of 2 to 25 [mu] m are uniformly dispersed. In this method, first, an inert gas is impregnated into a thermoplastic resin sheet under pressure until the sheet is saturated. Then, after heating to the glass transition temperature of the thermoplastic resin, the pressure is reduced, the gas impregnated in the resin is supersaturated, the bubble nucleus is generated, and quenched, thereby controlling the growth of bubbles. Alternatively, pellets of a thermoplastic resin saturated with an inert gas in advance under pressure are extruded under high pressure by an extruder and cooled under pressure. Thereafter, the pressure is reduced by heating to generate a bubble nucleus, and the diameter is controlled by cooling. By these methods, a foam having fine and many cells can be obtained. However, since the inert gas has a low affinity with the resin, it takes ten and several hours to completely impregnate the resin with the gas, and it is impossible to carry out the process industrially.
[0006]
US Pat. No. 5,158,986 describes a technique for obtaining a foam having an extremely fine cell diameter and a large cell density by using a supercritical fluid as a foaming agent and impregnating it with a thermoplastic resin. . Supercritical fluids can change their density, viscosity, and diffusion coefficient dramatically by controlling temperature and pressure. Therefore, the solubility with the resin can be increased, and the diffusion rate in the resin can be increased, so that the gas can be impregnated into the resin in a short time. In this method, a thermoplastic resin is formed into a sheet by an extruder, introduced into a pressurized chamber filled with carbon dioxide in a supercritical state, impregnated with carbon dioxide in the sheet, and then heated in a foaming chamber under atmospheric pressure. A method of obtaining a foam by heating and foaming, and a step where a resin is melted with an extruder, impregnated with carbon dioxide in a supercritical state, and a molded body extruded into a sheet shape is introduced into a pressure chamber, and the pressure change is performed. A method has been proposed in which a cell nucleus is generated by heating, and the cell diameter and cell density are controlled by heating and cooling to obtain a foam. However, all of these methods require large-scale high-pressure equipment, require enormous equipment costs, have poor work efficiency, and are difficult to industrialize. In addition, the former method has a long time to completely impregnate carbon dioxide into the molded article because the sheet-shaped molded article is directly impregnated, and the latter method impregnates the molten resin with the former method. Although the permeation rate of carbon dioxide is higher than that of the method, the dissolution of carbon dioxide is incomplete by kneading with only one extruder, and a foam having fine and many bubbles cannot be obtained.
[0007]
[Problems to be solved by the invention]
The present invention requires a long-term process of impregnating the resin with an inert gas, which is a conventional method, or a process in which the impregnation of the resin is incomplete, and requires large-scale equipment for industrialization. To provide a method for producing a thermoplastic resin foam having uniform fine cells and a large number of cells, which can be mass-produced, can be mass-produced, and can be mass-produced with simple processes and equipment. It was done in.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on a method for producing a thermoplastic resin foam having fine and uniform bubbles using an industrializable inert gas. As a result, the two extruders and the mixing that connects them have been studied. Part, by sufficiently kneading and mixing the thermoplastic resin and the inert gas to form a completely compatible state, continuously and in a short time, a thermoplastic resin having fine and numerous bubbles uniformly. It has been found that a foam can be produced, and the present invention has been achieved.
[0009]
That is, in the present invention, the molten thermoplastic resin is impregnated with carbon dioxide as a foaming agent by the first extruder (1) and the adapter (2) having a mixing section connected thereto, so that the thermoplastic resin and carbon dioxide are completely a gas dissolving step of forming a melt with a compatible state, by the melt second extruder (3), while maintaining a pressure in the range of 75~400kg / cm 2, the temperature of the molten resin A cooling step for lowering, a nucleation step (4) for generating a large number of cell nuclei due to a rapid pressure drop of the melt , and a foam control step (5) for controlling the cell diameter of the extruded foam. This is a method for producing a thermoplastic resin foam having fine and numerous cells uniformly.
[0010]
Examples of the thermoplastic resin used in the present invention include polystyrene, styrene copolymer (for example, butadiene / styrene copolymer, acrylonitrile / styrene copolymer, acrylonitrile / butadiene / styrene copolymer, etc.), polyethylene, polypropylene, ethylene -Propylene resin, ethylene-ethyl acrylate resin, polyvinyl chloride, polyvinylidene chloride, polybutene, polycarbonate, polyacetal, polyphenylene oxide, polyvinyl alcohol, polymethyl methacrylate, saturated polyester resin (eg, polyethylene terephthalate, polybutylene terephthalate, etc.), raw Degradable polyester resin (for example, hydroxycarboxylic acid condensate such as polylactic acid, diol and dicarboxylic acid such as polybutylene succinate) Compounds and the like), polyamide resins, polyimide resins, fluorocarbon resins, polysulfone, polyether sulfone, polyarylate, polyether ether ketone, one or a mixture of two or more liquid crystal polymers.
[0011]
Among these thermoplastic resins, polystyrene and styrene copolymer are particularly preferable. Further, in the present invention, within the range not to impair the purpose, in the composition, if necessary, foaming aid, pigment, dye, lubricant, antioxidant, filler, plasticizer, nucleating agent, flame retardant, Antistatic agents, UV inhibitors, crosslinking agents, antibacterial agents, and the like can be added.
[0012]
Examples of the inert gas serving as a bubble nucleus used in the present invention include, but are not limited to, carbon dioxide, nitrogen, argon, and helium. Further, these can be used alone or as a mixture of two or more. Among these gases, carbon dioxide and nitrogen are particularly preferable in consideration of safety and permeability to the thermoplastic resin.
[0013]
One example of the present invention will be described with reference to FIG. The thermoplastic resin is supplied from the hopper (6) into the first extruder (1), and is heated and melted. Further, the inert gas serving as the bubble nucleus is transported from the gas cylinder (7) to the pressure increasing pump (8), where the pressure is increased. Subsequently, the pressure and the temperature are controlled in the accumulator (9), and are supplied into the molten resin in the first extruder (1). At this time, the inert gas present in the first extruder greatly increases the dissolution and diffusion to the resin, and is in a supercritical state at a critical pressure or higher at a critical pressure or higher that enables the permeation into the resin in a short time. Preferably, there is. For example, in the case of carbon dioxide, the critical pressure is 75.3 kg / cm 2 , the critical temperature is 31.35 ° C., and the conditions in the extruder are such that the pressure is 75 to 400 kg / cm 2 and the temperature is 100 to 500 ° C. Is preferred. Further, the inert gas supplied into the first extruder (1) may already be in a supercritical state.
[0014]
The inert gas and the molten resin are kneaded by the screw (11) in the barrel (10) of the first extruder (1). Next, in order to increase the solubility of the inert gas in the thermoplastic resin, an inert gas / thermoplastic resin mixed melt is supplied from the first extruder (1) to an adapter (2) having a pressure and temperature controlled mixing section. To be further mixed. Mixing with the adapter (2) is preferably a static mixer. By mixing with the adapter (2), the dissolution and diffusion of the inert gas in the resin progresses rapidly, and the mixed melt can be changed to a completely compatible melt in a short time. Become. If the gas dissolving step is not performed in the adapter (2), the dissolution of the inert gas will be incomplete, and it will be difficult to obtain a fine foam having a large number of air bubbles uniformly. This is because the appearance of a large number of fine bubbles greatly depends on the amount of the inert gas impregnated into the resin and the compatibility thereof.
[0015]
Next, the melt is fed into the second extruder (3), and the temperature is reduced to a temperature suitable for foaming, that is, the temperature in the nucleation device (4), which is a foaming step, while maintaining the pressure. . The cooling step using the second extruder (3) is a step for reasonably approaching a temperature condition suitable for nucleation. By sufficiently cooling in this step, it becomes easy to control the cell diameter of the foam at the time of foaming, and it is possible to continuously and stably produce a thermoplastic resin foam having fine and many cells uniformly. It becomes possible.
[0016]
Next, the melt is caused to undergo a rapid pressure drop by the nucleation device (4) to bring the inert gas into a supersaturated state. The supersaturated melt becomes a thermally unstable state and generates a large number of bubble nuclei. In addition, it is generally known that the glass transition temperature of a resin containing a gas decreases in proportion to the gas impregnation amount. The temperature is preferably equal to or higher than the glass transition temperature of the impregnated resin. The nucleated foam is extruded into a sheet.
[0017]
The foamed sheet is quickly cooled to control the growth of generated bubbles, and to obtain a thermoplastic resin foam having fine and many bubbles uniformly. In this foam control step, it is preferable to quickly sandwich the thermoplastic resin foam sheet (12) using a steel belt type cooling device (5) and cool it.
[0018]
In the method of the present invention, an inert gas as a foaming agent is supplied to the molten resin in the extruder, and two extruders and an adapter having a mixing unit connecting them are sufficiently mixed using an adapter. The dissolution and diffusion rate of the inert gas with respect to the resin is improved. According to this method, it is possible to continuously and quickly produce a thermoplastic resin foam having fine and many cells uniformly.
[0019]
【Example】
Hereinafter, the present invention will be described with reference to examples.
(Example 1)
Pellets of polystyrene resin (manufactured by Mitsui Toatsu Chemicals, Inc., Toporex 555-57) were supplied from a hopper to a first extruder, and were heated and melted at 200 ° C. In addition, carbon dioxide serving as a bubble nucleus was transported from a liquefied carbon dioxide gas cylinder to a booster pump, where the pressure was increased. Gasified carbon dioxide was supplied at a pressure of 120 kg / cm 2 where the resin was completely melted. The carbon dioxide and the molten resin are kneaded and dissolved in the first extruder. Subsequently, the carbon dioxide / resin mixed melt is sent to a static mixer in which the pressure is controlled at 100 kg / cm 2 and the temperature is controlled at 180 ° C. Mixed. Next, the melt was fed into a second extruder, and the temperature was gradually lowered. At this time, the temperature of the extruder tip was set to 130 ° C. The melt was rapidly reduced in pressure to atmospheric pressure in a nucleation device controlled at 120 ° C., foamed, and extruded into a sheet. The foamed sheet was quickly sandwiched between steel belt-type cooling devices and sufficiently cooled to obtain a polystyrene resin foamed sheet.
The thickness of the obtained polystyrene resin foam sheet was about 2 mm, and the expansion ratio was about 13 times (the density was 0.08 g / cm 3 ). When the cross section of this foam was observed with a scanning electron microscope, bubbles having an average diameter of about 15 μm were uniformly dispersed, and the density of the bubbles was about 10 9 / cm 3 .
[0020]
(Example 2)
Pellets of polystyrene resin (manufactured by Mitsui Toatsu Chemicals, Inc., Toporex 555-57) were supplied from a hopper to a first extruder, and were heated and melted at 200 ° C. Further, carbon dioxide serving as a bubble nucleus was transported from a liquefied carbon dioxide gas cylinder to a booster pump, where the pressure was increased, and the pressure was adjusted to 120 kg / cm 2 and the temperature was adjusted to 100 ° C. in an accumulator to bring the supercritical state. The supercritical carbon dioxide was supplied to a place where the resin was completely melted. In a barrel of the first extruder, supercritical carbon dioxide and a molten resin are kneaded and dissolved, and subsequently, the carbon dioxide / resin mixed melt is a static mixer controlled at a pressure of 100 kg / cm 2 and a temperature of 170 ° C. And mixed further. Next, the melt was fed into a second extruder, and the temperature was gradually lowered. At this time, the temperature at the extruder tip was 115 ° C. The melt was rapidly reduced to atmospheric pressure and foamed in a nucleation device controlled at 105 ° C. The foamed resin was extruded into a sheet, quickly sandwiched in a steel belt type cooling device, and sufficiently cooled to obtain a polystyrene resin foamed sheet.
The thickness of the obtained polystyrene resin foam sheet was about 2 mm, and the expansion ratio was about 15 times (the density was 0.07 g / cm 3 ). When the cross section of this foam was observed with a scanning electron microscope, bubbles having an average diameter of about 3 μm were uniformly dispersed, and the bubble density was about 10 11 cells / cm 3 .
[0021]
(Comparative example)
As shown in FIG. 2, the static mixer and the second extruder were omitted, a nucleation device was directly connected to the first extruder, and carbon dioxide in a supercritical state was completely converted to polystyrene resin in the same manner as in Example 2. And supplied to the place where it was melted. The supercritical carbon dioxide and the molten resin were kneaded and dissolved in an extruder, and the pressure was rapidly reduced to atmospheric pressure and foamed in a nucleation device controlled at 140 ° C. This foamed resin was extruded into a sheet, passed through a cooling device, and cooled sufficiently to obtain a polystyrene resin foam sheet.
The thickness of the obtained polystyrene resin foam sheet was about 2 mm, and the expansion ratio was about 12 times (the density was 0.08 g / cm 3 ). Observation of the cross section of this foam with a scanning electron microscope revealed that the cell diameter distribution was large, the average cell diameter was about 100 μm, and the cell density was about 10 6 cells / cm 3 .
[0022]
【The invention's effect】
By using the method of the present invention, it is possible to produce a thermoplastic resin foam having simple fine steps and a large number of cells, which can be mass-produced and which is advantageous for industrial implementation, with simple steps and equipment. . In addition, since an inert gas is used as a foaming agent, there is no fear of air pollution or ozone layer destruction, and safety is excellent.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a method for producing a thermoplastic resin foam of the present invention.
FIG. 2 is a schematic configuration diagram showing a method for producing a thermoplastic resin foam of a comparative example.
[Explanation of symbols]
REFERENCE SIGNS
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15099094A JP3555986B2 (en) | 1994-07-01 | 1994-07-01 | Method for producing thermoplastic resin foam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15099094A JP3555986B2 (en) | 1994-07-01 | 1994-07-01 | Method for producing thermoplastic resin foam |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0811190A JPH0811190A (en) | 1996-01-16 |
JP3555986B2 true JP3555986B2 (en) | 2004-08-18 |
Family
ID=15508879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15099094A Expired - Lifetime JP3555986B2 (en) | 1994-07-01 | 1994-07-01 | Method for producing thermoplastic resin foam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3555986B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2577739B2 (en) * | 1987-06-03 | 1997-02-05 | 触媒化成工業株式会社 | Hydroprocessing catalyst for hydrocarbons |
US5997781A (en) * | 1996-04-04 | 1999-12-07 | Mitsui Chemicals, Inc. | Injection-expansion molded, thermoplastic resin product and production process thereof |
US5830393A (en) * | 1996-07-10 | 1998-11-03 | Mitsui Chemicals, Inc. | Process for preparing expanded product of thermoplastic resin |
DE69717465T2 (en) * | 1996-08-27 | 2003-07-10 | Trexel, Inc. | METHOD AND DEVICE FOR EXTRUDING POLYMER FOAM, ESPECIALLY MICROCELL foam |
ES2225692T3 (en) * | 1997-01-16 | 2005-03-16 | Trexel, Inc. | MOLDING BY MICROCELULAR MATERIAL INJECTION. |
US6884823B1 (en) | 1997-01-16 | 2005-04-26 | Trexel, Inc. | Injection molding of polymeric material |
MY118653A (en) | 1998-07-16 | 2004-12-31 | Mitsui Chemicals Inc | Addition method of supercritical carbon dioxide, and production process of expanded thermoplastic resin product by making use of the addition method. |
JP3998374B2 (en) * | 1998-07-16 | 2007-10-24 | 三井化学株式会社 | Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method |
JP3748170B2 (en) | 1998-08-03 | 2006-02-22 | 住友化学株式会社 | Manufacturing method of resin foam |
JP4276754B2 (en) * | 1999-11-11 | 2009-06-10 | 株式会社日本製鋼所 | Thermoplastic resin foam molding method |
WO2002032986A1 (en) | 2000-10-18 | 2002-04-25 | Mitsui Chemicals, Inc. | Foam of thermoplastic urethane elastomer composition and process for producing the foam |
JP4573505B2 (en) * | 2003-07-24 | 2010-11-04 | 日東電工株式会社 | Method for producing resin foam and resin foam |
CN103030832B (en) | 2005-11-30 | 2015-07-08 | Lg化学株式会社 | Method for preparing microcellular foam of thermoplastic resin prepared with die having improved cooling property |
WO2014069110A1 (en) | 2012-10-31 | 2014-05-08 | 積水化学工業株式会社 | Method and device for manufacturing resin laminate |
JP6039384B2 (en) * | 2012-11-27 | 2016-12-07 | 帝人株式会社 | Thermoplastic resin composition for supercritical foam molding with excellent mold corrosiveness |
US20160200017A1 (en) | 2013-09-12 | 2016-07-14 | Sekisui Chemical Co., Ltd. | Process and device for producing resin laminate |
KR102197513B1 (en) * | 2019-12-26 | 2021-01-04 | (주)동희산업 | Carbonization reducing method and mixing apparatus of plastic resin extruder |
-
1994
- 1994-07-01 JP JP15099094A patent/JP3555986B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0811190A (en) | 1996-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3555986B2 (en) | Method for producing thermoplastic resin foam | |
CA2107355C (en) | Supermicrocellular foamed materials | |
US5369135A (en) | Controlled microcellular foams of crystalline amorphous polymers | |
US5997781A (en) | Injection-expansion molded, thermoplastic resin product and production process thereof | |
US9714330B2 (en) | Method of manufacturing polystyrene foam with polymer processing additives | |
JP3998374B2 (en) | Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method | |
US5358675A (en) | Controlling heterogeneous nucleation and growth of foams | |
US3251911A (en) | Preparation of expanded polymers | |
JPH10230528A (en) | Thermoplastic resin foamed injection-molded body and manufacture thereof | |
JPH01254742A (en) | Production of foamed polyethylene resin | |
JPH03143933A (en) | Expandable granule and method for preparation of foaming material therefrom | |
KR100350337B1 (en) | Foam manufactured by injecting water into Harbustream | |
CN111978585A (en) | Preparation method and application of polymer foam material with trimodal cellular structure | |
JPH10175249A (en) | Thermoplastic resin foam and its manufacture | |
US3327031A (en) | Process for the extrusion of improved closed-cell foams | |
US20080200572A1 (en) | Process For The Production of Extruded Sheets Of Expanded Polystyrene | |
JPH1024436A (en) | Thermoplastic resin foam and its manufacture | |
JPH1076560A (en) | Thermoplastic resin foamed body and its manufacture | |
JPH1024476A (en) | Thermoplastic resin foam and its production | |
JPH0655651A (en) | Manufacture of thermoplastic resin expanding body | |
EP0495444B1 (en) | Foamed liquid crystal polymer film/sheet having improved flexibility and cell uniformity | |
JP2507864B2 (en) | Method for producing thermoplastic polyester resin foam | |
JPH10175248A (en) | Thermoplastic resin foam and its manufacture | |
JP3306189B2 (en) | Olefin resin composition for foaming | |
CN116787676A (en) | Production method for pp continuous extrusion high-rate foaming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040511 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040511 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080521 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090521 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110521 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120521 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120521 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |