JP2577739B2 - Hydroprocessing catalyst for hydrocarbons - Google Patents

Hydroprocessing catalyst for hydrocarbons

Info

Publication number
JP2577739B2
JP2577739B2 JP62140432A JP14043287A JP2577739B2 JP 2577739 B2 JP2577739 B2 JP 2577739B2 JP 62140432 A JP62140432 A JP 62140432A JP 14043287 A JP14043287 A JP 14043287A JP 2577739 B2 JP2577739 B2 JP 2577739B2
Authority
JP
Japan
Prior art keywords
catalyst
temperature
hydrocarbon
reactor
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62140432A
Other languages
Japanese (ja)
Other versions
JPS63302952A (en
Inventor
勝博 城野
勝次 姫野
英博 東
陽一 西村
長久 大三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUBAI KASEI KOGYO KK
Katsura Sangyo Co Ltd
Original Assignee
SHOKUBAI KASEI KOGYO KK
Katsura Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOKUBAI KASEI KOGYO KK, Katsura Sangyo Co Ltd filed Critical SHOKUBAI KASEI KOGYO KK
Priority to JP62140432A priority Critical patent/JP2577739B2/en
Publication of JPS63302952A publication Critical patent/JPS63302952A/en
Application granted granted Critical
Publication of JP2577739B2 publication Critical patent/JP2577739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は炭化水素供給原料を水素化分解又は水素化脱
硫する水素化処理触媒に関する。
The present invention relates to a hydroprocessing catalyst for hydrocracking or hydrodesulfurizing a hydrocarbon feed.

[従来の技術] 炭化水素留分の水素化脱硫、水素化分解等の水素化処
理に使用される触媒は、一般に金属活性成分を適当な単
体に担持させることで製造されるが、触媒製造の最終工
程として焼成を行なうのが通例であるため、金属活性成
分は触媒活性に乏しい酸化物の状態で触媒中に存在す
る。従って、こうした触媒を炭化水素の水素化処理反応
に使用するに際しては、予め触媒中の金属活性成分を硫
化して活性化させることを目的とした所謂予備硫化操作
が必要とされる。
[Prior Art] Catalysts used in hydrotreating such as hydrodesulfurization and hydrocracking of hydrocarbon fractions are generally produced by supporting a metal active component on an appropriate simple substance. Since calcination is usually performed as a final step, the metal active component is present in the catalyst in the form of an oxide having poor catalytic activity. Therefore, when such a catalyst is used in a hydrocarbon hydrotreating reaction, a so-called presulfurization operation for preliminarily sulphidizing and activating a metal active component in the catalyst is required.

この予備硫化方法としては、金属活性成分が酸化物の
形にある触媒を反応器に充填し、これに硫化水素ガスと
水素ガスを供給して触媒の金属活性成分を硫化する方法
が知られている。また、硫化水素ガスに代えて、軽油等
の炭化水素油と水素を供給し、触媒を予備硫化する方法
も採用されている。この外、予備硫化用炭化水素油に二
硫化炭素、ジメチルスルフィド(DMS)、ジメチルジス
ルフィド(DMDS)等の硫黄化合物を添加することも実施
されている。さらにまた、特開昭60−51547号公報に見
られる如く、金属活性成分を含有する触媒に、R−S
(n)−R′(n=3〜20)の多硫化物を含浸させ、こ
れを水素気流中200℃以下の温度に加熱して活性代(予
備硫化)させる方法も提案されている。
As this presulfurization method, a method is known in which a catalyst in which the metal active component is in the form of an oxide is charged into a reactor, and hydrogen sulfide gas and hydrogen gas are supplied to the reactor to sulfide the metal active component of the catalyst. I have. In addition, instead of hydrogen sulfide gas, a method of supplying hydrocarbon oil such as light oil and hydrogen and pre-sulfurizing the catalyst has been adopted. In addition, sulfur compounds such as carbon disulfide, dimethyl sulfide (DMS), and dimethyl disulfide (DMDS) have been added to the pre-sulfurizing hydrocarbon oil. Furthermore, as disclosed in JP-A-60-51547, a catalyst containing a metal active component is provided with an R-S
A method of impregnating (n) -R '(n = 3 to 20) with a polysulfide and heating the polysulfide to a temperature of 200 ° C. or lower in a hydrogen stream to activate (preliminary sulfurization) has also been proposed.

[発明が解決しようとする問題点] 上記した従来触媒の予備硫化方法にあって、硫化水素
ガスを使用する方法は、このガスが毒性を有しているた
めに、取り扱いが厄介な欠点がある。また、軽油等の炭
化水素油と水素を用いる方法は、触媒の予備硫化に比較
的長時間を要する上に、多量の炭化水素油を必要とす
る。加えて予備硫化に際して触媒を長時間高温度に維持
しなければならないので、本来の触媒活性が損われてし
まう心配もある。尤も、これらの問題点は炭化水素油に
二硫化炭素、DMS、DMDS等の硫化剤を添加することで解
消させることができる。しかし、一般にこれらの硫化剤
は高価であるばかりでなく、貯蔵並びに反応器への注入
には、そのための設備を必要とする。
[Problems to be Solved by the Invention] In the above-mentioned conventional presulfurization method for a catalyst, the method using hydrogen sulfide gas has a drawback that handling is troublesome because this gas has toxicity. . Further, the method using hydrogen and hydrocarbon oil such as light oil requires a relatively long time for preliminary sulfurization of the catalyst, and also requires a large amount of hydrocarbon oil. In addition, since the catalyst must be maintained at a high temperature for a long time during pre-sulfurization, there is a concern that the original catalytic activity may be impaired. However, these problems can be solved by adding a sulfurizing agent such as carbon disulfide, DMS, and DMDS to the hydrocarbon oil. However, these sulphiding agents are generally not only expensive, but also require storage and injection into the reactor.

そして、特開昭60−51547号公報で提案されている多
硫化物は粘性が高いため、これを触媒に含浸させるには
適正な溶媒に希釈しなければならない。
The polysulfide proposed in Japanese Patent Application Laid-Open No. 60-51547 has a high viscosity and must be diluted with an appropriate solvent in order to impregnate it with a catalyst.

本発明は上に示した従来触媒における予備硫化法の各
種の問題点を解消せんとするものであって、特別な予備
硫化工程を必要としない、換言すれば、触媒を反応器に
充填し炭化水素供給源量の水素化処理反応温度に反応器
を昇温すれば、その昇温過程で触媒の硫化が行なわれ、
所定温度に昇温後直ちに炭化水素の水素代処理反応を遂
行させることができる触媒を提供する。
The present invention is intended to solve the above-mentioned various problems of the pre-sulfurization method in the conventional catalyst, and does not require a special pre-sulfurization step, in other words, the catalyst is charged into a reactor and carbonized. If the temperature of the reactor is raised to the hydrogenation reaction temperature of the hydrogen supply source, the catalyst is sulfurized during the temperature rise,
Provided is a catalyst capable of causing a hydrocarbon-hydrogen treatment reaction immediately after the temperature is raised to a predetermined temperature.

[問題点を解決するための手段] しかして、本発明に係る炭化水素の水素化処理触媒
は、不活性耐熱性担体に周期律表第VI A族及び第VIII族
金属成分と1分子中に少なくとも1個の活性メルカプト
基を有し、沸点が100℃以上である有機硫黄化合物を担
持せしめたことを特徴とする。
[Means for Solving the Problems] However, the catalyst for hydrotreating hydrocarbons according to the present invention comprises an inert heat-resistant carrier containing a metal component of Groups VIA and VIII of the Periodic Table in one molecule. An organic sulfur compound having at least one active mercapto group and having a boiling point of 100 ° C. or higher is supported.

[発明の詳述] 本発明の触媒において、その担体成分及び金属活性成
分には、従来の炭化水素の水素化処理触媒に慣用のAl2O
3、SiO2、SiO2−Al2O3などの担体成分及び周期率表第VI
A族金属および第VIII族の鉄族金属成分が使用される。
更に、金属活性成分には、周期律表第I B族、第V A族等
から選ばれた金属成分を併用することができる。
[Detailed Description of the Invention] In the catalyst of the present invention, the carrier component and the metal active component include Al 2 O which is commonly used for conventional hydrocarbon hydrotreating catalysts.
3, SiO 2, SiO 2 -Al 2 O 3 carrier component and the periodic table VI, such as
Group A metals and Group VIII iron group metal components are used.
Further, a metal component selected from Group IB and Group VA of the periodic table can be used in combination with the metal active component.

例えば、炭化水素留分の水素代処理触媒としては、ゼ
オライトの微細粒子が分散された又は分散されていない
アルミナ乃至はシリカ−アルミナ度のマトリックスから
なる担体に、モリブデン、タングステン等のVI A族金属
及び鉄、ニッケル、コバルト等の第VIII族金属を触媒全
重量に対し、酸化物として8〜25重量%担持させたのが
一般的であるが、本発明の触媒でもこれらの担体及び金
属成分を使用することができる。
For example, as a catalyst for hydrotreating hydrocarbon fractions, alumina or silica-fine particles of zeolite are dispersed or supported on a support comprising a matrix having a silica-alumina degree, and a group VIA metal such as molybdenum or tungsten is used. In general, a metal of Group VIII such as iron, nickel and cobalt is supported as an oxide in an amount of 8 to 25% by weight based on the total weight of the catalyst. Can be used.

本発明の触媒に担持せしめられる有機硫黄化合物は、
1分子中に少なくとも1個の活性メルカプト基を有し、
しかも、100℃以上の沸点を有するものでなければなら
ない。そのような有機硫黄化合物の具体例としては、オ
クチルメルカプタン、ドデシルメルカプタン、ジメチル
カプトプロパン、ジメチルカプトブタン等のアルキルメ
ルカプタン類;ジエチレンエーテルジチオール、トリエ
チレンエーテルジチオール等のポリアルキレンエーテル
ポリチオール類;イソオクチルチオグリコレート、2−
エチルヘキシルメルカプトプロピオネート、エチレング
リコールジメルカプトプロピオネート、ブタンジオール
ジメルカプトアセテート、トリメチロールプロパントリ
ス−メルカプトアセテート、ペンタエリストールテトラ
キス−3−メルカプトプロピオネート等で例示される1
価乃至多価のアルコールとチオカルボン酸のエステル
類;メルカプトエチルアセテート、ジメルカプトエチル
アジペート等で例示されるメルカプトアルコールとカル
ボン酸のエステル類;さらにジエチレンチオエーテルチ
オール等のチオエーテル類を挙げることができる。
Organic sulfur compounds supported on the catalyst of the present invention,
Having at least one active mercapto group in one molecule;
Moreover, it must have a boiling point of 100 ° C. or higher. Specific examples of such organic sulfur compounds include alkyl mercaptans such as octyl mercaptan, dodecyl mercaptan, dimethylcaptopropane, dimethylcaptobutane; polyalkylene ether polythiols such as diethylene ether dithiol and triethylene ether dithiol; isooctylthio Glycolate, 2-
1 exemplified by ethylhexyl mercaptopropionate, ethylene glycol dimercaptopropionate, butanediol dimercaptoacetate, trimethylolpropanetris-mercaptoacetate, pentaerythritol tetrakis-3-mercaptopropionate, etc.
Esters of a thiocarboxylic acid with a polyhydric or polyhydric alcohol; esters of a mercapto alcohol and a carboxylic acid exemplified by mercaptoethyl acetate, dimercaptoethyl adipate; and thioethers such as diethylene thioether thiol.

本発明の触媒は、適当な不活性耐熱性担体に、適当な
金属活性成分を担持させて焼成し、これに本発明の有機
硫黄化合物を担持する手順で一般に調製される。ここ
で、担体に金属活性成分を担持させて焼成するまでの工
程は、従来の触媒調製法と実質的に異ならず、本発明で
もこれを採用することができる。例えば、活性種となる
べき金属塩を、含浸法、混練法等の手段で担体に担持さ
せ、次いでこれを乾燥、成型、焼成する方法が本発明で
も採用可能であって、この焼成工程で触媒の金属活性成
分は通常酸化物になる。従って、金属活性成分が酸化物
の形にある従来の炭化水素の水素化処理触媒に、上記し
た硫黄化合物を担持することによっても、本発明の触媒
を調製することが可能である。
The catalyst of the present invention is generally prepared by a procedure in which a suitable metal active component is supported on a suitable inert refractory support, calcined, and the organic sulfur compound of the present invention is supported thereon. Here, the steps from the step of supporting the metal active component on the carrier and calcining are not substantially different from the conventional catalyst preparation method, and this step can be employed in the present invention. For example, a method in which a metal salt to be an active species is supported on a carrier by a method such as an impregnation method or a kneading method, and then dried, molded, and calcined can be employed in the present invention. Is usually an oxide. Therefore, it is also possible to prepare the catalyst of the present invention by supporting the above-mentioned sulfur compound on a conventional hydrocarbon hydrotreating catalyst in which the metal active component is in the form of an oxide.

有機硫黄化合物の担持方法には、特に制限はないが、
焼成後の金属酸化物含有触媒に、上記の硫黄化合物の1
種又は2種以上を、スプレー法、浸漬法等の任意の手段
で含浸させるのが簡便で好ましい。含浸に当っては、有
機硫黄化合物をそのまま使用することができ、溶媒で希
釈するようなことは特に必要ではない。また、含浸後
も、加熱などの後処理を必要としない。何故なら、本来
の有機硫黄化合物を使用する場合には、触媒細孔内にす
べて浸透してしまう程度の容量で、触媒を所望通りの硫
化度に保持するのに必要な硫黄量を充分賄えるからであ
る。ちなみに、炭化水素の水素化処理融媒の中にあっ
て、比較的高い硫化度が要求される炭化水素留分の水素
化処理用触媒の場合でも、所定の初期活性を満足させる
硫化度を得るために必要な硫黄量は、触媒中の金属活性
成分のすべてを硫化物に転化する化学量論量の少なくと
も約70%あれば良い。
The method of supporting the organic sulfur compound is not particularly limited,
One of the above sulfur compounds is added to the metal oxide-containing catalyst after calcination.
It is convenient and preferable to impregnate the seed or two or more kinds by any means such as a spray method and an immersion method. In the impregnation, the organic sulfur compound can be used as it is, and it is not particularly necessary to dilute it with a solvent. Further, after the impregnation, no post-treatment such as heating is required. This is because, when the original organic sulfur compound is used, the amount of sulfur that permeates all the pores of the catalyst can sufficiently cover the amount of sulfur required to maintain the catalyst at the desired sulfuration degree. It is. Incidentally, even in the case of a hydrotreating catalyst for a hydrocarbon fraction in which a relatively high degree of sulfidity is required in a hydrocarbon hydrotreating medium, a degree of sulfidation satisfying a predetermined initial activity is obtained. The amount of sulfur required for this may be at least about 70% of the stoichiometric amount that converts all of the metal active components in the catalyst to sulfide.

従って、有機硫黄化合物を含浸させた後の触媒の表面
は、所謂「濡れ」の状態ではないので、格別乾燥する必
要がない。そして、本発明の有機硫黄化合物を担持させ
た触媒は、通常の環境温度で変質することがなく、有機
硫黄化合物が揮散してしまうこともないので、普通に貯
蔵乃至は輸送することができる。
Therefore, the surface of the catalyst after impregnation with the organic sulfur compound is not in a so-called "wet" state, and does not need to be particularly dried. The catalyst supporting the organic sulfur compound of the present invention does not deteriorate at ordinary environmental temperatures and does not volatilize the organic sulfur compound, so that it can be stored or transported normally.

[作用] 従来の炭化水素の水素化処理プロセスでは、反応器に
触媒を充填した後、これに原料炭化水素を供給するに先
立ち、硫化水素ガスとか、あるいは硫黄含有炭化水素油
等の硫化剤と水素ガスを反応器に供給して触媒を硫化さ
せるのが通例であるが、本発明の触媒を使用した場合に
は、この予備硫化工程を全く必要としない。すなわち、
予備硫化を必要としない触媒を使用する接触反応プロセ
スの場合と同様、本発明の触媒を反応器を充填後これを
所定の反応温度に昇温させれば、その昇温過程で硫化反
応が進行し、触媒は硫化される。従って、反応器の昇温
後は直ちに原料炭化水素を反応器に供給し、目的の反応
を開始することができる。この場合、水素化処理反応の
開始までに触媒が完全に硫化されている必要はなく、一
部未硫化の部分が残っていても、水素化処理反応の進行
と共に未硫化部分も硫化される。
[Action] In a conventional hydrocarbon hydrotreating process, after a reactor is filled with a catalyst, a hydrogen sulfide gas or a sulphidating agent such as a sulfur-containing hydrocarbon oil is used before supplying the raw material hydrocarbon to the catalyst. Usually, hydrogen gas is supplied to the reactor to sulfide the catalyst, but when the catalyst of the present invention is used, this preliminary sulfidation step is not required at all. That is,
As in the case of the catalytic reaction process using a catalyst that does not require pre-sulfurization, if the catalyst of the present invention is charged to a reactor and then heated to a predetermined reaction temperature, the sulfurization reaction proceeds during the temperature increase process. Then, the catalyst is sulfided. Therefore, immediately after the temperature rise of the reactor, the starting hydrocarbon can be supplied to the reactor and the target reaction can be started. In this case, the catalyst does not need to be completely sulfurized before the start of the hydrotreating reaction. Even if a part of the unsulfurized portion remains, the unsulfurized portion is also sulfided as the hydrotreating reaction proceeds.

進んで、本発明の触媒を水素化脱硫法に適用した場合
の一具体例について説明する。従来の水素化脱硫触媒に
有機硫黄化合物を担持させた本発明の触媒をまず反応器
に充填した後、これに窒素等の不活性ガスを流しながら
触媒床を150〜200℃程度に昇温する。次いで供給ガスを
水素に切り替えて所定の反応圧まで昇圧し、同時に昇温
速度を15〜30℃/時に制御しつつ、所定の反応温度まで
昇温する。ここまでの過程で反応器内の水素化脱硫触媒
は予備硫化され、活性化される。その後は所定の値に保
持された温度、圧力以外のプロセスパラメーターを所定
値に設定して、原料の炭化水素留分を反応器に供給し、
企図した水素化脱硫処理を遂行させる。なお、炭化水素
留分の供給は水素ガスによる昇温過程の途中で開始する
こともできる。典型的な炭化水素留分を水素化脱硫する
場合のプロセスパラメーターとしては、温度300〜450
℃、水素分圧10〜200kg/cm2、液空間速度0.1〜10hr-1
水素/油比100〜2000Nm3/Kl等が一般に採用される。
A specific example in which the catalyst of the present invention is applied to a hydrodesulfurization method will now be described. First, a catalyst of the present invention in which an organic sulfur compound is supported on a conventional hydrodesulfurization catalyst is charged into a reactor, and then the catalyst bed is heated to about 150 to 200 ° C. while flowing an inert gas such as nitrogen into the reactor. . Next, the supply gas is switched to hydrogen, and the pressure is increased to a predetermined reaction pressure. At the same time, the temperature is increased to a predetermined reaction temperature while controlling the temperature increase rate at 15 to 30 ° C / hour. In the process so far, the hydrodesulfurization catalyst in the reactor is presulfurized and activated. Thereafter, the process parameters other than the temperature and pressure held at the predetermined values are set to the predetermined values, and the raw material hydrocarbon fraction is supplied to the reactor,
Perform the intended hydrodesulfurization treatment. It should be noted that the supply of the hydrocarbon fraction can also be started during the course of the temperature rise by the hydrogen gas. Typical hydrodesulfurization process parameters for hydrocarbon fractions include temperatures of 300-450.
° C, hydrogen partial pressure 10-200 kg / cm 2 , liquid space velocity 0.1-10 hr -1 ,
A hydrogen / oil ratio of 100 to 2000 Nm 3 / Kl is generally employed.

本発明の炭化水素の水素化処理触媒は、上記した炭化
水素留分の水素化脱硫法の外、炭化水素の水素化分解法
の水素処理反応にも利用することができる。
The catalyst for hydrotreating hydrocarbons of the present invention can be used not only for the hydrodesulfurization method for hydrocarbon fractions described above, but also for the hydrotreating reaction for hydrocarbon hydrocracking.

[実 施 例] 実施例1 Al2O3にMoO3 10.0wt%,CoO 2.0wt%,NiO 1.0wt%が担
持された水素化脱硫触媒を常法により調製した。
[Implementation example] MoO 3 10.0 wt% in example 1 Al 2 O 3, CoO 2.0wt %, NiO 1.0wt% was prepared by a conventional method supported hydrodesulfurization catalyst.

トリメチロールプロパントリス−メルカプトプロピオ
ネート約720mlを採り、これに上記の触媒1kgを浸漬し
た。硫黄化合物が触媒の細孔内に充分浸透し、そのすべ
てが触媒粒子に含浸され、触媒表面の「濡れ」がなくな
るるまでゆっくり撹拌を続けた。こうして得られた触媒
の硫黄担持量はSとして10.8wt%であった。この触媒を
触媒Aとする。
About 720 ml of trimethylolpropane tris-mercaptopropionate was taken, and 1 kg of the above catalyst was immersed in this. The stirring was continued slowly until the sulfur compound had sufficiently penetrated into the pores of the catalyst, all of which were impregnated into the catalyst particles, and there was no "wetting" on the catalyst surface. The amount of sulfur carried on the catalyst thus obtained was 10.8 wt% as S. This catalyst is referred to as Catalyst A.

実施例2 実施例1と同じ水素化脱硫触媒に実施例1と同様な方
法で、2−エチルヘキシル−3−メルカプトプロピオネ
ート、ジエチレンチオエーテルジチオール(SH−C2H4
S−C2H4−SH)及びドデシルメルカプタンをそれぞれ含
浸した。これらを触媒B,C及びDとする。硫黄担持量は
Sとして触媒Bが11.3wt%、触媒Cが21.4wt%、触媒D
が11.8wtであった。
Example 2 In Example 1 as in Example 1 in the same hydrodesulfurization catalyst and method, 2-ethylhexyl-3-mercaptopropionate, diethylene thioether dithiol (SH-C 2 H 4 -
S-C 2 H 4 -SH) and dodecyl mercaptan were impregnated respectively. These are referred to as catalysts B, C and D. The amount of sulfur carried was as follows: catalyst S: 11.3 wt% for catalyst B, 21.4 wt% for catalyst C, catalyst D
Was 11.8 wt.

実施例3 触媒A,B,C及びDそれぞれの水素化脱硫反応試験を、
次の如き方法で実施した。
Example 3 The hydrodesulfurization reaction test of each of the catalysts A, B, C and D was performed as follows.
It carried out by the following method.

内径19mm、長さ1.8mの高圧反応器に触媒を充填し、窒
素ガスを流しながら200℃まで昇温した。その後、窒素
ガスを水素ガスに切り替え、150kg/cm2まで昇圧した。
次いで水素ガスと原料油をそれぞれ700Nm3/hr,1.0Kl/hr
で反応器に供給しつつ、20℃/時の昇温速度で所定の反
応温度まで昇温した。
A high-pressure reactor having an inner diameter of 19 mm and a length of 1.8 m was filled with the catalyst, and the temperature was raised to 200 ° C. while flowing nitrogen gas. Thereafter, the nitrogen gas was switched to hydrogen gas, and the pressure was increased to 150 kg / cm 2 .
Next, hydrogen gas and raw material oil were respectively 700Nm 3 / hr, 1.0Kl / hr
And the temperature was raised to a predetermined reaction temperature at a heating rate of 20 ° C./hour.

所定の反応温度に達した後は、LHSV 0.2hr-1、水素/
油比700Nm3/Kl、水素分圧150kg/cm2の定常条件を維持し
て反応試験を行なった。
After reaching the predetermined reaction temperature, LHSV 0.2 hr -1 , hydrogen /
The reaction test was carried out while maintaining steady conditions of an oil ratio of 700 Nm 3 / Kl and a hydrogen partial pressure of 150 kg / cm 2 .

原料油として使用した常圧蒸溜残渣油の性状を以下に
示す。
The properties of the atmospheric distillation residue used as the feedstock are shown below.

比重(15/4℃) 0.960 粘度(50℃) 4.53cst 硫黄 2.283wt% 窒素 2220ppm アスファルテン 2.1wt% コンラドソン炭素 9.9wt% メタル(Ni+V) 70ppm 実施例4 触媒Aを実施例3と一の反応器に充填し、窒素ガスを
流しながら180℃まで昇温した後、窒素ガスを水素ガス
に切り替え、150kg/cm2まで昇圧した。次いで水素ガス
を700Nm3/hrで反応器に供給しつつ、20℃/時の昇温速
度で所定の反応温度まで昇温した。その後は実施例3と
同様な定常条件で、実施例3と同じ原料油の水素化脱硫
反応試験を行なった。
Specific gravity (15/4 ° C) 0.960 Viscosity (50 ° C) 4.53 cst Sulfur 2.283wt% Nitrogen 2220ppm Asphaltene 2.1wt% Conradson carbon 9.9wt% Metal (Ni + V) 70ppm Example 4 Catalyst A in one reactor with Example 3 After filling, the temperature was raised to 180 ° C. while flowing nitrogen gas, the nitrogen gas was switched to hydrogen gas, and the pressure was increased to 150 kg / cm 2 . Then, while supplying hydrogen gas to the reactor at 700 Nm 3 / hr, the temperature was raised to a predetermined reaction temperature at a temperature rising rate of 20 ° C./hour. Thereafter, under the same steady-state conditions as in Example 3, a hydrodesulfurization reaction test of the same feedstock oil as in Example 3 was performed.

比較例 実施例1で調製した水素化脱硫触媒を、これに硫黄化
合物を担持することなく、実施例3と同一の反応器に充
填し、窒素ガスを流しながら180℃まで昇温した後、窒
素ガスを水素ガスに切り替え、150kg/cm2まで昇圧し
た。しかる後、水素ガスと軽油をそれぞれ400Nm3/hr,1.
0Kl/hrで流しながら280℃まで30℃/時の昇温速度で昇
温した。次いで280℃の温度を48時間維持して触媒の予
備硫化を行なった。
Comparative Example The hydrodesulfurization catalyst prepared in Example 1 was charged into the same reactor as in Example 3 without supporting a sulfur compound, and heated to 180 ° C. while flowing nitrogen gas. The gas was switched to hydrogen gas, and the pressure was increased to 150 kg / cm 2 . Thereafter, hydrogen gas and light oil were each supplied at 400 Nm 3 / hr, 1.
The temperature was raised to 280 ° C. at a rate of 30 ° C./hour while flowing at 0 Kl / hr. Next, the temperature of 280 ° C. was maintained for 48 hours to carry out preliminary sulfurization of the catalyst.

硫化終了後、軽油を実施例3で使用した原料油に切り
替え、所定の反応温度まで30℃/時の昇温速度で昇温し
て実施例3と同一の条件で水素化脱硫反応試験を実施し
た。
After completion of sulfurization, the light oil was switched to the feedstock oil used in Example 3, and the temperature was raised to a predetermined reaction temperature at a rate of 30 ° C./hour, and a hydrodesulfurization reaction test was performed under the same conditions as in Example 3. did.

実施例3,4及び比較例の実験結果を表1に示す。 Table 1 shows the experimental results of Examples 3 and 4 and Comparative Example.

表1に示す結果から明らかな通り、本発明の水素化脱
硫触媒は、特に予備硫化操作を行なわなくても、従来法
によって予備硫化した水素化脱硫触媒と同等若しくはこ
れより優れた触媒性能を発揮する。
As is evident from the results shown in Table 1, the hydrodesulfurization catalyst of the present invention exhibits catalytic performance equivalent to or superior to that of the hydrodesulfurization catalyst preliminarily sulfided by the conventional method without performing any preliminary sulfidation operation. I do.

[発明の効果] 本発明の触媒は、通常の水素化処理反応を開始する際
の触媒床の昇温過程に於いて、触媒を硫化、活性化する
ことができるので、従来技術の如く触媒の予備硫化工程
を特別設ける必要がない。従って、反応開始までの時間
の短縮を図ることが可能となり、さらに硫化用軽油等の
硫化剤が不必要になるので、本発明の触媒を使用すれ
ば、炭化水素の水素化処理に要する経費を大幅に節減で
きるなどの利点を得ることができる。
[Effects of the Invention] The catalyst of the present invention can sulfidize and activate the catalyst in the process of raising the temperature of the catalyst bed at the start of a normal hydrotreating reaction, so that the catalyst can be used as in the prior art. There is no need to provide a special presulfurization step. Therefore, it is possible to shorten the time until the start of the reaction, and furthermore, since a sulfurizing agent such as light oil for sulfurization is not required, the use of the catalyst of the present invention reduces the cost required for hydrotreating hydrocarbons. Advantages such as significant savings can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 陽一 横浜市緑区長津田町3016−1−911 (72)発明者 大三輪 長久 東京都練馬区貫井3−19−9 (56)参考文献 特公 昭40−15491(JP,B1) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoichi Nishimura 3016-1-911, Nagatsutacho, Midori-ku, Yokohama-shi (72) Inventor Nagahisa Omiwa 3-19-9, Nukii, Nerima-ku, Tokyo (56) References 1970-401541 (JP, B1)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】不活性耐熱性担体に周期律表第VI A族金属
および第VIII族の鉄族金属成分と1分子中に少なくとも
1個の活性メルカプト基を有し、沸点が100℃以上であ
る有機硫黄化合物を担持せしめたことを特徴とする炭化
水素の水素化処理触媒。
(1) an inert heat-resistant support having a metal of Group VIA and a metal of Group VIII of the periodic table and at least one active mercapto group in one molecule; A catalyst for hydrotreating hydrocarbons, which carries an organic sulfur compound.
JP62140432A 1987-06-03 1987-06-03 Hydroprocessing catalyst for hydrocarbons Expired - Fee Related JP2577739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62140432A JP2577739B2 (en) 1987-06-03 1987-06-03 Hydroprocessing catalyst for hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62140432A JP2577739B2 (en) 1987-06-03 1987-06-03 Hydroprocessing catalyst for hydrocarbons

Publications (2)

Publication Number Publication Date
JPS63302952A JPS63302952A (en) 1988-12-09
JP2577739B2 true JP2577739B2 (en) 1997-02-05

Family

ID=15268535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62140432A Expired - Fee Related JP2577739B2 (en) 1987-06-03 1987-06-03 Hydroprocessing catalyst for hydrocarbons

Country Status (1)

Country Link
JP (1) JP2577739B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07178B2 (en) * 1987-07-02 1995-01-11 住友金属鉱山株式会社 Method for producing catalyst for hydrotreating hydrocarbons
JPH0278442A (en) * 1988-09-13 1990-03-19 Sumitomo Metal Mining Co Ltd Catalyst for hydrogenation of hydrocarbon and production thereof
JPH0283041A (en) * 1988-09-19 1990-03-23 Sumitomo Metal Mining Co Ltd Catalyst for hydrogenation of hydrocarbon and its preparation
EP0460300A1 (en) * 1990-06-20 1991-12-11 Akzo Nobel N.V. Process for the preparation of a presulphided catalyst; Process for the preparation of a sulphided catalyst, and use of said catalyst
FR2910351B1 (en) * 2006-12-22 2009-02-27 Total France Sa HYDROTREATING CATALYST, PROCESS FOR PREPARING THE SAME AND USE THEREOF

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555986B2 (en) * 1994-07-01 2004-08-18 三井化学株式会社 Method for producing thermoplastic resin foam

Also Published As

Publication number Publication date
JPS63302952A (en) 1988-12-09

Similar Documents

Publication Publication Date Title
JP3855090B2 (en) Off-site pretreatment method for hydrocarbon treatment catalysts
CA2305010C (en) Process for sulphidizing hydroprocessing catalysts
US5153163A (en) Process for the pretreatment of a catalyst by a mixture of a sulphur agent and an organic reducing agent
EP0181254B1 (en) Method for presulfiding a catalyst for the treatment of hydrocarbons
US4725569A (en) Organopolysulfide-impregnated catalyst and methods of preparation and use
KR20060129390A (en) A method of restoring catalytic activity of a spent hydrotreating catalyst, the resulting restored catalyst, and a method of hydroprocessing
FR2548205A1 (en) PROCESS FOR PRESULFURING CATALYST FOR PROCESSING HYDROCARBONS
FR2627105A1 (en) PROCESS FOR PRESULFURING CATALYST FOR PROCESSING HYDROCARBONS
JP3263786B2 (en) Pre-sulfurization method of hydrocarbon treatment catalyst
JP2006525110A (en) Off-site treatment of hydrogenation catalyst
CN101722061A (en) Process for the regeneration of catalysts for the treatment of hydrocarbons
JP2004508453A (en) Method for achieving ultra-high hydrodesulfurization of hydrocarbon feedstocks
JP2000313890A (en) Method for use in reforming ultradeep hds of hydrocarbon feedstock
EP0469022B1 (en) Process for presulphurizing a catalyser for treating hydrocarbons
JP2577739B2 (en) Hydroprocessing catalyst for hydrocarbons
JPH09500815A (en) Method for preparing supported catalysts for hydrogenation and hydrotreating
FR2627104A1 (en) Process for presulphurising a catalyst for processing hydrocarbons
JP2577739C (en)
KR102216537B1 (en) Process for preparing a sulphided catalyst
JP2531728B2 (en) Hydrocarbon hydrotreating catalyst and method for activating the same
JP2575168B2 (en) Catalyst for hydrotreating hydrocarbons and method for producing the same
JPH0386247A (en) Method for activating sulfide precursor type hydrogenation catalyst
CZ14697A3 (en) Catalyst, process of its preparation and use thereof
JP2531730B2 (en) Catalyst for hydrotreating hydrocarbons and method for producing the same
JPH07178B2 (en) Method for producing catalyst for hydrotreating hydrocarbons

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees