JPH0386247A - Method for activating sulfide precursor type hydrogenation catalyst - Google Patents

Method for activating sulfide precursor type hydrogenation catalyst

Info

Publication number
JPH0386247A
JPH0386247A JP22043489A JP22043489A JPH0386247A JP H0386247 A JPH0386247 A JP H0386247A JP 22043489 A JP22043489 A JP 22043489A JP 22043489 A JP22043489 A JP 22043489A JP H0386247 A JPH0386247 A JP H0386247A
Authority
JP
Japan
Prior art keywords
catalyst
temperature
temp
sulfide
sulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22043489A
Other languages
Japanese (ja)
Other versions
JP2863559B2 (en
Inventor
Tetsuo Kamo
哲郎 加茂
Naoto Kanehara
尚登 金原
Eiji Yokozuka
英治 横塚
Kisao Uekusa
吉幸男 植草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP1220434A priority Critical patent/JP2863559B2/en
Publication of JPH0386247A publication Critical patent/JPH0386247A/en
Application granted granted Critical
Publication of JP2863559B2 publication Critical patent/JP2863559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit the loss of sulfur, to increase the initial activity of a catalyst and to ensure high desulfurization activity by rapidly raising the temp. of a bed of the catalyst from a certain temp. to the sulfurization initiation temp. at a certain rate or above. CONSTITUTION:A sulfide is incorporated into an alumina supported catalyst contg. groups VI and VIII metals of the periodic table as active components to obtain a sulfide precursor type hydrodesulfurization catalyst. When the catalyst is activated, the temp. of a bed of the catalyst is rapidly raised from 150 deg.C to the sulfurization initiation temp. of the active components at >=0.5 deg.C/min rate. Since the loss of sulfur usable for sulfurization is minimized, the initial activity of the catalyst is increased and high desulfurization activity is ensured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は炭化水素油の水素化脱硫反応に用いられる、有
機イオウ化合物を硫化物として含有せしめた硫化物前駆
体型水素化処理触媒の活性化方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the activation of a sulfide precursor-type hydrotreating catalyst containing an organic sulfur compound as a sulfide, which is used in the hydrodesulfurization reaction of hydrocarbon oil. It is about the method.

[従来の技術] 一般に炭化水素油の水素化脱硫反応に用いられる触媒に
は、γ−アルミナ、シリカ−アルミナ等の無機酸化物担
体に、周期率表第6族金属及び第8族金属から選ばれる
少なくとも一種の金属を水素化活性成分として担持せし
めたものが用いられている。最も一般的には、第6族金
属としてモリブデンが用いられ、第8族金属としてニッ
ケルやコバルトが用いられる。これらの金属活性成分は
調製後には通常酸化物態で担持されており、そのままで
は活性がないため、水素化処理反応に供するためには酸
化物状態から硫化物態に変換する予備硫化、いわゆる活
性化が必要である。この活性化方法として、硫化水素や
メルカプタン類のような有機イオウ化合物を軽油に混合
し、固定触媒層に流通する方法が一般的に採用されてい
る。
[Prior Art] Catalysts used in the hydrodesulfurization reaction of hydrocarbon oils generally include an inorganic oxide support such as γ-alumina or silica-alumina, and a metal selected from Group 6 metals and Group 8 metals of the periodic table. At least one metal supported as a hydrogenation active component is used. Most commonly, molybdenum is used as the Group 6 metal, and nickel or cobalt is used as the Group 8 metal. These metal active components are usually supported in an oxide state after preparation, and are not active as they are. Therefore, in order to use them for the hydrogenation reaction, they must be pre-sulfided to convert from an oxide state to a sulfide state, so-called activation. It is necessary to As a method for this activation, a method is generally adopted in which organic sulfur compounds such as hydrogen sulfide and mercaptans are mixed with light oil and the mixture is passed through a fixed catalyst bed.

[発明が解決しようとする課題] ところが、これらの方法では二硫化が完全に進行するま
での必要時間は数日にわたり、硫化終了を判断すること
が困難であるという欠点がある。
[Problems to be Solved by the Invention] However, these methods have the disadvantage that it takes several days for disulfidation to proceed completely, making it difficult to judge when sulfurization has finished.

しかも1.硫化操作は一次的なものであるため自動化さ
れていないことが多く、通常と異なる繁雑な操作が要求
されている。
Moreover, 1. Since the sulfiding operation is temporary, it is often not automated and requires a different and more complicated operation than usual.

近時、これらの硫化方法よりも一段と効率のよい硫化方
法が特開昭61−111144号公報に開示されている
。即ち、予め酸化物型の触媒に以下の構造式で示される
有機イオウ化合物を添加し、硫化物前駆体としておく方
法である。
Recently, a sulfurization method that is even more efficient than these sulfurization methods has been disclosed in Japanese Patent Application Laid-Open No. 111144/1983. That is, this is a method in which an organic sulfur compound represented by the following structural formula is added to an oxide type catalyst in advance to form a sulfide precursor.

(ジターシャリ−ノニル・ポリスルフィド)ここでnは
4〜20の整数である。
(Ditertiary-nonyl polysulfide) where n is an integer from 4 to 20.

該有機イオウ化合物は、触媒中の活性金属がほぼ硫化物
となる必要量が添加されており、脱硫反応温度附近まで
加熱された水素ガスや反応原料油を触媒層に通し昇温す
ることのみによって活性成分を硫化することができ、短
時間での脱硫操業の開始を可能とするものである。
The organic sulfur compound is added in the necessary amount so that the active metal in the catalyst becomes almost sulfide, and it is only by raising the temperature by passing hydrogen gas or reaction raw material heated to around the desulfurization reaction temperature through the catalyst layer. The active ingredient can be sulfurized and desulfurization operations can be started in a short time.

この活性化方法を具体的に示すと以下のようになる。A concrete example of this activation method is as follows.

第一に反応装置の保全のために!!−を圧充し、機密試
験を行なう。この試験は反応装置の水素脆化を避けるた
め、通常150〜250°Cで行なう。
First of all, for the preservation of the reactor! ! −, and perform a secret test. This test is normally conducted at 150-250°C to avoid hydrogen embrittlement of the reactor.

次いで、反応原料油の流通を開始する。また、条件によ
っては、原料油を循環させる場合もある。
Next, distribution of the reaction raw material oil is started. Also, depending on the conditions, the raw material oil may be circulated.

このようにして行なう触媒層の昇温速度は常用の平均値
として0.3℃/min前後である。従って、水素化脱
硫反応温度を330°Cと仮定すると昇温に要する時間
は4.4〜lO時間となる。
The heating rate of the catalyst layer carried out in this way is about 0.3° C./min as a common average value. Therefore, assuming that the hydrodesulfurization reaction temperature is 330°C, the time required to raise the temperature is 4.4 to 10 hours.

ところが、硫化物前駆体型水素化処理触媒を上記のよう
に実際の製油所の設備や運転条件に従って活性化し、水
素化脱硫反応を行なうと、触媒初期の活性が充分発揮さ
れないという問題点が生じた。触媒の初期活性が低いこ
とは、結果的に触媒能力が低いことになり、それゆえに
硫化物前駆体型水素化処理触媒を用いる上での適切な活
性化の方法の開発が望まれている。
However, when a sulfide precursor-type hydrotreating catalyst is activated according to the actual refinery equipment and operating conditions as described above and a hydrodesulfurization reaction is carried out, a problem arises in that the initial activity of the catalyst is not sufficiently exerted. . A low initial activity of the catalyst results in a low catalytic ability, and therefore, it is desired to develop an appropriate activation method when using a sulfide precursor type hydrotreating catalyst.

本発明の目的は、硫化物前駆体型水素化処理触媒を活性
化する際の適切な方法を提供することにある。
An object of the present invention is to provide a suitable method for activating a sulfide precursor type hydrotreating catalyst.

[課題を解決するための手段] 本発明者らは、製油所での運転で施される種々の条件の
脱硫活性に対する影響を調べた結果、活性化時の昇温速
度が大きく影響することを見出し、更に検討を重ねた結
果、本発明に至った。
[Means for Solving the Problem] As a result of investigating the effects of various conditions applied during refinery operation on desulfurization activity, the present inventors found that the rate of temperature increase during activation has a large effect. As a result of this finding and further studies, we have arrived at the present invention.

即ち、上記課題を解決するための本発明の方法は周期率
表第6族金属と第8族金属から選ばれる少なくとも一種
の金属を水素化活性成分として含むアルミナ担持触媒に
硫化剤を含有せしめて調製された硫化物前駆体型水素化
脱硫触媒を活性化する方法において、触媒層の温度が少
なくとも150°Cより前記活性成分の硫化反応開始温
度までの昇温速度を0.5°C/ win以上とするも
のである。
That is, the method of the present invention for solving the above problems involves incorporating a sulfiding agent into an alumina-supported catalyst containing at least one metal selected from Group 6 metals and Group 8 metals of the periodic table as a hydrogenation active component. In the method of activating the prepared sulfide precursor-type hydrodesulfurization catalyst, the temperature of the catalyst layer is increased from at least 150°C to the sulfidation reaction initiation temperature of the active ingredient at a rate of 0.5°C/win or more. That is.

[作用] 本発明を説明すに際し、まず、硫化剤の分解反応に伴い
進行する活性金属の硫化の過程を説明する。
[Function] In explaining the present invention, first, the process of sulfurization of the active metal, which progresses along with the decomposition reaction of the sulfurizing agent, will be explained.

有機イオウ化合物である硫化剤を以下のように表す。The sulfurizing agent, which is an organic sulfur compound, is expressed as follows.

メルカプタン類: R−S −It スルフィド類 :R−S−R’ ここでR,R’はアルキル基である。Mercaptans: R-S-It Sulfides: R-S-R' Here, R and R' are alkyl groups.

硫化剤の分解と硫化反応は以下のようになる。The decomposition of the sulfurizing agent and the sulfurization reaction are as follows.

2R−SH+ Mo(IV、VI) =MOS!+炭化
水素  ■2R−S−R’ + Mo(IV、Vl) 
= MoS、十炭化水素 ■硫化反応による硫化モリブ
デンの生成反応はや<300°Cで始り、温度が高くな
ればなるほど促進されることは周知のとうりである。一
方で硫化剤として使用される有機イオウ化合物は分解温
度が約150〜200°C程度のものがほとんどである
。従って昇温中150〜300°Cの範囲では硫化剤の
分解により発生したイオウ分は、活性金属を硫化するこ
となく、硫化水素やメルカプタンとなって脱離してしま
う。
2R-SH+ Mo(IV, VI) = MOS! + Hydrocarbon ■2R-S-R' + Mo (IV, Vl)
= MoS, 10 hydrocarbons ■ It is well known that the production reaction of molybdenum sulfide by sulfurization reaction starts at <300°C and accelerates as the temperature increases. On the other hand, most organic sulfur compounds used as sulfurizing agents have a decomposition temperature of about 150 to 200°C. Therefore, during temperature rise in the range of 150 to 300°C, the sulfur component generated by decomposition of the sulfurizing agent does not sulfurize the active metal, but is desorbed as hydrogen sulfide or mercaptan.

本発明において触媒層の温度が少なくとも150°Cよ
り水素化処理反応の開始温度までの昇温速度を0.5°
C/ win以上とするのは、150’C以下では、使
用し得る硫化剤のほとんどが安定であり、分解しないか
らであり、0.5 ”C/ sin未満の昇温速度では
硫化の効率がなんら改良されないからである。無論、昇
温速度は大きければ大きいほど好ましいが、現実には用
いる各装置の能力があり、これが上限となる。また、活
性成分の硫化反応開始温度とは、活性成分の違いはある
が、おおよそ300°Cである。
In the present invention, the temperature of the catalyst layer is increased by at least 0.5° from 150°C to the starting temperature of the hydrotreating reaction.
The reason for setting it above C/win is that below 150'C, most of the sulfurizing agents that can be used are stable and do not decompose, and at a heating rate of less than 0.5''C/sin, the sulfiding efficiency decreases. This is because no improvement will be made.Of course, the higher the temperature increase rate, the better, but in reality, each device used has its own capacity, and this is the upper limit.In addition, the sulfurization reaction initiation temperature of the active ingredient is Although there are differences, it is approximately 300°C.

[実施例コ 三酸化モリブデン29.0 g、炭酸コバルト12.5
g、85%正リン酸 16.5 g、純度85%のメル
カプト酢酸24..1gおよび140 gの擬ベーマイ
トを水を用いて混練し、直径2■の円筒型に成型した後
、空気中にて、100°Cで18時間乾燥し、平均軸長
が3111mになるように切断して硫化物前駆体型水素
化処理触媒を得た。
[Example 29.0 g of molybdenum trioxide, 12.5 g of cobalt carbonate]
g, 85% orthophosphoric acid 16.5 g, 85% purity mercaptoacetic acid 24. .. 1g and 140g of pseudo-boehmite were kneaded with water, molded into a cylindrical shape with a diameter of 2mm, dried in air at 100°C for 18 hours, and cut into pieces with an average axial length of 3111m. A sulfide precursor type hydrotreating catalyst was obtained.

次いで、内径1.5cmである反応管に、充填容積が1
5 ccとなるように前記触媒を充填した。
Then, a reaction tube with an inner diameter of 1.5 cm was filled with a filling volume of 1
The catalyst was filled to a volume of 5 cc.

この反応管を流通系反応装置に連結した後、水素圧力を
30 kg/c+s”−G、水素流通線速度150 c
m/hrとして流通し、同時にクラエート常圧軽油を時
空間遠度4 hr−で流通した。触媒層の温度が300
°Cになるまで0.83℃/minの昇温速度で昇温し
、その後、以下の条件で脱硫水素化反応を開始した。
After connecting this reaction tube to a flow system reactor, the hydrogen pressure was set to 30 kg/c+s''-G, and the hydrogen flow linear velocity was set to 150 c.
m/hr, and at the same time, claate atmospheric gas oil was distributed at a time and space distance of 4 hr. The temperature of the catalyst layer is 300
The temperature was raised at a temperature increase rate of 0.83°C/min until the temperature reached 0.°C, and then the hydrogen desulfurization reaction was started under the following conditions.

通油時空間速度(LIISI/)  2 Hr−’水素
圧力       30 Kg/cm”−G水素流通方
向線速度 150 am/hr反応時間       
48時間 反応原料油    クラエート常圧軽油(イオウ含有率
 1.55%) 水素加脱硫反応の結果、平均脱硫活性率は反応次数を1
.75次として求められた速度定数として8.5を示し
た。この値は、通常製油所でとられる平均的な昇温速度
0,2℃/minで昇温した場合に較べて高く、比較例
より約30 %も高いものであった。
Oil passing hourly space velocity (LIISI/) 2 Hr-'Hydrogen pressure 30 Kg/cm"-G hydrogen flow direction linear velocity 150 am/hrReaction time
48-hour reaction feedstock oil Kraate atmospheric gas oil (sulfur content 1.55%) As a result of the hydrovulcanization reaction, the average desulfurization activity was 1 reaction order
.. The rate constant determined as the 75th order was 8.5. This value was higher than when the temperature was raised at the average temperature increase rate of 0.2°C/min normally used in oil refineries, and was about 30% higher than that of the comparative example.

[比較例コ 実施例1と同し触媒を、同様の反応管に充填し、流通系
反応装置に連結した後、水素圧力を30kg/cra”
−Gs水素流通線速度150 cm/hrとなるように
水素を流入させつつ、クラエート常圧軽油を時空間速度
(LHSV)が4 hr−’ となるように流入させ、
通常の製油所の平均昇温速度である0、20℃/min
の昇温速度で330°Cまで昇温し、引続き以下の条件
で脱硫水素化反応を行なった。
[Comparative Example: The same catalyst as in Example 1 was filled into a similar reaction tube, and after connecting it to a flow system reactor, the hydrogen pressure was set at 30 kg/cra.
-Gs While hydrogen is flowing at a linear velocity of 150 cm/hr, claate atmospheric gas oil is flowing at a space-time velocity (LHSV) of 4 hr-',
0, 20℃/min, which is the average temperature increase rate in a normal refinery
The temperature was raised to 330° C. at a temperature increase rate of 330° C., and the hydrogen desulfurization reaction was subsequently carried out under the following conditions.

通油時空間速度(LIISV)  211r”水素圧力
       30 Kg/cm’−G水素流通方向線
速度 150 am/hr反応時間       48
時間 反応原料油    クラエート常圧軽油(イオウ含有率
 1.55%) 水素加脱硫反応の結果、平均脱硫活性率は反応次数を1
.75次として求められた速度定数として5.9を示し
た。この値は、実施例より 30%も低いものであった
。これは、長時間にわたる昇温の影響を受けたものと思
われる。
Oil passing hourly space velocity (LIISV) 211r"Hydrogen pressure 30 Kg/cm'-G hydrogen flow direction linear velocity 150 am/hrReaction time 48
Time-reactive feedstock oil Claate atmospheric gas oil (sulfur content 1.55%) As a result of the hydrodesulfurization reaction, the average desulfurization activity is 1 reaction order
.. The rate constant determined as the 75th order was 5.9. This value was 30% lower than that of the example. This seems to be due to the effect of prolonged temperature rise.

[発明の効果コ 本発明の方法によれば、触媒温度を急速に上昇させるた
めるに硫化に使用し得るイオウ分の損失を最小限に押え
ることができるため触媒の初期活性を高めることができ
、その結果、高い脱硫活性を引出すことができる。
[Effects of the Invention] According to the method of the present invention, the loss of sulfur content that can be used for sulfidation can be minimized by rapidly increasing the catalyst temperature, so that the initial activity of the catalyst can be increased. As a result, high desulfurization activity can be achieved.

Claims (1)

【特許請求の範囲】[Claims] 周期率表第6族金属と第8族金属から選ばれる少なくと
も一種の金属を水素化活性成分として含むアルミナ担持
触媒に硫化剤を含有せしめて調製された硫化物前駆体型
水素化脱硫触媒を活性化する方法において、触媒層の温
度が少なくとも150℃より前記活性成分の硫化反応開
始温度までの昇温速度を0.5℃/min以上とするこ
とを特徴とする硫化物前駆体型水素化処理触媒の活性化
方法。
Activating a sulfide precursor-type hydrodesulfurization catalyst prepared by incorporating a sulfiding agent into an alumina-supported catalyst containing at least one metal selected from Group 6 metals and Group 8 metals of the periodic table as a hydrogenation active component. In the method, the temperature of the sulfide precursor type hydrotreating catalyst is characterized in that the temperature of the catalyst layer is increased from at least 150°C to the sulfidation reaction initiation temperature of the active component at a rate of 0.5°C/min or more. Activation method.
JP1220434A 1989-08-29 1989-08-29 Activation method of sulfide precursor type hydrotreating catalyst Expired - Fee Related JP2863559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1220434A JP2863559B2 (en) 1989-08-29 1989-08-29 Activation method of sulfide precursor type hydrotreating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1220434A JP2863559B2 (en) 1989-08-29 1989-08-29 Activation method of sulfide precursor type hydrotreating catalyst

Publications (2)

Publication Number Publication Date
JPH0386247A true JPH0386247A (en) 1991-04-11
JP2863559B2 JP2863559B2 (en) 1999-03-03

Family

ID=16751051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1220434A Expired - Fee Related JP2863559B2 (en) 1989-08-29 1989-08-29 Activation method of sulfide precursor type hydrotreating catalyst

Country Status (1)

Country Link
JP (1) JP2863559B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11164610B1 (en) 2020-06-05 2021-11-02 Qualcomm Incorporated Memory device with built-in flexible double redundancy
US11177010B1 (en) 2020-07-13 2021-11-16 Qualcomm Incorporated Bitcell for data redundancy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4554350B2 (en) * 2004-12-24 2010-09-29 日立建機株式会社 Gripping force control device and work machine
CN104772154A (en) * 2014-01-15 2015-07-15 南京大学 Preparation method of silica supported nickel phosphide catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319003A (en) * 1976-08-04 1978-02-21 Mitsubishi Electric Corp Recording and reproducing system of endless type

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319003A (en) * 1976-08-04 1978-02-21 Mitsubishi Electric Corp Recording and reproducing system of endless type

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11164610B1 (en) 2020-06-05 2021-11-02 Qualcomm Incorporated Memory device with built-in flexible double redundancy
US11640835B2 (en) 2020-06-05 2023-05-02 Qualcomm Incorporated Memory device with built-in flexible double redundancy
US11177010B1 (en) 2020-07-13 2021-11-16 Qualcomm Incorporated Bitcell for data redundancy

Also Published As

Publication number Publication date
JP2863559B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
JP4949957B2 (en) Process for preparing at least one cobalt and / or nickel salt of at least one Anderson-type heteropolyanion that mobilizes molybdenum and cobalt or nickel in its structure
US7645376B2 (en) Selective hydrogenation process employing a sulphurized catalyst
JP4491677B2 (en) Hydroprocessing catalyst containing nitrogen organic compound and use thereof
JPS63267441A (en) Preparatory sulfiding composition for preparing hydrotreating catalyst
JP2007533834A (en) Method for producing low sulfur distillate
KR20100053617A (en) A composition useful in the catalytic hydroprocessing of hydrocarbon feedstocks, a method of making such catalyst, and a process of using such catalyst
GB2051120A (en) Catalyst for the selective desulphurization of olefinic cuts
US7718053B2 (en) Selective hydrogenation process employing a catalyst having a controlled porosity
JPH03217235A (en) Preparation and use of sulfidized catalyst
KR20080004631A (en) A method for the selective hydrodesulfurization of an olefin containing hydrocarbon feedstock
JPH0386247A (en) Method for activating sulfide precursor type hydrogenation catalyst
JPH0751582A (en) New preliminary sulfidization of catalyst
JP2577739B2 (en) Hydroprocessing catalyst for hydrocarbons
JP2575168B2 (en) Catalyst for hydrotreating hydrocarbons and method for producing the same
US4139492A (en) Hydrotreating catalysts
KR101976224B1 (en) A hydroprocessing catalyst and methods of making and using such a catalyst
US5130285A (en) Preparation of catalyst for use in fuel oil hydrodesulfurization and hydrodenitrogenation and catalyst made by the preparation
JP2531728B2 (en) Hydrocarbon hydrotreating catalyst and method for activating the same
JPH04135643A (en) Pre-sulfiding type hydrogenation catalyst and its production
JPH01236943A (en) Catalyst for hydrotreating hydrocarbon and production thereof
CZ14697A3 (en) Catalyst, process of its preparation and use thereof
JP2920256B2 (en) Hydrodesulfurization catalyst
JPH01236944A (en) Catalyst for hydrotreating hydrocarbon and production thereof
JPH01236946A (en) Catalyst for hydrotreating hydrocarbon and production thereof
JPH01236945A (en) Catalyst for hydrotreating hydrocarbon and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees