JPH01236945A - Catalyst for hydrotreating hydrocarbon and production thereof - Google Patents

Catalyst for hydrotreating hydrocarbon and production thereof

Info

Publication number
JPH01236945A
JPH01236945A JP5946388A JP5946388A JPH01236945A JP H01236945 A JPH01236945 A JP H01236945A JP 5946388 A JP5946388 A JP 5946388A JP 5946388 A JP5946388 A JP 5946388A JP H01236945 A JPH01236945 A JP H01236945A
Authority
JP
Japan
Prior art keywords
catalyst
group
acid
metal
periodic table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5946388A
Other languages
Japanese (ja)
Inventor
Yasuto Takahashi
康人 高橋
Shigeru Sakai
茂 酒井
Tomio Kawaguchi
川口 富男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5946388A priority Critical patent/JPH01236945A/en
Publication of JPH01236945A publication Critical patent/JPH01236945A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst for hydrotreating hydrocarbon oil which is easy in activation treatment by carrying the water-soluble compds. of groups VI and VIII metals in the periodic table, phosphoric acid and thio-acid on an inorganic oxide carrier. CONSTITUTION:The water-soluble compds. of both group VI metals such as molybdenum and tungsten in the periodic table and group VIII metals such as cobalt and nickel, phosphoric acid and thio-acid such as thioacetic acid are carried on an inorganic oxide carrier such as alumina and silica. Thereby thio-acid forms a soluble coordination compd. together with metals and metallic sulfide is carried in a high dispersion state on the inorganic carrier. Therefore the catalyst for hydrotreating hydrocarbon oil which has excellent performance is obtained with a simplified operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は活性化処理が容易な炭化水素油の水素化処理触
媒の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a hydroprocessing catalyst for hydrocarbon oil that can be easily activated.

〔従来の技術〕[Conventional technology]

炭化水素油を水素の存在下で水添、脱硫、脱窒素、分解
等を行う所謂水素化処理には、アルミナ、シリカ−アル
ミナ、チタニア等の無機酸化物担体に、周期律表第6族
金属及び第8族金属から選ばれる少なくとも1種の金属
を水素化活性成分として担持せしめた触媒が用いられ、
第6族金属としてはMo及びW、第8族金属としてはC
o及びNiがよく用いられている。
In so-called hydrogenation treatment, in which hydrocarbon oil is hydrogenated, desulfurized, denitrified, decomposed, etc. in the presence of hydrogen, a group 6 metal of the periodic table is used on an inorganic oxide carrier such as alumina, silica-alumina, or titania. and a catalyst on which at least one metal selected from Group 8 metals is supported as a hydrogenation active component,
Group 6 metals include Mo and W; Group 8 metals include C.
o and Ni are commonly used.

これらの金属は通常酸化動態で担持されており、そのま
までは活性がないため、水素化処理反応に供するには酸
化動態から硫化動態に変換して活性化する予備硫化が必
要である。
These metals are usually supported with oxidation dynamics and are not active as they are, so in order to use them for the hydrogenation reaction, pre-sulfidation is required to convert the oxidation dynamics into sulfuration dynamics and activate them.

この予備硫化は従来、炭化水素油の水素化処理を行う反
応器に触媒を充填した後、この触媒層に硫化剤を水素と
共に通過せしめて行うのが一般的である。予備硫化の操
作条件は、水素化処理プロセスによって又使用する硫化
剤によって種々異なるが、硫化水素による場合は水素中
に0.5〜5容量%程度含有せしめ、これを触媒2当り
標準温度、圧力に換算して1,000〜3.000!、
温度180℃以上(通常は250℃以上)で行っており
、二硫化炭素、ノルマルブチルメルカプタン、硫化ジメ
チル、二硫化ジメチル等を用いる場合はこれらを軽質炭
化水素油で希釈して供し、温度250〜350℃、圧力
20〜100kg/cri、液空間速度0、5〜2 h
r−’、水素/油止200〜1000 Nl/!!で行
っている。
Conventionally, this pre-sulfurization is generally carried out by filling a catalyst in a reactor for hydrogenating hydrocarbon oil and then passing a sulfurizing agent together with hydrogen through the catalyst bed. The operating conditions for pre-sulfiding vary depending on the hydrotreating process and the sulfurizing agent used, but in the case of using hydrogen sulfide, hydrogen is contained in the hydrogen at a concentration of about 0.5 to 5% by volume, and this is carried out per 2 catalysts at standard temperature and pressure. Convert to 1,000~3,000! ,
It is carried out at a temperature of 180°C or higher (usually 250°C or higher), and when carbon disulfide, n-butyl mercaptan, dimethyl sulfide, dimethyl disulfide, etc. are used, they are diluted with light hydrocarbon oil and used at a temperature of 250°C or higher. 350℃, pressure 20-100kg/cri, liquid space velocity 0, 5-2h
r-', hydrogen/oil stop 200-1000 Nl/! ! I'm doing it.

このような予備硫化操作を行った後実際に処理すべき原
料油に切り替え、水素化処理操業が開始される。
After performing such a pre-sulfiding operation, the raw material oil to be actually treated is switched to, and the hydrotreating operation is started.

ところで上記予備硫化操作は以後の水素化処理の成否を
左右するので、使用資材の適切な選択と慎重な操作が要
求される。例えば希釈剤を用いた場合、希釈剤にオレフ
ィン類が含有されていると重合生成物が触媒を被毒する
ためオレフィン類を含有しない炭化水素油を用いる必要
があり、又粘性が高いと触媒表面の湿潤効果が乏しく重
質油では不適当なため結局軽質油を用いざるを得ない。
By the way, since the above-mentioned pre-sulfurization operation influences the success or failure of the subsequent hydrogenation treatment, appropriate selection of the materials used and careful operation are required. For example, when using a diluent, if the diluent contains olefins, the polymerization product will poison the catalyst, so it is necessary to use a hydrocarbon oil that does not contain olefins, and if the diluent has high viscosity, the catalyst surface Since heavy oil is not suitable due to its poor moisturizing effect, light oil has no choice but to be used.

このような軽質油の使用はコスト高を招く。又、触媒金
属が高温で水素と反応して還元されると不働態化するの
でこれを防止するため硫化剤を多口に用いる必要があり
、硫化剤と水素の割合を適正に維持しなければならない
。更にこのような予備硫化は数日間にわたって行うのが
通常であるが、この操作は一時的なものであるため自動
化されていないことが多く、通常と異なる煩雑な操作が
要求されるため操作員の負担が極めて大きい。このため
予備硫化を省略するか、少なくとも操作の煩雑さを軽減
することが課題になっていた。
Use of such light oil results in increased costs. In addition, when the catalyst metal reacts with hydrogen at high temperatures and is reduced, it becomes passivated, so in order to prevent this, it is necessary to use a large amount of sulfurizing agent, and the ratio of sulfurizing agent and hydrogen must be maintained properly. It won't happen. Furthermore, although this kind of presulfurization is normally carried out over several days, this operation is temporary and is often not automated, requiring unusual and complicated operations that require operator effort. The burden is extremely heavy. Therefore, it has been a challenge to eliminate presulfurization or at least reduce the complexity of the operation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

最近に至り、このような要請に応え得る方法が提案され
た。
Recently, a method has been proposed that can meet these demands.

その方法は活性金属が担持された触媒に一般式%式% 素原子、又は1分子当たり1〜150個の炭素原子を有
する有機基)で表わされる多硫化物を含浸せしめ、水素
ガスの不存在下、65〜275℃、0.5〜70バール
の圧力下で前記触媒を熱処理するものである(特開昭6
1−1)1)44号公報)。この方法によれば触媒に含
浸された多硫化物が熱処理によって活性金属を硫化する
ので、反応器内で予備硫化する場合は硫化剤及び希釈剤
が不要となるため操作が容易になり、又反応器外での予
(lf#硫化も可能で、その場合は予備硫化した触媒を
反応器に充填すれば直ちに水素化処理操業を開始できる
The method involves impregnating a catalyst on which an active metal is supported with a polysulfide represented by the general formula % (or an organic group having 1 to 150 carbon atoms per molecule), and in the absence of hydrogen gas. Below, the catalyst is heat-treated at 65-275°C and under a pressure of 0.5-70 bar (Japanese Patent Application Laid-Open No.
1-1) 1) Publication No. 44). According to this method, the polysulfide impregnated in the catalyst sulfurizes the active metal through heat treatment, so when pre-sulfiding is performed in the reactor, a sulfurizing agent and a diluent are not required, making the operation easier. Pre-sulfurization outside the reactor is also possible, and in that case, the hydrotreating operation can be started immediately by filling the reactor with the pre-sulfurized catalyst.

上記多硫化物の使用量は、後で触媒中の活性金属酸化物
(例えばNi1)、 MOO3)全体を硫化するために
必要な化学量論量であり、適切な有機溶媒に希釈して触
媒に含浸する。したがって、活性金属担持量の多い触媒
に含浸する場合には、高濃度の上記多硫化物溶液を用い
ることが必要となる。ところが上記多硫化物は高粘度で
あるために高濃度溶液では触媒細孔内部への浸透が困難
になるという問題がある。
The amount of polysulfide used is the stoichiometric amount required to later sulfurize the entire active metal oxide (e.g. Ni1, MOO3) in the catalyst, and it is diluted with an appropriate organic solvent and added to the catalyst. Impregnate. Therefore, when impregnating a catalyst with a large amount of active metal supported, it is necessary to use a highly concentrated polysulfide solution. However, since the polysulfide has a high viscosity, there is a problem that it becomes difficult to penetrate into the catalyst pores in a highly concentrated solution.

〔課題を解決するための手段) 本発明者らは、多硫化物より扱い易い硫化剤による予備
硫化方法を種々研究した結果、チオ酸が適当であること
を見出して先に出願したが、更に研究した結果、硫化剤
の含浸は活性金属の含浸後でも良く、又硫化剤と活性金
属を共に含む含浸液によっても同様の効果が得られるこ
とを見出して本発明に到達した。
[Means for Solving the Problems] As a result of various research into presulfurization methods using sulfurizing agents that are easier to handle than polysulfides, the present inventors found that thioacids were suitable and filed an application earlier. As a result of research, it was found that the impregnation with the sulfurizing agent may be performed after impregnating the active metal, and the same effect can be obtained by using an impregnating liquid containing both the sulfurizing agent and the active metal, and the present invention was achieved.

即ち、本発明は無機酸化物担体に周期律表第6族金属及
び第8族金属から選ばれる少なくとも一種の金属の水溶
性化合物及びリン酸とチオ酸とが担持せしめられている
炭化水素の水素化処理用触媒と、無機酸化物担体に周期
律表第6族金属及び第8族金属から選ばれる少なくとも
一種の金属の水溶性化合物とリン酸とを水溶液として別
々に又は同時に含浸し、乾燥した後、該乾燥物にチオ酸
を含浸せしめる点に特徴のある炭化水素油の水素化処理
用触媒製造方法と、無機酸化物担体に、周期律表第6族
及び第8族金属から選ばれる少なくとも一種の金属の水
溶性化合物及びリン酸とチオ酸を含む含浸液を含浸せし
める点に特徴のある炭化水素油の水素化処理用触媒の製
造方法である。
That is, the present invention provides hydrocarbon hydrogen in which a water-soluble compound of at least one metal selected from Group 6 metals and Group 8 metals of the periodic table and phosphoric acid and thioic acid are supported on an inorganic oxide carrier. A catalyst for chemical treatment, an inorganic oxide carrier impregnated with phosphoric acid and a water-soluble compound of at least one metal selected from Group 6 metals and Group 8 metals of the periodic table, separately or simultaneously as an aqueous solution, and dried. A method for producing a catalyst for hydrotreating hydrocarbon oil characterized in that the dried product is impregnated with a thioacid, and an inorganic oxide carrier containing at least one metal selected from Group 6 and Group 8 metals of the periodic table. This is a method for producing a catalyst for hydrotreating hydrocarbon oil, which is characterized in that it is impregnated with an impregnating liquid containing a water-soluble compound of a metal and phosphoric acid and thioic acid.

従来よりよく知られているように無機酸化物担体として
は、アルミナ、シリカ−アルミナ、チタニア等が挙げら
れ、特にアルミナ又はシリカ−アルミナが代表的なもの
である。
As is well known in the art, examples of the inorganic oxide carrier include alumina, silica-alumina, titania, etc., with alumina or silica-alumina being particularly representative.

又、従来から知られているように活性金属としての周期
律表第6族としては、Mo及び/又はWが好ましく、含
浸液調製のための原料としては、二酸化モリブデン、バ
ラモリブデン酸アンモニウム、三酸化タングステン、パ
ラタングステン酸アンモニウムを好ましい例として挙げ
ることが出来る。
Furthermore, as is conventionally known, Mo and/or W are preferable as active metals in Group 6 of the periodic table, and raw materials for preparing the impregnating solution include molybdenum dioxide, ammonium baramolybdate, and molybdenum trioxide. Preferred examples include tungsten oxide and ammonium paratungstate.

同様に周期律表第8族金属としてはCo及び/又はNi
が好ましく、含浸液調製のための原料としては硝酸コバ
ルト、炭酸コバルト、硝酸ニッケル、炭酸ニッケルを好
ましい例として挙げることが出来る。第6族金属と第8
族金属は単独で或いは混合して用いられる。
Similarly, Co and/or Ni are Group 8 metals of the periodic table.
is preferred, and preferred examples of raw materials for preparing the impregnating solution include cobalt nitrate, cobalt carbonate, nickel nitrate, and nickel carbonate. Group 6 metals and Group 8 metals
Group metals may be used alone or in combination.

リンも又従来から知られている活性物質であるが、本発
明の触媒においても有用で、含浸する形態としてはリン
酸が適している。このリン酸は上記水溶性化合物とは別
の水溶液として含浸せしめても良いし、該水溶性化合物
を共に含む含浸液を用いて同時に含浸せしめても良い。
Phosphorus, also a conventionally known active substance, is also useful in the catalyst of the present invention, and phosphoric acid is suitable as the impregnating form. This phosphoric acid may be impregnated as an aqueous solution separate from the above-mentioned water-soluble compound, or may be impregnated simultaneously using an impregnating solution containing both the above-mentioned water-soluble compound.

この同時含浸の場合は、リン酸の含有量が増すに従って
法帖性が増し、含浸しにくくなる。このためこの方法に
よる場合は触媒中にP2O,として8重世%担持するの
がほぼ限度である。
In the case of simultaneous impregnation, as the content of phosphoric acid increases, the stiffness increases and impregnation becomes difficult. Therefore, when using this method, the limit is approximately 8% of P2O supported in the catalyst.

チオ酸は一般式R−COSH(式中、Rは一価の炭化水
素基を示す)で表わされ、チオ酢酸(CH3CO3H)
 。
Thioacid is represented by the general formula R-COSH (wherein R represents a monovalent hydrocarbon group) and is thioacetic acid (CH3CO3H).
.

チオ安息香酸(CJ、C05H)などを好ましい例とし
て挙げることが出来る。
Preferred examples include thiobenzoic acid (CJ, C05H).

一般に炭化水素油の水素化処理用触媒の製造方法は、無
機酸化物担体に活性金属としての周期律表第6族金属成
分及び/又は第8族金属成分の水溶液を含浸し、乾燥次
いで焼成という工程から構成される。
Generally, a method for producing a catalyst for hydrotreating hydrocarbon oil involves impregnating an inorganic oxide carrier with an aqueous solution of a Group 6 metal component and/or a Group 8 metal component of the periodic table as an active metal, drying, and then calcination. It consists of processes.

本発明では、上記工程中の活性金属の水溶性化合物及び
リン酸を別々に又は同時に含浸した後の乾燥物にチオ酸
をアルコール等の有機溶媒に溶解してその溶液を含浸法
により担持させるか、又は無機酸化物担体に活性金属の
水溶性化合物及びリン酸とチオ酸を含有する溶液を含浸
法により担持させる。このような方法によれば、触媒製
造工程に新たな工程を付加する必要もなく、また従来行
なわれている焼成工程が不要となるので熱エネルギー的
に有利である。
In the present invention, after impregnating the active metal water-soluble compound and phosphoric acid in the above step separately or simultaneously, thioic acid is dissolved in an organic solvent such as alcohol and the solution is supported by an impregnation method. Alternatively, a solution containing a water-soluble compound of an active metal and phosphoric acid and thioic acid is supported on an inorganic oxide carrier by an impregnation method. According to such a method, it is not necessary to add a new step to the catalyst manufacturing process, and the conventional calcination step is not required, so it is advantageous in terms of thermal energy.

チオ酸の使用量は、周期律表第6族金属及び第8族金属
が水素化反応において高活性を示す硫化形B(例えばM
O3!l WSt+ Cod、 N15)を形成するに
必要な硫黄量の1〜3当量倍が好ましい。使用量がこれ
以下では活性の低下を招き、またこれ以上を使用しても
それは・ど活性の向上が望める訳ではないので不経済で
ある。
The amount of thioacid used is determined based on the sulfide form B (e.g. M
O3! The amount of sulfur is preferably 1 to 3 times the amount of sulfur required to form 1 WSt+ Cod, N15). If the amount used is less than this, the activity will decrease, and if more than this amount is used, no improvement in activity can be expected, so it is uneconomical.

本発明で調製された触媒は使用した溶媒を乾燥除去した
後に反応塔に充填され炭化水素油の水素化処理に供され
る。
After drying and removing the solvent used, the catalyst prepared according to the present invention is packed into a reaction tower and subjected to hydrotreating of hydrocarbon oil.

本発明では、乾燥後の触媒に格別の処理を必ずしも施す
必要はなく、乾燥後の触媒は直ちに炭化水素油の水素化
処理用の反応器に充填し使用することが出来る。
In the present invention, it is not necessary to subject the dried catalyst to any special treatment, and the dried catalyst can be immediately filled into a reactor for hydrotreating hydrocarbon oil and used.

〔作 用〕[For production]

本発明法で調製された触媒は、炭化水素油の水素化脱硫
反応において従来技術によって硫化された触媒よりも優
れた活性を示す。その理由は定かではないが、チオ酸が
周期律表第6族金属及び/又は第8族金属と溶解性の配
位化合物を形成し、無機酸化物担体に高分散状態で金属
硫化物が担持されることによるためと考えられる。
Catalysts prepared by the method of the present invention exhibit superior activity in hydrodesulfurization reactions of hydrocarbon oils than catalysts sulfurized by prior art techniques. The reason is not clear, but the thioic acid forms a soluble coordination compound with the metal of Group 6 and/or Group 8 of the periodic table, and the metal sulfide is supported in a highly dispersed state on the inorganic oxide support. This is thought to be due to the fact that the

〔実施例〕〔Example〕

以下本発明の実施例及び比較例を示す。 Examples and comparative examples of the present invention will be shown below.

実施例1 比表面積280耐/g、細孔容積0.75 ta l 
/ gのγ−アルミナ担体100gに二酸化モリブデン
16、5 g、炭酸ニッケル(Ni含有143.3%)
10、5 g、85%リン酸16.5 g及び水から調
製した含浸液80mj!を含浸し、1)0℃で16時間
乾燥した。次に該乾燥物40gにチオ酢酸16.9gを
含むアルコール溶液22嘱βを全量含浸した後、1)0
℃で16時間乾燥し触媒Aを得た。
Example 1 Specific surface area 280/g, pore volume 0.75 ta l
/ g of γ-alumina support 16.5 g of molybdenum dioxide, nickel carbonate (Ni content 143.3%)
80 mj of impregnating solution prepared from 10.5 g, 16.5 g of 85% phosphoric acid and water! 1) Dry at 0°C for 16 hours. Next, 40 g of the dried material was impregnated with 22 tons of an alcohol solution containing 16.9 g of thioacetic acid, and then 1)
Catalyst A was obtained by drying at ℃ for 16 hours.

触媒Aの金属含有量はモリブデンがMoo、に換算して
20−t%、ニッケルがNiOに換算して4wt%、リ
ンがP2O,に換算して7wt%であり、チオ酢酸の使
用量はMo、 Ni′lJ<Mo51. NiSになる
のに必要な硫黄の理論量に換算して1.5倍であった。
The metal content of catalyst A is 20-t% molybdenum converted to Moo, 4 wt% nickel converted to NiO, 7 wt% phosphorus converted to P2O, and the amount of thioacetic acid used is Mo. , Ni′lJ<Mo51. The amount was 1.5 times the theoretical amount of sulfur required to form NiS.

実施例2 実施例1に用いたのと同様のアルミナ担体50gに、三
酸化モリブデン14.5g、炭酸二・ノケル5.3g、
リン酸8.2g、チオ酢酸23.6 g及び水から調製
した含浸液(pH=5)47 mlを全量含浸し、10
0℃で16時間乾燥して触媒Bを得た。
Example 2 To 50 g of alumina carrier similar to that used in Example 1, 14.5 g of molybdenum trioxide, 5.3 g of di-nokel carbonate,
The entire amount was impregnated with 47 ml of an impregnating solution (pH = 5) prepared from 8.2 g of phosphoric acid, 23.6 g of thioacetic acid, and water, and
Catalyst B was obtained by drying at 0°C for 16 hours.

触媒Bの金属含有量はモリブデンがMoo、に換算して
20−t%、ニッケルがNiOに換算して4wt%、リ
ンがP!0.に換算して7wt%であり、チオ酢酸の使
用量はMo、 NiがMo5g+ NiSになるのに必
要な硫黄の理論量に換算して1.1倍であった。
The metal content of catalyst B is molybdenum is 20-t% converted to Moo, nickel is 4wt% converted to NiO, and phosphorus is P! 0. The amount of thioacetic acid used was 1.1 times the theoretical amount of sulfur required to convert Mo and Ni to 5 g of Mo+NiS.

実施例3 〔活性評価〕 実施例1及び2で調製された触媒A、Bを用いて、クェ
ート常圧軽油の水素化脱硫反応を行った。
Example 3 [Activity Evaluation] Using catalysts A and B prepared in Examples 1 and 2, a hydrodesulfurization reaction of Kuwait atmospheric gas oil was carried out.

反応に用いた常圧軽油の性状は次の通りであった。The properties of the atmospheric gas oil used in the reaction were as follows.

比重(15/4℃>     0.848硫黄    
      1.61重量%窒素          
157重量重量−蒸留性状(初留点)    21)℃ 〃(50vol、χ)   340℃ 〃  (終 点)   406℃ 反応は流通式反応装置を用い次の反応条件で行った。
Specific gravity (15/4℃>0.848 sulfur
1.61% nitrogen by weight
157 Weight - Distillation properties (initial boiling point) 21) °C (50 vol, χ) 340 °C (end point) 406 °C The reaction was carried out using a flow reactor under the following reaction conditions.

触媒量         3III!!原料油液空間速
度    2.Ohr日反応圧力(水素圧)    3
0kg/cot反応温度        330℃ 水素/油比 油止    30ONj!/I!通油時間
        8hr 処理油は2時間毎にサンプリングし硫黄含有量を測定し
、脱硫率を求めた。4時間目、6時間目、8時間目にサ
ンプリングした処理油の硫黄含有量から求めた脱硫率の
平均値を第1表に示す。
Catalyst amount 3III! ! Raw material oil liquid space velocity 2. Ohr day reaction pressure (hydrogen pressure) 3
0kg/cot Reaction temperature 330℃ Hydrogen/oil ratio Oil stop 30ONj! /I! Oil passing time: 8 hours The treated oil was sampled every 2 hours, the sulfur content was measured, and the desulfurization rate was determined. Table 1 shows the average value of the desulfurization rate determined from the sulfur content of the treated oil sampled at the 4th hour, 6th hour, and 8th hour.

比較例 実施例1のチオ酢酸を担持する前の触媒を500℃で2
時間焼成した後、n−ブチルメルカプタンを混合したク
ェート常圧軽油により硫化(または予備硫化)処理し反
応に供した。
Comparative Example The catalyst of Example 1 before being supported with thioacetic acid was heated at 500°C for 2 hours.
After being fired for an hour, it was sulfurized (or pre-sulfurized) using Kuwait atmospheric gas oil mixed with n-butyl mercaptan and subjected to a reaction.

〔硫化処理〕[Sulfurization treatment]

触媒量      3涌! 原料油液空間速度 2.0hr−’ 反応圧力     30kg/ad 反応温度     316℃ 水素/油止    300 Nβ/β 通油時間     8hr 〔活性評価〕 活性評価の条件は、実施例3と全く同じである。 Catalyst amount: 3 tons! Raw material oil liquid space velocity 2.0hr-' Reaction pressure 30kg/ad Reaction temperature 316℃ Hydrogen/oil stop 300 Nβ/β Oiling time: 8 hours [Activity evaluation] The conditions for activity evaluation are exactly the same as in Example 3.

4時間目、6時間目、8時間目にサンプリングした処理
油の硫黄含有量から求めた脱硫率の平均値を第1表に示
す。
Table 1 shows the average value of the desulfurization rate determined from the sulfur content of the treated oil sampled at the 4th hour, 6th hour, and 8th hour.

チオ酢酸を含浸した触媒はA、B共に3重量%のn−ブ
チルメルカプタンを混合したクェート常圧軽油を用いて
硫化した触媒より高活性を示す。
Both catalysts A and B impregnated with thioacetic acid exhibit higher activity than catalysts sulfurized using Kuwait atmospheric gas oil mixed with 3% by weight of n-butyl mercaptan.

第  1  表 (ネ)3重t%n−フ゛チルメルカプタント常圧軽油を
用いた硫化法 〔発明の効果〕 本発明によれば、従来技術の硫化法よりも筒略化された
操作で、優れた性能を有する炭化水素油の水素化処理触
媒を得ることができる。
Table 1 (N) Sulfurization method using 3-t% n-butyl mercaptan atmospheric gas oil [Effects of the invention] According to the present invention, the operation is simplified and superior to the conventional sulfurization method. A catalyst for hydrotreating hydrocarbon oil having excellent performance can be obtained.

特許出願人  住友金属鉱山株式会社Patent applicant: Sumitomo Metal Mining Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] (1)周期律表第6族金属及び第8族金属から選ばれる
少なくとも一種の金属の水溶性化合物及びリン酸とチオ
酸とが、無機酸化物担体に担持せしめられていることを
特徴とする炭化水素の水素化処理用触媒。
(1) A water-soluble compound of at least one metal selected from Group 6 metals and Group 8 metals of the periodic table, and phosphoric acid and thioic acid are supported on an inorganic oxide carrier. Catalyst for hydroprocessing of hydrocarbons.
(2)周期律表第6族金属がMo、Wの少なくとも一種
であり、第8族金属がCo、Niの少なくとも一種であ
る第(1)項記載の炭化水素の水素化処理用触媒。
(2) The catalyst for hydrotreating hydrocarbons according to item (1), wherein the Group 6 metal of the periodic table is at least one of Mo and W, and the Group 8 metal is at least one of Co and Ni.
(3)チオ酸がチオ酢酸及び/又はチオ安息香酸である
第(1)項又は第(2)項記載の炭化水素の水素化処理
用触媒。
(3) The catalyst for hydrogenation of hydrocarbons according to item (1) or item (2), wherein the thioacid is thioacetic acid and/or thiobenzoic acid.
(4)無機酸化物担体に周期律表第6族金属、第8族金
属の少なくとも一種の金属の水溶性化合物とリン酸とを
水溶液として別々に又は同時に含浸し、乾燥した後、該
乾燥物にチオ酸を含浸することを特徴とする炭化水素の
水素化処理用触媒の製造方法。
(4) Impregnating an inorganic oxide carrier with a water-soluble compound of at least one metal of Group 6 metal or Group 8 metal of the periodic table and phosphoric acid as an aqueous solution, separately or simultaneously, and drying the resulting dried product. 1. A method for producing a catalyst for hydrotreating hydrocarbons, which comprises impregnating a catalyst with a thioic acid.
(5)周期律表第6族金属がMo、Wの少なくとも一種
であり、第8族金属がCo、Niの少なくとも一種であ
る第(4)項記載の炭化水素の水素化処理用触媒の製造
方法。
(5) Production of a catalyst for hydrotreating hydrocarbons according to item (4), wherein the Group 6 metal of the periodic table is at least one of Mo and W, and the Group 8 metal is at least one of Co and Ni. Method.
(6)チオ酸がチオ酢酸及び/又はチオ安息香酸である
第(4)項又は第(5)項記載の炭化水素の水素化処理
用触媒の製造方法。
(6) The method for producing a catalyst for hydrogenation of hydrocarbons according to item (4) or item (5), wherein the thioacid is thioacetic acid and/or thiobenzoic acid.
(7)無機酸化物担体に、周期律表第6族金属、第8族
金属の少なくとも一種とリン酸とを含み且つチオ酸を含
む含浸液を含浸することを特徴とする炭化水素の水素化
処理用触媒の製造方法。
(7) Hydrocarbon hydrogenation characterized by impregnating an inorganic oxide carrier with an impregnating liquid containing at least one of a group 6 metal or a group 8 metal of the periodic table, phosphoric acid, and thioic acid. Method for producing treatment catalyst.
(8)周期律表第6族金属がMo、Wの少なくとも一種
であり、第8族金属がCo、Niの少なくとも一種であ
る第(7)項記載の炭化水素の水素化処理用触媒の製造
方法。
(8) Production of a catalyst for hydrotreating hydrocarbons according to item (7), wherein the Group 6 metal of the periodic table is at least one of Mo and W, and the Group 8 metal is at least one of Co and Ni. Method.
(9)チオ酸がチオ酢酸及び/又はチオ安息香酸である
第(7)項又は第(8)項記載の炭化水素の水素化処理
用触媒の製造方法。
(9) The method for producing a catalyst for hydrogenation of hydrocarbons according to item (7) or item (8), wherein the thioacid is thioacetic acid and/or thiobenzoic acid.
JP5946388A 1988-03-15 1988-03-15 Catalyst for hydrotreating hydrocarbon and production thereof Pending JPH01236945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5946388A JPH01236945A (en) 1988-03-15 1988-03-15 Catalyst for hydrotreating hydrocarbon and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5946388A JPH01236945A (en) 1988-03-15 1988-03-15 Catalyst for hydrotreating hydrocarbon and production thereof

Publications (1)

Publication Number Publication Date
JPH01236945A true JPH01236945A (en) 1989-09-21

Family

ID=13114034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5946388A Pending JPH01236945A (en) 1988-03-15 1988-03-15 Catalyst for hydrotreating hydrocarbon and production thereof

Country Status (1)

Country Link
JP (1) JPH01236945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271844A (en) * 1988-09-08 1990-03-12 Sumitomo Metal Mining Co Ltd Catalyst for hydrogenation treatment of hydrocarbon and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271844A (en) * 1988-09-08 1990-03-12 Sumitomo Metal Mining Co Ltd Catalyst for hydrogenation treatment of hydrocarbon and production thereof
JPH0549340B2 (en) * 1988-09-08 1993-07-26 Sumitomo Metal Mining Co

Similar Documents

Publication Publication Date Title
US4981828A (en) Catalyst for hydrotreatment of hydrocarbons and method for production thereof
EP0289211B1 (en) Catalysts for hydrotreating hydrocarbons and method of activating the same
JP4810530B2 (en) Method for improving the quality of hydrocarbonaceous feed streams
JP2007533834A (en) Method for producing low sulfur distillate
JP2006525110A (en) Off-site treatment of hydrogenation catalyst
KR20070005727A (en) Hydrotreating catalyst containing a group v metal
JPH01254255A (en) Preparatory sulfidation of catalyst for treating hydrocarbon
KR0145329B1 (en) Process for the preparation of a sulphided catalyst and use of said catalyst
EP0156425A2 (en) Process for the preparation of improved hydroconversion catalysts and catalysts thus prepared
US3965041A (en) Process for metal sulfide catalyst preparation
JP2575168B2 (en) Catalyst for hydrotreating hydrocarbons and method for producing the same
JP2531728B2 (en) Hydrocarbon hydrotreating catalyst and method for activating the same
JPH01236945A (en) Catalyst for hydrotreating hydrocarbon and production thereof
US5032253A (en) Preparation of titanium-zirconium-vanadium mixed oxides and its application on fuel oil hydrodesulfurization and hydrodenitrogenation
US5130285A (en) Preparation of catalyst for use in fuel oil hydrodesulfurization and hydrodenitrogenation and catalyst made by the preparation
JPH01236943A (en) Catalyst for hydrotreating hydrocarbon and production thereof
JP2531730B2 (en) Catalyst for hydrotreating hydrocarbons and method for producing the same
JP2863559B2 (en) Activation method of sulfide precursor type hydrotreating catalyst
JPH01236946A (en) Catalyst for hydrotreating hydrocarbon and production thereof
JPS63310639A (en) Catalyst for hydrogenation of hydrocarbon and method for activation same
JPH046418B2 (en)
US20020037806A1 (en) Ex-situ presulfuration in the presence of a hydrocarbon molecule
JPH01228551A (en) Catalyst for hydrogenation treatment of hydrocarbon and activation thereof
JPH0811190B2 (en) Hydrocarbon hydrotreating catalyst and method for activating the same
JPH07178B2 (en) Method for producing catalyst for hydrotreating hydrocarbons