JPH0811190B2 - Hydrocarbon hydrotreating catalyst and method for activating the same - Google Patents

Hydrocarbon hydrotreating catalyst and method for activating the same

Info

Publication number
JPH0811190B2
JPH0811190B2 JP9931387A JP9931387A JPH0811190B2 JP H0811190 B2 JPH0811190 B2 JP H0811190B2 JP 9931387 A JP9931387 A JP 9931387A JP 9931387 A JP9931387 A JP 9931387A JP H0811190 B2 JPH0811190 B2 JP H0811190B2
Authority
JP
Japan
Prior art keywords
catalyst
metal
group
acid
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9931387A
Other languages
Japanese (ja)
Other versions
JPS63264148A (en
Inventor
康人 高橋
酒井  茂
好昌 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP9931387A priority Critical patent/JPH0811190B2/en
Priority to EP88303592A priority patent/EP0289211B1/en
Priority to DE88303592T priority patent/DE3884451T2/en
Priority to EP19920201346 priority patent/EP0506206A1/en
Priority to US07/184,958 priority patent/US4845068A/en
Publication of JPS63264148A publication Critical patent/JPS63264148A/en
Publication of JPH0811190B2 publication Critical patent/JPH0811190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、活性化処理が容易な炭化水素油の水素化処
理用触媒とその活性化方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a catalyst for hydrotreating a hydrocarbon oil, which can be easily activated, and a method for activating the same.

〔従来の技術〕[Conventional technology]

炭化水素油を水素の存在下で水添、脱硫、脱窒素、分
解等を行なう所謂水素化処理には、アルミナ、シリカ−
アルミナ、チタニア等の無機酸化物担体に、周期律表第
6族金属及び第8族金属から選ばれる少なくとも一種の
金属を水素化活性成分として担持せしめた触媒が用いら
れ、第6族金属としてはMo及びW、第8族金属としては
Co及びNiがよく用いられている。
Alumina and silica are used for so-called hydrogenation treatments such as hydrogenation, desulfurization, denitrification, and decomposition of hydrocarbon oils in the presence of hydrogen.
A catalyst in which at least one metal selected from Group 6 metals and Group 8 metals of the periodic table is supported as a hydrogenation active component on an inorganic oxide carrier such as alumina or titania is used. Mo and W, as Group 8 metals
Co and Ni are often used.

これらの金属は通常酸化物態で担持されており、その
まゝでは活性がないため、水素化処理反応に供するには
酸化物態から硫化物態に変換して活性化する予備硫化が
必要である。
Since these metals are usually supported in the oxide state and are not active until then, pre-sulfurization, which converts the oxide state to the sulfide state and activates it, is necessary for use in the hydrotreatment reaction. is there.

この予備硫化は従来、炭化水素油の水素化処理を行な
う反応器に触媒を充填した後、この触媒層に硫化剤を水
素と共に通過せしめて行なうのが一般的である。予備硫
化の操作条件は、水素化処理プロセスによつて、又使用
する硫化剤によつて種種異なるが、硫化水素による場合
は水素中に0.5〜5容量%程度含有せしめ、これを触媒
1当り標準温度、圧力に換算して1000〜3000l、温度1
80℃以上(通常は250℃以上)で行なつており、二硫化
炭素、ノルマルブチルメルカプタン、硫化ジメチル、二
硫化ジメチル等を用いる場合はこれらを軽質炭化水素油
で稀釈して供し、温度250〜350℃、圧力20〜100kg/c
m2、液空間速度0.5〜2hr-1、水素/油比200〜1000Nl/l
で行なつている。このような予備硫化操作を行なつた
後、実際に処理すべき原料油に切り替え、水素化処理操
業が開始される。
Conventionally, this pre-sulfurization is generally performed by filling a reactor for hydrotreating hydrocarbon oil with a catalyst and then passing a sulfide agent through the catalyst layer together with hydrogen. The operating conditions for presulfurization differ depending on the hydrotreating process and the sulfurizing agent used, but when using hydrogen sulfide, 0.5 to 5% by volume of hydrogen should be contained, and this should be standard per catalyst. 1000-3000l converted to temperature and pressure, temperature 1
It is carried out at 80 ℃ or higher (usually 250 ℃ or higher). When using carbon disulfide, normal butyl mercaptan, dimethyl sulfide, dimethyl disulfide, etc., dilute them with light hydrocarbon oil and provide them at a temperature of 250- 350 ℃, pressure 20-100kg / c
m 2 , liquid space velocity 0.5 to 2 hr -1 , hydrogen / oil ratio 200 to 1000 Nl / l
It is done in. After performing such a preliminary sulfurization operation, the feedstock is actually switched to the feedstock to be treated, and the hydrotreating operation is started.

ところで上記予備硫化操作は以後の水素化処理の成否
を左右するので、使用資材の適切な選択と慎重な操作が
要求される。例えば稀釈剤を用いる場合、この稀釈剤に
オレフイン類が含有されていると重合生成物が触媒を被
毒するためオレフイン類を含有しない炭化水素油を用い
る必要があり、又粘性が高いと触媒表面の湿潤効果が乏
しく重質油では不適当なため結局軽質留出物を用いざる
を得ない。このような軽質油の使用はコスト高を招く。
又、触媒金属が高温で水素と反応して還元されると不働
態化するのでこれを防止するため硫化剤を多めに用いる
必要があり、硫化剤と水素の割合を適正に維持しなけれ
ばならない。更にこのような予備硫化は数日間に亘つて
行なうのが通常であるが、この操作は一時的なものであ
るため自動化されていないことが多く、通常と異なる煩
雑な操作が要求されるため操作員の負担が極めて大き
い。この為予備硫化を省略するか、少なくとも操作の煩
雑さを軽減することが課題になつていた。
By the way, the pre-sulfurization operation affects the success or failure of the subsequent hydrogenation treatment, so that appropriate selection of materials to be used and careful operation are required. For example, when a diluent is used, it is necessary to use a hydrocarbon oil that does not contain olefins because the polymerization product poisons the catalyst if the diluent contains olefins. Since it has a poor moistening effect and is unsuitable for heavy oil, it is unavoidable to use a light distillate. The use of such light oil leads to high costs.
In addition, since the catalytic metal becomes passivated when it reacts with hydrogen at high temperature and is reduced, it is necessary to use a large amount of sulfiding agent in order to prevent this, and the proportion of sulfiding agent and hydrogen must be maintained appropriately. . Furthermore, such pre-sulfurization is usually performed for several days, but this operation is temporary and is often not automated. The burden on the staff is extremely large. Therefore, it has been a subject to omit the pre-sulfurization or at least to reduce the complexity of the operation.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

最近に至り、このような要請に応え得る方法が提案さ
れた。その方法は活性金属が担持された触媒に、一般式
R−S(n)−R′(nは3〜20の整数、R、R′は水
素原子又は1分子当り1〜150個の炭素原子を有する有
機基)で表わされる多硫化物を含浸せしめ、水素ガスの
不存在下、65〜275℃、0.5〜70バールの圧力下で前記触
媒を熱処理するものである(特開昭61-111144号公
報)。この方法によれば触媒に含浸された多硫化物が熱
処理によつて活性金属を硫化するので、反応器内で予備
硫化する場合は硫化剤及び稀釈剤が不要となる為操作が
容易になり、又反応器外での予備硫化も可能で、その場
合は予備硫化した触媒を反応器に充填すれば直ちに水素
化処理操業を開始できる。しかしながら上記多硫化物は
有機溶媒に溶解しなければ触媒に含浸できないため、こ
の含浸処理には有機溶媒に対する特別の対策が必要とな
る。
Recently, a method capable of meeting such a request has been proposed. The method is carried out by using a catalyst on which an active metal is supported, the general formula RS (n) -R '(n is an integer of 3 to 20, R and R'are hydrogen atoms or 1 to 150 carbon atoms per molecule). A polysulfide represented by the formula (1), and the catalyst is heat-treated in the absence of hydrogen gas at 65 to 275 ° C. and a pressure of 0.5 to 70 bar (JP-A-61-111144). Issue). According to this method, the polysulfide impregnated in the catalyst sulfides the active metal by heat treatment, and therefore, when presulfiding in the reactor, the sulfiding agent and the diluent are not required, which facilitates the operation. Presulfurization outside the reactor is also possible, in which case the hydrotreating operation can be started immediately by charging the presulfurized catalyst into the reactor. However, the above polysulfides cannot be impregnated into the catalyst unless they are dissolved in an organic solvent, and thus this impregnation treatment requires special measures against the organic solvent.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は多硫化物より取扱い易い硫化剤による予
備硫化方法を種々研究した結果、メルカプトカルボン酸
が適当であることを見出して本発明に到達した。
As a result of various studies on the pre-sulfurizing method using a sulfurizing agent which is easier to handle than polysulfides, the present inventors have found that mercaptocarboxylic acid is suitable and arrived at the present invention.

即ち、本発明は無機酸化物担体に周期律表第6族金属
及び第8族金属から選ばれる少なくとも一種の金属の酸
化物を担持せしめた触媒に、メルカプトカルボン酸、メ
ルカプトカルボン酸のアルカリ金属塩、アルカリ土類金
属塩、アンモニウム塩のうちの少なくとも一種を含浸せ
しめた点に特徴がある炭化水素油の水素化処理用触媒
と、該触媒を水素の存在下で室温〜400℃の温度で処理
する点に特徴がある活性化方法である。
That is, the present invention relates to a catalyst in which an oxide of at least one metal selected from Group 6 metals and Group 8 metals of the Periodic Table is supported on an inorganic oxide carrier, and a mercaptocarboxylic acid, an alkali metal salt of mercaptocarboxylic acid. , A catalyst for hydrotreating a hydrocarbon oil characterized by being impregnated with at least one of an alkaline earth metal salt and an ammonium salt, and treating the catalyst at room temperature to 400 ° C. in the presence of hydrogen. It is an activation method that is characterized in that

従来よりよく知られているように無機酸化物担体とし
ては、アルミナ、シリカ−アルミナ、チタニア等が挙げ
られ、特にアルミナ又はシリカ−アルミナが代表的なも
のである。
As well known in the art, examples of the inorganic oxide carrier include alumina, silica-alumina, titania and the like, and particularly alumina or silica-alumina is typical.

又、従来から知られているように活性金属として担持
される周期律表第6族金属の酸化物としてはMo及び/又
はWの酸化物が好ましく、第8族金属の酸化物としては
Co及び/又はNiの酸化物が好ましい。第6族金属酸化物
と第8族金属酸化物は単独で或いは混合して用いられ
る。
Further, as conventionally known, an oxide of Mo and / or W is preferable as the oxide of the Group 6 metal of the periodic table, which is supported as an active metal, and an oxide of the Group 8 metal is preferable.
Co and / or Ni oxides are preferred. The Group 6 metal oxide and the Group 8 metal oxide may be used alone or in combination.

メルカプトカルボン酸としては、メルカプト酢酸(HS
CH2COOH)、β−メルカプトプロピオン酸(HSCH2CH2COO
H)などを好ましい例として挙げることができる。
Mercaptocarboxylic acids include mercaptoacetic acid (HS
CH 2 COOH), β-mercaptopropionic acid (HSCH 2 CH 2 COO
H) etc. can be mentioned as a preferable example.

又、対応するアルカリ金属塩、アルカリ土類金属塩、
アンモニウム塩も使用できるが、水素化反応に触媒毒と
なる物質を残さない金属イオンフリーの酸型及びアンモ
ニウム塩型が好ましい。
In addition, corresponding alkali metal salts, alkaline earth metal salts,
Although an ammonium salt can be used, a metal ion-free acid type and an ammonium salt type that do not leave a substance that becomes a catalyst poison in the hydrogenation reaction are preferable.

メルカプトカルボン酸及び前記塩は、溶液として無機
酸化物担体に周期律表第6族金属、第8族金属の少なく
とも一つを酸化物として含む触媒に含浸法により担持さ
せる。この場合水溶液を使用することが最も経済的であ
る。
The mercaptocarboxylic acid and the salt are supported as a solution by an impregnation method on a catalyst containing an oxide of at least one of Group 6 metal and Group 8 metal of the periodic table on an inorganic oxide carrier. In this case, it is most economical to use an aqueous solution.

メルカプトカルボン酸及びその塩の担持量は、周期律
表第6族金属及び第8族金属が水素化反応において高活
性を示す硫化形態(例えばMoS2、WS2、CoS、NiS)を形
成するに必要な硫黄量の1〜3当量倍が好ましい。担持
量がこれ以下では活性の低下を招き、またこれ以上を使
用してもそれほど活性の向上が望める訳ではないので不
経済である。
The supported amount of mercaptocarboxylic acid and its salt is sufficient to form a sulfided form (for example, MoS 2 , WS 2 , CoS, NiS) in which Group 6 metal and Group 8 metal of the Periodic Table show high activity in the hydrogenation reaction. It is preferably 1 to 3 times the required amount of sulfur. If the loading amount is less than this, the activity is lowered, and even if it is used more than that, the activity cannot be expected to be improved so much, which is uneconomical.

メルカプトカルボン酸及びその塩を担持した触媒は、
そのまゝで活性を有するものもあるが、そのまゝでは活
性を生じないものはメルカプトカルボン酸及びその塩を
溶解するのに使用した溶媒を乾燥除去した後に、水素の
存在下で室温〜400℃の温度で処理され活性化される。
溶媒の除去は、水素の存在下での活性化時に行なつても
良く、活性化の前に特に乾燥操作が必要ということでは
ない。
The catalyst carrying mercaptocarboxylic acid and its salt,
Some of them have an activity up to that point, but those which do not show an activity up to that point are dried at room temperature to 400 ° C in the presence of hydrogen after the solvent used to dissolve the mercaptocarboxylic acid and its salt is removed by drying. It is treated and activated at a temperature of ° C.
Removal of the solvent may be carried out at the time of activation in the presence of hydrogen, and it does not mean that a drying operation is particularly required before activation.

水素の存在下での活性化処理では、周期律表第6族金
属及び/又は第8族金属に配位したメルカプトカルボン
酸及びその塩が水素化分離し、上記金属成分は水素化反
応での活性種である硫化物へと変化する。
In the activation treatment in the presence of hydrogen, the mercaptocarboxylic acid and its salt coordinated to the metal of Group 6 and / or the metal of Group 8 of the Periodic Table are hydrogenated and separated, and the metal component is hydrogenated in the hydrogenation reaction. It changes to sulfide which is an active species.

水素の存在下での活性化処理では反応圧力に制限はな
く、且つ炭化水素が混在していても良い。従つて、該活
性化処理は触媒が使用される炭化水素の水素化処理用の
反応器とは別の処理装置で行なうことも、水素化処理用
の反応器に装填してから行なうことも可能である。
In the activation treatment in the presence of hydrogen, the reaction pressure is not limited and hydrocarbons may be mixed. Therefore, the activation treatment can be carried out in a treatment apparatus separate from the hydrocarbon hydrotreating reactor in which the catalyst is used, or after the hydrotreating reactor is loaded. Is.

活性化は室温〜400℃の温度で、好ましくは100〜300
℃の温度で行なわれる。400℃より高い温度では、処理
した触媒の水素化活性が低下するので好ましくない。
Activation is at room temperature to 400 ° C, preferably 100 to 300
It is carried out at a temperature of ° C. Temperatures higher than 400 ° C are not preferable because the hydrogenation activity of the treated catalyst decreases.

〔作用〕[Action]

本発明で調製された触媒は、炭化水素油の水素化脱硫
反応において従来技術によつて硫化された触媒よりも優
れた活性を示す。その理由は定かではないが、メルカプ
トカルボン酸及びその塩が周期律表第6族金属及び/又
は第8族金属と配位化合物を形成して担持されることが
その後行なわれる水素の存在下での活性化処理時に好ま
しい金属硫化物体を形成するのに効果的に働くことによ
るためと考えられる。
The catalysts prepared according to the present invention exhibit better activity in hydrodesulfurization of hydrocarbon oils than catalysts sulfided by the prior art. The reason is not clear, but in the presence of hydrogen, the mercaptocarboxylic acid and its salt are supported by forming a coordination compound with a Group 6 metal and / or a Group 8 metal of the periodic table in the presence of hydrogen. It is believed that this is because it effectively acts to form a preferable metal sulfide body during the activation treatment of.

〔実施例〕〔Example〕

以下本発明の実施例及び比較例を示す。 Hereinafter, examples and comparative examples of the present invention will be described.

実施例1 γ−アルミナを担体とし、MoO3を15重量%、CoOを4
重量%含有する市販触媒(日本ケツチエン(株)社製KF
-742)20gに、メルカプト酢酸(d20=1.33)6.0gを含む
水溶液12mlを全量含浸した後、80℃、16時間乾燥し触媒
Aを得た。又、メルカプト酢酸を各々9.0g、12.0g使用
した他は前記と同様の方法で触媒B、Cを得た。更に、
前記市販触媒20gに、メルカプト酢酸7.5gを含む水溶液1
2mlを全量含浸する操作を、途中で80℃、16時間の乾燥
操作をはさんで二度繰り返した後80℃、16時間の乾燥を
行なつて触媒Dを得た。
Example 1 Using γ-alumina as a carrier, 15% by weight of MoO 3 and 4 of CoO were used.
Commercially available catalyst containing wt% (KF manufactured by Nippon Ketzien Co., Ltd.)
-742) was impregnated with 20 g of an aqueous solution containing 6.0 g of mercaptoacetic acid (d 20 = 1.33), followed by drying at 80 ° C for 16 hours to obtain catalyst A. Further, catalysts B and C were obtained in the same manner as described above except that 9.0 g and 12.0 g of mercaptoacetic acid were used, respectively. Furthermore,
20 g of the commercially available catalyst, an aqueous solution containing 7.5 g of mercaptoacetic acid 1
An operation of impregnating the whole amount of 2 ml was repeated twice with a drying operation at 80 ° C. for 16 hours, and then a drying operation was performed at 80 ° C. for 16 hours to obtain a catalyst D.

触媒A、B、C、Dでのメルカプト酢酸の担持量は、
Mo、CoがMoS2、CoSになるのに必要な硫黄の理論量に換
算して、各々1.2、1.8、2.4、3.0倍であつた。
The supported amount of mercaptoacetic acid on catalysts A, B, C and D is
The theoretical amounts of sulfur required for Mo and Co to become MoS 2 and CoS were 1.2, 1.8, 2.4 and 3.0 times, respectively.

実施例2 実施例1で使用したKF-742用の比表面積310m2/g、細
孔容積0.70ml/gのアルミナ担体500gに、パラモリブデン
酸アンモニウム111g、硝酸ニツケル6水和物101g、濃ア
ンモニア水150gから調製した含浸液を含浸し、110℃、1
6時間乾燥した後、500℃、2時間焼成してMoO3を15重量
%、NiOを4重量%含有する触媒を得た。該触媒に実施
例1と同様の方法でメルカプト酢酸を担持し、触媒E、
F、G、Hを得た。
Example 2 500 g of an alumina carrier having a specific surface area of 310 m 2 / g and a pore volume of 0.70 ml / g for KF-742 used in Example 1, 111 g of ammonium paramolybdate, 101 g of nickel nitrate hexahydrate, and concentrated ammonia. Impregnate the impregnating solution prepared from 150 g of water, 110 ℃, 1
After drying for 6 hours, it was calcined at 500 ° C. for 2 hours to obtain a catalyst containing 15% by weight of MoO 3 and 4% by weight of NiO. The catalyst was loaded with mercaptoacetic acid in the same manner as in Example 1 to obtain catalyst E,
F, G and H were obtained.

触媒E、F、G、Hでのメルカプト酢酸の担持量はM
o、NiがMoS2、NiSになるのに必要な硫黄の理論量に換算
して、各々1.2、1.8、2.4、3.0倍であつた。
The supported amount of mercaptoacetic acid on catalysts E, F, G and H is M
It was 1.2, 1.8, 2.4, and 3.0 times that of the theoretical amount of sulfur required for o and Ni to become MoS 2 and NiS, respectively.

実施例3 実施例1で使用した市販触媒20gに、メルカプトプロ
ピオン酸(d20=1.22)10.0gを含む水溶液12mlを全量含
浸した後、80℃、16時間乾燥し触媒Iを得た。
Example 3 20 g of the commercially available catalyst used in Example 1 was impregnated with 12 ml of an aqueous solution containing 10.0 g of mercaptopropionic acid (d 20 = 1.22), followed by drying at 80 ° C. for 16 hours to obtain catalyst I.

触媒Iでのメルカプトプロピオン酸の担持量は、Mo、
CoがMoS2、CoSになるのに必要な硫黄の理論量に換算し
て1.8倍であつた。
The supported amount of mercaptopropionic acid on catalyst I was Mo,
It was 1.8 times the theoretical amount of sulfur required for Co to become MoS 2 and CoS.

実施例4 (活性化処理) 触媒A、B、C、D、E、F、G、H、I各3mlをス
テンレス製固定床流通反応管に装填し、次の条件で活性
化処理した。
Example 4 (Activation treatment) 3 ml of each of catalysts A, B, C, D, E, F, G, H and I was loaded into a stainless steel fixed bed flow reaction tube and activated under the following conditions.

触媒量 3ml 圧力 大気圧 水素流量 48Nl/hr 時間 3hr 温度 200℃ (活性評価) 上記の条件下で活性化処理された触媒を用いて、クエ
ート常圧軽油の水素化脱硫反応を行なつた。又、触媒B
については上記の活性化処理を行なわないもの(この触
媒をB′とする)についても同様の脱硫反応を行なつ
た。反応に用いた常圧軽油の性状は次の通りであつた。
Catalyst amount 3ml Pressure Atmospheric pressure Hydrogen flow rate 48Nl / hr Time 3hr Temperature 200 ° C (Activity evaluation) Using the catalyst activated under the above conditions, hydrodesulfurization reaction of Kuwait atmospheric gas oil was performed. Also, catalyst B
The same desulfurization reaction was carried out for those which were not subjected to the above activation treatment (this catalyst is designated as B '). The properties of atmospheric gas oil used in the reaction are as follows.

比重(15/4℃) 0.848 硫黄(重量%) 1.61 窒素(重量ppm) 157 蒸留性状(初留点、℃) 211 〃 (50vol%点、℃) 340 〃 (終点、℃) 406 反応は流通式反応装置を用い次の反応条件で行なつた。Specific gravity (15/4 ℃) 0.848 Sulfur (wt%) 1.61 Nitrogen (wtppm) 157 Distillation property (initial boiling point, ° C) 211〃 (50vol% point, ° C) 340〃 (endpoint, ° C) 406 Reaction is flow type The reaction was carried out under the following reaction conditions using a reactor.

触媒量 3ml 原料油液空間速度 2.0hr-1 反応圧力(水素圧) 30kg/cm2 反応温度 330℃ 水素/油比 300Nl/l 通油時間 8hr 処理油は2時間毎にサンプリングし硫黄含有量を測定
し、脱硫率を求めた。4時間目、6時間目、8時間目に
サンプリングした処理油の硫黄含有量から求めた脱硫率
の平均値を下表に示す。
Catalyst amount 3ml Space velocity of raw oil liquid 2.0hr -1 Reaction pressure (hydrogen pressure) 30kg / cm 2 Reaction temperature 330 ℃ Hydrogen / oil ratio 300Nl / l Oil passage time 8hr Treated oil is sampled every 2 hours to determine sulfur content It measured and determined the desulfurization rate. The average value of the desulfurization rate obtained from the sulfur content of the treated oil sampled at the 4th, 6th and 8th hours is shown in the table below.

比較例 実施例1及び2で使用したMoO3/CoO系及びMoO3/NiO系
触媒をn−ブチルメルカプタンを混合したクエート常圧
軽油により硫化(または予備硫化)処理し反応に供し
た。
Comparative Example The MoO 3 / CoO-based and MoO 3 / NiO-based catalysts used in Examples 1 and 2 were subjected to sulfurization (or pre-sulfurization) treatment with quat atmospheric gas oil mixed with n-butyl mercaptan and used for the reaction.

(硫化処理) 硫化油 3重量%n−ブチルメルカプタン/クエート常
圧軽油 触媒量 3ml 原料油液空間速度 2.0hr-1 反応圧力 30kg/cm2 反応温度 316℃ 水素/油比 300Nl/l 通油時間 8hr (活性評価) 活性評価の条件は、実施例4と全く同じである。4時
間目、6時間目、8時間目にサンプリングした処理油の
硫黄含有量から求めた脱硫率の平均値を下表に示す。
(Sulfurization treatment) Sulfurized oil 3% by weight n-butyl mercaptan / quat normal pressure light oil Catalyst amount 3ml Space velocity of feedstock liquid 2.0hr -1 Reaction pressure 30kg / cm 2 Reaction temperature 316 ℃ Hydrogen / oil ratio 300Nl / l Oil passage time 8 hr (Activity evaluation) The conditions for activity evaluation are exactly the same as in Example 4. The average value of the desulfurization rate obtained from the sulfur content of the treated oil sampled at the 4th, 6th and 8th hours is shown in the table below.

Mo/Co系の触媒でも、Mo/Ni系の触媒でもメルカプト酢
酸、メルカプトプロピオン酸を担持した触媒は、3重量
%のn−ブチルメルカプタンを混合したクエート常圧軽
油を用いて硫化した触媒より高活性を示す。メルカプト
酢酸についてはその担持量を変化させたが、Mo/Co系に
ついては、MoS2、CoSとするのに必要な硫黄の理論量に
対して1.2倍量で充分であり、それ以上担持量を増やし
ても活性の向上は認められない。担持量を極端に増やす
ことは、硫化剤の浪費となるだけでなく、担持が一段で
行なえないこともあり好ましくない。触媒B′の活性は
触媒Bより若干劣るが、n−ブチルメルカプタンによる
従来法的予備硫化触媒よりは高い。Mo/Ni系について
は、Mo/Co系よりも最適担持量は多いようだが、理論量
の1.8倍以内にある。
Both Mo / Co-based catalysts and Mo / Ni-based catalysts that carry mercaptoacetic acid and mercaptopropionic acid are higher than catalysts that are sulfided using quat atmospheric gas oil mixed with 3% by weight of n-butyl mercaptan. Shows activity. The supported amount of mercaptoacetic acid was changed, but for the Mo / Co system, 1.2 times the theoretical amount of sulfur required to form MoS 2 and CoS is sufficient, and the supported amount is further increased. No increase in activity is observed even if increased. It is not preferable to extremely increase the loading amount because not only the sulfiding agent is wasted but also the loading cannot be carried out further. The activity of catalyst B'is slightly inferior to that of catalyst B, but higher than the conventional legal presulfurization catalyst with n-butyl mercaptan. For Mo / Ni system, the optimum supported amount seems to be larger than that for Mo / Co system, but it is within 1.8 times the theoretical amount.

〔発明の効果〕 本発明によれば、従来技術の硫化法よりも簡略化され
た操作で、優れた性能を有する炭化水素の水素化処理触
媒を得ることができる。
[Effects of the Invention] According to the present invention, a hydrocarbon hydrotreating catalyst having excellent performance can be obtained by an operation that is more simplified than in the conventional sulfurization method.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】無機酸化物を担体とし、周期律表第6族金
属、第8族金属の少なくとも一つの酸化物と、メルカプ
トカルボン酸、メルカプトカルボン酸のアルカリ金属
塩、アルカリ土類金属塩、アンモニウム塩のうちの少な
くとも一種を含有することを特徴とする炭化水素の水素
化処理用触媒。
1. An inorganic oxide as a carrier, and at least one oxide of a Group 6 metal and a Group 8 metal of the periodic table, a mercaptocarboxylic acid, an alkali metal salt of a mercaptocarboxylic acid, an alkaline earth metal salt, A catalyst for hydrotreating hydrocarbons, which comprises at least one of ammonium salts.
【請求項2】周期律表第6族金属がMo、Wの少なくとも
一つであり、第8族金属がCo、Niの少なくとも一つであ
る特許請求の範囲(1)項記載の炭化水素の水素化処理
用触媒。
2. The hydrocarbon according to claim 1, wherein the Group 6 metal of the periodic table is at least one of Mo and W, and the Group 8 metal is at least one of Co and Ni. Hydrotreating catalyst.
【請求項3】メルカプトカルボン酸がメルカプト酢酸お
よび/又はメルカプトプロピオン酸である特許請求の範
囲(1)項又は(2)項記載の炭化水素の水素化処理用
触媒。
3. The catalyst for hydrotreating hydrocarbons according to claim 1, wherein the mercaptocarboxylic acid is mercaptoacetic acid and / or mercaptopropionic acid.
【請求項4】無機酸化物を担体とし、周期律表第6族金
属、第8族金属の少なくとも一つを酸化物として含む触
媒に、メルカプトカルボン酸、メルカプトカルボン酸の
アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩
のうちの少なくとも一種が含浸せしめられた炭化水素の
水素化処理用触媒を、水素の存在下で室温〜400℃の温
度で処理することを特徴とする炭化水素の水素化処理用
触媒の活性化方法。
4. A catalyst containing an inorganic oxide as a carrier and containing at least one of a Group 6 metal and a Group 8 metal of the periodic table as an oxide, a mercaptocarboxylic acid, an alkali metal salt of a mercaptocarboxylic acid, and an alkaline earth. Hydrocarbon hydrogenation characterized by treating a hydrocarbon hydrotreating catalyst impregnated with at least one of a group metal salt and an ammonium salt at room temperature to 400 ° C in the presence of hydrogen. A method for activating a treatment catalyst.
【請求項5】周期律表第6族金属がMo、Wの少なくとも
一つであり、第8族金属がCo、Niの少なくとも一つであ
る特許請求の範囲(4)項記載の炭化水素の水素化処理
用触媒の活性化方法。
5. A hydrocarbon according to claim 4, wherein the Group 6 metal of the periodic table is at least one of Mo and W and the Group 8 metal is at least one of Co and Ni. A method for activating a hydrotreating catalyst.
【請求項6】メルカプトカルボン酸がメルカプト酢酸お
よび/又はメルカプトプロピオン酸であることを特徴と
する特許請求の範囲(4)項又は(5)項記載の炭化水
素の水素化処理用触媒の活性化方法。
6. Activation of a hydrocarbon hydrotreating catalyst according to claim 4, wherein the mercaptocarboxylic acid is mercaptoacetic acid and / or mercaptopropionic acid. Method.
【請求項7】処理温度が100〜300℃である特許請求の範
囲(4)、(5)、(6)項の何れか一つに記載の炭化
水素の水素化処理用触媒の活性化方法。
7. A method for activating a hydrocarbon hydrotreating catalyst according to any one of claims (4), (5) and (6), wherein the treatment temperature is 100 to 300 ° C. .
JP9931387A 1987-04-22 1987-04-22 Hydrocarbon hydrotreating catalyst and method for activating the same Expired - Lifetime JPH0811190B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9931387A JPH0811190B2 (en) 1987-04-22 1987-04-22 Hydrocarbon hydrotreating catalyst and method for activating the same
EP88303592A EP0289211B1 (en) 1987-04-22 1988-04-21 Catalysts for hydrotreating hydrocarbons and method of activating the same
DE88303592T DE3884451T2 (en) 1987-04-22 1988-04-21 Catalysts for the hydrogenating treatment of hydrocarbons and their activation.
EP19920201346 EP0506206A1 (en) 1987-04-22 1988-04-21 A catalyst for hydrotreating hydrocarbons and methods of activating the same
US07/184,958 US4845068A (en) 1987-04-22 1988-04-22 Catalysts for hydrotreating hydrocarbons and method of activating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9931387A JPH0811190B2 (en) 1987-04-22 1987-04-22 Hydrocarbon hydrotreating catalyst and method for activating the same

Publications (2)

Publication Number Publication Date
JPS63264148A JPS63264148A (en) 1988-11-01
JPH0811190B2 true JPH0811190B2 (en) 1996-02-07

Family

ID=14244149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9931387A Expired - Lifetime JPH0811190B2 (en) 1987-04-22 1987-04-22 Hydrocarbon hydrotreating catalyst and method for activating the same

Country Status (1)

Country Link
JP (1) JPH0811190B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256249A (en) * 1988-08-19 1990-02-26 Sumitomo Metal Mining Co Ltd Catalyst for hydrogenation treatment of hydrocarbon and its production
KR102561534B1 (en) * 2015-04-24 2023-07-28 알베마를 유럽 에스피알엘 Catalyst for hydrotreating containing metal organic sulfide in doped support

Also Published As

Publication number Publication date
JPS63264148A (en) 1988-11-01

Similar Documents

Publication Publication Date Title
US5246569A (en) Process for the hydrodesulfurization of light hydrocarbon feeds
US4981828A (en) Catalyst for hydrotreatment of hydrocarbons and method for production thereof
KR940000870B1 (en) Process for presulfurizing a hydrogen treatment catalyst
US5837640A (en) Carbon-supported hydrodearomatization catalyst
US4725569A (en) Organopolysulfide-impregnated catalyst and methods of preparation and use
ZA200605572B (en) A method of restoring catalytic activity of a spent hydrotreating catalyst, the resulting restored catalyst, and a method of hydroprocessing
US4845068A (en) Catalysts for hydrotreating hydrocarbons and method of activating the same
JPH03217235A (en) Preparation and use of sulfidized catalyst
JPH09192505A (en) Method for incorporating sulfur into pore of catalyst for hydrocarbon treatment
EP1322730A1 (en) Process for effecting ultra-deep hds of hydrocarbon feedstocks
US4052296A (en) Hydrogenation process employing a zinc promoted catalyst
US3948763A (en) Sulfiding process for desulfurization catalysts
JP2531728B2 (en) Hydrocarbon hydrotreating catalyst and method for activating the same
JP2575168B2 (en) Catalyst for hydrotreating hydrocarbons and method for producing the same
US5786293A (en) Process for presulfiding hydrocarbon processing catalysts
JPH0811190B2 (en) Hydrocarbon hydrotreating catalyst and method for activating the same
JPH0661464B2 (en) Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils
US5032253A (en) Preparation of titanium-zirconium-vanadium mixed oxides and its application on fuel oil hydrodesulfurization and hydrodenitrogenation
US5130285A (en) Preparation of catalyst for use in fuel oil hydrodesulfurization and hydrodenitrogenation and catalyst made by the preparation
JP2531730B2 (en) Catalyst for hydrotreating hydrocarbons and method for producing the same
JPH07178B2 (en) Method for producing catalyst for hydrotreating hydrocarbons
JPH046418B2 (en)
JPS6174646A (en) Hydrotreating method and catalyst of hydrocarbon
JPS63310639A (en) Catalyst for hydrogenation of hydrocarbon and method for activation same
JP3200432B2 (en) Method for producing catalyst for hydrotreating hydrocarbon oil

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 12