JP2003291196A - Production method for polypropylene resin foam - Google Patents

Production method for polypropylene resin foam

Info

Publication number
JP2003291196A
JP2003291196A JP2002096402A JP2002096402A JP2003291196A JP 2003291196 A JP2003291196 A JP 2003291196A JP 2002096402 A JP2002096402 A JP 2002096402A JP 2002096402 A JP2002096402 A JP 2002096402A JP 2003291196 A JP2003291196 A JP 2003291196A
Authority
JP
Japan
Prior art keywords
carbon dioxide
extruder
foam
pressure
polypropylene resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002096402A
Other languages
Japanese (ja)
Inventor
Tetsuo Okura
徹雄 大倉
Tetsuya Shibata
哲也 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2002096402A priority Critical patent/JP2003291196A/en
Publication of JP2003291196A publication Critical patent/JP2003291196A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To realize a stable production of a polypropylene resin foam by stably injecting a carbon dioxide into the molten resin in an extruder. <P>SOLUTION: In an extrusion expansion molding wherein a carbon dioxide is fed into the extruder by a liquid supply pump to form a foaming gel by kneading the molten polypropylene resin with the carbon dioxide and cooling them, extruding the foaming gel into a low pressure region through a die to obtain a foam having an expansion ratio of 2 to 15 times, the pressure in the pipe between the liquid supply pump and the extruder is maintained at 5 MPa or more, while the suction part and the discharge part of the liquid supply pump is cooled down to -5°C or less. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、緩衝包装材や食品
包装材として好適に使用し得るポリプロピレン系樹脂発
泡体の製造方法に関する。更に詳しくは、環境適合性が
高い二酸化炭素を発泡剤として使用し、高い製造安定性
を確保しながらポリプロピレン系樹脂発泡体を製造する
方法に関する。 【0002】 【従来の技術】ポリプロピレン系樹脂の押出発泡におい
ては、ブタンやペンタンなどの炭化水素に代表される物
理型発泡剤が一般に用いられており、例えば送液ポンプ
を使用し液状で発泡剤貯槽から押出機へ送ることで使用
されている。 【0003】二酸化炭素は、装置の防爆化が不要である
ことに加えて、炭化水素に比べて地球温暖化への影響が
小さいとされており、発泡剤としての使用が検討されて
いる。 【0004】しかし二酸化炭素は、炭化水素などの従来
の発泡剤に比べると沸点及び臨界温度が低く、また高圧
液体状態から低圧にさらすと固体(ドライアイス)化し
やすいという性質を有している。このため送液ポンプで
キャビテーションを生じる、配管中で液体が圧縮性のあ
る気体となる、配管内または送液ポンプ内でドライアイ
スが発生する、などの原因で送液の定量性が損なわれ、
場合により送液自体が不能となることがある。 【0005】これらの問題を解決する目的で、特開平1
1−291318公報では、炭酸ガスを含有する発泡剤
を用い、熱可塑性樹脂発泡体を押出発泡にて製造する方
法において、(A)送液の開始前に配管内を液体または
高圧の気体で充満する、(B)二酸化炭素の貯槽を加圧
する、(C)送液ポンプを気温より低い温度に冷却す
る、の少なくとも1つを実施する技術を開示している。
しかしこれらは発泡倍率15倍以上のアルケニル芳香族
樹脂発泡体を製造する場合には適しているものの、発泡
倍率2〜15倍のポリプロピレン系樹脂発泡体を製造す
る場合には、二酸化炭素の供給が少量であるために、安
定供給が難しいという問題があった。 【0006】また近年、超臨界状態の二酸化炭素を発泡
剤に使用する試みがなされており、特開2000−84
968公報では、液体の二酸化炭素を臨界圧力以上に昇
圧し、さらに臨界温度以上に昇温して超臨界二酸化炭素
としてから、溶融熱可塑性樹脂に添加する技術について
開示している。しかしポンプによる昇圧のみでなく保圧
弁にて圧力を調整し、さらに超臨界とするためにヒータ
ーで加熱を行うなど、装置が複雑で、操作が煩雑になる
という問題があった。 【0007】 【発明が解決しようとする課題】本発明の目的は、簡便
な装置にて、二酸化炭素を安定的に押出機中の溶融樹脂
に圧入することにより、ポリプロピレン系樹脂押出発泡
体の安定的生産を実現することにある。 【0008】 【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意検討を重ねた結果、押出発泡法におい
て二酸化炭素を送液し溶融樹脂に圧入するにあたり、押
出機手前の配管内圧力を一定以上に維持し、かつ送液ポ
ンプの吸い込み部及び吐出部を−5℃以下に冷却するこ
とにより、該二酸化炭素を安定的に供給できることを見
出し、本発明を完成するに至った。 【0009】すなわち本発明は、二酸化炭素を送液ポン
プにて押出機内に供給し、溶融ポリプロピレン系樹脂と
混練及び冷却しながら発泡性ゲルを形成し、該発泡性ゲ
ルをダイを通じて低圧領域に押出して、発泡倍率2〜1
5倍の発泡体を得る押出発泡成形において、送液ポンプ
と押出機の間の配管内圧力を5MPa以上に維持し、か
つ送液ポンプの吸い込み部及び吐出部を−5℃以下に冷
却することを特徴とするポリプロピレン系樹脂発泡体の
製造方法に関する。 【0010】 【発明の実施の形態】本発明は、慣用の押出機を用いた
発泡装置を用い、発泡倍率2〜15倍のポリプロピレン
系樹脂発泡体を押出発泡法により製造するにあたり、発
泡剤である二酸化炭素を少量でも安定して圧入する方法
を提供するものである。 【0011】本発明で用いられるポリプロピレン系樹脂
とは、プロピレンの単独重合体、またはエチレン、炭素
数4以上のα−オレフィンから選ばれる1または2以上
の共重合成分とプロピレンのランダム共重合体またはブ
ロック共重合体である。 【0012】前記ポリプロピレン系樹脂の230℃にお
けるメルトフローレートとしては、10g/10分以
下、さらには8g/10分以下であることが、押出発泡
においてダイでの圧力保持が容易であることから好まし
い。 【0013】また前記ポリプロピレン系樹脂の230℃
におけるメルトテンションは、5g以上であることが、
所望の発泡倍率の発泡体を製造しやすいことから好まし
い。 【0014】なおメルトテンションの測定には東洋精機
製メルトテンションテスターを用い、230℃に加熱し
たポリプロピレン系樹脂を、口径1mm、長さ10m
m、流入角45度のオリフィスから1m/minの速度
で押出し、該押出物を張力検出用プーリ−を通過させて
1m/minの速度から加速させながら巻き取り、該押
出物が切断される際のテンション値を測定する。 【0015】本発明で使用する送液ポンプとは二酸化炭
素の加圧、押出機への発泡剤の圧入に用いられるポンプ
のことであり、容量ポンプなどの一般的に液体を加圧し
て送ることができるポンプであればよく、ダイアフラム
式やプランジャー式などの公知のものが使用できる。ま
たこれらポンプは、配管内圧力の変動を抑制しうること
から、2連または3連のポンプであることが好ましい。 【0016】本発明においては、送液ポンプと押出機の
間の配管内の圧力を5MPa以上に維持することが、二
酸化炭素を長時間安定して押出機に供給するために必須
である。圧力が5MPaを下回ると、キャビテーション
などにより二酸化炭素の供給量が減少し、場合によりド
ライアイスが生成して配管が閉塞し、送液が不能となる
恐れがある。 【0017】前記配管内の圧力調整は、二酸化炭素を圧
入する部位での押出機内の樹脂圧力を調整することによ
り、容易に達成することができる。 【0018】また本発明においては、送液ポンプの吸い
込み部及び吐出部を−5℃以下に冷却することが、二酸
化炭素を長時間安定して押出機に供給するために必須で
ある。前記温度が−5℃を越えると、キャビテーション
などにより二酸化炭素の供給量が減少し、場合によりド
ライアイスが生成して配管が閉塞し、送液が不能となる
恐れがある。 【0019】なお前記冷却する部位の温度は、送液ポン
プや配管内の液化二酸化炭素の温度であるのが好ましい
が、構造上熱電対を内部に設置しにくい場合、装置表面
の温度でもよい。 【0020】さらには、送液ポンプの吸い込み部及び吐
出部のみでなくヘッド部も冷却することが、発泡剤のさ
らなる供給安定化のために好ましい。ただし、ダイアフ
ラム式ポンプにおいてヘッドを冷却する場合、ダイアフ
ラムの駆動オイルの温度が、使用適正温度を下回らない
様にする必要がある。 【0021】前記送液ポンプの吸い込み部及び吐出部を
冷却する方法としては、該部位をジャケットなどで囲
み、ジャケット内に冷媒を循環させる、もしくはドライ
アイスを投入する、などが挙げられる。 【0022】本発明において二酸化炭素の供給量は、製
造する発泡体の発泡倍率により任意に選択される。使用
する発泡装置の効率にもよるが、ポリプロピレン系樹脂
100重量部に対し0.1〜5重量部であることが好ま
しい。 【0023】また本発明における方法は発泡剤として二
酸化炭素を単独で使用する方法を開示したものである
が、二酸化炭素以外の発泡剤を、別ラインまたは二酸化
炭素との混合物として併用してもよい。 【0024】前記二酸化炭素と他の発泡剤を混合物とし
て併用する場合、本発明の方法による冷却を実施するに
あたり、送液ポンプの吸い込み部及び吐出部の冷却温
度、並びに流速、圧力において固化しない発泡剤である
ことが必要である。二酸化炭素との併用に好ましい発泡
剤としては、例えば、プロパン、n−ブタン、i−ブタ
ン、n−ペンタン、i−ペンタン、ネオペンタンなどの
炭化水素、1,1,1,2−テトラフルオロエタン、
1,1−ジフルオロエタン、ジフルオロメタンなどのヒ
ドロフルオロカーボン、メチルアルコール、エチルアル
コールなどのアルコール、ジメチルエーテルなどのエー
テル、などの1種または2種以上が挙げられる。これら
の内、プロパン、n−ブタン、i−ブタン、n−ペンタ
ン、i−ペンタンがさらに好ましい。 【0025】本発明において発泡体を製造する装置には
特に限定はなく、単軸押出機、二軸押出機、押出機を複
数台連結したタンデム押出機、押出機先端にギアポンプ
を連結した装置など、慣用の発泡装置を使用することが
できる。これらの内、発泡剤を圧入する部位での押出機
内の樹脂圧力を調整することにより、送液ポンプと押出
機の間の配管圧を容易に調整しうることから、タンデム
押出機、または押出機先端にギアポンプを連結した装置
などが好ましい。 【0026】上記のごとき方法により、二酸化炭素を安
定して押出機に供給することができる。 【0027】また二酸化炭素を送液ポンプを用いて送り
始めるに当たっては、二酸化炭素の貯槽から押出機圧入
部直前に至る配管内を、液体または高圧の気体で満たし
ておくことが、送液開始時の急激な圧力変動によるドラ
イアイスの生成を抑制できることから、好ましい。 【0028】前記配管内に予め充填する液体または気体
としては、炭化水素、ヒドロフルオロカーボン、アルコ
ール、エーテル、二酸化炭素、窒素、空気、などの1種
または2種以上が挙げられる。 【0029】 【実施例】つぎに実施例および比較例に基づいて本発明
に関する押出発泡体の製造方法について説明するが、本
発明はかかる実施例のみに限定されるものではない。 【0030】 【実施例1】プロピレン単独重合体(230℃でのメル
トフローレート0.5g/10分、230℃でのメルト
テンション12g)100重量部と、造核剤として重曹
−クエン酸混合物0.12重量部をリボンブレンダーで
ドライブレンドした後、上記混合物を50Kg/hで6
5mm−90mmφタンデム型押出機に供給し、第一段
押出機(65mmφ)中にて220℃で可塑化した後、
押出機先端部から二酸化炭素をプロピレン単独重合体1
00重量部に対して1.3重量部圧入して溶融樹脂と混
練し、第二段押出機(90mmφ)中にて樹脂温度が1
63℃になるように冷却し、サーキュラーダイ(75m
mφ)より大気下に押出し、外径200mm、長さ25
0mmの冷却筒にて延伸・冷却しつつ引き取ることによ
り、発泡倍率5.2倍のシート状の発泡体を得た。 【0031】二酸化炭素の供給装置は、液化二酸化炭素
の充填されたサイフォン式のボンベ、ダイアフラム式の
2連の送液ポンプ、質量流量計で構成しており、質量流
量計と押出機圧入部の間に圧力計を設け、また質量流量
計の測定値を送液ポンプの回転数にフィードバックし
て、二酸化炭素の供給量を自動制御した。そして送液ポ
ンプの吸い込み部と吐出部、ヘッド部の表面温度が−1
0℃を下回る様ドライアイスで冷却し、押出機圧入部の
樹脂圧力が12MPaとなる様第二段押出機のスクリュ
ー回転数を調整した後に、送液ポンプを起動し、押出機
圧入部のバルブを開放した。二酸化炭素の供給を開始す
ると、押出機圧入部の樹脂圧力、及び前記質量流量計と
押出機の間の圧力計の表示が11MPaとなったので、
この圧力を維持する様、二段目押出機のスクリュー回転
数を調整した。 【0032】発泡体を取り出してから8時間運転し、そ
の間30分毎に、二酸化炭素の供給量を監視すると共
に、発泡体をサンプリングして発泡倍率を測定したが、
二酸化炭素は常に樹脂100重量部に対して1.3重量
部供給されており、また発泡倍率も5.1〜5.3倍の
間で安定していたことから、工業的生産が可能であると
判断した。なお二酸化炭素供給量の監視は、二酸化炭素
のボンベを計重器に載せて重量減少を測定することで実
施した。 【0033】 【実施例2】二酸化炭素の供給量を1.8重量部に変更
し、質量流量計と押出機の間の二酸化炭素圧力を8MP
aに維持した以外は実施例1と同様にして、発泡倍率
7.8倍のシート状発泡体を得、その後8時間運転を継
続した。二酸化炭素は常に樹脂100重量部に対して
1.8重量部供給されており、また発泡倍率も7.6〜
7.9倍の間で安定していた。 【0034】 【比較例1】実施例1と同様にして発泡倍率5.2倍の
シート状発泡体を製造している状態から、送液ポンプの
吸い込み部と吐出部、ヘッド部の冷却に使用していたド
ライアイスの供給を中断したところ、送液ポンプの各部
位の表面温度が−3℃を越えた付近で、送液ポンプの回
転数が上限に達しているにもかかわらず二酸化炭素の供
給量が樹脂100重量部に対し1.1重量部に減少し、
得られる発泡体の発泡倍率も4.3倍まで減少したこと
から安定的な発泡体製造は困難と判断し、実験を中止し
た。 【0035】 【比較例2】二段目押出機のスクリュー回転数を調整し
て、質量流量計と押出機の間の二酸化炭素圧力を4MP
aに維持した以外は、実施例1と同様にしてシート状発
泡体を得た。発泡体の発泡倍率は4.9倍であったが、
運転開始後2時間で、送液ポンプの回転数が上限に達し
ているにもかかわらず二酸化炭素の供給量が樹脂100
重量部に対し1.0重量部に減少し、得られる発泡体の
発泡倍率も3.7倍まで減少したことから安定的な発泡
体製造は困難と判断し、実験を中止した。 【0036】 【発明の効果】本発明によれば、簡便な装置を用いて、
二酸化炭素を安定的に押出機中の溶融樹脂に送液し、押
出機に圧入することにより、ポリプロピレン系樹脂押出
発泡体を安定的に製造することが可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polypropylene resin foam which can be suitably used as a buffer packaging material or a food packaging material. More specifically, the present invention relates to a method for producing a polypropylene resin foam while using carbon dioxide having high environmental compatibility as a foaming agent and ensuring high production stability. [0002] In extrusion foaming of a polypropylene resin, a physical foaming agent represented by a hydrocarbon such as butane or pentane is generally used. For example, a foaming agent in a liquid form using a liquid feed pump is used. It is used by sending from a storage tank to an extruder. [0003] In addition to the fact that carbon dioxide does not require an explosion-proof device, carbon dioxide is said to have a smaller effect on global warming than hydrocarbons, and its use as a foaming agent is being studied. [0004] However, carbon dioxide has a lower boiling point and a lower critical temperature than conventional blowing agents such as hydrocarbons, and has a property of being easily solidified (dry ice) when exposed to a low pressure from a high-pressure liquid state. For this reason, cavitation occurs in the liquid sending pump, the liquid becomes a compressible gas in the pipe, dry ice is generated in the pipe or the liquid sending pump, etc.
In some cases, the liquid transfer itself may not be possible. In order to solve these problems, Japanese Patent Laid-Open Publication No.
In the method of manufacturing a thermoplastic resin foam by extrusion foaming using a foaming agent containing carbon dioxide gas, Japanese Patent Application Laid-Open No. 1-291318 describes (A) filling the inside of a pipe with a liquid or a high-pressure gas before starting liquid supply. (B) pressurizing a storage tank of carbon dioxide; and (C) cooling a liquid sending pump to a temperature lower than air temperature.
However, these are suitable for producing an alkenyl aromatic resin foam having an expansion ratio of 15 times or more, but when producing a polypropylene resin foam having an expansion ratio of 2 to 15 times, the supply of carbon dioxide is not sufficient. There was a problem that stable supply was difficult due to the small amount. In recent years, attempts have been made to use carbon dioxide in a supercritical state as a blowing agent.
968 discloses a technique in which the pressure of liquid carbon dioxide is increased to a critical pressure or higher, and further raised to a critical temperature or higher to form supercritical carbon dioxide, and then added to the molten thermoplastic resin. However, there is a problem that the apparatus is complicated and the operation becomes complicated, for example, the pressure is adjusted not only by the pump but also the pressure is adjusted by the pressure holding valve, and the heater is heated by the heater to make it supercritical. SUMMARY OF THE INVENTION An object of the present invention is to stabilize an extruded polypropylene resin foam by stably injecting carbon dioxide into a molten resin in an extruder with a simple device. To achieve strategic production. Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, when extruding carbon dioxide into a molten resin by sending carbon dioxide in an extrusion foaming method. The present inventors have found that the carbon dioxide can be stably supplied by maintaining the pressure in the front pipe at a certain level or more and cooling the suction part and the discharge part of the liquid sending pump to −5 ° C. or less, thereby completing the present invention. Reached. That is, according to the present invention, carbon dioxide is supplied into an extruder by a liquid feed pump, a foamable gel is formed while kneading and cooling with a molten polypropylene resin, and the foamable gel is extruded through a die to a low pressure region. And expansion ratio 2-1
In extrusion foaming to obtain a 5-fold foam, maintain the pressure in the pipe between the liquid pump and the extruder at 5 MPa or more, and cool the suction and discharge sections of the liquid pump to -5 ° C or less. And a method for producing a polypropylene resin foam. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a polypropylene resin foam having an expansion ratio of 2 to 15 times by an extrusion foaming method using a foaming apparatus using a conventional extruder. It is intended to provide a method for stably injecting a certain amount of carbon dioxide even in a small amount. The polypropylene resin used in the present invention is a homopolymer of propylene, a random copolymer of one or two or more copolymer components selected from ethylene and an α-olefin having 4 or more carbon atoms and a random copolymer of propylene or It is a block copolymer. The melt flow rate of the polypropylene resin at 230 ° C. is preferably 10 g / 10 min or less, and more preferably 8 g / 10 min or less, because it is easy to hold the pressure with a die in extrusion foaming. . Further, the temperature of the polypropylene-based resin is 230 ° C.
The melt tension is 5 g or more,
It is preferable because a foam having a desired expansion ratio can be easily produced. The melt tension was measured using a melt tension tester manufactured by Toyo Seiki Co., Ltd., and a polypropylene resin heated to 230 ° C. was weighed 1 mm in diameter and 10 m in length.
m, extruded from an orifice having an inflow angle of 45 degrees at a speed of 1 m / min, and the extruded product is passed through a pulley for tension detection and wound up while being accelerated from a speed of 1 m / min to cut the extruded product. Is measured. The liquid feed pump used in the present invention is a pump used for pressurizing carbon dioxide and for injecting a foaming agent into an extruder. Any known pump such as a diaphragm type or a plunger type can be used. In addition, these pumps are preferably two or three pumps because they can suppress fluctuations in the pressure in the piping. In the present invention, it is essential to maintain the pressure in the pipe between the liquid feed pump and the extruder at 5 MPa or more in order to stably supply carbon dioxide to the extruder for a long time. When the pressure is lower than 5 MPa, the supply amount of carbon dioxide is reduced due to cavitation or the like, and in some cases, dry ice is generated and the piping is blocked, so that there is a possibility that the liquid cannot be sent. The adjustment of the pressure in the pipe can be easily achieved by adjusting the resin pressure in the extruder at the site where carbon dioxide is injected. In the present invention, it is essential to cool the suction part and the discharge part of the liquid sending pump to -5 ° C. or less in order to stably supply carbon dioxide to the extruder for a long time. When the temperature exceeds −5 ° C., the supply amount of carbon dioxide is reduced due to cavitation or the like, and in some cases, dry ice is generated and the pipe is blocked, so that there is a possibility that the liquid cannot be sent. The temperature of the part to be cooled is preferably the temperature of the liquefied carbon dioxide in the liquid feed pump or the piping, but may be the surface temperature of the apparatus if it is difficult to install a thermocouple in the structure. Further, it is preferable to cool not only the suction part and the discharge part of the liquid sending pump but also the head part in order to further stabilize the supply of the foaming agent. However, when cooling the head in the diaphragm type pump, it is necessary to keep the temperature of the drive oil for the diaphragm from falling below the proper use temperature. As a method of cooling the suction part and the discharge part of the liquid sending pump, there is a method of surrounding the part with a jacket or the like and circulating a refrigerant in the jacket or putting dry ice therein. In the present invention, the supply amount of carbon dioxide is arbitrarily selected depending on the expansion ratio of the foam to be produced. Although it depends on the efficiency of the foaming apparatus used, it is preferably 0.1 to 5 parts by weight based on 100 parts by weight of the polypropylene resin. The method of the present invention discloses a method using carbon dioxide alone as a blowing agent. However, a blowing agent other than carbon dioxide may be used in combination with another line or as a mixture with carbon dioxide. . When the carbon dioxide and another blowing agent are used in combination as a mixture, foaming which does not solidify at the cooling temperature, flow rate and pressure of the suction part and discharge part of the liquid sending pump is required for cooling by the method of the present invention. It must be an agent. Preferred blowing agents for use with carbon dioxide include, for example, hydrocarbons such as propane, n-butane, i-butane, n-pentane, i-pentane and neopentane, 1,1,1,2-tetrafluoroethane,
One or two or more of hydrofluorocarbons such as 1,1-difluoroethane and difluoromethane, alcohols such as methyl alcohol and ethyl alcohol, ethers such as dimethyl ether and the like can be mentioned. Of these, propane, n-butane, i-butane, n-pentane and i-pentane are more preferred. In the present invention, the apparatus for producing the foam is not particularly limited, and includes a single-screw extruder, a twin-screw extruder, a tandem extruder in which a plurality of extruders are connected, a device in which a gear pump is connected to the extruder tip, and the like. , Conventional foaming equipment can be used. Of these, the tandem extruder or the extruder can be easily adjusted by adjusting the resin pressure in the extruder at the site where the foaming agent is injected, so that the piping pressure between the liquid feed pump and the extruder can be easily adjusted. A device in which a gear pump is connected to the tip is preferable. According to the above method, carbon dioxide can be stably supplied to the extruder. When starting to feed carbon dioxide using the liquid sending pump, it is necessary to fill the pipe from the carbon dioxide storage tank to a position immediately before the extruder press-fitting section with a liquid or a high-pressure gas at the start of the liquid sending. This is preferable because the generation of dry ice due to rapid pressure fluctuation can be suppressed. The liquid or gas previously filled in the pipe may be one or more of hydrocarbon, hydrofluorocarbon, alcohol, ether, carbon dioxide, nitrogen, air and the like. Next, a method for producing an extruded foam according to the present invention will be described based on examples and comparative examples, but the present invention is not limited to only these examples. Example 1 100 parts by weight of a propylene homopolymer (melt flow rate at 230 ° C .: 0.5 g / 10 min, melt tension at 230 ° C .: 12 g) and a baking soda-citric acid mixture 0 as a nucleating agent .12 parts by weight in a ribbon blender, and then the mixture was treated with 50 kg / h at 6 kg / h.
After feeding to a 5 mm-90 mm φ tandem extruder and plasticizing at 220 ° C. in a first stage extruder (65 mm φ),
Carbon dioxide is fed from the extruder tip to propylene homopolymer 1
1.3 parts by weight with respect to 00 parts by weight and kneaded with the molten resin, and when the resin temperature is 1 in a second stage extruder (90 mmφ).
Cool down to 63 ° C and use a circular die (75 m
mφ), extruded into the atmosphere, outer diameter 200 mm, length 25
The sheet was drawn while being stretched and cooled in a 0 mm cooling cylinder to obtain a sheet-like foam having an expansion ratio of 5.2. The carbon dioxide supply device is composed of a siphon-type cylinder filled with liquefied carbon dioxide, a double-diaphragm-type liquid feed pump, and a mass flow meter. A pressure gauge was provided in between, and the measured value of the mass flow meter was fed back to the rotation speed of the liquid sending pump to automatically control the supply amount of carbon dioxide. Then, the surface temperatures of the suction part, the discharge part, and the head part of the liquid sending pump are −1.
After cooling with dry ice below 0 ° C. and adjusting the screw rotation speed of the second stage extruder so that the resin pressure in the extruder press-fitting section becomes 12 MPa, the liquid feed pump is started and the valve in the extruder press-fitting section is started. Was released. When the supply of carbon dioxide was started, the resin pressure at the extruder press-fitting portion, and the display of the pressure gauge between the mass flow meter and the extruder became 11 MPa,
The screw speed of the second extruder was adjusted so as to maintain this pressure. After the foam was taken out, it was operated for 8 hours. During that time, every 30 minutes, the supply amount of carbon dioxide was monitored, and the foam was sampled to measure the expansion ratio.
1.3 parts by weight of carbon dioxide is always supplied to 100 parts by weight of the resin, and the expansion ratio is stable between 5.1 and 5.3 times, so that industrial production is possible. Was determined. The monitoring of the carbon dioxide supply was carried out by placing a carbon dioxide cylinder on a weigher and measuring the weight loss. Example 2 The supply amount of carbon dioxide was changed to 1.8 parts by weight, and the pressure of carbon dioxide between the mass flow meter and the extruder was changed to 8 MPa.
A sheet foam having an expansion ratio of 7.8 was obtained in the same manner as in Example 1 except that the temperature was maintained at a, and thereafter the operation was continued for 8 hours. 1.8 parts by weight of carbon dioxide is always supplied with respect to 100 parts by weight of the resin, and the expansion ratio is 7.6 ~.
It was stable between 7.9 times. Comparative Example 1 A sheet-like foam having an expansion ratio of 5.2 was manufactured in the same manner as in Example 1, and was used for cooling the suction part, discharge part, and head part of the liquid sending pump. When the supply of dry ice was stopped, the surface temperature of each part of the liquid sending pump exceeded -3 ° C. The supply amount is reduced to 1.1 parts by weight based on 100 parts by weight of the resin,
Since the expansion ratio of the obtained foam also decreased to 4.3 times, it was judged that stable foam production was difficult, and the experiment was stopped. Comparative Example 2 The pressure of carbon dioxide between the mass flow meter and the extruder was adjusted to 4MP by adjusting the screw rotation speed of the second stage extruder.
A sheet-like foam was obtained in the same manner as in Example 1 except that a was maintained at a. The expansion ratio of the foam was 4.9 times,
Two hours after the start of the operation, the supply amount of carbon dioxide was increased even though the rotation speed of the liquid sending pump reached the upper limit.
The amount was reduced to 1.0 part by weight, and the expansion ratio of the obtained foam was also reduced to 3.7 times. Therefore, it was judged that stable foam production was difficult, and the experiment was stopped. According to the present invention, using a simple device,
By stably sending carbon dioxide to the molten resin in the extruder and press-fitting it into the extruder, it is possible to stably produce an extruded polypropylene resin foam.

【図面の簡単な説明】 【図1】本発明の製造方法の説明図である。 【符号の説明】 1 液化二酸化炭素貯槽(サイフォン式ボンベ) 2 送液ポンプ 3 圧力計 4 押出機 5 吸い込み部 6 吐出部 7 ヘッド部 8 質量流量計[Brief description of the drawings] FIG. 1 is an explanatory diagram of a manufacturing method of the present invention. [Explanation of symbols] 1 liquefied carbon dioxide storage tank (siphon cylinder) 2 Liquid sending pump 3 Pressure gauge 4 Extruder 5 Suction section 6 Discharge section 7 Head 8 Mass flow meter

Claims (1)

【特許請求の範囲】 【請求項1】 二酸化炭素を送液ポンプにて押出機内に
供給し、溶融ポリプロピレン系樹脂と混練及び冷却しな
がら発泡性ゲルを形成し、該発泡性ゲルをダイを通じて
低圧領域に押出して、発泡倍率2〜15倍の発泡体を得
る押出発泡成形において、送液ポンプと押出機の間の配
管内圧力を5MPa以上に維持し、かつ送液ポンプの吸
い込み部及び吐出部を−5℃以下に冷却することを特徴
とするポリプロピレン系樹脂発泡体の製造方法。
Claims: 1. Carbon dioxide is supplied into an extruder by a liquid feed pump, and is kneaded with a molten polypropylene resin to form a foaming gel while cooling the foaming gel. In the extrusion foaming to obtain a foam having an expansion ratio of 2 to 15 times by extruding into a region, the pressure in the pipe between the liquid feed pump and the extruder is maintained at 5 MPa or more, and the suction part and the discharge part of the liquid feed pump Is cooled to -5 ° C or lower.
JP2002096402A 2002-03-29 2002-03-29 Production method for polypropylene resin foam Pending JP2003291196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002096402A JP2003291196A (en) 2002-03-29 2002-03-29 Production method for polypropylene resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002096402A JP2003291196A (en) 2002-03-29 2002-03-29 Production method for polypropylene resin foam

Publications (1)

Publication Number Publication Date
JP2003291196A true JP2003291196A (en) 2003-10-14

Family

ID=29239476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002096402A Pending JP2003291196A (en) 2002-03-29 2002-03-29 Production method for polypropylene resin foam

Country Status (1)

Country Link
JP (1) JP2003291196A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136966A (en) * 2005-11-21 2007-06-07 Asahi Fiber Glass Co Ltd Method for manufacturing polyolefin resin foamed body
JP2007204590A (en) * 2006-02-01 2007-08-16 Asahi Fiber Glass Co Ltd Polypropylene resin foam and method of producing the same
JPWO2009001934A1 (en) * 2007-06-27 2010-08-26 旭ファイバーグラス株式会社 Polyolefin resin foam board and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11291318A (en) * 1998-04-10 1999-10-26 Kanegafuchi Chem Ind Co Ltd Manufacture of thermoplastic resin foam
JP2000084968A (en) * 1998-07-16 2000-03-28 Mitsui Chemicals Inc Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the method
JP2001301006A (en) * 2000-04-25 2001-10-30 Sekisui Chem Co Ltd Method and device for producing molded body of thermoplastic resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11291318A (en) * 1998-04-10 1999-10-26 Kanegafuchi Chem Ind Co Ltd Manufacture of thermoplastic resin foam
JP2000084968A (en) * 1998-07-16 2000-03-28 Mitsui Chemicals Inc Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the method
JP2001301006A (en) * 2000-04-25 2001-10-30 Sekisui Chem Co Ltd Method and device for producing molded body of thermoplastic resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136966A (en) * 2005-11-21 2007-06-07 Asahi Fiber Glass Co Ltd Method for manufacturing polyolefin resin foamed body
JP2007204590A (en) * 2006-02-01 2007-08-16 Asahi Fiber Glass Co Ltd Polypropylene resin foam and method of producing the same
JPWO2009001934A1 (en) * 2007-06-27 2010-08-26 旭ファイバーグラス株式会社 Polyolefin resin foam board and method for producing the same

Similar Documents

Publication Publication Date Title
JP3998374B2 (en) Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method
ES2197358T3 (en) QUICK PRODUCTION PROCEDURE OF EXTRUSIONED FOAMS OF LOW DENSITY PROPYLENE POLYMER AND WITH CLOSED ALVEOLS.
JP5350632B2 (en) Expanded and extruded thermoplastic foams made with methyl formate-based blowing agents
Yusa et al. A new microcellular foam injection‐molding technology using non‐supercritical fluid physical blowing agents
EP1666222A1 (en) Method of manufacturing thermoplastic resin foam particle
JP2013231198A (en) Polyolefin foam structure, expandable bead, and method of producing the polyolefin foam structure
JP5145425B2 (en) Method and apparatus for producing polymer granules
JPH0449021A (en) Production of polystyrene foam sheet
TW201536527A (en) Multiple layer tube and process of making the same
JPH09104780A (en) Alkenyl aromatic synthetic resin extrusion foam and its production
CA2626307C (en) Method of manufacturing polystyrene foam with polymer processing additives
CN107057303A (en) A kind of blending and modifying aromatic polyester microcellular foam material and preparation method thereof
JP4773870B2 (en) Process for producing polylactic acid-based resin foam molding
CA2347267C (en) Process and apparatus for producing foam
US3194854A (en) Process for producing thermoplastic foams
JP2003291196A (en) Production method for polypropylene resin foam
JP2009235170A (en) Method for producing polylactic acid resin foamed particle for in-mold expansion molding
Gendron et al. Effect of physical foaming agents on the viscosity of various polyolefin resins
JP2004307662A (en) Method for producing crystalline polylactic acid-based resin foam
US20070023946A1 (en) Continuous method for producing solid, hollow or open profiles
AU2014311414A1 (en) Polymeric material for container
CA2656066C (en) Thermoplastic foam blowing agent combination
JP2004082484A (en) Method for manufacturing polypropylene resin foam
JPH11291318A (en) Manufacture of thermoplastic resin foam
KR100839399B1 (en) BLOWING AGENT BASED ON HFC-134a AND CYCLOPENTANE FOR THE EXPANSION OF POLYMERS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130