JP4550646B2 - Method for producing foamed molded article made of thermoplastic resin or mixture thereof - Google Patents

Method for producing foamed molded article made of thermoplastic resin or mixture thereof Download PDF

Info

Publication number
JP4550646B2
JP4550646B2 JP2005109752A JP2005109752A JP4550646B2 JP 4550646 B2 JP4550646 B2 JP 4550646B2 JP 2005109752 A JP2005109752 A JP 2005109752A JP 2005109752 A JP2005109752 A JP 2005109752A JP 4550646 B2 JP4550646 B2 JP 4550646B2
Authority
JP
Japan
Prior art keywords
inert fluid
heating cylinder
screw extruder
extruded material
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005109752A
Other languages
Japanese (ja)
Other versions
JP2006289636A (en
Inventor
英雄 大藪
昌吉 時久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2005109752A priority Critical patent/JP4550646B2/en
Publication of JP2006289636A publication Critical patent/JP2006289636A/en
Application granted granted Critical
Publication of JP4550646B2 publication Critical patent/JP4550646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/922Viscosity; Melt flow index [MFI]; Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/9238Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/924Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92676Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92695Viscosity; Melt flow index [MFI]; Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92828Raw material handling or dosing, e.g. active hopper or feeding device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92866Inlet shaft or slot, e.g. passive hopper; Injector, e.g. injector nozzle on barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Description

本発明は、造核剤が添加された熱可塑性樹脂あるいはその混合物からなる固体状態の押出材料を二軸スクリュ押出機の加熱シリンダの上流側に供給してスクリュを回転駆動して溶融すると共に、超臨界状態の不活性流体を注入し、不活性流体が溶解・分散した溶融状態の押出材料を加熱シリンダの下流端部に設けられているダイから連続的に押し出して、発泡成形品を得る、熱可塑性樹脂あるいはその混合物からなる発泡成形品の製造方法に関するものである。   The present invention supplies a solid state extrusion material made of a thermoplastic resin or a mixture thereof added with a nucleating agent to the upstream side of a heating cylinder of a twin-screw extruder and melts by rotating the screw. Injecting supercritical inert fluid and continuously extruding molten extruded material in which the inert fluid is dissolved and dispersed from the die provided at the downstream end of the heating cylinder to obtain a foam molded product. The present invention relates to a method for producing a foam-molded article made of a thermoplastic resin or a mixture thereof.

熱可塑化樹脂の連続的な可塑化装置としては、スクリュ押出機が知られている。スクリュ押出機は、周知のように、軸方向に所定長さの加熱シリンダと、この加熱シリンダ内で回転駆動されるスクリュとからなっている。このようなスクリュ押出機は、スクリュが1本の単軸押出機と、2本の二軸スクリュ押出機とに大別できるが、スクリュはいずれも材料の供給側から製品の押出側に向かって、概略、材料供給部、圧縮部、溶融部等からなっている。そして、単軸押出機の場合は、スクリュの軸方向の長さをL,加熱シリンダの径をDとすると、加熱シリンダに供給される熱可塑性樹脂は3〜7L/Dから溶融が始まり、15〜20L/Dのところで終了する。すなわち、溶融に長いスクリュを必要とする。これに対し、二軸スクリュ押出機の溶融領域すなわち圧縮部は、通常の成形加工条件下では1〜3L/Dに過ぎず、迅速且つ効率的に溶融するという特徴を有する。
一方、スクリュ押出機の混練効果、特に分散混合には、最も大きな剪断応力を発生するスクリュの溶融領域が大きな役割を担っている。しかし、単軸押出機は溶融領域が長く、しかも剪断応力の発生は溶融領域の短い二軸押出機に比べると非常に緩慢で、かつかなり低い値である。したがって、熱可塑性樹脂およびその混合物に対する分散混合作用は、二軸スクリュ押出機の方が優れ、コンパウンディング操作など高混練が要求される成形加工には二軸スクリュ押出機が多用されている。
A screw extruder is known as an apparatus for continuously plasticizing a thermoplastic resin. As is well known, the screw extruder includes a heating cylinder having a predetermined length in the axial direction and a screw that is rotationally driven in the heating cylinder. Such screw extruders can be broadly classified into a single screw extruder having one screw and two twin screw extruders, all of which are directed from the material supply side to the product extrusion side. , Outline, material supply unit, compression unit, melting unit and the like. In the case of a single screw extruder, when the axial length of the screw is L and the diameter of the heating cylinder is D, the thermoplastic resin supplied to the heating cylinder starts to melt from 3 to 7 L / D, and 15 Finish at ~ 20 L / D. That is, a long screw is required for melting. On the other hand, the melting region, that is, the compression portion of the twin screw extruder is only 1 to 3 L / D under normal molding process conditions, and has a feature that it melts quickly and efficiently.
On the other hand, the melting region of the screw that generates the greatest shear stress plays a major role in the kneading effect of the screw extruder, in particular, dispersion mixing. However, the single-screw extruder has a long melting region, and the generation of shear stress is much slower than a twin-screw extruder having a short melting region, and is considerably low. Therefore, the twin screw extruder is superior in the dispersion and mixing action with respect to the thermoplastic resin and the mixture thereof, and the twin screw extruder is frequently used for molding processing that requires high kneading such as a compounding operation.

ところで、熱可塑性樹脂の成形加工に要するエンタルピーの大半は、熱可塑性樹脂材料の可塑化あるいは溶融のために消費されている。このようなエネルギの消費も、超臨界状態の不活性流体を注入すると、軽減できる。また、溶融樹脂材料の粘度も低下する。   By the way, most of the enthalpy required for molding a thermoplastic resin is consumed for plasticizing or melting the thermoplastic resin material. Such energy consumption can also be reduced by injecting a supercritical inert fluid. In addition, the viscosity of the molten resin material also decreases.

特開平10−230528号JP-A-10-230528 特開2001−150504JP 2001-150504 A 特開2002−322288JP 2002-322288 A

このような性質をもつ押出機を使用した発泡成形品製造装置も、例えば特許文献1等により多数提案されている。特許文献1には、シリンダバレル、このシリンダバレル内に回転駆動可能に設けられている混練スクリュ、超臨界状態の二酸化炭素流体供給装置、アキュムレータ、射出シリンダを有する射出装置、金型等からなる発泡成形品の製造装置が示されている。したがって、混練スクリュを回転駆動してペレット状の樹脂材料を供給すると、従来周知のようにして樹脂材料は溶融する。このとき、二酸化炭素流体供給装置から二酸化炭素の液体を供給すると、二酸化炭素の液体は溶融樹脂材料中に浸透する。二酸化炭素の液体が浸透した溶融樹脂はアキュムレータを介して射出プランジャーに供給され、そして射出装置によりプランジャーを駆動すると、金型のキャビテイには、ガスボンベからカウンタープレッシャーがかけられているので、表面にスキン層を有する熱可塑性樹脂発泡成形が得られる。   Many foam molded product manufacturing apparatuses using an extruder having such properties have been proposed, for example, in Patent Document 1. Japanese Patent Application Laid-Open No. H10-228561 includes a cylinder barrel, a kneading screw rotatably provided in the cylinder barrel, a supercritical carbon dioxide fluid supply device, an accumulator, an injection device having an injection cylinder, a foam made of a mold and the like. An apparatus for manufacturing a molded article is shown. Therefore, when the kneading screw is rotationally driven to supply the pellet-shaped resin material, the resin material is melted as conventionally known. At this time, when the carbon dioxide liquid is supplied from the carbon dioxide fluid supply device, the carbon dioxide liquid penetrates into the molten resin material. The molten resin infiltrated with the carbon dioxide liquid is supplied to the injection plunger via the accumulator, and when the plunger is driven by the injection device, counter pressure is applied to the mold cavities from the gas cylinder. A thermoplastic resin foam molding having a skin layer on the surface is obtained.

また、特許文献2には、次の発泡成形品の成形方法が示されている。すなわち、射出プランジャー装置には複数台の射出プランジャーを、成形装置にも複数台の金型を使用し、熱可塑性樹脂発泡成形品成形用可塑化装置により得られる溶融樹脂を複数台の射出プランジャーに順次供給し、溶融樹脂が供給された射出プランジャーから金型のキャビテイに順次射出して発泡成形品を得、これにより熱可塑性樹脂発泡成形品成形用可塑化装置により連続的に得られる溶融樹脂を途切れることなく、発泡成形品の成形に使用することを特徴とする成形方法が示されている。また、特許文献2には、上記のようにして、発泡成形品を製造するとき、造核剤としてタルク、炭酸カルシウム、酸化チタン、カーボンブラック等を添加する製造方法も示されている。   Patent Document 2 discloses a method for molding the following foamed molded product. That is, a plurality of injection plungers are used for the injection plunger device, and a plurality of molds are used for the molding device, and a plurality of molten resins obtained by a plasticizing device for molding a thermoplastic resin foam molded product are injected. Sequentially supplied to the plunger, and sequentially injected into the mold cavity from the injection plunger to which the molten resin was supplied, to obtain a foam molded product, which is continuously obtained by a plasticizer for molding a thermoplastic resin foam molded product. There is shown a molding method characterized in that a molten resin to be used is used for molding a foam molded product without interruption. Patent Document 2 also discloses a production method in which talc, calcium carbonate, titanium oxide, carbon black and the like are added as a nucleating agent when producing a foam molded article as described above.

一方、上記したような押出機を使用して熱可塑性樹脂を成形加工するとき、加熱シリンダに不活性流体を注入する押出成形方法も、例えば特許文献3等により提案されている。特許文献3には、2種以上の熱可塑性樹脂を溶融状態で混合して熱可塑性樹脂組成物を製造するとき、熱可塑性樹脂の合計量100重量部に対して、例えば超臨界状態の二酸化炭素を2〜20重量部の割合で添加する熱可塑性樹脂組成物の製造方法が示されている。   On the other hand, for example, Patent Document 3 proposes an extrusion molding method in which an inert fluid is injected into a heating cylinder when a thermoplastic resin is molded using the above-described extruder. In Patent Document 3, when a thermoplastic resin composition is produced by mixing two or more kinds of thermoplastic resins in a molten state, for example, carbon dioxide in a supercritical state with respect to a total amount of 100 parts by weight of the thermoplastic resin. The manufacturing method of the thermoplastic resin composition which adds 2-20 weight part in the ratio is shown.

特許文献1に記載の成形方法によると、発泡成形品を得ることはできるが、微細なセルからなる発泡成形品は得難いことが予想される。一方、特許文献2に記載の発明によると、連続的に不活性流体例えば二酸化炭素の流体を供給できるので、供給量の制御が容易で、溶融状態の樹脂材料と二酸化炭素の流体との混合比を容易に一定に保つことができ、また熱可塑性樹脂発泡成形品成形用可塑化装置が停止しないので、溶融状態の樹脂材料に浸透した二酸化炭素の流体の分離を防ぐことができ、微細セルの高品質の発泡成形品が得られるという、効果が認められる。さらには、二酸化炭素の流体を溶融樹脂中に溶解させることにより、流動性が増し、低温射出が可能となり、成形品の冷却時間を短縮できる効果も得られる。しかしながら、造核剤を使用した発明によると、造核剤の種別、大きさ、形状等に格別考慮が払われていないので、必ずしも微細なセルを有する発泡成形品は得られないことが予想される。例えば、従来使用されている合成粘土すなわちスメクタイトは層状化合物で、そのため発泡成形品の平均気泡径が10μm以上になることがある。   According to the molding method described in Patent Literature 1, it is possible to obtain a foam molded product, but it is expected that a foam molded product composed of fine cells is difficult to obtain. On the other hand, according to the invention described in Patent Document 2, since an inert fluid such as a carbon dioxide fluid can be continuously supplied, the supply amount can be easily controlled, and the mixing ratio of the molten resin material and the carbon dioxide fluid Since the plasticizing device for molding the thermoplastic resin foam molded product does not stop, separation of the carbon dioxide fluid that has penetrated into the molten resin material can be prevented. The effect that a high-quality foam-molded article is obtained is recognized. Furthermore, by dissolving the carbon dioxide fluid in the molten resin, the fluidity is increased, low temperature injection becomes possible, and the effect of shortening the cooling time of the molded product can be obtained. However, according to the invention using a nucleating agent, since no special consideration is given to the type, size, shape, etc. of the nucleating agent, it is expected that a foam molded product having fine cells is not necessarily obtained. The For example, conventionally used synthetic clay, that is, smectite, is a layered compound, so that the average cell diameter of the foamed molded product may be 10 μm or more.

また、特許文献3に記載されている発明によると、超臨界状態の不活性流体が注入されるので、熱可塑性樹脂の種類に制約を受けずに、難成形性の樹脂も連続成形が可能である利点は認められる。また、例えば熱可塑性樹脂は不活性流体の供給部に至るまでに溶融するようになっているので、溶融した熱可塑性樹脂が上流側に位置してシールの作用を奏し、シールリング、ゲート等の逆流防止装置が格別に設けられていなくても、注入される不活性流体の逆流を防止することができる利点は認められる。しかしながら、注入される不活性ガスの省エネ効果が充分には生かされていない。最も大きな剪断応力を発生するスクリュの溶融領域ではなく、溶融された後の領域に注入されるようになっているからである。また、二酸化炭素の注入割合は一応選定されてはいるが、液状の二酸化炭素を所定流量になるように質量流量計で確認しながら二酸化炭素定量ポンプを制御するようになっているので、注入量に過不足が生じる可能性があり、製品の品質にバラツキが生じる恐れがある。さらには、特許文献3に記載されている発明は、造核剤は使用されていないし、微細なセルを有する発泡成形品を得ようとするものでもない。   Further, according to the invention described in Patent Document 3, since an inert fluid in a supercritical state is injected, it is possible to continuously mold difficult-to-mold resins without being restricted by the type of thermoplastic resin. Certain benefits are recognized. Further, for example, the thermoplastic resin is melted before reaching the supply portion of the inert fluid, so that the melted thermoplastic resin is located on the upstream side and exerts a sealing action, such as a seal ring, a gate, etc. Even if the backflow prevention device is not specially provided, there is an advantage that the backflow of the injected inert fluid can be prevented. However, the energy saving effect of the injected inert gas is not fully utilized. This is because it is injected not into the melted region of the screw that generates the greatest shear stress but into the region after being melted. The injection rate of carbon dioxide has been selected, but the carbon dioxide metering pump is controlled while checking the liquid carbon dioxide with a mass flow meter so that the flow rate becomes a predetermined flow rate. There is a possibility that excess or deficiency will occur, and there is a risk that the quality of the product will vary. Furthermore, the invention described in Patent Document 3 does not use a nucleating agent, nor is it intended to obtain a foam molded article having fine cells.

本発明は、前記したような従来の問題点を解消した熱可塑性樹脂あるいはその混合物から発泡成形品を得る、発泡成形品の製造方法を提供することを目的とし、具体的には、低温度で熱可塑性樹脂を溶融することができ、溶融に要するエンタルピを大幅に低減化できると共に分散混合作用を向上させることができ、しかも微細な均一な発泡セルを有する熱可塑性樹脂あるいはその混合物からなる発泡成形品の製造方法を提供することを目的としている。   An object of the present invention is to provide a method for producing a foam molded product, which obtains a foam molded product from a thermoplastic resin or a mixture thereof, which has solved the conventional problems as described above, and specifically, at a low temperature. Foam molding that can melt thermoplastic resin, can greatly reduce the enthalpy required for melting, improve the dispersion and mixing action, and also has a thermoplastic resin having a fine uniform foam cell or a mixture thereof. It aims at providing the manufacturing method of goods.

本発明は、上記発明の目的を達成するために、熱可塑性樹脂およびその混合物に対する分散混合作用に優れている二軸スクリュ押出機が適用される。そして、二軸スクリュ押出機の加熱シリンダには超臨界状態の不活性流体が注入される。スクリュは、材料の供給側の上流側から、第1の輸送部、混練部、第2の輸送部となっていて、混練部において材料が固体から融体になる近傍で固体プラグが形成されるが、この固体プラグの下流側すなわち熱可塑性樹脂およびその混合物が固体状態と半溶融状態で存在する溶融領域に注入するように構成される。注入される不活性流体の量が少ないと、充分な低温成形、省エネ化、混合物の混練向上、微細セルの発泡成形品の製造等の効果は得られない。これに対し、注入量が多すぎると相分離を起こし、気相と液相とに分離する。その結果、例えば混合・混練不良が生じ、また発泡成形品を得るときには気泡セルに不揃いが生じる。そこで、本発明では不活性流体の注入量は、その飽和溶解度以下で制御される。溶融状態の熱可塑性樹脂あるいはその混合物の粘性は、飽和点に達するまでは不活性ガスの注入量に比例する。したがって、本発明は、連続的に測定可能な粘度計例えばレオメトリック社製のPCR620により溶融状態の熱可塑性樹脂あるいはその混合物の粘度を連続的に測定し、飽和溶解度以下で制御される。   In order to achieve the object of the present invention, the present invention is applied with a twin screw extruder excellent in dispersion and mixing action for thermoplastic resins and mixtures thereof. Then, a supercritical inert fluid is injected into the heating cylinder of the twin screw extruder. The screw is a first transport section, a kneading section, and a second transport section from the upstream side of the material supply side, and a solid plug is formed in the vicinity of the material from a solid to a melt in the kneading section. Is configured to be injected downstream of the solid plug, that is, into the molten region where the thermoplastic resin and mixture thereof exist in a solid state and a semi-molten state. If the amount of the inert fluid to be injected is small, effects such as sufficient low-temperature molding, energy saving, kneading improvement of the mixture, and production of a foam molded product of fine cells cannot be obtained. On the other hand, when the injection amount is too large, phase separation occurs and the gas phase and the liquid phase are separated. As a result, for example, mixing / kneading failure occurs, and when the foamed molded product is obtained, the bubble cells are uneven. Therefore, in the present invention, the injection amount of the inert fluid is controlled below its saturation solubility. The viscosity of the molten thermoplastic resin or mixture thereof is proportional to the amount of inert gas injected until the saturation point is reached. Therefore, the present invention continuously measures the viscosity of a molten thermoplastic resin or a mixture thereof with a viscometer that can be continuously measured, for example, PCR620 manufactured by Rheometric Co., and is controlled below the saturation solubility.

また、本発明には、造核剤が適用される。従来、造核剤として多用されているタルク等は、粒径は色々あるが、本発明に示すような気泡の成長を抑制するような効果は認められていない。このように粒径がまちまちのタルク等を使用して得られる発泡成形品のセル径は、大きく、平均気泡径は10μm以上にもなる。そこで、本発明では、造核剤には球状を呈する珪酸が使用される。珪酸の粒径もセル径に影響を与え、珪酸の粒径が大きくなると、発泡成形品のセル径は1〜10μm以上になり、しかも不揃いになり、平均セル径は15μm程度になってしまう。そこで、本発明では、球状の珪酸造核剤の径は1μm以下に選定されている。また、添加量は熱可塑性樹脂およびその混合物に対して0.1質量%以下では、発泡抑制剤としての効果がなくなり、セル径が10μmより大きいものと、数μm程度の小さいものとが混在するようになる。すなわち、均一な発泡成形品が得られなくなる。これに対し、5質量%を越えると、粒子同士の凝集がひどくなり、泡核剤としての効果および発泡径抑制効果が強くなりすぎて適正な発泡径を有する発泡成形品は成形できなくなる。そこで、本発明では熱可塑性樹脂あるいはその混合物に対して、0.1〜5質量%の1μm以下の球状珪酸が添加される。 In the present invention, a nucleating agent is applied. Conventionally, talc and the like that are frequently used as a nucleating agent have various particle sizes, but the effect of suppressing the growth of bubbles as shown in the present invention is not recognized. Thus, the cell diameter of the foam-molded article obtained by using talc or the like having various particle diameters is large, and the average cell diameter is 10 μm or more. Therefore, in the present invention, spherical silicate is used as the nucleating agent. The particle diameter of the silicic acid also affects the cell diameter. When the particle diameter of the silicic acid is increased, the cell diameter of the foam-molded product becomes 1 to 10 μm or more and becomes irregular, and the average cell diameter becomes about 15 μm. Therefore, in the present invention, the diameter of the spherical silicic acid nucleating agent is selected to be 1 μm or less. Further, when the addition amount is 0.1% by mass or less with respect to the thermoplastic resin and the mixture thereof, the effect as a foaming inhibitor is lost, and a cell diameter larger than 10 μm and a smaller one of several μm are mixed. It becomes like this. That is, a uniform foam molded product cannot be obtained. On the other hand, if it exceeds 5% by mass , the agglomeration of particles becomes severe, the effect as a foam nucleating agent and the effect of suppressing the foam diameter are too strong, and a foam molded product having an appropriate foam diameter cannot be molded. Therefore, in the present invention, 0.1 to 5% by mass of spherical silicic acid of 1 μm or less is added to the thermoplastic resin or a mixture thereof.

かくして、請求項1に記載の発明は、上記目的を達成するために、造核剤が添加された熱可塑性樹脂あるいはその混合物からなる固体状態の押出材料を二軸スクリュ押出機の加熱シリンダの上流側に供給してスクリュを回転駆動して溶融すると共に、超臨界状態の不活性流体を、前記加熱シリンダに超臨界状態の不活性流体を注入するために設けられている不活性流体注入口から注入し、不活性流体が溶解・分散した溶融状態の押出材料を前記加熱シリンダの下流端部に設けられているダイから連続的に押し出して、発泡成形品を得るとき、超臨界状態の不活性流体は、前記二軸スクリュ押出機の加熱シリンダにおける押出材料が100%固体状である位置と、その下流側の100%溶融している位置との間で形成される固体プラグの下流側の、固体状態と半溶融状態で混在する溶融領域に注入して溶融粘度を低下させ、前記加熱シリンダ内の温度上昇を抑えると共に、造核剤として、押出材料に対して0.1〜5質量%の、球径が1μm以下の球状珪酸を添加するように構成される。
請求項2に記載の発明は、造核剤が添加された熱可塑性樹脂あるいはその混合物からなる固体状態の押出材料を二軸スクリュ押出機の加熱シリンダの上流側に供給してスクリュを回転駆動して溶融すると共に、超臨界状態の不活性流体を、前記加熱シリンダに超臨界状態の不活性流体を注入するために設けられている不活性流体注入口から注入し、不活性流体が溶解・分散した溶融状態の押出材料を加熱シリンダの下流端部に設けられているダイから連続的に押し出して、発泡成形品を得るとき、超臨界状態の不活性流体は、前記二軸スクリュ押出機の加熱シリンダにおける押出材料が100%固体状である位置と、その下流側の100%溶融している位置との間で形成される固体プラグの下流側の、固体状態と半溶融状態で混在する溶融領域に注入して溶融粘度を低下させ、前記加熱シリンダ内の温度上昇を抑え、その注入量は前記加熱シリンダの下流端寄りに設けられている粘度計により計測される溶融状態の押出材料の粘度により、不活性流体の飽和溶解度以下の範囲になるように制御し、造核剤として、押出材料に対して0.1〜5質量%の、球径が1μm以下の球状珪酸を添加するように構成される。
請求項3に記載の発明は、造核剤が添加された熱可塑性樹脂あるいはその混合物からなる固体状態の押出材料を二軸スクリュ押出機の加熱シリンダの上流側に供給してスクリュを回転駆動して溶融すると共に、超臨界状態の不活性流体を、前記加熱シリンダに超臨界状態の不活性流体を注入するために設けられている不活性流体注入口から注入し、不活性流体が溶解・分散した溶融状態の押出材料をその下流側に直列的に配置されているスクリュ押出機に供給し、前記スクリュ押出機のシリンダバレルの下流端部に設けられているダイから連続的に押し出して、発泡成形品を得るとき、超臨界状態の不活性流体は、前記二軸スクリュ押出機の加熱シリンダにおける押出材料が100%固体状である位置と、その下流側の100%溶融している位置との間で形成される固体プラグの下流側の、固体状態と半溶融状態で混在する溶融領域に注入して溶融粘度を低下させ、前記加熱シリンダ内の温度上昇を抑えると共に、造核剤として、押出材料に対して0.1〜5質量%の、球径が1μm以下の球状珪酸を添加するように構成される。
請求項4に記載の発明は、造核剤が添加された熱可塑性樹脂あるいはその混合物からなる固体状態の押出材料を二軸スクリュ押出機の加熱シリンダの上流側に供給してスクリュを回転駆動して溶融すると共に、超臨界状態の不活性流体を、前記加熱シリンダに超臨界状態の不活性流体を注入するために設けられている不活性流体注入口から注入し、不活性流体が溶解・分散した溶融状態の押出材料をその下流側に直列的に配置されているスクリュ押出機に供給し、前記スクリュ押出機のシリンダバレルの下流端部に設けられているダイから連続的に押し出して、発泡成形品を得るとき、超臨界状態の不活性流体は、前記二軸スクリュ押出機の加熱シリンダにおける押出材料が100%固体状である位置と、その下流側の100%溶融している位置との間で形成される固体プラグの下流側の、固体状態と半溶融状態で混在する溶融領域に注入して溶融粘度を低下させ、前記加熱シリンダ内の温度上昇を抑え、その注入量は前記加熱シリンダの下流端部寄りに設けられている粘度計または前記シリンダバレルの下流端部寄りに設けられている粘度計により計測される溶融状態の押出材料の粘度により、不活性流体の飽和溶解度以下の範囲になるように制御し、造核剤として、押出材料に対して0.1〜5質量%の、球径が1μm以下の球状珪酸を添加するように構成される。そして請求項5に記載の発明は、請求項1〜4のいずれかの項に記載の製造方法において、混合容器に押出材料と、該押出材料に対して0.1〜5質量%の造核剤とを連続的に供給して混合し、そして前記混合容器から連続的に二軸スクリュ押出機に供給するように構成される。
Thus, in order to achieve the above-mentioned object, the invention according to claim 1 is a method in which a solid-state extruded material made of a thermoplastic resin or a mixture thereof added with a nucleating agent is placed upstream of a heating cylinder of a twin screw extruder. The supercritical state inert fluid is supplied from the inert fluid inlet provided to inject the supercritical state inert fluid into the heating cylinder. Injecting and continuously extruding a molten extruded material in which an inert fluid is dissolved / dispersed from a die provided at the downstream end of the heating cylinder to obtain a foam molded product, a supercritical state of inert material fluid, downstream of the solid plug formed between a position extruded material is 100% solid in the heating cylinder of the twin screw extruder, a position that is 100% melting of the downstream , Is injected into the melted region coexist in the solid state and a semi-molten state to lower the melt viscosity, while suppressing the temperature rise in the heating cylinder, a nucleating agent, 0.1 to 5 mass% relative to the extruded material The spherical silicic acid having a spherical diameter of 1 μm or less is added.
According to the second aspect of the present invention, the screw is rotated by supplying a solid state extrusion material made of a thermoplastic resin or a mixture thereof added with a nucleating agent to the upstream side of the heating cylinder of the twin screw extruder. In addition, the supercritical inert fluid is injected from the inert fluid inlet provided to inject the supercritical inert fluid into the heating cylinder, and the inert fluid is dissolved and dispersed. When the molten extruded material is continuously extruded from the die provided at the downstream end of the heating cylinder to obtain a foamed molded product, the supercritical inert fluid is heated by the twin screw extruder. and position the extrusion material in the cylinder is 100% solid, melting territory the solid plug formed between the 100% melted to have a position on the downstream side of the downstream side, mixed in the solid state and a semi-molten state Injected to reduce the melt viscosity, reduce the temperature rise in the heating cylinder, the viscosity of the extruded material in a molten state measured by the viscometer that the injection volume is provided on the downstream end side of the said heating cylinder , Controlled to be in the range below the saturated solubility of the inert fluid, and configured to add 0.1 to 5% by mass of spherical silicic acid having a sphere diameter of 1 μm or less with respect to the extruded material as a nucleating agent Is done.
According to a third aspect of the present invention, a solid-state extruded material made of a thermoplastic resin to which a nucleating agent is added or a mixture thereof is supplied to the upstream side of a heating cylinder of a twin-screw extruder to rotate the screw. In addition, the supercritical inert fluid is injected from the inert fluid inlet provided to inject the supercritical inert fluid into the heating cylinder, and the inert fluid is dissolved and dispersed. The molten extruded material is supplied to a screw extruder arranged in series on the downstream side, and continuously extruded from a die provided at the downstream end of the cylinder barrel of the screw extruder, and foamed. when to obtain a molded article, an inert fluid in a supercritical state is set to the position extruded material in the heating cylinder of the twin screw extruder is 100% solid, and 100% melted downstream thereof Downstream of the solid plug formed between the location and injected into the melted region coexist in the solid state and a semi-molten state to lower the melt viscosity, while suppressing the temperature rise in the heating cylinder, nucleating As described above, 0.1 to 5% by mass of a spherical silicic acid having a spherical diameter of 1 μm or less is added to the extruded material.
According to a fourth aspect of the present invention, a solid-state extruded material made of a thermoplastic resin to which a nucleating agent is added or a mixture thereof is supplied to the upstream side of a heating cylinder of a twin screw extruder to rotate the screw. In addition, the supercritical inert fluid is injected from the inert fluid inlet provided to inject the supercritical inert fluid into the heating cylinder, and the inert fluid is dissolved and dispersed. The molten extruded material is supplied to a screw extruder arranged in series on the downstream side, and continuously extruded from a die provided at the downstream end of the cylinder barrel of the screw extruder, and foamed. when to obtain a molded article, an inert fluid in a supercritical state is set to the position extruded material in the heating cylinder of the twin screw extruder is 100% solid, and 100% melted downstream thereof Downstream of the solid plug formed between the location and injected into the melted region coexist in the solid state and a semi-molten state to lower the melt viscosity, suppress the temperature rise in the heating cylinder, the injection volume The saturated solubility of the inert fluid is determined by the viscosity of the extruded material in a molten state measured by a viscometer provided near the downstream end of the heating cylinder or a viscometer provided near the downstream end of the cylinder barrel. It controls so that it may become the following ranges, and is comprised so that 0.1-5 mass% of spherical silicic acids with a spherical diameter of 1 micrometer or less may be added with respect to an extrusion material as a nucleating agent. The invention according to claim 5 is the production method according to any one of claims 1 to 4, wherein the mixing container is made of an extruded material, and 0.1 to 5% by mass of the nucleating material based on the extruded material. It is configured to continuously feed and mix the agent, and to feed continuously from the mixing vessel to the twin screw extruder.

以上のように、本発明によると、超臨界状態の不活性流体を、二軸スクリュ押出機の加熱シリンダにおける押出材料が押出材料が100%固体状である位置と、その下流側の100%溶融している位置との間で形成される固体プラグの下流側の、固体状態と半溶融状態で混在する溶融領域に注入するので、溶融物の溶融粘度が低下し、したがって、低温成形で高混練成形ができる。また、成形温度が低いので冷却時間が短縮される。冷却時間が短くても温度が低いので、発泡成形品は微細な発泡成形品となる。さらには、温度が低いので熱分解、熱劣化が起こらない。また、粘度が低下するので、スクリュの駆動力が小さく省エネ成形ができ、微粒子の混合・混練は促進される。
特に、本発明によると、造核剤として押出材料に対して0.1〜5質量%の、球径が1μm以下の球状珪酸を添加するので、気泡の成長が抑制され、微細な発泡セルを有する発泡製品を得ることができるという、本発明に特有の効果が得られる。
As described above, according to the present invention, an inert fluid in a supercritical state is melted at a position where the extruded material in the heating cylinder of the twin screw extruder is 100% solid, and 100% melted downstream thereof. Since it is injected into the melting region mixed with the solid state and the semi-molten state downstream of the solid plug formed between the melted position and the melt, the melt viscosity of the melt is lowered, and thus high kneading is performed at low temperature molding. Can be molded. Further, since the molding temperature is low, the cooling time is shortened. Since the temperature is low even if the cooling time is short, the foam molded product becomes a fine foam molded product. Furthermore, since the temperature is low, thermal decomposition and thermal deterioration do not occur. Further, since the viscosity is lowered, the screw driving force is small, energy-saving molding can be performed, and mixing and kneading of the fine particles are promoted.
In particular, according to the present invention, 0.1 to 5% by mass of spherical silicic acid having a spherical diameter of 1 μm or less is added to the extruded material as a nucleating agent, so that bubble growth is suppressed and a fine foam cell is formed. The effect peculiar to this invention that the foamed product which can be obtained can be obtained is acquired.

請求項2に記載の発明によると、超臨界状態の不活性流体を、前記二軸スクリュ押出機の加熱シリンダにおける押出材料が100%固体状である位置と、その下流側の100%溶融している位置との間で形成される固体プラグの下流側の、固体状態と半溶融状態で混在する溶融領域に注入して溶融粘度を低下させ、加熱シリンダ内の温度上昇を抑え、そして注入量は加熱シリンダの下流端寄りに設けられている粘度計により計測される粘度により、不活性流体の飽和溶解度以下の範囲になるように制御するので、上記のような効果に加えて、超臨界状態の不活性流体は逆流することなく過不足なく注入され、過剰注入による液相と気相の相分離の問題、発泡セルの不揃いの問題、注入不足による混合・混練不良の問題等が回避され、安定した製品が得られるという効果がさらに得られる。
請求項3に記載の発明によると、造核剤が添加された熱可塑性樹脂あるいはその混合物からなる固体状態の押出材料を二軸スクリュ押出機の加熱シリンダの上流側に供給してスクリュを回転駆動して溶融すると共に、超臨界状態の不活性流体を注入し、不活性流体が溶解・分散した溶融状態の押出材料をその下流側に直列的に配置されているスクリュ押出機に供給し、前記スクリュ押出機のシリンダバレルの下流端部に設けられているダイから連続的に押し出して、発泡成形品を得るとき、超臨界状態の不活性流体を前記二軸スクリュ押出機の加熱シリンダにおける押出材料が100%固体状である位置と、その下流側の100%溶融している位置との間で形成される固体プラグの下流側の、固体状態と半溶融状態で混在する溶融領域に注入して溶融粘度を低下させ、加熱シリンダ内の温度上昇を抑えると共に、造核剤として、押出材料に対して0.1〜5質量%の、球径が1μm以下の球状珪酸を添加するので、請求項1に記載の発明により得られる効果に加えて、スクリュ押出機により溶融状態の押出材料が冷却され、より微細なセルを有する発泡成形品が得られる効果が得られる。
また、請求4に記載の発明によると、造核剤が添加された熱可塑性樹脂あるいはその混合物からなる固体状態の押出材料を二軸スクリュ押出機の加熱シリンダの上流側に供給してスクリュを回転駆動して溶融すると共に、超臨界状態の不活性流体を注入し、不活性流体が溶解・分散した溶融状態の押出材料をその下流側に直列的に配置されているスクリュ押出機に供給し、前記スクリュ押出機のシリンダバレルの下流端部に設けられているダイから連続的に押し出して、発泡成形品を得るとき、超臨界状態の不活性流体は、前記二軸スクリュ押出機の加熱シリンダにおける押出材料が100%固体状である位置と、その下流側の100%溶融している位置との間で形成される固体プラグの下流側の、固体状態と半溶融状態で混在する溶融領域に注入して溶融粘度を低下させ、加熱シリンダ内の温度上昇を抑え、その注入量は前記加熱シリンダの下流端部寄りに設けられている粘度計または前記シリンダバレルの下流端部寄りに設けられている粘度計により計測される溶融状態の押出材料の粘度により、不活性流体の飽和溶解度以下の範囲になるように制御し、造核剤として、押出材料に対して0.1〜5質量%の、球径が1μm以下の球状珪酸を添加するので、請求項3に記載の発明により得られる効果に加えて、超臨界状態の不活性流体は過不足なく注入され、過剰注入による液相と気相の相分離の問題、発泡セルの不揃いの問題、注入不足による混合・混練不良の問題等が回避され、安定した製品が得られる効果がさらに得られる。請求項5に記載の発明によると、混合容器に押出材料と、該押出材料に対して0.1〜5質量%の造核剤とを連続的に供給して混合し、そして連続的に二軸スクリュ押出機に供給するので、上記のような効果に加えて、製造現場において発泡状態により添加量を調整できる効果がさらに得られる。
According to the second aspect of the present invention, the supercritical inert fluid is melted at a position where the extruded material in the heating cylinder of the twin-screw extruder is 100% solid and 100% downstream thereof. It is injected into the melting region mixed in the solid state and semi-molten state downstream of the solid plug formed between it and the melted position to reduce the melt viscosity, suppress the temperature rise in the heating cylinder , and the injection amount is Since the viscosity measured by the viscometer provided near the downstream end of the heating cylinder is controlled so that it is within the saturation solubility of the inert fluid, in addition to the above effects, in the supercritical state Inert fluid is injected without excessive flow without backflow, avoiding problems of phase separation between liquid and gas phase due to excessive injection, irregularity of foamed cells, problems of mixing / kneading failure due to insufficient injection, etc. did Effect is further obtained that the goods can be obtained.
According to the third aspect of the present invention, the screw is rotated by supplying a solid state extrusion material made of a thermoplastic resin or a mixture thereof added with a nucleating agent to the upstream side of the heating cylinder of the twin screw extruder. And then injecting a supercritical inert fluid and supplying the molten extruded material in which the inert fluid is dissolved and dispersed to a screw extruder arranged in series downstream thereof, When continuously extruding from a die provided at the downstream end of the cylinder barrel of the screw extruder to obtain a foamed molded product, the supercritical inert fluid is extruded in the heating cylinder of the twin screw extruder. infusion but the position is 100% solid, the downstream side of the solid plug formed between a position that is 100% melting of the downstream side, the melted region coexist in the solid state and a semi-molten state Lowering the melt viscosity Te, suppresses the temperature rise of the heating cylinder, a nucleating agent, 0.1 to 5 wt% with respect to the extrusion material, the sphere diameter is added to the following spherical silicate 1 [mu] m, wherein In addition to the effect obtained by the invention according to Item 1, the molten extruded material is cooled by a screw extruder, and an effect of obtaining a foamed molded article having finer cells is obtained.
According to the invention described in claim 4, the screw is rotated by supplying a solid state extrusion material made of a thermoplastic resin to which a nucleating agent is added or a mixture thereof to the upstream side of the heating cylinder of the twin screw extruder. While being driven to melt, supercritical inert fluid is injected, and molten extruded material in which the inert fluid is dissolved / dispersed is supplied to a screw extruder arranged in series downstream thereof, When continuously extruding from a die provided at the downstream end of the cylinder barrel of the screw extruder to obtain a foam molded product, the supercritical state inert fluid is in the heating cylinder of the twin screw extruder. and position extruded material is 100% solid, melting region where the solid plug formed between the 100% melted to have a position on the downstream side of the downstream side, mixed in the solid state and a semi-molten state Injected to lower the melt viscosity, reduce the temperature rise of the heating cylinder, the injection quantity is provided in the downstream end side of the viscometer or the cylinder barrel are provided on the downstream end side of the said heating cylinder The viscosity of the extruded material in a molten state measured by a viscometer is controlled so as to be in the range below the saturated solubility of the inert fluid, and as a nucleating agent, 0.1 to 5% by mass with respect to the extruded material In addition to the effect obtained by the invention according to claim 3, since the spherical silicate having a sphere diameter of 1 μm or less is added, the supercritical inert fluid is injected without excess and deficiency, and the liquid phase and gas due to excess injection are injected. The problem of phase separation of phases, the problem of unevenness of foamed cells, the problem of mixing / kneading failure due to insufficient injection, etc. are avoided, and the effect of obtaining a stable product can be further obtained. According to the invention described in claim 5, the extruded material and 0.1 to 5% by mass of the nucleating agent are continuously fed to the mixing container and mixed, and then continuously mixed. Since it supplies to an axial screw extruder, in addition to the above effects, the effect which can adjust addition amount with a foaming state in the manufacturing field is further acquired.

図1、4により本発明の第1、2の実施の形態について説明する。図1に示されている第1の実施の形態に係わる製造装置1は、架台2に支持されている二軸スクリュ押出機3から構成されている。二軸スクリュ押出機3は、従来周知のように双胴型の加熱シリンダ4を備え、この加熱シリンダ4内には軸方向に一対のボアが形成され、外周部には個々に発熱温度が制御される複数個のヒータ5、5、…が軸方向に設けられている。   The first and second embodiments of the present invention will be described with reference to FIGS. A manufacturing apparatus 1 according to the first embodiment shown in FIG. 1 is composed of a twin screw extruder 3 supported on a gantry 2. The twin-screw extruder 3 includes a twin-bore type heating cylinder 4 as is well known in the art, a pair of bores are formed in the heating cylinder 4 in the axial direction, and the heat generation temperature is individually controlled on the outer peripheral portion. Are provided in the axial direction.

このように構成されている加熱シリンダ4の、図1において右方の上流側に、加熱シリンダ4のボアに達する材料供給シュート6が取り付けられている。本実施の形態によると、造核剤が予め添加混合されている2種の熱可塑性樹脂例えばポリエチレンとポリスチレンが適用されるようになっているので、材料供給シュート6に関連して、スクリュあるいはロータリフイーダのような機械的な定量供給フイーダを備えた第1、2の2個のホッパ7’、7’が設けられている。これらホッパ7’、7’の下流端部は材料供給シュート6内に臨んでいる。また、加熱シリンダ4の下流端部寄りには、不活性流体が溶融、拡散された溶融押出材料の粘度を連続的に測定する粘度計10が取り付けられている。そして、下流端部に従来周知のようにダイ12が取り付けられている。   A material supply chute 6 that reaches the bore of the heating cylinder 4 is attached to the upstream side of the heating cylinder 4 thus configured on the right side in FIG. According to the present embodiment, two types of thermoplastic resins to which a nucleating agent has been added and mixed in advance, such as polyethylene and polystyrene, are applied. Therefore, a screw or a rotary is associated with the material supply chute 6. There are provided first and second two hoppers 7 ', 7' provided with a mechanical metering feeder such as a feeder. The downstream ends of the hoppers 7 ′ and 7 ′ face the material supply chute 6. Near the downstream end of the heating cylinder 4, a viscometer 10 for continuously measuring the viscosity of the molten extruded material in which the inert fluid has been melted and diffused is attached. A die 12 is attached to the downstream end as is well known in the art.

双胴型の加熱シリンダ4内には、2本のスクリュ7が異方向あるいは同方向に回転駆動可能に設けられている。スクリュ7は加熱シリンダ4の長さに対応した長さで、図2の(イ)はスクリュ7を取り出して模式的に示す図であるが、同図に示されているように右側の上流側から下流側に向かって順リードフルフライトスクリュa、ニーディングディスク(順ズラシ、90°ズラシ、逆ズラシ)b、順リードフルフライトスクリュc、順ズラシニーディングディスクd、90°ズラシニーディングディスクeのように構成されている。そして、順リードフルフライトスクリュaの上流寄りに対応した位置に材料供給シュート6が設けられている。   In the twin cylinder type heating cylinder 4, two screws 7 are rotatably provided in different directions or in the same direction. The screw 7 has a length corresponding to the length of the heating cylinder 4, and FIG. 2 (a) is a diagram schematically showing the screw 7 taken out. As shown in FIG. Forward lead full flight screw a, kneading disc (forward shift, 90 ° shift, reverse shift) b, forward lead full flight screw c, forward shift kneading disc d, 90 ° shift kneading disc e It is configured as follows. A material supply chute 6 is provided at a position corresponding to the upstream side of the forward lead full flight screw a.

このように構成されているスクリュ7を備えた二軸スクリュ押出機の、株式会社日本製鋼所の解析ソフトTEX-FANで解析した結果が、図2の(ロ)〜(ホ)に示されている。同図において、スクリュ7の順リードフルフライトスクリュaの下流よりの位置Sでは押出成形材料は100%固体状であるが、その下流の位置Fでは押出成形材料は100%溶融している。このS位置とF位置との間の位置P近傍で固体プラグが形成される。本実施の形態によると、この固体プラグが形成される位置Pの下流側近傍の加熱シリンダ4に超臨界状態の不活性流体を注入するための不活性流体注入口15が設けらている。さらに詳しくは、押出形成材料が固体状態と半溶融状態で存在する溶融位置あるいは溶融領域Pに不活性流体注入口15が設けられている。この不活性流体注入口15は、本実施の形態によると、図1に示されているように、軸方向に所定の間隔をおいて複数個設けられている。そして、これらの不活性流体注入口15は、流量制御弁16が介装されている流体供給管17により不活性流体製造装置18に接続されている。この不活性流体製造装置18は、不活性ガスを加圧するコンプレッサ、加熱するヒータ等から構成され、不活性ガスが例えば二酸化炭素の場合は、臨界温度が31.1℃、臨界圧力は7.38MPaで、窒素ガスの場合は臨界温度が−147℃、臨界圧力は3.4MPaであるので、これらの値以上に加圧および加熱されて超臨界状態の不活性流体が製造される。   The results of analysis of the twin screw extruder provided with the screw 7 configured as described above with the analysis software TEX-FAN of Nippon Steel Co., Ltd. are shown in (b) to (e) of FIG. Yes. In the drawing, the extrusion molding material is 100% solid at the position S downstream of the forward lead full flight screw a of the screw 7, but at the downstream position F, the extrusion molding material is 100% molten. A solid plug is formed near the position P between the S position and the F position. According to the present embodiment, the inert fluid inlet 15 for injecting the supercritical inert fluid into the heating cylinder 4 near the downstream side of the position P where the solid plug is formed is provided. More specifically, an inert fluid inlet 15 is provided at a melting position or a melting region P where the extrusion forming material exists in a solid state and a semi-molten state. According to the present embodiment, a plurality of the inert fluid inlets 15 are provided at predetermined intervals in the axial direction as shown in FIG. These inert fluid inlets 15 are connected to an inert fluid production apparatus 18 through a fluid supply pipe 17 in which a flow control valve 16 is interposed. The inert fluid production apparatus 18 is composed of a compressor for pressurizing an inert gas, a heater for heating, and the like. When the inert gas is, for example, carbon dioxide, the critical temperature is 31.1 ° C., and the critical pressure is 7.38 MPa. In the case of nitrogen gas, since the critical temperature is −147 ° C. and the critical pressure is 3.4 MPa, a supercritical inert fluid is produced by pressurizing and heating above these values.

本実施の形態によると、制御装置30も備えている。制御装置30は、アナログ/デジタル変換機能、演算機能、記憶機能、比較機能等の各種の機能を備え、また押出成形に必要な各種の値を設定する設定手段も備えている。そして、図1に示されている実施の形態によると、粘度計10とは信号ラインxで、流量制御弁16とは信号ラインyでそれぞれ接続されている。図3の(イ)は不活性流体が注入された溶融押出材料の粘度と不活性流体の注入量との関係を示す図であるが、同図に示されているように注入量を増やしていくと、粘度は小さくなっていくが、注入量がA点に達すると、それ以上注入しても粘度は下がらない。このA点が飽和溶解点で、この飽和溶解点Aあるいは飽和溶解度が制御装置30の記憶手段に記憶されている。そして、本実施の形態によると、不活性流体の注入量は飽和溶解度以下の所定範囲に収まるように制御される。   According to the present embodiment, the control device 30 is also provided. The control device 30 includes various functions such as an analog / digital conversion function, a calculation function, a storage function, and a comparison function, and also includes setting means for setting various values necessary for extrusion molding. According to the embodiment shown in FIG. 1, the viscometer 10 is connected to the signal line x and the flow control valve 16 is connected to the signal line y. FIG. 3 (a) is a diagram showing the relationship between the viscosity of the melt-extruded material into which the inert fluid is injected and the injection amount of the inert fluid. As shown in FIG. 3, the injection amount is increased. The viscosity decreases with time, but when the injection amount reaches point A, the viscosity does not decrease even if the injection amount is further increased. This point A is the saturation dissolution point, and this saturation dissolution point A or saturation solubility is stored in the storage means of the control device 30. And according to this Embodiment, the injection quantity of an inert fluid is controlled so that it may be settled in the predetermined range below saturation solubility.

次に、上記実施の形態の作用について説明する。第1、2のホッパ7’、7’に、0.1〜5質量%の、球径が1μm以下の球状珪酸が添加された、成形材料例えばポリエチレンとポリスチレンとをそれぞれ蓄える。そして、所定量当て加熱シリンダ4に供給する。一方、加熱シリンダ4をヒータ5、5、…により設定温度に加熱する。また、不活性流体製造装18から不活性流体を供給する。加熱シリンダ4に供給された成形材料は、スクリュの順リードフルフライトスクリュaの下流側において固体から融体になる近傍Pで固体プラグが形成される。その下流側近傍の固体状態の成形材料と半溶融状態の成形材料が混在する溶融領域Pに、不活性流体注入口15、15、…から不活性流体を多段に注入する。 Next, the operation of the above embodiment will be described. Molding materials such as polyethylene and polystyrene, each containing 0.1 to 5% by mass of spherical silicic acid having a spherical diameter of 1 μm or less, are stored in the first and second hoppers 7 ′ and 7 ′, respectively. Then, a predetermined amount is supplied to the heating cylinder 4. On the other hand, the heating cylinder 4 is heated to a set temperature by the heaters 5, 5,. Further, an inert fluid is supplied from the inert fluid production device 18. The molding material supplied to the heating cylinder 4 forms a solid plug in the vicinity P where the solid is melted on the downstream side of the forward lead full flight screw a of the screw. The inert fluid is injected in multiple stages from the inert fluid inlets 15, 15,... Into the molten region P where the solid state molding material and the semi-molten molding material are mixed.

不活性流体が注入されるので、成形材料の溶融温度は低下し、固体状の成形材料は急激に溶融し、超臨界状態の不活性流体は成形材料中に溶解、拡散する。また、溶融領域における分散・混合作用は加速され、混合物の混練は向上し拡散律速的な多くの化学反応速度が向上する。また、不活性流体が溶解されるので、粘度が低下し、比較的低剪断力で溶融・混練される。 Since the inert fluid is injected, the melting temperature of the molding material decreases , the solid molding material melts rapidly, and the supercritical inert fluid dissolves and diffuses in the molding material. Further, the dispersion / mixing action in the melting region is accelerated, the kneading of the mixture is improved, and many chemical reaction rates that are diffusion-limited are improved. Further, since the inert fluid is dissolved, the viscosity is lowered, and it is melted and kneaded with a relatively low shearing force.

このとき、本実施の形態によると、成形材料すなわち押出材料には0.1〜5質量%の、球径が1μm以下の球状珪酸が添加されているので、球径が1μm以下の球状珪酸により粘度が増加し、気泡の成長が抑制される。粘度が増加した状態は、図3(ロ)に示されている。これにより、微細なセルが得られる。このようにして、超臨界状態の不活性流体が溶解、拡散された成形材料は、ダイ12から大気中に押し出されて発泡する。このとき、溶融温度は比較的低いので、微細な発泡セルからなる発泡成形品が得られる。なお、図3の(ロ)において、PPとHDPEとの間の矢印は、ポリプロピレンから高密度ポリエチレンへ材料を変更したことを意味している。以下の矢印も同様である。 At this time, according to the present embodiment, 0.1 to 5% by mass of spherical silicic acid having a sphere diameter of 1 μm or less is added to the molding material, that is, the extruded material. Viscosity increases and bubble growth is suppressed. The state where the viscosity has increased is shown in FIG. Thereby, a fine cell is obtained. In this way, the molding material in which the supercritical inert fluid is dissolved and diffused is extruded from the die 12 into the atmosphere and foamed. At this time, since the melting temperature is relatively low, a foam molded product composed of fine foam cells is obtained. In FIG. 3B, the arrow between PP and HDPE means that the material has been changed from polypropylene to high-density polyethylene. The same applies to the following arrows.

上記のようにして、不活性流体が溶解、拡散した溶融状態の押出成形材料の粘度は、粘度計10で連続的に計測され、そして制御装置30に入力される。制御装置30において、計測される粘度と記憶されている粘度とが比較され、飽和溶解度以下の所定範囲に収まるように注入量が演算され、そして流量制御弁16が制御される。これにより、過不足なく注入され、気液の相分離を起こすようなことはない。したがって、効果的な混合・混練が行われ、またセル径の揃った発泡成形品が得られる。   As described above, the viscosity of the molten extruded material in which the inert fluid is dissolved and diffused is continuously measured by the viscometer 10 and input to the controller 30. In the control device 30, the measured viscosity is compared with the stored viscosity, the injection amount is calculated so as to be within a predetermined range below the saturation solubility, and the flow control valve 16 is controlled. As a result, it is injected without excess or deficiency and does not cause gas-liquid phase separation. Therefore, effective mixing and kneading are performed, and a foam molded product having a uniform cell diameter is obtained.

図4の(イ)により、本発明の第2の実施の形態を説明する。第2の実施の形態に係わる熱可塑性樹脂あるいはその混合物からな発泡体成形品の製造装置1’は、概略的には第1の実施の形態に係わる二軸スクリュ押出機3の下流側に、単軸スクリュ押出機33が直列に接続された形になっている。したがって、第1の実施の形態に係わる製造装置1の構成要素と同じ要素には同じ参照数字を付けて、また同じような構成要素には同じ参照数字にダッシュ「’」を付けて重複説明はしない。   A second embodiment of the present invention will be described with reference to FIG. An apparatus 1 ′ for producing a foam molded article made of a thermoplastic resin according to the second embodiment or a mixture thereof is roughly arranged downstream of the twin screw extruder 3 according to the first embodiment. The single screw extruder 33 is connected in series. Therefore, the same reference numerals are given to the same elements as the constituent elements of the manufacturing apparatus 1 according to the first embodiment, and the same reference numerals are given the same reference numerals with a dash “′”, and a duplicate description will not be given. do not do.

単軸スクリュ押出機33は、溶融状態の押出成形材料の冷却効果を増すためのもので、従来周知のように、シリンダバレルと、このシリンダバレル内にギヤードモータ34により回転駆動されるスクリュとか構成されている。このような従来周知の形態をした単軸スクリュ押出機33の上流側は、二軸スクリュ押出機3と輸送管35により接続されている。また、下流端部寄りには粘度計10が設けられ、下流端部にダイ12が設けられている。さらには、単軸スクリュ押出機33の下流端には、圧力計36が、またダイ12には圧力計37と温度計38とがそれぞれ取り付けられている。そして、これの計測器10、36、37、38で計測される各種の値は、アナログ−デジタル変換器40によりデジタル信号に変換され、そしてコンピュータPCに入力されるようになっている。また、本実施の形態に係わる製造装置1’は、デイスプレイTVも備え、ビデオカメラ41により撮影される発泡状態と、マイクロスコープ42により検査される発泡成形品のセルサイズがデイスプレイTVで表示されるようになっている。   The single-screw extruder 33 is for increasing the cooling effect of the extruded material in the molten state. As is conventionally known, the single-screw extruder 33 includes a cylinder barrel and a screw that is rotationally driven by a geared motor 34 in the cylinder barrel. Has been. The upstream side of such a conventionally known single-screw extruder 33 is connected by a twin-screw extruder 3 and a transport pipe 35. A viscometer 10 is provided near the downstream end, and a die 12 is provided at the downstream end. Furthermore, a pressure gauge 36 is attached to the downstream end of the single screw extruder 33, and a pressure gauge 37 and a thermometer 38 are attached to the die 12, respectively. Various values measured by the measuring instruments 10, 36, 37, and 38 are converted into digital signals by the analog-digital converter 40 and input to the computer PC. The manufacturing apparatus 1 ′ according to the present embodiment also includes a display TV, and the foamed state photographed by the video camera 41 and the cell size of the foamed molded product inspected by the microscope 42 are displayed on the display TV. It is like that.

第2の実施の形態に係わる製造装置1’も、略同様に作用する。すなわち、二軸スクリュ押出機3により、前述したようにして超臨界状態の不活性流体が注入され、超臨界状態の不活性流体が溶解、拡散された溶融状態の押出成形材料は輸送管35から単軸スクリュ押出機33に供給される。単軸スクリュ押出機33はギヤードモータ34により回転駆動されるので、超臨界状態の不活性流体が溶解、拡散された溶融状態の押出成形材料は、連続的にダイ12から押し出されて発泡する。これにより、連続的に発泡成形品HSが得られる。このとき、不活性流体が溶解、拡散した溶融状態の押出成形材料の粘度は、粘度計10で連続的に計測され、そしてアナログ−デジタル変換器40を介してコンピュータPCに入力される。コンピュータPCにおいて、前述したようにして、計測される粘度と記憶されている粘度とが比較され、飽和溶解度以下の所定範囲に収まるように注入量が演算され、そして流量制御弁16が制御される。これにより、過不足なく注入され、気液の相分離を起こすようなことはない。したがって、効果的な混合・混練が行われ、またセル径の揃った発泡成形品が得られる。発泡状態と発泡成形品HPのセルサイズは、デイスプレイTVに表示される。   The manufacturing apparatus 1 'according to the second embodiment operates in substantially the same manner. That is, as described above, the supercritical state inert fluid is injected by the twin screw extruder 3 and the supercritical state inert fluid is dissolved and diffused from the transport pipe 35. It is supplied to the single screw extruder 33. Since the single screw extruder 33 is rotationally driven by the geared motor 34, the molten extruded material in which the supercritical inert fluid is dissolved and diffused is continuously extruded from the die 12 and foamed. Thereby, the foam molded product HS is obtained continuously. At this time, the viscosity of the molten extruded material in which the inert fluid is dissolved and diffused is continuously measured by the viscometer 10 and input to the computer PC via the analog-digital converter 40. In the computer PC, as described above, the measured viscosity is compared with the stored viscosity, the injection amount is calculated so as to be within a predetermined range below the saturation solubility, and the flow control valve 16 is controlled. . As a result, it is injected without excess or deficiency and does not cause gas-liquid phase separation. Therefore, effective mixing and kneading are performed, and a foam-molded product having a uniform cell diameter is obtained. The expanded state and the cell size of the expanded molded product HP are displayed on the display TV.

本実施の形態によると、単軸スクリュ押出機33により、超臨界状態の不活性流体が溶解、拡散された溶融状態の押出成形材料が冷却されるので、微細なセルを有する発泡成形品が得られる。すなわち、押出成形材料の温度が高いと、セル径が大きくなるが、温度を下げることでセル径の小さい発泡成形品が得られる。   According to the present embodiment, the single-screw extruder 33 cools the molten extruded material in which the supercritical inert fluid is dissolved and diffused, so that a foam molded article having fine cells is obtained. It is done. That is, when the temperature of the extrusion molding material is high, the cell diameter increases, but a foam molded product having a small cell diameter can be obtained by lowering the temperature.

第2の実施の形態によると、粘度計10が単軸スクリュ押出機33の方に設けられているので、超臨界状態の不活性流体の注入量の制御に遅れを生じることもあり得る。そこで、二軸スクリュ押出機3の方に設けることもできる。なお、単軸スクリュ押出機33に代えて二軸スクリュ押出機で実施できることは明らかである。   According to the second embodiment, since the viscometer 10 is provided toward the single screw extruder 33, there may be a delay in controlling the injection amount of the supercritical inert fluid. Therefore, it can also be provided in the direction of the twin screw extruder 3. It should be noted that the present invention can be implemented by a twin screw extruder instead of the single screw extruder 33.

二軸スクリュ押出機3に押出材料を混合容器から連続的に供給するための供給装置50の実施の形態が図4の(ロ)に示されている。すなわち、供給装置50は、混合容器51、混合羽根53、押出材料供給装置56、造核剤供給装置60等からなっている。この混合容器51の内部にモータ52により回転駆動されるよう混合羽根53が設けられている。混合容器51は、漏斗状を呈し、その下端部にロータリ式の定量供給機54が設けられている。したがって、この定量供給機54により所定量当ての造核剤が添加・混合された押出材料が二軸スクリュ押出機3に供給されることになる。   An embodiment of a supply device 50 for continuously supplying the extrusion material from the mixing container to the twin screw extruder 3 is shown in FIG. That is, the supply device 50 includes a mixing container 51, a mixing blade 53, an extruded material supply device 56, a nucleating agent supply device 60, and the like. A mixing blade 53 is provided inside the mixing container 51 so as to be rotated by a motor 52. The mixing container 51 has a funnel shape, and a rotary metering feeder 54 is provided at the lower end thereof. Therefore, the extrusion material to which a predetermined amount of nucleating agent has been added and mixed by the fixed amount feeder 54 is supplied to the twin screw extruder 3.

押出材料供給装置56は、ホッパ57からなっている。このホッパ57には1種あるいは複数種の熱可塑性樹脂が供給されるようになって、その下端部にはロータリ式の定量供給機58が設けられ、そして混合容器51に接続されている。造核剤供給装置60は、図に示されている実施の形態では、スクリュ式の定量供給機61からなっている。そして、この定量供給機61は、モータ62により制御された速度で回転駆動される。   The extruded material supply device 56 includes a hopper 57. One or more types of thermoplastic resins are supplied to the hopper 57, and a rotary metering feeder 58 is provided at the lower end of the hopper 57 and connected to the mixing container 51. In the embodiment shown in the figure, the nucleating agent supply device 60 is composed of a screw-type quantitative supply device 61. The fixed amount feeder 61 is rotationally driven at a speed controlled by a motor 62.

押出材料はロータリ式の定量供給機58から、そして造核剤はスクリュ式の定量供給機61から混合容器51に供給されるが、このときこれらの定量供給機58、61は、押出材料に対して0.1〜5質量%の造核剤が供給されるように関連して制御される。これにより、混合容器51内で所定量の造核剤が均一に混合された押出材料が得られ、そして二軸スクリュ軸押出機3に供給されることになる。本実施の形態によると、成形現場において、発泡成形品を検査しながら造核剤の添加量を調整できる利点が得られる。 The extruded material is supplied to the mixing container 51 from the rotary-type quantitative feeder 58 and the nucleating agent is supplied from the screw-type quantitative feeder 61. At this time, these quantitative feeders 58, 61 are supplied to the extruded material. The amount of nucleating agent is controlled to be 0.1 to 5% by mass . As a result, an extruded material in which a predetermined amount of the nucleating agent is uniformly mixed in the mixing container 51 is obtained and supplied to the twin screw extruder 3. According to the present embodiment, there is an advantage that the addition amount of the nucleating agent can be adjusted while inspecting the foam molded product at the molding site.

上記のように本実施の形態によると、不活性流体は飽和溶解度以下の所定範囲に収まるように注入量が制御されるので、過不足なく注入され、気液の相分離を起こすようなことはないという効果が得られるが、不活性流体を押出材料が固体状態と半溶融状態で存在する溶融領域に注入するだけで、溶融物の溶融粘度は低下し、したがって、低温成形で高混練成形ができることは明らかである。また、成形温度が低いので冷却時間が短縮され、微細な発泡成形品となる。さらには、温度が低いので熱分解、熱劣化が起こらないし、また粘度が低下するので、スクリュの駆動力が小さく省エネ成形ができることも明らかである。また、本実施の形態によると、造核剤として押出材料に対して0.1〜5質量%の、球径が1μm以下の球状珪酸を添加するので、気泡の成長が抑制され、微細な発泡セルを有する発泡製品を得ることができる。 As described above, according to the present embodiment, since the injection amount is controlled so that the inert fluid falls within a predetermined range below the saturation solubility, it is injected without excess and deficiency, causing gas-liquid phase separation. However, just by injecting an inert fluid into the molten region where the extruded material exists in a solid state and a semi-molten state, the melt viscosity of the melt is lowered. Obviously we can do it. Further, since the molding temperature is low, the cooling time is shortened and a fine foam molded product is obtained. Further, since the temperature is low, thermal decomposition and thermal deterioration do not occur, and the viscosity is lowered, so that it is clear that the screw driving force is small and energy saving molding can be performed. Further, according to the present embodiment, 0.1 to 5% by mass of spherical silicic acid having a sphere diameter of 1 μm or less is added to the extruded material as a nucleating agent, so that bubble growth is suppressed and fine foaming is performed. A foamed product having cells can be obtained.

解析結果、実施例等:図1に示されているスクリュ7を備えた株式会社日本製鋼所製の二軸スクリュ押出機の、株式会社日本製鋼所の解析ソフトTEX-FANによる解析結果が、図2に示されている。同図の(ハ)から、スクリュ7を駆動する動力は、押出成形材料の溶融が始まると増加するが、不活性流体を注入すると、増加が抑えられることが理解される。同様に図2の(ニ)、(ホ)から不活性流体を注入すると、加熱シリンダ4内の温度および圧力上昇が抑えられ、安定化することが分かる。   Analysis results, examples, etc .: The analysis results of the Nippon Steel Corporation's analysis software TEX-FAN for the Nippon Steel Works' twin screw extruder equipped with the screw 7 shown in FIG. 2. From FIG. 5C, it is understood that the power for driving the screw 7 increases when the extrusion material starts to melt, but can be suppressed by injecting an inert fluid. Similarly, when the inert fluid is injected from (d) and (e) of FIG. 2, it is understood that the temperature and pressure rise in the heating cylinder 4 are suppressed and stabilized.

図4の(イ)に示されているような製造装置を使用して超臨界状態の二酸化炭素を飽和溶解度以下に注入すると共に、球状珪酸の球径の大小および添加量の大小による発泡状態のテストを実施例1、2および比較例1〜3で行った。
なお、次の実施例および比較例において使用した製造装置は、二軸スクリュ押出機に株式会社日本製鋼所製のTEX30を使用、粘度計にはレオメトリック社製のPCR620を使用した。
Using the production apparatus as shown in FIG. 4 (a), supercritical carbon dioxide is injected below the saturation solubility, and the foamed state due to the spherical diameter of the spherical silicic acid and the addition amount is small. The test was conducted in Examples 1 and 2 and Comparative Examples 1 to 3.
In addition, the manufacturing apparatus used in the following Examples and Comparative Examples used TEX30 made by Nippon Steel Works for a twin screw extruder, and PCR620 made by Rheometric Co. for a viscometer.

実施例1:
押出材料:ポリプロピレン(PP、商品名:PF814)
造核剤:球状珪酸(商品名:DI−5000)で平均粒径は0.9μm、添加量はポリプロピレン100に対する2質量%であった。
成形条件:押出材料7.0kg/hに対して二酸化炭素流体を0.2kg/h当て注入した。すなわち、注入した超臨界状態の二酸化炭素流体の量は2.9質量%であった。
結果:得られた発泡成形品の走査電子顕微鏡写真すなわちSEM写真を図5に示す。この写真に示されているように、得られた発泡成形品のセルの大きさは1〜5μmであった。
Example 1:
Extruded material: Polypropylene (PP, trade name: PF814)
Nucleating agent: spherical silicic acid (trade name: DI-5000), the average particle size was 0.9 μm, and the amount added was 2% by mass relative to polypropylene 100.
Molding conditions: 0.2 kg / h of carbon dioxide fluid was injected into 7.0 kg / h of the extruded material. That is, the amount of supercritical carbon dioxide fluid injected was 2.9% by mass .
Results: FIG. 5 shows a scanning electron micrograph or SEM photograph of the obtained foamed molded article. As shown in this photograph, the cell size of the obtained foamed molded article was 1 to 5 μm.

実施例2:
押出材料:高密度ポリエチレン(HDPE)
造核剤:実施例1と同じ球状珪酸で、平均粒径はより小さい0.1μm、添加量は高密度ポリエチレン100に対する1〜2質量%であった。
成形条件:注入した超臨界状態の二酸化炭素流体の量は0.1〜0.2質量%であった。加熱シリンダの温度は190℃、押出量は7.0kg/hであった。
結果:得られた発泡成形品のSEM写真を図6に示す。この写真に示されているように、得られた発泡成形品の平均セル径は0.1μm以下であった。
Example 2:
Extruded material: High density polyethylene (HDPE)
Nucleator: The same spherical silicic acid as in Example 1, the average particle size was smaller 0.1 μm, and the addition amount was 1 to 2% by mass relative to the high-density polyethylene 100.
Molding conditions: The amount of supercritical carbon dioxide fluid injected was 0.1 to 0.2% by mass . The temperature of the heating cylinder was 190 ° C., and the extrusion rate was 7.0 kg / h.
Results: An SEM photograph of the obtained foamed molded article is shown in FIG. As shown in this photograph, the average cell diameter of the obtained foamed molded product was 0.1 μm or less.

比較例1:
押出材料:実施例1と同じポリプロピレン
造核剤:球状珪酸で平均粒径は2μm、添加量はポリプロピレン100に対し1質量%であった。
成形条件:注入した超臨界状態の二酸化炭素流体の量は2質量%であった。
結果:得られた発泡成形品の透過型電子顕微鏡写真すなわちTEM写真(倍率は写真中のスケールによる)を図7に示す。この写真に示されているように、セル径は1〜10μmで不揃いで平均径は3〜4μm程度であった。
Comparative Example 1:
Extruded material: the same polypropylene as in Example 1 Nucleating agent: spherical silicic acid, the average particle size was 2 μm, and the amount added was 1% by mass with respect to polypropylene 100.
Molding conditions: The amount of supercritical carbon dioxide fluid injected was 2% by mass .
Result: FIG. 7 shows a transmission electron micrograph, that is, a TEM photograph (magnification depends on the scale in the photograph) of the obtained foamed molded article. As shown in this photograph, the cell diameter was 1-10 μm, irregular, and the average diameter was about 3-4 μm.

比較例2:
造核剤の添加量を0.05質量%(0.1以下)とし、他は実施例1と同じ条件でテストした。得られた発泡成形品のSEM写真を図8に示す。
Comparative Example 2:
The test was performed under the same conditions as in Example 1 except that the amount of nucleating agent added was 0.05 mass % (0.1 or less). An SEM photograph of the obtained foamed molded product is shown in FIG.

比較例3:造核剤の添加量を6質量%とし、他は実施例1と同じ条件でテストした。得られた発泡成形品のTEM写真を図9に示す。 Comparative Example 3: The amount of nucleating agent added was 6% by mass , and the others were tested under the same conditions as in Example 1. A TEM photograph of the obtained foamed molded product is shown in FIG.

比較例4:
造核剤に層状化合物のスメクタイトを使用し、押出材料は、実施例1と同じポリプロピレン(商品名:PF814)を使用してテストした。その結果をSEM写真で図10に示す。
Comparative Example 4:
The layered compound smectite was used as the nucleating agent, and the extruded material was tested using the same polypropylene (trade name: PF814) as in Example 1. The result is shown in FIG.

以上の実施例1、2および比較例1〜4とから、造核剤の添加量が極端に少なくなると、発泡抑制剤としての効果がなくなり、セル径が10μmより大きいものと、数μm程度の小さいものとが混在するようになる。すなわち、均一な発泡成形品が得られなくなる。これに対し、5質量%を越えると、粒子同士の凝集がひどくなり、泡核剤としての効果および発泡径抑制効果が強くなりすぎて適正な発泡径を有する発泡成形品は成形できなくなる。 From Examples 1 and 2 and Comparative Examples 1 to 4 described above, when the amount of the nucleating agent is extremely reduced, the effect as a foaming inhibitor is lost, the cell diameter is larger than 10 μm, and about several μm. A small thing comes to be mixed. That is, a uniform foam molded product cannot be obtained. On the other hand, if it exceeds 5% by mass , the agglomeration of particles becomes severe, the effect as a foam nucleating agent and the effect of suppressing the foam diameter are too strong, and a foam molded product having an appropriate foam diameter cannot be molded.

以上から、1μm以下の球状珪酸を0.1〜5質量%添加すると、微細なセルを有する発泡成形品を得ることができることが判明した。 From the above, it has been found that when 0.1 to 5% by mass of spherical silicic acid having a size of 1 μm or less is added, a foam molded product having fine cells can be obtained.

本発明の第1の実施の形態に係わる熱可塑性樹脂あるいはその混合物からなる発泡成形品の製造装置を模式的に示す側面図である。It is a side view which shows typically the manufacturing apparatus of the foaming molded article which consists of a thermoplastic resin concerning the 1st Embodiment of this invention, or its mixture. その(イ)はスクリュを模式的に示す側面図、その(ロ)はスクリュに対応した位置における押出成形材料の状態を、その(ハ)は押出成形材料の圧力、そしてその(ニ)は押出成形材料の温度を概略的にそれぞれ示す図である。(A) is a side view schematically showing the screw, (b) is the state of the extruded material at the position corresponding to the screw, (c) is the pressure of the extruded material, and (d) is the extrusion It is a figure which shows roughly the temperature of a molding material, respectively. 本発明の実施の形態を示す図で、その(イ)は超臨界状態の不活性流体の注入量と溶融状態の押出成形材料の粘度との関係を示す図、その(ロ)は無機微粒子の添加と粘度との関係を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows embodiment of this invention, The (a) is a figure which shows the relationship between the injection amount of the inert fluid of a supercritical state, and the viscosity of the extrusion molding material of a molten state, The (b) is the inorganic fine particle It is a figure which shows the relationship between addition and a viscosity. その(イ)は本発明の第2の実施の形態に係わる熱可塑性樹脂あるいはその混合物からなる発泡成形品の製造装置の全体を模式的に示す正面図、その(ロ)は混合装置の実施の形態を模式的に示す正面図である。(A) is a front view schematically showing the entire production apparatus for a foam molded article made of a thermoplastic resin or a mixture thereof according to the second embodiment of the present invention, and (b) is an implementation of the mixing apparatus. It is a front view which shows a form typically. 本発明の実施例1で製造した発泡成形品のSEM写真である。It is a SEM photograph of the foaming molded product manufactured in Example 1 of this invention. 本発明の実施例2で製造した発泡成形品のSEM写真である。It is a SEM photograph of the foaming molded product manufactured in Example 2 of this invention. 比較例1で得た発泡成形品のSEM写真である。2 is a SEM photograph of a foam molded product obtained in Comparative Example 1. 比較例2で得た発泡成形品のSEM写真である。4 is a SEM photograph of a foam molded product obtained in Comparative Example 2. 比較例3で得た発泡成形品のTEM写真である。4 is a TEM photograph of a foam molded product obtained in Comparative Example 3. 比較例4で得た発泡成形品のSEM写真である。4 is a SEM photograph of a foam molded product obtained in Comparative Example 4.

符号の説明Explanation of symbols

1、1’ 発泡成形品の製造装置 3 二軸スクリュ押出機
10 粘度計 12 ダイ
15 不活性流体注入口 33 単軸スクリュ押出機
51 混合容器 53 混合羽根
56 押出材料供給装置 60 造核剤供給装置
1, 1 'Production apparatus for foam molded product 3 Twin screw extruder 10 Viscometer 12 Die
15 Inert fluid inlet 33 Single screw extruder 51 Mixing container 53 Mixing blade
56 Extruded material supply device 60 Nucleating agent supply device

Claims (5)

造核剤が添加された熱可塑性樹脂あるいはその混合物からなる固体状態の押出材料を二軸スクリュ押出機の加熱シリンダの上流側に供給してスクリュを回転駆動して溶融すると共に、超臨界状態の不活性流体を、前記加熱シリンダに超臨界状態の不活性流体を注入するために設けられている不活性流体注入口から注入し、不活性流体が溶解・分散した溶融状態の押出材料を前記加熱シリンダの下流端部に設けられているダイから連続的に押し出して、発泡成形品を得るとき、
超臨界状態の不活性流体は、前記二軸スクリュ押出機の加熱シリンダにおける押出材料が100%固体状である位置と、その下流側の100%溶融している位置との間で形成される固体プラグの下流側の、固体状態と半溶融状態で混在する溶融領域に注入して溶融粘度を低下させ、前記加熱シリンダ内の温度上昇を抑えると共に、
造核剤として、押出材料に対して0.1〜5質量%の、球径が1μm以下の球状珪酸を添加することを特徴とする発泡成形品の製造方法。
A solid-state extruded material made of a thermoplastic resin or a mixture thereof added with a nucleating agent is supplied to the upstream side of the heating cylinder of the twin-screw extruder and melted by rotating the screw. An inert fluid is injected from an inert fluid inlet provided to inject the supercritical inert fluid into the heating cylinder, and the molten extruded material in which the inert fluid is dissolved and dispersed is heated. When continuously extruding from a die provided at the downstream end of the cylinder to obtain a foam molded product,
The inert fluid in the supercritical state is a solid formed between a position where the extruded material in the heating cylinder of the twin screw extruder is 100% solid and a position where it is 100% molten on the downstream side. Injecting into the melting region mixed in the solid state and the semi-molten state downstream of the plug to lower the melt viscosity, and suppress the temperature rise in the heating cylinder ,
A method for producing a foam-molded product, comprising adding 0.1 to 5% by mass of a spherical silicic acid having a spherical diameter of 1 μm or less as a nucleating agent.
造核剤が添加された熱可塑性樹脂あるいはその混合物からなる固体状態の押出材料を二軸スクリュ押出機の加熱シリンダの上流側に供給してスクリュを回転駆動して溶融すると共に、超臨界状態の不活性流体を、前記加熱シリンダに超臨界状態の不活性流体を注入するために設けられている不活性流体注入口から注入し、不活性流体が溶解・分散した溶融状態の押出材料を加熱シリンダの下流端部に設けられているダイから連続的に押し出して、発泡成形品を得るとき、
超臨界状態の不活性流体は、前記二軸スクリュ押出機の加熱シリンダにおける押出材料が100%固体状である位置と、その下流側の100%溶融している位置との間で形成される固体プラグの下流側の、固体状態と半溶融状態で混在する溶融領域に注入して溶融粘度を低下させ、前記加熱シリンダ内の温度上昇を抑え、その注入量は前記加熱シリンダの下流端寄りに設けられている粘度計により計測される溶融状態の押出材料の粘度により、不活性流体の飽和溶解度以下の範囲になるように制御し、
造核剤として、押出材料に対して0.1〜5質量%の、球径が1μm以下の球状珪酸を添加することを特徴とする発泡成形品の製造方法。
A solid-state extruded material made of a thermoplastic resin or a mixture thereof added with a nucleating agent is supplied to the upstream side of the heating cylinder of the twin-screw extruder and melted by rotating the screw. An inert fluid is injected from an inert fluid inlet provided for injecting a supercritical inert fluid into the heating cylinder, and a molten extruded material in which the inert fluid is dissolved and dispersed is heated to the heating cylinder. When extruding continuously from the die provided at the downstream end of the to obtain a foam molded product,
The inert fluid in the supercritical state is a solid formed between a position where the extruded material in the heating cylinder of the twin screw extruder is 100% solid and a position where it is 100% molten on the downstream side. Injecting into the melted region mixed in the solid state and semi-molten state downstream of the plug to lower the melt viscosity, suppress the temperature rise in the heating cylinder , the injection amount is provided near the downstream end of the heating cylinder By controlling the viscosity of the extruded material in the molten state as measured by a viscometer, it is controlled to be in the range below the saturation solubility of the inert fluid,
A method for producing a foam-molded product, comprising adding 0.1 to 5% by mass of a spherical silicic acid having a spherical diameter of 1 μm or less as a nucleating agent.
造核剤が添加された熱可塑性樹脂あるいはその混合物からなる固体状態の押出材料を二軸スクリュ押出機の加熱シリンダの上流側に供給してスクリュを回転駆動して溶融すると共に、超臨界状態の不活性流体を、前記加熱シリンダに超臨界状態の不活性流体を注入するために設けられている不活性流体注入口から注入し、不活性流体が溶解・分散した溶融状態の押出材料をその下流側に直列的に配置されているスクリュ押出機に供給し、前記スクリュ押出機のシリンダバレルの下流端部に設けられているダイから連続的に押し出して、発泡成形品を得るとき、
超臨界状態の不活性流体は、前記二軸スクリュ押出機の加熱シリンダにおける押出材料が100%固体状である位置と、その下流側の100%溶融している位置との間で形成される固体プラグの下流側の、固体状態と半溶融状態で混在する溶融領域に注入して溶融粘度を低下させ、前記加熱シリンダ内の温度上昇を抑えると共に、
造核剤として、押出材料に対して0.1〜5質量%の、球径が1μm以下の球状珪酸を添加することを特徴とする発泡成形品の製造方法。
A solid-state extruded material made of a thermoplastic resin or a mixture thereof added with a nucleating agent is supplied to the upstream side of the heating cylinder of the twin-screw extruder and melted by rotating the screw. An inert fluid is injected from an inert fluid inlet provided to inject the supercritical inert fluid into the heating cylinder, and a molten extruded material in which the inert fluid is dissolved and dispersed is downstream. When supplied to a screw extruder arranged in series on the side, continuously extruded from the die provided at the downstream end of the cylinder barrel of the screw extruder to obtain a foam molded product,
The inert fluid in the supercritical state is a solid formed between a position where the extruded material in the heating cylinder of the twin screw extruder is 100% solid and a position where it is 100% molten on the downstream side. Injecting into the melting region mixed in the solid state and the semi-molten state downstream of the plug to lower the melt viscosity, and suppress the temperature rise in the heating cylinder ,
A method for producing a foam-molded product, comprising adding 0.1 to 5% by mass of a spherical silicic acid having a spherical diameter of 1 μm or less as a nucleating agent.
造核剤が添加された熱可塑性樹脂あるいはその混合物からなる固体状態の押出材料を二軸スクリュ押出機の加熱シリンダの上流側に供給してスクリュを回転駆動して溶融すると共に、超臨界状態の不活性流体を、前記加熱シリンダに超臨界状態の不活性流体を注入するために設けられている不活性流体注入口から注入し、不活性流体が溶解・分散した溶融状態の押出材料をその下流側に直列的に配置されているスクリュ押出機に供給し、前記スクリュ押出機のシリンダバレルの下流端部に設けられているダイから連続的に押し出して、発泡成形品を得るとき、
超臨界状態の不活性流体は、前記二軸スクリュ押出機の加熱シリンダにおける押出材料が100%固体状である位置と、その下流側の100%溶融している位置との間で形成される固体プラグの下流側の、固体状態と半溶融状態で混在する溶融領域に注入して溶融粘度を低下させ、前記加熱シリンダ内の温度上昇を抑え、その注入量は前記加熱シリンダの下流端部寄りに設けられている粘度計または前記シリンダバレルの下流端部寄りに設けられている粘度計により計測される溶融状態の押出材料の粘度により、不活性流体の飽和溶解度以下の範囲になるように制御し、
造核剤として、押出材料に対して0.1〜5質量%の、球径が1μm以下の球状珪酸を添加することを特徴とする発泡成形品の製造方法。
A solid-state extruded material made of a thermoplastic resin or a mixture thereof added with a nucleating agent is supplied to the upstream side of the heating cylinder of the twin-screw extruder and melted by rotating the screw. An inert fluid is injected from an inert fluid inlet provided to inject the supercritical inert fluid into the heating cylinder, and a molten extruded material in which the inert fluid is dissolved and dispersed is downstream. When supplied to a screw extruder arranged in series on the side, continuously extruded from the die provided at the downstream end of the cylinder barrel of the screw extruder to obtain a foam molded product,
The inert fluid in the supercritical state is a solid formed between a position where the extruded material in the heating cylinder of the twin screw extruder is 100% solid and a position where it is 100% molten on the downstream side. It is injected into the melted region mixed in the solid state and semi-molten state downstream of the plug to lower the melt viscosity, suppress the temperature rise in the heating cylinder, and the injection amount is close to the downstream end of the heating cylinder. The viscosity of the extruded material in a molten state measured by a provided viscometer or a viscometer provided near the downstream end of the cylinder barrel is controlled so as to be in the range below the saturation solubility of the inert fluid. ,
A method for producing a foam-molded product, comprising adding 0.1 to 5% by mass of a spherical silicic acid having a spherical diameter of 1 μm or less as a nucleating agent.
請求項1〜4のいずれかの項に記載の製造方法において、混合容器に押出材料と、該押出材料に対して0.1〜5質量%の造核剤とを連続的に供給して混合し、そして前記混合容器から連続的に二軸スクリュ押出機に供給する発泡成形品の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein an extruded material and 0.1 to 5% by mass of a nucleating agent are continuously supplied to the mixing container and mixed. And the manufacturing method of the foaming molded article supplied to a twin screw extruder continuously from the said mixing container.
JP2005109752A 2005-04-06 2005-04-06 Method for producing foamed molded article made of thermoplastic resin or mixture thereof Expired - Fee Related JP4550646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005109752A JP4550646B2 (en) 2005-04-06 2005-04-06 Method for producing foamed molded article made of thermoplastic resin or mixture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005109752A JP4550646B2 (en) 2005-04-06 2005-04-06 Method for producing foamed molded article made of thermoplastic resin or mixture thereof

Publications (2)

Publication Number Publication Date
JP2006289636A JP2006289636A (en) 2006-10-26
JP4550646B2 true JP4550646B2 (en) 2010-09-22

Family

ID=37410762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005109752A Expired - Fee Related JP4550646B2 (en) 2005-04-06 2005-04-06 Method for producing foamed molded article made of thermoplastic resin or mixture thereof

Country Status (1)

Country Link
JP (1) JP4550646B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916924B1 (en) * 2007-03-07 2009-09-15 나노캠텍주식회사 Anti-static box of packing glasses for a liquid crystal display

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393120U (en) * 1990-01-10 1991-09-24
JPH08281771A (en) * 1995-04-18 1996-10-29 Unitika Ltd Production of plastic film
JPH10202719A (en) * 1997-01-23 1998-08-04 Unitika Ltd Manufacture of plastic film
JP2000084968A (en) * 1998-07-16 2000-03-28 Mitsui Chemicals Inc Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the method
JP2001150504A (en) * 1999-12-01 2001-06-05 Japan Steel Works Ltd:The Method and apparatus for forming cellular plastic resin
JP2002201301A (en) * 2000-10-18 2002-07-19 Mitsui Chemicals Inc Foam of urethane-based thermoplastic elastomer composition, and method for producing the same
JP2002524598A (en) * 1998-09-03 2002-08-06 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Foamed polypropylene sheet having improved appearance, apparatus and method for producing the same
JP2003103587A (en) * 2001-10-02 2003-04-09 Mitsubishi Heavy Ind Ltd Plasticizing device and method for injecting gas into plasticizing device
JP2003200457A (en) * 2002-01-08 2003-07-15 Mitsubishi Heavy Ind Ltd Method for injecting gas into plastication device
JP2003266515A (en) * 2002-03-13 2003-09-24 Hitachi Cable Ltd Method for processing resin having low fluidity
JP2004524992A (en) * 2000-12-11 2004-08-19 ブルーネル ユニバーシティ Material processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144532B2 (en) * 2002-10-28 2006-12-05 Trexel, Inc. Blowing agent introduction systems and methods

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393120U (en) * 1990-01-10 1991-09-24
JPH08281771A (en) * 1995-04-18 1996-10-29 Unitika Ltd Production of plastic film
JPH10202719A (en) * 1997-01-23 1998-08-04 Unitika Ltd Manufacture of plastic film
JP2000084968A (en) * 1998-07-16 2000-03-28 Mitsui Chemicals Inc Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the method
JP2002524598A (en) * 1998-09-03 2002-08-06 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Foamed polypropylene sheet having improved appearance, apparatus and method for producing the same
JP2001150504A (en) * 1999-12-01 2001-06-05 Japan Steel Works Ltd:The Method and apparatus for forming cellular plastic resin
JP2002201301A (en) * 2000-10-18 2002-07-19 Mitsui Chemicals Inc Foam of urethane-based thermoplastic elastomer composition, and method for producing the same
JP2004524992A (en) * 2000-12-11 2004-08-19 ブルーネル ユニバーシティ Material processing method
JP2003103587A (en) * 2001-10-02 2003-04-09 Mitsubishi Heavy Ind Ltd Plasticizing device and method for injecting gas into plasticizing device
JP2003200457A (en) * 2002-01-08 2003-07-15 Mitsubishi Heavy Ind Ltd Method for injecting gas into plastication device
JP2003266515A (en) * 2002-03-13 2003-09-24 Hitachi Cable Ltd Method for processing resin having low fluidity

Also Published As

Publication number Publication date
JP2006289636A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP3998374B2 (en) Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method
US6328916B1 (en) Addition method of supercritical carbon dioxide, and production process of expanded thermoplastic resin product by making use of the addition method
JP4436435B1 (en) Molding material for extrusion foam molding and method for manufacturing the same, wood foam molded body manufactured using the molding material, method for manufacturing the wood foam molded body, and manufacturing apparatus
US20060211780A1 (en) Method and apparatus for the continuous manufacture of expandable plastic granulate
US9630346B2 (en) Method of fabricating an injection molded component
JPH06240153A (en) Process of formation of elastic composition
WO2020184486A1 (en) Foam molded body production device, foam molded body production method and screw for use in foam molded body production device
JP2007276321A (en) Tandem type extrusion foaming molding process
JP7101471B2 (en) Manufacturing method and manufacturing equipment for foam molded products
WO2018131372A1 (en) Method and apparatus for manufacturing foamed product
JP2007203637A (en) Method and apparatus for molding fiber-reinforced resin molding
JP4550646B2 (en) Method for producing foamed molded article made of thermoplastic resin or mixture thereof
US9555564B2 (en) Method of fabricating a foamed, injection molded component with improved ductility and toughness
JP2022000350A (en) Manufacturing method of foam molding body
JP2002254492A (en) Pva extrusion method using twin-screw extruder and twin-screw extruder
JP2004098335A (en) Screw for injection-molding foam
JP2005059370A (en) Tandem type multi-extrusion forming method and apparatus therefor
JP4563739B2 (en) Extruded product manufacturing method and manufacturing apparatus
JP2816356B2 (en) Extrusion molding equipment
JP4532374B2 (en) Method and apparatus for producing thermoplastic resin foam
JP2021024240A (en) Foam molded body production device
WO2018163998A1 (en) Manufacturing method and manufacturing device for foam molded article
JP6997847B2 (en) Manufacturing method and manufacturing equipment for foam molded products
JP2002144405A (en) Foam molding method and foamed resin extrusion machine used for this method
JP2002530497A (en) Microporous polyvinyl chloride foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees