JP2005161596A - Manufacturing method of thermoplastic resin blend - Google Patents

Manufacturing method of thermoplastic resin blend Download PDF

Info

Publication number
JP2005161596A
JP2005161596A JP2003401138A JP2003401138A JP2005161596A JP 2005161596 A JP2005161596 A JP 2005161596A JP 2003401138 A JP2003401138 A JP 2003401138A JP 2003401138 A JP2003401138 A JP 2003401138A JP 2005161596 A JP2005161596 A JP 2005161596A
Authority
JP
Japan
Prior art keywords
extruder
thermoplastic resin
carbon dioxide
resin blend
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003401138A
Other languages
Japanese (ja)
Inventor
Shigeo Nishikawa
茂雄 西川
Masao Eriguchi
真男 江里口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003401138A priority Critical patent/JP2005161596A/en
Publication of JP2005161596A publication Critical patent/JP2005161596A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/365Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
    • B29C48/37Gear pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/39Plasticisers, homogenisers or feeders comprising two or more stages a first extruder feeding the melt into an intermediate location of a second extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/397Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using a single screw

Abstract

<P>PROBLEM TO BE SOLVED: To prevent bubbles from remaining in a thermoplastic resin blend in a manufacturing method of the thermoplastic resin blend using an extruder characterized in that carbon dioxide is added to at least two kinds of thermoplastic resins in a molten state. <P>SOLUTION: This manufacturing method of the thermoplastic resin blend is constituted so that at least two kinds of the thermoplastic resins are supplied to a first extruder to be melted and carbon dioxide is added to and mixed with the molten thermoplastic resins in an amount of 2-200 pts.wt. with respect to 100 pts.wt. of the sum total amount of the thermoplastic resins while the prepared mixture is supplied to a second extruder from the leading end of the first extruder through a connection pipe to degass carbon dioxide from at least one upstream degassing port and at least one downstream degassing port provided to the cylinder of the second extruder through the supply port of the connection pipe before extruding the thermoplastic resins. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、二酸化炭素の存在下に、2種以上の熱可塑性樹脂を溶融状態で混合して熱可塑性樹脂ブレンド物を製造する方法に関する。   The present invention relates to a method for producing a thermoplastic resin blend by mixing two or more thermoplastic resins in a molten state in the presence of carbon dioxide.

近年、熱可塑性樹脂材料に要求される性能が高度化・多様化し、これらのニーズを単一の熱可塑性樹脂材料で満足させることが困難となってきた。そこで、異なる性質を有する数種の熱可塑性樹脂を複合化させ、多成分系熱可塑性樹脂材料として、種々のニーズに応えるべく、研究開発が盛んに行われてきた。これらの技術は、ポリマーブレンド、ポリマーアロイ、ポリマーコンポジット等と呼ばれている。中でも、2種以上からなる熱可塑性樹脂を押出機内で溶融ブレンドさせて、熱可塑性樹脂ブレンド物を製造する方法は周知技術であり、工業的に実施されている。この方法は、比較的容易に実施でき、また連続生産でき、低コストという大きなメリットがある。   In recent years, the performance required for thermoplastic resin materials has become sophisticated and diversified, and it has become difficult to satisfy these needs with a single thermoplastic resin material. Therefore, research and development have been actively conducted in order to meet various needs as a multi-component thermoplastic resin material by combining several types of thermoplastic resins having different properties. These techniques are called polymer blends, polymer alloys, polymer composites and the like. Among them, a method for producing a thermoplastic resin blend by melt-blending two or more kinds of thermoplastic resins in an extruder is a well-known technique and is practiced industrially. This method has a great merit that it can be carried out relatively easily, can be continuously produced, and is low in cost.

しかしながら、前記方法には、下記の幾つかの問題点があった。
(a)異種熱可塑性樹脂間の溶融温度、および溶融粘度が著しく異なる場合、均一に相溶、分散させることができない。
(b)異種熱可塑性樹脂間の相溶性が乏しい場合、界面張力を低下させるために、ブロック共重合体、グラフト共重合体のような相溶化剤を添加することが一般的に行われているが、相溶化剤の設計、および選択が難しい上に、相溶化剤添加の影響で、性能劣化に繋がる例が多い。
(c)高温での溶融ブレンドが必要な場合、分解等により性能劣化の可能性があり、また可塑剤添加の影響により、性能劣化に繋がる例が多い。
However, the method has the following problems.
(A) When the melting temperature and the melt viscosity between different thermoplastic resins are significantly different, they cannot be uniformly dissolved and dispersed.
(B) When the compatibility between different types of thermoplastic resins is poor, a compatibilizing agent such as a block copolymer or a graft copolymer is generally added to reduce the interfacial tension. However, it is difficult to design and select a compatibilizing agent, and there are many examples of performance deterioration due to the addition of the compatibilizing agent.
(C) When melt blending at a high temperature is required, there is a possibility of performance deterioration due to decomposition or the like, and there are many examples that lead to performance deterioration due to the influence of plasticizer addition.

以上のことから、押出機による溶融ブレンド技術は、容易に実施できる反面、使用する熱可塑性樹脂材料、成形条件等に大きく制約を受けることが知られている。   From the above, it is known that the melt blending technique using an extruder can be easily carried out, but is greatly restricted by the thermoplastic resin material used, molding conditions, and the like.

本発明者らは、2種以上の熱可塑性樹脂を溶融状態で混合して、熱可塑性樹脂ブレンド物を製造するに当たり、前記熱可塑性樹脂の合計量100重量部に対して、二酸化炭素を2〜200重量部の割合で添加することを特徴とする熱可塑性樹脂ブレンド物の製造方法を提供した(特許文献1参照)。この方法により、異種の熱可塑性樹脂を溶融、混合する際に、媒体として二酸化炭素を使用することにより、物性に悪影響を及ぼす相溶化剤や可塑剤を使用しなくても良好な微分散構造を達成することができ、従来の溶融混合法では不可能とされてきた、異種非相溶性の熱可塑性樹脂からなる良好な微分散構造を有する熱可塑性樹脂ブレンド物を、低コストで容易に効率よく製造することができる。   In producing a thermoplastic resin blend by mixing two or more kinds of thermoplastic resins in a molten state, the inventors of the present invention have 2 to 2 carbon dioxide with respect to 100 parts by weight of the total amount of the thermoplastic resins. A method for producing a thermoplastic resin blend characterized in that it is added at a ratio of 200 parts by weight (see Patent Document 1). By this method, when different types of thermoplastic resins are melted and mixed, by using carbon dioxide as a medium, a good fine dispersion structure can be obtained without using compatibilizers and plasticizers that adversely affect physical properties. A thermoplastic resin blend having a finely dispersed structure made of a heterogeneous incompatible thermoplastic resin, which has been impossible to achieve by conventional melt mixing methods, can be easily and efficiently produced at low cost. Can be manufactured.

しかしながら、この方法においても、押出条件や使用材料およびその比率によって、成形後の成形物内に小さな泡が残ることがあり、これは脱気工程で完全に二酸化炭素を脱気できないことが原因であると考えられた。   However, even in this method, small bubbles may remain in the molded product after molding depending on the extrusion conditions, materials used, and the ratio thereof. This is because carbon dioxide cannot be completely degassed in the degassing step. It was thought that there was.

押出機から脱揮する技術としては、発泡スチロールのリモネンや塩化メチレン溶媒への溶液からポリスチレンを回収する方法として、リアベントおよび複数個のベント口を備えた2軸スクリュー押出機による方法が開示されている(特許文献2参照)が、熱可塑性樹脂からの二酸化炭素を脱気する技術についての記載はない。   As a technique for devolatilization from an extruder, a method using a twin screw extruder having a rear vent and a plurality of vent ports is disclosed as a method for recovering polystyrene from a solution of expanded polystyrene in limonene or methylene chloride solvent. (See Patent Document 2), however, there is no description of a technique for degassing carbon dioxide from a thermoplastic resin.

特開2002−322288公報JP 2002-322288 A 特開2001−146531号公報JP 2001-146531 A

本発明の課題は、2種以上からなる溶融状態の熱可塑性樹脂に二酸化炭素を添加することを特徴とする押出機を用いた熱可塑性樹脂ブレンド物の製造方法であって、ブレンド物成形体内に泡が残ることのない製造方法を提供することである。   An object of the present invention is a method for producing a thermoplastic resin blend using an extruder, characterized in that carbon dioxide is added to a thermoplastic resin in a molten state composed of two or more kinds. It is to provide a production method in which bubbles do not remain.

本発明者らは前記課題を解決するため鋭意研究を重ねた結果、押出機の特定の位置に二酸化炭素を除去する脱気口を設けることで、熱可塑性樹脂ブレンド物の成形体内に泡が残らなくなることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have provided a degassing port for removing carbon dioxide at a specific position of the extruder, so that bubbles remain in the molded body of the thermoplastic resin blend. As a result, the present invention was completed.

すなわち、本発明は以下の各項目により特定される。
(1)第1の押出機に2種以上からなる熱可塑性樹脂を供給して溶融し、溶融状態の該熱可塑性樹脂に、その合計量100重量部に対して2〜200重量部の二酸化炭素を添加して混合し、該混合物を第1の押出機の先端から連結管を通して第2の押出機に供給し、第2の押出機において、そのシリンダーに設けられた、該連結管供給口から上流側の1つ以上の脱気口と下流側の1つ以上の脱気口から二酸化炭素を脱気し、熱可塑性樹脂を押し出すことからなる熱可塑性樹脂ブレンド物の製造方法。
That is, the present invention is specified by the following items.
(1) Two or more types of thermoplastic resins are supplied to the first extruder and melted, and the molten thermoplastic resin is 2 to 200 parts by weight of carbon dioxide with respect to 100 parts by weight of the total amount. And the mixture is fed from the tip of the first extruder through the connecting pipe to the second extruder, and in the second extruder, from the connecting pipe supply port provided in the cylinder. A method for producing a thermoplastic resin blend comprising degassing carbon dioxide from one or more upstream degassing ports and one or more downstream degassing ports to extrude a thermoplastic resin.

(2)第1の押出機において、溶融状態の該熱可塑性樹脂に、さらに、その合計量100重量部に対して0.01〜50重量部の低分子有機化合物を添加し、第2の押出機のシリンダーに設けられた脱気口から二酸化炭素とともに脱気する前記(1)に記載の熱可塑性樹脂ブレンド物の製造方法。 (2) In the first extruder, 0.01 to 50 parts by weight of a low molecular organic compound is further added to the molten thermoplastic resin with respect to the total amount of 100 parts by weight. The method for producing a thermoplastic resin blend according to (1), wherein degassing is performed together with carbon dioxide from a degassing port provided in a cylinder of the machine.

(3)低分子有機化合物が、炭素数1〜5のアルコール類、アルカン類、カルボン酸類、エーテル類、アセトン、およびベンゼンからなる群から選択される1種以上の化合物である前記(2)に記載の熱可塑性樹脂ブレンド物の製造方法。 (3) In the above (2), the low molecular organic compound is one or more compounds selected from the group consisting of alcohols having 1 to 5 carbon atoms, alkanes, carboxylic acids, ethers, acetone, and benzene. The manufacturing method of the thermoplastic resin blend of description.

(4)第1の押出機の二酸化炭素添加部から下流側先端までの樹脂圧力が12〜50MPaである前記(1)〜(3)のいずれかに記載の熱可塑性樹脂ブレンド物の製造方法。 (4) The method for producing a thermoplastic resin blend according to any one of (1) to (3), wherein the resin pressure from the carbon dioxide addition part of the first extruder to the downstream end is 12 to 50 MPa.

(5)第1の押出機が単軸押出機である前記(1)〜(4)のいずれかに記載の熱可塑性樹脂ブレンド物の製造方法。 (5) The method for producing a thermoplastic resin blend according to any one of (1) to (4), wherein the first extruder is a single-screw extruder.

本発明により、2種以上からなる異種の熱可塑性樹脂を、相溶化剤や可塑剤を使用しないで、良好な微分散状態のブレンド物を、低コストで容易に効率よく製造することができる。   According to the present invention, two or more different types of thermoplastic resins can be easily and efficiently produced at low cost without using a compatibilizing agent or a plasticizer.

本発明を、その一実施形態を系統図で示した図1に基づいて説明する。   The present invention will be described with reference to FIG. 1 showing an embodiment of the present invention in a system diagram.

熱可塑性樹脂ブレンド物7を製造するには、まず例えば海相となる熱可塑性樹脂10aと、島相となる熱可塑性樹脂10bとを混合機11で均一混合して熱可塑性樹脂混合物とする。この時、熱可塑性樹脂は2種以上であっても構わない。   In order to manufacture the thermoplastic resin blend 7, first, for example, the thermoplastic resin 10 a serving as the sea phase and the thermoplastic resin 10 b serving as the island phase are uniformly mixed by the mixer 11 to obtain a thermoplastic resin mixture. At this time, two or more thermoplastic resins may be used.

前記のように調製した熱可塑性樹脂混合物をホッパー12から第1押出機1に供給して加熱溶融した後、媒体として二酸化炭素を熱可塑性樹脂100重量部に対して2〜200重量部、好ましくは3〜150重量部、より好ましくは5〜100重量部、更に好ましくは5〜70重量部、また更に好ましくは5〜50重量部、また更に好ましくは5〜30重量部、また更に好ましくは7〜30重量部、特に好ましくは7〜20重量部の割合で添加する。   After the thermoplastic resin mixture prepared as described above is supplied from the hopper 12 to the first extruder 1 and heated and melted, carbon dioxide is used as a medium in an amount of 2 to 200 parts by weight, preferably 100 parts by weight of the thermoplastic resin. 3 to 150 parts by weight, more preferably 5 to 100 parts by weight, still more preferably 5 to 70 parts by weight, still more preferably 5 to 50 parts by weight, still more preferably 5 to 30 parts by weight, and even more preferably 7 to 30 parts by weight, particularly preferably 7 to 20 parts by weight is added.

二酸化炭素を前記割合で添加し、溶融熱可塑性樹脂組成物中に溶解させることで、異種の熱可塑性樹脂間の溶融粘度差、および界面張力差を低減させ、均一分散性を大幅に向上させ得る。また低温での溶融ブレンドが可能になり、分解等による製品の性能劣化の可能性が小さくなる効果がある。   By adding carbon dioxide in the above ratio and dissolving it in the molten thermoplastic resin composition, the difference in melt viscosity between different types of thermoplastic resins and the difference in interfacial tension can be reduced, and the uniform dispersibility can be greatly improved. . In addition, melt blending at a low temperature is possible, and there is an effect of reducing the possibility of product performance deterioration due to decomposition or the like.

また、相溶化剤や可塑剤を添加する必要性のないことから、製品の物性低下の心配がない。更に、添加した二酸化炭素を除去することで、同時に不純物を抽出できる効果もある。以上の相乗効果から、従来溶融ブレンドで不可能とされてきた非相溶性の異種熱可塑性樹脂による均一微分散ポリマーブレンドが可能になり、低コストで、不純物の少ない高品質・高機能熱可塑性樹脂ブレンド物を得ることが可能となる。   In addition, since there is no need to add a compatibilizing agent or a plasticizer, there is no fear of deterioration of physical properties of the product. Further, removing the added carbon dioxide has an effect of extracting impurities at the same time. Due to the above synergistic effect, it is possible to achieve uniform fine dispersion polymer blends using incompatible different types of thermoplastic resins, which had been impossible with conventional melt blending, and at low cost, high quality and high performance thermoplastic resin with few impurities. It becomes possible to obtain a blend.

二酸化炭素は、好ましくは12〜50MPa、更に好ましくは15〜30MPaの圧力で、押出機中の溶融状態の熱可塑性樹脂に添加する。この圧力の二酸化炭素を使用することにより、所定量の二酸化炭素を安定的に供給できる。   Carbon dioxide is preferably added to the molten thermoplastic resin in the extruder at a pressure of 12 to 50 MPa, more preferably 15 to 30 MPa. By using carbon dioxide at this pressure, a predetermined amount of carbon dioxide can be stably supplied.

第1押出機1において、二酸化炭素存在下で2種以上の熱可塑性樹脂を溶融、混合し、溶融した混合状態の熱可塑性樹脂を製造する。第1押出機1内の二酸化炭素添加部8から第1押出機下流側先端9までの樹脂圧力は、好ましくは12〜50MPa、さらには15〜30MPaの圧力が好ましい。本発明における圧力の値はすべてゲージ圧である。   In the first extruder 1, two or more kinds of thermoplastic resins are melted and mixed in the presence of carbon dioxide to produce a molten thermoplastic resin in a mixed state. The resin pressure from the carbon dioxide addition part 8 in the first extruder 1 to the first extruder downstream end 9 is preferably 12 to 50 MPa, more preferably 15 to 30 MPa. The pressure values in the present invention are all gauge pressures.

前記範囲の樹脂圧力することにより、所定量の二酸化炭素を完全に溶融熱可塑性樹脂中に溶解させることができ、異種熱可塑性樹脂間の溶融粘度差、及び界面張力差を低減させ、均一分散性を大幅に向上させる。前記範囲の樹脂圧力を維持するため、第1押出機下流側先端9にギアポンプ、圧力調整弁、チョークバー等、公知の圧力制御装置(A)13を採用することができる。また前記範囲の樹脂圧力を維持するために、第1押出機には単軸押出機を採用するのが好ましい。   By applying the resin pressure within the above range, a predetermined amount of carbon dioxide can be completely dissolved in the molten thermoplastic resin, and the difference in melt viscosity between different types of thermoplastic resins and the difference in interfacial tension can be reduced. Greatly improve. In order to maintain the resin pressure within the above range, a known pressure control device (A) 13 such as a gear pump, a pressure adjusting valve, a choke bar, or the like can be employed at the downstream end 9 of the first extruder. In order to maintain the resin pressure in the above range, it is preferable to adopt a single screw extruder for the first extruder.

第1押出機1のスクリュー形状は、特に制限されるものではないが、二酸化炭素供給部8の手前に、バレルとのクリアランスを小さくしたリングや、ユニメルト等を設けたスクリューが好ましい。添加した二酸化炭素は添加量が適量で、熱可塑性樹脂が完全に溶融状態であれば、溶融樹脂自身のメルトシールにより、二酸化炭素のホッパー11側へのバックフローは生じない。   The screw shape of the first extruder 1 is not particularly limited, but a screw provided with a ring having a small clearance from the barrel, unimelt or the like before the carbon dioxide supply unit 8 is preferable. If the added amount of carbon dioxide is an appropriate amount and the thermoplastic resin is in a completely molten state, no back flow of carbon dioxide to the hopper 11 side occurs due to the melt sealing of the molten resin itself.

第1押出機1での温度は、熱可塑性樹脂の種類、組み合わせ、ブレンド比率、二酸化炭素の添加量、目的とする熱可塑性樹脂ブレンド物7の必要物性、使用する装置等により異なるため一概には決められないが、通常、50〜400℃の範囲とするのが望ましい。   Since the temperature in the first extruder 1 varies depending on the type, combination, blend ratio, added amount of carbon dioxide, required physical properties of the desired thermoplastic resin blend 7, the apparatus used, etc. Although not determined, it is usually desirable to set the temperature in the range of 50 to 400 ° C.

第1押出機1により均一微分散された溶融熱可塑性樹脂は、次に連結管2へと移送される。この連結管2では、樹脂圧力を第1押出機内の樹脂圧以下となるように制御する。連結管2内の圧力としては、0〜20MPaであることが好ましい。この圧力の制御は、連結管2の先端に設置されている圧力制御弁等の圧力制御装置(B)14や、連結管2の温度、第2押出機3のスクリュー回転数等で行える。   The molten thermoplastic resin uniformly and finely dispersed by the first extruder 1 is then transferred to the connecting pipe 2. In this connection pipe 2, the resin pressure is controlled to be equal to or lower than the resin pressure in the first extruder. The pressure in the connecting pipe 2 is preferably 0 to 20 MPa. This pressure can be controlled by a pressure control device (B) 14 such as a pressure control valve installed at the tip of the connecting pipe 2, the temperature of the connecting pipe 2, the screw speed of the second extruder 3, and the like.

次に溶融熱可塑性樹脂は、圧力制御装置(B)14を通過して、好ましくは0〜7MPa、より好ましくは0〜5MPa、更に好ましくは0〜3MPa、特に好ましくは0MPaの樹脂圧力を有する第2押出機3へ移送される。第2押出機3の主な機能は、溶融熱可塑性樹脂から二酸化炭素を脱気することにある。このとき、二酸化炭素と同時に熱可塑性樹脂中に含まれているオリゴマーや不純物等の低分子量成分も除去できる。   Next, the molten thermoplastic resin passes through the pressure control device (B) 14, and preferably has a resin pressure of 0 to 7 MPa, more preferably 0 to 5 MPa, still more preferably 0 to 3 MPa, and particularly preferably 0 MPa. 2 Transferred to the extruder 3. The main function of the second extruder 3 is to degas carbon dioxide from the molten thermoplastic resin. At this time, low molecular weight components such as oligomers and impurities contained in the thermoplastic resin simultaneously with carbon dioxide can be removed.

第2押出機3のシリンダーには、前記連結管2と連結された供給口4から下流側に向かって、1つ以上の下流側脱気口5が、順次設けられているとともに、前記供給口4の上流側に上流側脱気口6が1つ以上設けられている。脱気方法は、自然開放にした開放脱気方法、真空ポンプ15等を用いた強制脱気方法等、公知の脱気方法を採用することができる。強制脱気方法の場合、脱気能力を調節するため、流量調整弁や流量調節ノズル等の調節手段が設置されていることが好ましい。   The cylinder of the second extruder 3 is provided with one or more downstream deaeration ports 5 sequentially from the supply port 4 connected to the connection pipe 2 toward the downstream side, and the supply port One or more upstream deaeration ports 6 are provided on the upstream side of 4. As the degassing method, a known degassing method such as an open degassing method that is naturally open or a forced degassing method using the vacuum pump 15 or the like can be employed. In the case of the forced deaeration method, it is preferable that adjusting means such as a flow rate adjusting valve and a flow rate adjusting nozzle are installed in order to adjust the deaeration capacity.

本発明において使用できる第2押出機3には特に制限はなく、樹脂加工方法に使用される公知の押出機を使用することができる。例えば、スクリューが1本の単軸押出機、スクリューが2本の二軸押出機、スクリューが3本以上の多軸押出機等、特に限定されない。中でもシリンダー内で樹脂圧力を低圧状態に維持し易すく、脱気に有利な二軸押出機が好ましい。尚、脱気が十分可能な条件の場合(二酸化炭素の添加量が少ない場合など)においては、設備投資コスト、メンテナンス等の面で有利な単軸押出機の方が好ましい。   There is no restriction | limiting in particular in the 2nd extruder 3 which can be used in this invention, The well-known extruder used for the resin processing method can be used. For example, a single screw extruder with one screw, a twin screw extruder with two screws, a multi-screw extruder with three or more screws, and the like are not particularly limited. Among them, a twin screw extruder that is easy to maintain the resin pressure in the cylinder at a low pressure and is advantageous for degassing is preferable. In the case where the deaeration is sufficiently possible (for example, when the amount of carbon dioxide added is small), a single screw extruder that is advantageous in terms of equipment investment cost, maintenance, etc. is preferable.

第2押出機3で完全に二酸化炭素を除去した溶融熱可塑性樹脂は、ダイ16を介して所定の形状へ成形される。本発明に使用されるダイ16については特に制限はなく、公知のダイを採用することができる。例えば、Tダイ、インフレーションダイ、ストランドダイス、パイプダイス、異型ダイス等が挙げられる。   The molten thermoplastic resin from which carbon dioxide has been completely removed by the second extruder 3 is molded into a predetermined shape via the die 16. There is no restriction | limiting in particular about the die | dye 16 used for this invention, A well-known die | dye can be employ | adopted. For example, a T die, an inflation die, a strand die, a pipe die, a modified die and the like can be mentioned.

また、本発明の製造方法により製造される製品形状は、パウダー状、ペレット状、フィルム状、ネット状、シート状、ロッド状、フィラメント状、パイプ状、チューブ状、板状、角材状、円柱状等、特に限定されない。   Moreover, the product shape manufactured by the manufacturing method of the present invention is powder, pellet, film, net, sheet, rod, filament, pipe, tube, plate, square, columnar Etc., not particularly limited.

二酸化炭素の供給方法は特に制限されず、公知の方法を採用することができる。例えば、二酸化炭素ボンベから減圧弁を介し、供給部の圧力を制御することによりガス状態で供給する方法、あるいは二酸化炭素ボンベ17から二酸化炭素用定量ポンプ18を介して流量を制御し、液体状態または超臨界状態で供給する方法などがあげられる。これらの中では超臨界状態で供給する方法が好ましい。   The method for supplying carbon dioxide is not particularly limited, and a known method can be adopted. For example, a method of supplying a gas state from a carbon dioxide cylinder through a pressure reducing valve and controlling a pressure of a supply unit, or a flow rate from a carbon dioxide cylinder 17 via a carbon dioxide metering pump 18 to control a liquid state or For example, a method of supplying in a supercritical state. Among these, a method of supplying in a supercritical state is preferable.

超臨界二酸化炭素の供給方法の一例としては、液化二酸化炭素ボンベ17中の二酸化炭素を液体状態に維持したまま、二酸化炭素用定量ポンプ18に注入し、二酸化炭素用定量ポンプ18の吐出圧力を二酸化炭素の臨界圧力(7.4MPa)〜50MPaの範囲内で一定圧力となるよう保圧弁19で制御しながら吐出した後、超臨界状態のまま、バルブ(A)20を介して第1押出機1に設けられた二酸化炭素供給部8から第1押出機1内に供給する方法が挙げられる。   As an example of a supercritical carbon dioxide supply method, the carbon dioxide in the liquefied carbon dioxide cylinder 17 is injected into the carbon dioxide metering pump 18 while maintaining the liquid state, and the discharge pressure of the carbon dioxide metering pump 18 is changed to carbon dioxide. After discharging while controlling with the pressure-holding valve 19 so as to be a constant pressure within the range of the critical pressure (7.4 MPa) to 50 MPa of carbon, the first extruder 1 is passed through the valve (A) 20 while maintaining the supercritical state. The method of supplying in the 1st extruder 1 from the carbon dioxide supply part 8 provided in 1 is mentioned.

本発明に用いられる熱可塑性樹脂としては、特に制限無く使用できる。例えば、低密度ポリエチレン、高密度ポリエチレン、中密度ポリエチレン、直鎖状低密度ポリエチレン、超高分子量ポリエチレン、エチレン−プロピレンコポリマー、エチレン−ブテンコポリマー、プロピレン−ブテンコポリマー、エチレン−メタクリル酸コポリマー、エチレン−アクリル酸コポリマー、エチレン−酢酸ビニルコポリマー、エチレン−アクリル酸エチルコポリマー、アイオノマー樹脂(例えばエチレン−メタクリル酸コポリマーアイオノマー樹脂等)、ホモポリプロピレン、ランダムポリプロピレン、ブロックポリプロピレン、超高分子量ポリプロピレン、ポリブテン、4−メチルペンテン−1樹脂、環状ポリオレフィン系樹脂等の特殊ポリオレフィン系樹脂、エチレン−スチレンコポリマー、スチレン系樹脂(ポリスチレン、ブタジエン−スチレンコポリマー(HIPS)、アクリロニトリル−スチレンコポリマー(AS樹脂)、アクリロニトリル−ブタジエン−スチレンコポリマー(ABS樹脂)等)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート、ポリアセタール、ポリフェニレンオキシド、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、酢酸セルロース、ポリエステル(例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等)、ポリアミド樹脂、ポリイミド樹脂、フッ素樹脂、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、ポリエーテルエーテルケトン、液晶ポリマー、熱可塑性ポリウレタン、熱可塑性エラストマー、生分解性ポリマー(例えばポリ乳酸のようなヒドロキシカルボン酸縮合物、ポリブチレンサクシネートのようなジオールとカルボン酸の縮合物等)等の樹脂の2種以上からなる熱可塑性樹脂が挙げられる。   The thermoplastic resin used in the present invention can be used without any particular limitation. For example, low density polyethylene, high density polyethylene, medium density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, ethylene-propylene copolymer, ethylene-butene copolymer, propylene-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-acrylic Acid copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ionomer resin (eg, ethylene-methacrylic acid copolymer ionomer resin), homopolypropylene, random polypropylene, block polypropylene, ultrahigh molecular weight polypropylene, polybutene, 4-methylpentene -1 resin, special polyolefin resin such as cyclic polyolefin resin, ethylene-styrene copolymer, styrene resin (polystyrene resin) Butadiene-styrene copolymer (HIPS), acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), etc.), polyvinyl chloride, polyvinylidene chloride, polycarbonate, polyacetal, polyphenylene oxide, polyvinyl acetate, Polyvinyl alcohol, polymethyl methacrylate, cellulose acetate, polyester (for example, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, etc.), polyamide resin, polyimide resin, fluororesin, polysulfone, polyethersulfone, polyarylate, polyetherether Ketones, liquid crystal polymers, thermoplastic polyurethanes, thermoplastic elastomers, biodegradable polymers (eg poly milk Hydroxycarboxylic acid condensate such as, thermoplastic resins composed of two or more resins of the condensate, etc.) and the like of a diol and a carboxylic acid such as polybutylene succinate.

また、本発明においては、樹脂中に、必要に応じて目的を損なわない範囲で、顔料、染料、滑剤、抗酸化剤、充填剤、安定剤、難燃剤、帯電防止剤、紫外線防止剤、架橋剤、抗菌剤、結晶核剤、収縮防止剤、等を添加することができる。   Further, in the present invention, in the resin, pigments, dyes, lubricants, antioxidants, fillers, stabilizers, flame retardants, antistatic agents, anti-ultraviolet agents, crosslinking agents, as long as the purpose is not impaired as necessary. An agent, an antibacterial agent, a crystal nucleating agent, a shrinkage preventing agent, and the like can be added.

本発明の、別の態様として、さらに低分子有機化合物を添加する場合の一実施形態を系統図で示した図2に基づいて説明する。   As another aspect of the present invention, an embodiment in which a low molecular organic compound is further added will be described with reference to FIG. 2 showing a system diagram.

熱可塑性樹脂の種類、組み合わせ、およびブレンド比によっては、二酸化炭素とともにさらに低分子有機化合物を、溶融状態の熱可塑性樹脂の合計量100重量部に対して0.01〜50重量部の割合で添加することが、より好ましい場合がある。二酸化炭素とともに低分子有機物を助剤として添加することで、得られる熱可塑性樹脂ブレンド物7の分散状態は、低分子有機化合物無添加品よりも更に均一に、更に微細にすることができる場合がある。   Depending on the type, combination, and blend ratio of the thermoplastic resin, a low molecular organic compound is added together with carbon dioxide at a ratio of 0.01 to 50 parts by weight with respect to 100 parts by weight of the total amount of the thermoplastic resin in the molten state. It may be more preferable to do. By adding a low-molecular-weight organic substance together with carbon dioxide as an auxiliary agent, the dispersion state of the obtained thermoplastic resin blend 7 may be more uniform and finer than the low-molecular-weight organic compound-free product. is there.

この理由は明確ではないが、熱可塑性樹脂の種類、組み合わせ、およびブレンド比に最適な低分子有機化合物の種類、添加量を選択して添加し、最適な成形条件で溶融ブレンドすることにより、低分子有機化合物が一種の相溶化剤的効果を促進させているものと推定される。   The reason for this is not clear, but by selecting and adding the type and amount of low molecular weight organic compound that is optimal for the type, combination, and blend ratio of the thermoplastic resin, it can be reduced by melt blending under optimal molding conditions. It is presumed that molecular organic compounds promote a kind of compatibilizing effect.

本発明で用いられる低分子有機化合物としては、特に制限無く使用できる。上述したように、熱可塑性樹脂の種類、組み合わせ、およびブレンド比等の各条件に最適な低分子有機化合物を選択することが好ましい。なかでも、炭素数1〜5のアルコール類、アルカン類、カルボン酸類、エーテル類、アセトン、およびベンゼンからなる群の1種又は2種以上からなる低分子有機化合物が好ましい。特に人体や食品などへの安全性の観点からエタノールが好ましく、更にコストパフォーマンスの観点から、工業用として用いられている変性エタノールが好ましい。変性エタノールの変性剤としては、メタノール、乳酸、ベンゼン、エーテル等、公知のものであれば特に制限はない。   The low molecular organic compound used in the present invention can be used without particular limitation. As described above, it is preferable to select a low molecular weight organic compound that is optimal for each condition such as the type, combination, and blend ratio of the thermoplastic resin. Especially, the low molecular organic compound which consists of 1 type or 2 or more types of the group which consists of C1-C5 alcohol, alkanes, carboxylic acids, ethers, acetone, and benzene is preferable. In particular, ethanol is preferable from the viewpoint of safety to human bodies and foods, and from the viewpoint of cost performance, denatured ethanol used for industrial use is preferable. There are no particular limitations on the denaturing agent for denatured ethanol as long as it is a known one such as methanol, lactic acid, benzene, or ether.

低分子有機化合物の供給方法は特に制限されず、公知の方法を採用することができる。例えば、低分子有機化合物25を、定量ポンプ26によって、低分子有機物ライン27からバルブ(B)28を介して二酸化炭素ライン24に送液、合流させる。二酸化炭素と低分子有機物を合流混合した後、バルブ(A)20を介して第1押出機1に設けられた二酸化炭素供給部8から第1押出機内に供給する。   The method for supplying the low molecular organic compound is not particularly limited, and a known method can be adopted. For example, the low molecular organic compound 25 is fed and joined from the low molecular organic substance line 27 to the carbon dioxide line 24 via the valve (B) 28 by the metering pump 26. After the carbon dioxide and the low molecular organic substance are merged and mixed, the carbon dioxide is supplied into the first extruder from the carbon dioxide supply unit 8 provided in the first extruder 1 via the valve (A) 20.

低分子有機化合物の添加量は、熱可塑性樹脂の合計量100重量部に対して0.01〜50重量部の割合が好ましく、更に0.1〜20重量部の割合が好ましい。尚、低分子有機化合物の添加方法は、この他にも、溶融した熱可塑性樹脂に直接供給する方法、第1押出機へ供給する前の熱可塑性樹脂へ添加し均一混合させる方法等、特に限定されない。   The addition amount of the low molecular weight organic compound is preferably 0.01 to 50 parts by weight, more preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the total amount of the thermoplastic resin. In addition, the addition method of the low molecular organic compound is not particularly limited, such as a method of directly supplying to the molten thermoplastic resin, a method of adding to the thermoplastic resin before being supplied to the first extruder, and uniformly mixing. Not.

このようにして二酸化炭素と低分子有機化合物を供給することにより、溶融した熱可塑性樹脂と二酸化炭素および低分子有機化合物とが混合され、熱可塑性樹脂中に二酸化炭素および低分子有機化合物が溶解拡散する。その後の製造方法は、図1で説明した内容と同様である。   By supplying carbon dioxide and a low molecular weight organic compound in this way, the molten thermoplastic resin is mixed with carbon dioxide and a low molecular weight organic compound, and the carbon dioxide and the low molecular weight organic compound are dissolved and diffused in the thermoplastic resin. To do. The subsequent manufacturing method is the same as that described in FIG.

次に本発明を実施例および比較例により説明する。尚、実施例および比較例に記した平均気泡数は、次の方法に従って測定した。   Next, the present invention will be described with reference to examples and comparative examples. The average number of bubbles described in Examples and Comparative Examples was measured according to the following method.

押出フィルム成形により、連続的に熱可塑性樹脂ブレンド物の厚さ100μmのフィルムを製造し、30分毎に100mm角のフィルムサンプルを3点取得した。3点のフィルムサンプルに肉眼で確認できる気泡の数をカウントし、3点の平均値を平均気泡数とした。   A film having a thermoplastic resin blend thickness of 100 μm was continuously produced by extrusion film forming, and three 100 mm square film samples were obtained every 30 minutes. The number of bubbles that can be confirmed with the naked eye on the three film samples was counted, and the average value of the three points was taken as the average number of bubbles.

実施例1
図1の装置により熱可塑性樹脂ブレンド物を製造した。混合機11としてヘンシェルミキサー、第1押出機1としてスクリュー径20mmの単軸押出機(L/D=28)、圧力制御装置(A)13としてギアポンプ、第2押出機3としてスクリュー径30mmの二軸押出機(L/D=40)、ダイ16としてコートハンガータイプのTダイを使用した。二酸化炭素供給部8は第1押出機1の中央付近に設け、脱気口は、第2押出機3のシリンダーの連結管2で連結された供給口4から下流側に向かって2箇所の下流側脱気口(脱気口5a(上流側)、脱気口5b(下流側))、および前記供給口の上流側に1箇所の上流側脱気口6に配置して設けた。下流側脱気口5a、及び上流側脱気口6は、開放脱気方法とし、下流側脱気口5bは、真空ポンプ15を使用した強制脱気方法とした。
Example 1
A thermoplastic resin blend was produced by the apparatus shown in FIG. A Henschel mixer as the mixer 11, a single screw extruder (L / D = 28) with a screw diameter of 20 mm as the first extruder 1, a gear pump as the pressure control device (A) 13, and a second screw screw with a diameter of 30 mm as the second extruder 3. A coat hanger type T-die was used as a screw extruder (L / D = 40) and die 16. The carbon dioxide supply unit 8 is provided in the vicinity of the center of the first extruder 1, and the deaeration ports are downstream from the supply port 4 connected by the connecting pipe 2 of the cylinder of the second extruder 3 toward the downstream side. A side deaeration port (a deaeration port 5a (upstream side), a deaeration port 5b (downstream side)) and one upstream deaeration port 6 are provided upstream of the supply port. The downstream deaeration port 5 a and the upstream deaeration port 6 are open degassing methods, and the downstream degassing port 5 b is a forced deaeration method using a vacuum pump 15.

まず、熱可塑性樹脂(A)10aとして、ポリプロピレン(三井化学(株)製J103WB)70重量部と、熱可塑性樹脂(B)10bとして、ポリスチレン(日本ポリスチレン(株)製G899)30重量部を混合機で十分混合して熱可塑性樹脂混合物を得た。   First, 70 parts by weight of polypropylene (J103WB manufactured by Mitsui Chemicals, Inc.) is used as the thermoplastic resin (A) 10a, and 30 parts by weight of polystyrene (G899 manufactured by Nippon Polystyrene Co., Ltd.) is used as the thermoplastic resin (B) 10b. The mixture was sufficiently mixed by a machine to obtain a thermoplastic resin mixture.

次にこの樹脂混合物をホッパー12より第1押出機1に供給して200℃で加熱溶解させた。二酸化炭素は、サイホン式の液化二酸化炭素ボンベ17を使用し、液相部分から直接取り出せるようにした。液化二酸化炭素ボンベ17から二酸化炭素用定量ポンプ18までの流路は、冷媒循環機21により−12℃に調節したエチレングリコール水溶液で冷却し、二酸化炭素を液体状態で二酸化炭素用定量ポンプ18まで送液できるようにした。次に送液した液状二酸化炭素を0.25kg/時間となるよう、直接質量流量計22にて確認しながら二酸化炭素用定量ポンプ18を制御した。二酸化炭素用定量ポンプ18の吐出圧力を30MPaとなるよう保圧弁19にて調整し、二酸化炭素を第1押出機1内に供給した。このときの二酸化炭素供給部8の溶融樹脂圧力は20MPaであった。このようにして、溶融した熱可塑性樹脂の合計量100重量部に対して二酸化炭素を16重量部の割合で第1押出機1に供給し、スクリューで均一に溶解拡散させた。第1押出機1内の圧力を20MPaに維持するようにギアポンプ13、および連結管2の温度で制御した。   Next, this resin mixture was supplied from the hopper 12 to the first extruder 1 and dissolved by heating at 200 ° C. Carbon dioxide was extracted directly from the liquid phase portion using a siphon type liquefied carbon dioxide cylinder 17. The flow path from the liquefied carbon dioxide cylinder 17 to the carbon dioxide metering pump 18 is cooled with an ethylene glycol aqueous solution adjusted to −12 ° C. by the refrigerant circulator 21, and the carbon dioxide is sent to the carbon dioxide metering pump 18 in a liquid state. I was able to liquid. Next, the carbon dioxide metering pump 18 was controlled while confirming directly with the mass flow meter 22 so that the liquid carbon dioxide fed was 0.25 kg / hour. The discharge pressure of the carbon dioxide metering pump 18 was adjusted by the pressure-holding valve 19 so as to be 30 MPa, and carbon dioxide was supplied into the first extruder 1. The molten resin pressure of the carbon dioxide supply unit 8 at this time was 20 MPa. In this way, carbon dioxide was supplied to the first extruder 1 at a ratio of 16 parts by weight with respect to 100 parts by weight of the total amount of the molten thermoplastic resin, and was uniformly dissolved and diffused with a screw. It controlled by the temperature of the gear pump 13 and the connecting pipe 2 so that the pressure in the 1st extruder 1 might be maintained at 20 MPa.

次いで、この溶融混合物を連結管2に送り、連結管2の温度、連結管先端の圧力制御装置(B)14、および第2押出機3のスクリュー回転数で制御して、圧力を10MPaに調整した。そして、この溶融混合物を第2押出機3に送り、3箇所ある脱気口より二酸化炭素および不純物を脱気した。このときの第2押出機の温度は200℃とした。   Next, this molten mixture is sent to the connecting pipe 2 and the pressure is adjusted to 10 MPa by controlling the temperature of the connecting pipe 2, the pressure control device (B) 14 at the tip of the connecting pipe, and the screw speed of the second extruder 3. did. Then, this molten mixture was sent to the second extruder 3 to degas carbon dioxide and impurities from three degassing ports. The temperature of the 2nd extruder at this time was 200 degreeC.

二酸化炭素および不純物を脱気した溶融熱可塑性樹脂は、第2押出機出口に接続されたTダイ16を通じてフィルム状に1.6kg/時間の押出量で押し出した。押し出されたフィルム状熱可塑性樹脂ブレンド物7は、巻取機23にてフィルム成形体を得た。得られたフィルム成形体の平均気泡数は0個であった。   The molten thermoplastic resin from which carbon dioxide and impurities were degassed was extruded in a film form through a T die 16 connected to the outlet of the second extruder at an extrusion rate of 1.6 kg / hour. The extruded film-like thermoplastic resin blend 7 obtained a film molded body with a winder 23. The average number of cells in the obtained film molding was 0.

実施例2
第2押出機3として、スクリュー径30mmの単軸押出機(L/D=28)を用いた以外は、実施例1と同様に行った。得られたフィルム成形体の平均気泡数は0個であった。
Example 2
The same operation as in Example 1 was performed except that a single screw extruder (L / D = 28) having a screw diameter of 30 mm was used as the second extruder 3. The average number of cells in the obtained film molding was 0.

実施例3
図2の装置により熱可塑性樹脂ブレンド物7を製造した。低分子有機化合物としてエタノールを使用した。エタノールの供給は、エタノール用定量ポンプ26によって、エタノールライン27から二酸化炭素ライン24に送液、合流させることによって、熱可塑性樹脂100重量部に対してエタノールを1重量部の割合で供給した。供給したエタノールは、二酸化炭素と共に3箇所の脱気口(5a、5b、6)から脱気した。この操作以外は、実施例1と同様に行った。得られたフィルム成形体の平均気泡数は0個であった。
Example 3
A thermoplastic resin blend 7 was produced using the apparatus shown in FIG. Ethanol was used as the low molecular organic compound. The ethanol was supplied from the ethanol line 27 to the carbon dioxide line 24 by the ethanol metering pump 26 and combined to supply ethanol at a ratio of 1 part by weight to 100 parts by weight of the thermoplastic resin. The supplied ethanol was degassed from the three degassing ports (5a, 5b, 6) together with carbon dioxide. Except for this operation, the same procedure as in Example 1 was performed. The average number of cells in the obtained film molding was 0.

実施例4
第2押出機3として、スクリュー径30mmの単軸押出機(L/D=28)を用いた以外は、実施例3と同様に行った。得られたフィルム成形体の平均気泡数は0個であった。
Example 4
The same procedure as in Example 3 was performed except that a single screw extruder (L / D = 28) having a screw diameter of 30 mm was used as the second extruder 3. The average number of cells in the obtained film molding was 0.

比較例
連結管2で連結された第2押出機3の供給口4のシリンダー上流側に上流側脱気口6を設けない第2押出機を用いた以外は、実施例1と同様に実施した。得られたフィルム成形体の平均気泡数は20個であった。
Comparative example It implemented similarly to Example 1 except having used the 2nd extruder which does not provide the upstream deaeration port 6 in the cylinder upstream of the supply port 4 of the 2nd extruder 3 connected with the connection pipe 2. FIG. . The average film count of the obtained film molded body was 20.

異種の熱可塑性樹脂を用いて、それぞれの物性に悪影響を及ぼすことなく良好な微分散構造を有する熱可塑性樹脂ブレンド物を製造できるので、1種の熱可塑性樹脂では達成されなかった物性を有する樹脂成形体を得ることができる。   Resin having physical properties that could not be achieved by one kind of thermoplastic resin, because a thermoplastic resin blend having a good finely dispersed structure can be produced using different types of thermoplastic resins without adversely affecting the respective physical properties A molded body can be obtained.

本発明の一実施形態の製造方法により熱可塑性樹脂ブレンド物を製造する製造装置を示す系統図である。It is a systematic diagram which shows the manufacturing apparatus which manufactures a thermoplastic resin blend by the manufacturing method of one Embodiment of this invention. 本発明の他の実施形態の製造方法により熱可塑性樹脂ブレンド物を製造する製造装置を示す系統図である。It is a systematic diagram which shows the manufacturing apparatus which manufactures a thermoplastic resin blend by the manufacturing method of other embodiment of this invention. 比較例で実施した熱可塑性樹脂ブレンド物を製造する製造装置を示す系統図である。It is a systematic diagram which shows the manufacturing apparatus which manufactures the thermoplastic resin blend implemented by the comparative example.

符号の説明Explanation of symbols

1 第1押出機
2 連結管
3 第2押出機
4 供給口
5a、5b 下流側脱気口
6 上流側脱気口
7 熱可塑性樹脂ブレンド物
8 二酸化炭素供給部
9 第1押出機下流側先端
10a 熱可塑性樹脂(A)
10b 熱可塑性樹脂(B)
11 混合機
12 ホッパー
13 圧力制御装置(A)
14 圧力制御装置(B)
15 真空ポンプ
16 ダイ
17 二酸化炭素ボンベ
18 二酸化炭素用定量ポンプ
19 保圧弁
20 バルブ(A)
21 冷媒循環機
22 直接質量流量計
23 巻取機
24 二酸化炭素ライン
25 低分子有機化合物
26 低分子有機化合物定量ポンプ
27 低分子有機化合物定量ライン
28 バルブ(B)
DESCRIPTION OF SYMBOLS 1 1st extruder 2 Connecting pipe 3 2nd extruder 4 Supply port 5a, 5b Downstream side deaeration port 6 Upstream side deaeration port 7 Thermoplastic resin blend 8 Carbon dioxide supply part 9 1st extruder downstream end 10a Thermoplastic resin (A)
10b Thermoplastic resin (B)
11 Mixer 12 Hopper 13 Pressure Control Device (A)
14 Pressure control device (B)
15 Vacuum pump 16 Die 17 Carbon dioxide cylinder 18 Carbon dioxide metering pump 19 Holding pressure valve 20 Valve (A)
21 Refrigerating machine 22 Direct mass flow meter 23 Winder 24 Carbon dioxide line 25 Low molecular organic compound 26 Low molecular organic compound metering pump 27 Low molecular organic compound metering line 28 Valve (B)

Claims (5)

第1の押出機に2種以上からなる熱可塑性樹脂を供給して溶融し、溶融状態の該熱可塑性樹脂に、その合計量100重量部に対して2〜200重量部の二酸化炭素を添加して混合し、該混合物を第1の押出機の先端から連結管を通して第2の押出機に供給し、第2の押出機において、そのシリンダーに設けられた、該連結管供給口から上流側の1つ以上の脱気口と下流側の1つ以上の脱気口から二酸化炭素を脱気し、熱可塑性樹脂を押し出すことからなる熱可塑性樹脂ブレンド物の製造方法。   Two or more types of thermoplastic resins are supplied to the first extruder and melted, and 2-200 parts by weight of carbon dioxide is added to the molten thermoplastic resin with respect to 100 parts by weight of the total amount. And the mixture is supplied from the front end of the first extruder to the second extruder through the connecting pipe. In the second extruder, the cylinder is provided upstream of the connecting pipe supply port. A method for producing a thermoplastic resin blend comprising degassing carbon dioxide from one or more degassing ports and one or more degassing ports on the downstream side to extrude a thermoplastic resin. 第1の押出機において、溶融状態の該熱可塑性樹脂に、さらに、その合計量100重量部に対して0.01〜50重量部の低分子有機化合物を添加し、第2の押出機のシリンダーに設けられた脱気口から二酸化炭素とともに脱気する請求項1に記載の熱可塑性樹脂ブレンド物の製造方法。   In the first extruder, 0.01 to 50 parts by weight of a low molecular organic compound is further added to the molten thermoplastic resin in a total amount of 100 parts by weight, and the cylinder of the second extruder The method for producing a thermoplastic resin blend according to claim 1, wherein degassing is performed together with carbon dioxide from a degassing port provided in the container. 低分子有機化合物が、炭素数1〜5のアルコール類、アルカン類、カルボン酸類、エーテル類、アセトン、およびベンゼンからなる群から選択される1種以上の化合物である請求項2に記載の熱可塑性樹脂ブレンド物の製造方法。   The thermoplastic resin according to claim 2, wherein the low molecular organic compound is at least one compound selected from the group consisting of alcohols having 1 to 5 carbon atoms, alkanes, carboxylic acids, ethers, acetone, and benzene. Manufacturing method of resin blend. 第1の押出機の二酸化炭素添加部から下流側先端までの樹脂圧力が12〜50MPaである請求項1〜3のいずれかに記載の熱可塑性樹脂ブレンド物の製造方法。   The method for producing a thermoplastic resin blend according to any one of claims 1 to 3, wherein the resin pressure from the carbon dioxide addition part of the first extruder to the downstream end is 12 to 50 MPa. 第1の押出機が単軸押出機である請求項1〜4のいずれかに記載の熱可塑性樹脂ブレンド物の製造方法。   The method for producing a thermoplastic resin blend according to any one of claims 1 to 4, wherein the first extruder is a single screw extruder.
JP2003401138A 2003-12-01 2003-12-01 Manufacturing method of thermoplastic resin blend Pending JP2005161596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003401138A JP2005161596A (en) 2003-12-01 2003-12-01 Manufacturing method of thermoplastic resin blend

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003401138A JP2005161596A (en) 2003-12-01 2003-12-01 Manufacturing method of thermoplastic resin blend

Publications (1)

Publication Number Publication Date
JP2005161596A true JP2005161596A (en) 2005-06-23

Family

ID=34725156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003401138A Pending JP2005161596A (en) 2003-12-01 2003-12-01 Manufacturing method of thermoplastic resin blend

Country Status (1)

Country Link
JP (1) JP2005161596A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051274A (en) * 2005-07-19 2007-03-01 Toray Ind Inc Polylactic acid resin composition and method for producing the same
JP2010501683A (en) * 2006-08-26 2010-01-21 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Polymer blending method
JP5563736B2 (en) * 2005-08-17 2014-07-30 周 延儒 Multi-stage gear type processing machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268098A (en) * 1998-03-24 1999-10-05 Japan Steel Works Ltd:The Tandem type devolatilizing extruder
JP2000084968A (en) * 1998-07-16 2000-03-28 Mitsui Chemicals Inc Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the method
JP2000301536A (en) * 1999-04-19 2000-10-31 Sekisui Chem Co Ltd Device for producing molded item of resin
JP2002322288A (en) * 2001-04-25 2002-11-08 Mitsui Chemicals Inc Method for producing thermoplastic resin composition
JP2002355880A (en) * 2001-05-31 2002-12-10 Japan Steel Works Ltd:The Kneading/devolatilizing extrusion molding apparatus utilizing supercritical fluid
JP2004066721A (en) * 2002-08-08 2004-03-04 Japan Steel Works Ltd:The Method for venting molten resin and its apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268098A (en) * 1998-03-24 1999-10-05 Japan Steel Works Ltd:The Tandem type devolatilizing extruder
JP2000084968A (en) * 1998-07-16 2000-03-28 Mitsui Chemicals Inc Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the method
JP2000301536A (en) * 1999-04-19 2000-10-31 Sekisui Chem Co Ltd Device for producing molded item of resin
JP2002322288A (en) * 2001-04-25 2002-11-08 Mitsui Chemicals Inc Method for producing thermoplastic resin composition
JP2002355880A (en) * 2001-05-31 2002-12-10 Japan Steel Works Ltd:The Kneading/devolatilizing extrusion molding apparatus utilizing supercritical fluid
JP2004066721A (en) * 2002-08-08 2004-03-04 Japan Steel Works Ltd:The Method for venting molten resin and its apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051274A (en) * 2005-07-19 2007-03-01 Toray Ind Inc Polylactic acid resin composition and method for producing the same
JP5563736B2 (en) * 2005-08-17 2014-07-30 周 延儒 Multi-stage gear type processing machine
JP2010501683A (en) * 2006-08-26 2010-01-21 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Polymer blending method
KR101452527B1 (en) 2006-08-26 2014-10-21 바이엘 머티리얼사이언스 아게 Method of compounding polymers

Similar Documents

Publication Publication Date Title
US8779017B2 (en) Foam and production method of the same
JP4131091B2 (en) Method for producing thermoplastic resin composition
JP3998374B2 (en) Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method
CN109776848B (en) Method and device for directly preparing polylactic acid foamed product from polylactic acid polymerization melt
US20010010849A1 (en) Method and apparatus for microcellular polypropylene extrusion, and polypropylene articles produced thereby
US5958316A (en) Preparation of thermoplastics
WO2020184486A1 (en) Foam molded body production device, foam molded body production method and screw for use in foam molded body production device
EP1390188A2 (en) Injection molding systems and methods
CN112706488B (en) Ethylene-vinyl alcohol copolymer composition with special properties, film and preparation method thereof
KR100592371B1 (en) Manufacturing method of modified thermoplastic resin
US20020147244A1 (en) Injection-molded crystalline/semicrystalline material
JP2005161596A (en) Manufacturing method of thermoplastic resin blend
EP3831573B1 (en) Sheet manufacturing method
JP5036245B2 (en) Method for producing polyolefin microporous membrane
JP2004237729A (en) Shaping apparatus for extrusion foaming
JP2006002055A (en) Method for producing polymer alloy molding
EP3221118B1 (en) Polymer processing system, and related method
JP2002187192A (en) Extrusion molding machine
JP2022152955A (en) Manufacturing method for extruded polypropylene resin foamed particles
US20100168335A1 (en) Method for producing polymer mixtures
JP2002309029A (en) Method for thermoplastic resin foam production
US20190291314A1 (en) Polymer foam processing including different types of blowing agent
WO2009084523A1 (en) Process for producing polypropylene resin foam
JP2021024242A (en) Extrusion production device of foam molded article, extrusion production method, and screw for foam molded article extrusion production device
JP4966087B2 (en) Light reflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209