JP3997120B2 - 移動局、移動通信システム、及びハンドオーバ制御方法 - Google Patents

移動局、移動通信システム、及びハンドオーバ制御方法 Download PDF

Info

Publication number
JP3997120B2
JP3997120B2 JP2002211493A JP2002211493A JP3997120B2 JP 3997120 B2 JP3997120 B2 JP 3997120B2 JP 2002211493 A JP2002211493 A JP 2002211493A JP 2002211493 A JP2002211493 A JP 2002211493A JP 3997120 B2 JP3997120 B2 JP 3997120B2
Authority
JP
Japan
Prior art keywords
base station
reception level
mobile station
handover
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002211493A
Other languages
English (en)
Other versions
JP2004056509A (ja
Inventor
光司郎 北尾
信一 市坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2002211493A priority Critical patent/JP3997120B2/ja
Publication of JP2004056509A publication Critical patent/JP2004056509A/ja
Application granted granted Critical
Publication of JP3997120B2 publication Critical patent/JP3997120B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、移動局、移動通信システム、及びハンドオーバ制御方法に関する。
【0002】
【従来の技術】
従来、基地局と移動局とを備える移動通信システムにおいて、より受信レベルの高い基地局と移動局が無線通信を行うために、接続する基地局を適宜切り替える技術(ハンドオーバ)が実用化されている。ハンドオーバには、複数の基地局のセルが重なり合う領域に移動局が位置する場合に、通信品質を一層向上するために、移動局が複数の基地局と同時に接続するソフトハンドオーバを含む。
【0003】
ハンドオーバのタイミングは、一般的に、移動局の移動元の基地局からの受信レベルR1と、移動局の移動先の基地局からの受信レベルR2との差に基づいて決定される。すなわち、移動局は、R1とR2との差G(R1−R2の絶対値)を常時監視し、この値が所定の閾値(以下、「ハンドオーバ閾値」と記す。)よりも大きくなった時点で、在圏する基地局に隣接する基地局へのハンドオーバを実行する。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術では、移動局と基地局との距離に応じて、隣接する基地局間における受信レベルの差が異なることに起因して、以下の様な問題点があった。すなわち、移動局が基地局近傍に位置する場合には、基地局から遠方に位置する場合と比較して、基地局への電波の到来方向と移動局の移動方向との為す角度(ずれ)が大きい。また、隣接する基地局のアンテナ利得はこの角度に応じて異なり、通常、この角度が大きくなるに連れて受信レベルの差の変動も大きくなる。
【0005】
図1は、受信レベルの差Gの経時的変動により高頻度に発生するハンドオーバの様子を概念的に示す図である。図1中のTg,−Tgは、それぞれ受信レベル差の閾値の上限値、下限値を示し、点Pは、ハンドオーバが発生するタイミングを示す。図1に示す様に、移動局が基地局近傍に位置する場合には特に、受信レベル差Gの変動に伴ってハンドオーバの頻度が増加する。つまり、ハンドオーバのばたつきが生じる。ハンドオーバのばたつきは、基地局の負荷が増大する要因となる。
【0006】
かかる難点に鑑みて、ハンドオーバ閾値Tgを予め大きめの値に設定しておくことも考えられる。しかし、大きめに設定されたハンドオーバ閾値Tgは、移動局と基地局との間の距離を問わず一律に適用される。したがって、移動局が基地局から遠方に位置する場合に、受信レベルが高い最適な基地局に迅速に切り替わる処理が妨げられることが懸念される。その結果、基地局と移動局との通信に必要な電力(送信電力)が増大し、干渉量が増加する可能性がある。
【0007】
そこで、本発明は上記問題点に鑑みてなされたものであり、送信電力の増大を抑制しつつ、ハンドオーバの頻度を低減することを課題とする。
【0008】
【課題を解決するための手段】
上記課題を解決する為に、本発明に係る移動局は、第1の基地局と第2の基地局における受信レベルの差が閾値を超えた場合に、前記第1の基地局と前記第2の基地局との間でハンドオーバを行う移動局において、前記第1の基地局の位置と移動局の位置とから前記第1の基地局と移動局との距離を測定する測定手段と、前記測定手段により測定された前記距離に基づいて、前記閾値を決定する決定手段とを備える。
【0009】
本発明に係るハンドオーバ制御方法は、第1の基地局と第2の基地局における受信レベルの差が閾値を超えた場合に、移動局が、前記第1の基地局と前記第2の基地局との間でハンドオーバを行うハンドオーバ制御方法において、前記移動局が、前記第1の基地局の位置と移動局の位置とから前記第1の基地局と前記移動局との距離を測定する測定ステップと、前記移動局が、前記測定ステップにて測定された前記距離に基づいて、前記閾値を決定する決定ステップとを含む。
【0010】
これらの発明によれば、まず、第1の基地局(移動局が通信を行う基地局に隣接する基地局)及び移動局の位置情報を使用して第1の基地局と移動局との距離が測定され、測定された距離に基づいて、ハンドオーバの契機となる閾値が決定される。例えば、第1の基地局と移動局との距離が所定値より小さい場合には、第1の基地局と第2の基地局(移動局が通信を行う基地局)における受信レベルの差の変動が大きいことが予測される。したがって、移動局は、ハンドオーバの頻度を低減すべく閾値を高い値に決定する。これに対して、第1の基地局と移動局との距離が所定値より大きい場合には、受信レベルの差の変動が小さいことが予測されるので、移動局は、送信電力の増大を抑制すべく閾値を低い値に決定する。その結果、送信電力を抑制しつつ、ハンドオーバの頻度を低減することが可能となる。
【0011】
なお、基地局と移動局との距離の大小は、移動局の移動前と移動後との比較に基づく相対的な関係を表すものである。同様に、ハンドオーバの契機となる閾値の大小は、移動の前後における移動局と基地局間の距離の比較に基づく相対的な関係を表すものである。また、ハンドオーバには、上述したソフトハンドオーバを含む。
【0012】
本発明に係る移動局は、第1の基地局と第2の基地局における受信レベルの差が閾値を超えた場合に、前記第1の基地局と前記第2の基地局との間でハンドオーバを行う移動局において、前記第1の基地局と移動局間における伝搬損失から前記第1の基地局と移動局との距離を測定する測定手段と、前記測定手段により測定された前記距離に基づいて、前記閾値を決定する決定手段とを備える。
【0013】
本発明に係るハンドオーバ制御方法は、第1の基地局と第2の基地局における受信レベルの差が閾値を超えた場合に、移動局が、前記第1の基地局と前記第2の基地局との間でハンドオーバを行うハンドオーバ制御方法において、前記第1の基地局と移動局間における伝搬損失から前記第1の基地局と移動局との距離を測定する測定ステップと、前記移動局が、前記測定ステップにて測定された前記距離に基づいて、前記閾値を決定する決定ステップとを含む。
【0014】
これらの発明によれば、まず、前記第1の基地局と移動局間における伝搬損失を使用して第1の基地局と移動局との距離が測定され、測定された距離に基づいて、ハンドオーバの契機となる閾値が決定される。例えば、第1の基地局と移動局との距離が所定値より小さい場合には、第1の基地局と第2の基地局における受信レベルの差の変動が大きいことが予測される。したがって、移動局は、ハンドオーバの頻度を低減すべく閾値を高い値に決定する。これに対して、第1の基地局と移動局との距離が所定値より大きい場合には、受信レベルの差の変動が小さいことが予測されるので、移動局は、送信電力の増大を抑制すべく閾値を低い値に決定する。その結果、送信電力を抑制しつつ、ハンドオーバの頻度を低減することが可能となる。
【0015】
本発明に係る移動局は、第1の基地局と第2の基地局における受信レベルの差が閾値を超えた場合に、前記第1の基地局と前記第2の基地局との間でハンドオーバを行う移動局において、前記受信レベルの差が増加から減少又は減少から増加に転じる増減回数を計数する計数手段と、前記受信レベルの差の標準偏差を算出する標準偏差算出手段と、前記計数手段により計数された増減回数と、前記標準偏差算出手段により算出された標準偏差とに基づいて、当該増減回数及び当該標準偏差が大きい程、大きい値となるように前記閾値を決定する決定手段とを備える。
【0016】
本発明に係るハンドオーバ制御方法は、第1の基地局と第2の基地局における受信レベルの差が閾値を超えた場合に、移動局が、前記第1の基地局と前記第2の基地局との間でハンドオーバを行うハンドオーバ制御方法において、前記受信レベルの差が増加から減少又は減少から増加に転じる増減回数を計数する計数ステップと、前記受信レベルの差の標準偏差を算出する標準偏差算出ステップと、前記計数ステップにて計数された増減回数と、前記標準偏差算出ステップにて算出された標準偏差とに基づいて、当該増減回数及び当該標準偏差が大きい程、大きい値となるように前記閾値を決定する決定ステップとを含む。
【0017】
これらの発明によれば、まず、第1の基地局と第2の基地局における受信レベルの差が所定の時間間隔内に増加から減少又は減少から増加に転じた回数(増減回数)が計数される。続いて、所定の時間間隔内における上記受信レベルの差の標準偏差が算出される。そして、上記増減回数と上記標準偏差とに基づいて、ハンドオーバの契機となる受信レベル差の閾値が決定される。
【0018】
例えば、所定の時間間隔内における増減回数及び標準偏差が共に所定値より大きい場合には、第1の基地局と第2の基地局における受信レベルの差の変動が大きいことが予測される。つまり、第1の基地局と移動局との距離が短いことが推定される。したがって、移動局は、ハンドオーバの頻度を低減すべく閾値を高い値に決定する。これに対して、増減回数及び標準偏差が共に所定値より小さい場合には、受信レベルの差の変動が小さいことが予測される。つまり、第1の基地局と移動局との距離が長いことが推定される。したがって、移動局は、送信電力の増大を抑制すべく閾値を低い値に決定する。その結果、送信電力を抑制しつつ、ハンドオーバの頻度を低減することが可能となる。
【0019】
本発明に係る移動局は、第1の基地局と第2の基地局における受信レベルの差が閾値を超えた場合に、前記第1の基地局と前記第2の基地局との間でハンドオーバを行う移動局において、前記受信レベルの差が増加から減少又は減少から増加に転じる増減回数を計数する計数手段と、前記受信レベルの差の標準偏差を算出する標準偏差算出手段と、前記受信レベルの差の平均値を算出する平均値算出手段と、前記計数手段により計数された増減回数と、前記標準偏差算出手段により算出された標準偏差と、前記平均値算出手段により算出された平均値とに基づいて、前記閾値を決定する決定手段とを備える。
【0020】
本発明に係るハンドオーバ制御方法は、第1の基地局と第2の基地局における受信レベルの差が閾値を超えた場合に、移動局が、前記第1の基地局と前記第2の基地局との間でハンドオーバを行うハンドオーバ制御方法において、前記移動局が、前記受信レベルの差が増加から減少又は減少から増加に転じる増減回数を計数する計数ステップと、前記受信レベルの差の標準偏差を算出する標準偏差算出ステップと、前記受信レベルの差の平均値を算出する平均値算出ステップと、前記計数ステップにて計数された増減回数と、前記標準偏差算出ステップにて算出された標準偏差と、前記平均値算出ステップにて算出された平均値とに基づいて、前記閾値を決定する決定ステップとを含む。
【0021】
これらの発明によれば、まず、第1の基地局と第2の基地局における受信レベルの差が所定の時間間隔内に増加から減少又は減少から増加に転じた回数(増減回数)が計数される。続いて、所定の時間間隔内における上記受信レベルの差の標準偏差が算出される。更に、前記所定の時間間隔内における上記受信レベルの差の平均値が算出される。そして、上記増減回数と上記標準偏差と上記平均値とに基づいて、ハンドオーバの契機となる受信レベル差の閾値が決定される。
【0022】
例えば、所定の時間間隔内における増減回数及び標準偏差が共に所定値より大きい場合には、第1の基地局と第2の基地局における受信レベルの差の変動が大きいことが予測される。つまり、第1の基地局と移動局との距離が短いことが推定される。したがって、移動局は、ハンドオーバの頻度を低減すべく閾値を高い値に決定するが、この高い閾値として、例えば、上記平均値の絶対値と上記標準偏差との和算により求められた値を使用する。
【0023】
これに対して、増減回数及び標準偏差が共に所定値より小さい場合には、受信レベルの差の変動が小さいことが予測される。つまり、第1の基地局と移動局との距離が長いことが推定される。したがって、移動局は、送信電力の増大を抑制すべく閾値を低い値に決定するが、この低い閾値として、例えば、上記平均値の絶対値と上記標準偏差との和算により求められた値を使用してもよい。閾値の決定に際して、増減回数と標準偏差のみならず、受信レベル差の平均値を考慮することにより、移動局の周辺環境に応じた木目細やかな閾値の可変制御が可能となる。その結果、送信電力を抑制しつつ、ハンドオーバの頻度を低減することができる。
【0024】
また、上述した移動局と、前記第1の基地局と前記第2の基地局とを備えて構成され、前記移動局は前記第1の基地局と前記第2の基地局との間でハンドオーバを行う移動通信システムを構築してもよい。
【0025】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を詳細に説明する。
まず、構成を説明する。図2は、第1〜第4の実施形態における移動通信システム1の全体構成を示す概念図である。移動通信システム1は、1機の移動局10とn+1機の基地局B0〜Bnとを少なくとも備えて構成される。図2においては簡単の為、移動局10と5機の基地局B0〜B4とを図示する。基地局B0〜Bnからの電波到達範囲はセルA0〜Anにより表され、移動局10は、現時点で基地局B0のセルA0内に在圏する。
【0026】
なお、移動局10の在圏するセルを実線で示し、その隣接セルを破線で示す。基地局B0は、移動局10が在圏するセルにおいて移動局10と通信を行う第2の基地局に対応し、基地局B1〜Bnの何れか一の基地局は、基地局B0の周辺に位置する第1の基地局に対応する。
【0027】
(第1の実施の形態)
まず、本発明の第1の実施形態について詳細に説明する。
図3は、移動局10の機能的構成を示すブロック図である。図3に示す様に、移動局10は、報知情報受信部11と、位置測定部12と、距離算出部13(測定手段に対応)と、距離比較部14と、閾値決定部15(決定手段に対応)と、受信レベル測定部16と、受信レベル差比較部17と、ハンドオーバ実行部18とを備えて構成される。
【0028】
報知情報受信部11は、共通制御チャネル(とまり木チャネル)を伝送路として基地局B0から送信される報知情報C0〜Cn(nは自然数)を受信する。報知情報C0〜Cnは、基地局B0〜Bnに関する制御情報であり、基地局B0の緯度及び経度を示す位置情報は元より、基地局B0に隣接する基地局B1〜Bnの位置情報を含む。
【0029】
位置測定部12は、衛星から発信される電波から移動局10の位置を三次元測位するGPS(Global Positioning System)を利用して、移動局10の緯度経度を算出する。
【0030】
距離算出部13は、報知情報受信部11から取得された基地局B0の緯度経度と、位置測定部12から取得された移動局10の緯度経度とを参照して、移動局10と基地局B0との間の距離を算出する。距離の算出は、他の基地局B1〜Bnに関しても、基地局B1〜Bnの位置情報を参照して同様に行われる。
【0031】
距離比較部14は距離閾値格納領域14aを有する。距離閾値格納領域14aには、基地局B0〜Bnと移動局10との距離D0〜Dnの長短を決定する基準として使用される距離閾値Tdが格納されている。距離閾値Tdは、基地局周辺の環境により異なるが、例えば、建物の多い市街地においては100m程度である。なお、距離閾値Tdは、距離D0〜Dnの長短を精度良く認識すべく、段階的に複数設定してもよい。
また、距離比較部14は、移動局10と基地局B0〜Bnとの距離を距離算出部13から取得して、上述の距離閾値Tdと比較する。そして、比較結果を閾値決定部15に通知する。
【0032】
閾値決定部15は、距離比較部14から通知された距離の比較結果に基づいて、ハンドオーバの契機として使用されるハンドオーバ閾値の高低を決定する。例えば、距離D0〜Dnが距離閾値Tdよりも小さい場合には、ハンドオーバ閾値として低い値を使用するものとし、距離D0〜Dnが距離閾値Td以上の場合には、高いハンドオーバ閾値を使用するものと決定する。
【0033】
受信レベル測定部16は、基地局B0〜Bnから送信される電波の強度に基づいて、周知慣用の方法により受信レベルR0〜Rnを測定する。受信レベル測定部16は、測定された受信レベルR0〜Rnの内、2つの受信レベル(例えば、受信レベルR0とR1)の差を算出し、後段の受信レベル差比較部17に算出結果を出力する。
【0034】
受信レベル差比較部17はハンドオーバ閾値格納領域17aを有する。ハンドオーバ閾値格納領域17aには、高低2種類のハンドオーバ閾値が格納されている。例えば、初期値である低い方のハンドオーバ閾値Tgは5dB程度であり、高い方のハンドオーバ閾値Tghは10dB程度である。なお、ハンドオーバ閾値は、距離閾値Tdの数に応じて、2段階に限らず3段階以上に設定してもよい。
【0035】
また、受信レベル差比較部17は、高低2種類のハンドオーバ閾値の内、閾値決定部15により決定されたハンドオーバ閾値Tg又はTghと、受信レベル測定部16から入力された、受信レベルの差(例えば、R1−R0の絶対値)の算出結果とを比較する。そして、受信レベル差比較部17は、受信レベルの差がハンドオーバ閾値を上回った時点でハンドオーバを実行する。
【0036】
次に、図4を参照して、移動通信システム1の動作を説明する。併せて、本発明に係るハンドオーバ制御方法を構成する各ステップについて説明する。動作説明の前提として、図2に示す様に、移動局10はセルA0内に在圏し、報知情報C0〜Cnを基地局B0から常時受信する場合を想定する。
【0037】
図4は、第1の実施形態における閾値可変制御処理を説明する為のフローチャートである。図4のS1では、基地局B0から送信される報知情報C0〜Cnが報知情報受信部11により受信される。S2では、基地局B0に隣接する基地局B1〜Bnの内、何れの基地局に関してS4以降の処理を実行するかを識別するための計数カウンタx(図示せず)に、初期値として"1"が設定される。
【0038】
S3では、基地局B0に隣接する全ての基地局B1〜Bnに関してS4以降の処理が完了したか否かが判定される。すなわち、x=n+1が成立するか否かが判定され、成立していなければ(S3;N)S4以降の処理に移行する。成立していれば(S3;Y)S1に戻り、それ以降の処理が再び実行される。
【0039】
S4では、移動局10の現在の緯度及び経度が位置測定部12により測定される。S5では、S1において受信された報知情報C0〜Cnから、報知情報Cxに含まれる基地局Bxの緯度及び経度が距離算出部13により取得される。S6では、距離算出部13により、S4で測定された移動局10の緯度経度と、S5で取得された基地局Bxの緯度経度とに基づいて、移動局10と基地局Bx間の距離Dxが算出される。
【0040】
S7では、受信レベル測定部16により、移動局10と基地局Bx間の電波強度を参照して報知情報Cxの受信レベルRxが測定される。同様に、S8では、受信レベル測定部16により、移動局10と在圏する基地局B0間の電波強度を参照して報知情報C0の受信レベルR0が測定される。S9では、受信レベル測定部16により、S7で測定された受信レベルRxとS8で測定された受信レベルR0との差(Rx−R0の絶対値)が受信レベル差Gxして算出される。
【0041】
S10では、距離比較部14により、距離閾値格納領域14aから距離閾値Tdが読み出され、S6で算出された距離Dxとの大小が比較される。当該比較の結果、Dx<Tdである場合(S10;Y)には、移動局10が基地局Bxの近傍に位置しているものと判断し、閾値決定部15により、ハンドオーバ閾値が初期値TgからTghに変更される(S11)。
【0042】
S12では、受信レベル差比較部17により、ハンドオーバ閾値格納領域17aからハンドオーバ閾値Tghが読み出され、S9で算出された受信レベル差Gxとの大小が比較される。当該比較の結果、Gx>Tghである場合(S12;Y)には、移動局10は、受信レベルの高い最適な基地局が基地局Bxであるものと判断し、ハンドオーバ実行部18により、基地局B0から基地局Bxへのハンドオーバが実行される(S13)。
【0043】
ハンドオーバの実行後は、ハンドオーバ先の基地局が在圏セルに対応する基地局となるので、当該基地局を基地局B0としてS1以降の処理が実行される。
また、S10における比較の結果、Dx≧Tdである場合(S10;N)には、移動局10が基地局Bxの遠方に位置しているものと判断され、受信レベル差比較部17により、ハンドオーバ閾値の初期値Tgと受信レベル差Gxとの大小が比較される(S14)。
【0044】
当該比較の結果、Gx>Tgである場合(S14;Y)には、受信レベルの高い最適な基地局が基地局Bxであるものと判断され、基地局B0から基地局Bxへのハンドオーバが実行される(S13)。
【0045】
なお、S12における比較の結果Gx≦Tghである場合(S12;N)、あるいは、S14における比較の結果Gx≦Tgである場合(S14;N)には、基地局Bxが、ハンドオーバ先となる最適の基地局ではないものと判断される。したがって、更に別の基地局に関する受信レベル差を監視すべく、計数カウンタxに1を追加して(S15)、再びS3以降の処理を実行する。
【0046】
図5は、移動局10が基地局B0の近傍に位置する場合の受信レベル差Gxと、高低2種類のハンドオーバ閾値Tg,Tghとの関係を概念的に示す図である。図5において、横軸には時間tが規定され、縦軸には受信レベル差Gxが規定されている。移動局10が基地局B0の近傍に位置する場合には、受信レベル差Gxの経時的変動が激しいので、低い方のハンドオーバ閾値Tgを使用すると、ハンドオーバの回数が7回程度と多くなる。一方、高い方のハンドオーバ閾値Tghを使用すると、ハンドオーバの回数が1回(図5の点P参照)に減少する。
【0047】
以上説明した様に、ハンドオーバの頻度低減を実現するには、ハンドオーバ閾値Tの下限と上限との差(図5の幅W)を大きくすることが有効である。ところが、隣接する基地局B0と基地局Bx間における受信レベル差Gxの変動量に依らず一律にハンドオーバ閾値の幅を大きくとると、受信レベルの差の小さい移動局に関してまで、大きいハンドオーバ閾値の幅が適用されることになる。このため、移動局10が最適な基地局を即時に選択してハンドオーバを行う妨げとなり、基地局と移動局との間に必要な送信電力が増大することが懸念される。送信電力の増大は、移動局が他の移動局や基地局と干渉する原因となる。かかる懸念は、隣接する基地局B0,Bx間における受信レベル差Gxの変動が一般的に小さい、基地局遠方に位置する移動局に関して顕著である。
【0048】
そこで、本発明に係る移動通信システム1では、上記問題点に鑑みて、受信レベル差Gxの変動が大きいことが予見される基地局近傍に移動局10が位置する場合にのみハンドオーバ閾値の幅を大きくとったものである。これにより、移動局10が基地局から遠方に位置する場合に、周辺の基地局の中から最適な基地局を即時に選択し、その基地局へのハンドオーバを実行することができる。したがって、基地局と移動局との間における送信電力が必要以上に増大することがなくなり干渉を防止できる。また、ソフトハンドオーバを含むハンドオーバの頻度を低減してばたつきを抑えることができ、基地局の負荷低減を図ることが可能となる。
【0049】
(第2の実施の形態)
次に、図6〜図7を参照して、本発明の第2実施形態について説明する。第1の実施形態における移動通信システム1では、基地局と移動局間の距離を測定する手段として、各局の位置情報(緯度・経度)を使用するものとしたが、本実施形態では伝搬損失を使用する。詳細は後述するが、伝搬損失は、基地局の送信電力と移動局の受信レベルとから算出される。
【0050】
図6は、第2の実施形態における移動局20の機能的構成を示すブロック図である。移動局20の構成は、第1の実施形態において詳述した移動局10の構成と類似するので、各構成要素には同列の符合を付しその説明は省略すると共に、第1実施形態との差異について詳述する。
【0051】
すなわち、移動局20は、図6に示す様に、報知情報受信部21と、伝搬損失算出部22と、距離算出部23(測定手段に対応)と、距離比較部24と、閾値決定部25(決定手段に対応)と、受信レベル測定部26と、受信レベル差比較部27と、ハンドオーバ実行部28とを備えて構成される。
【0052】
報知情報受信部21、距離算出部23、距離比較部24、閾値決定部25、受信レベル測定部26、受信レベル差比較部27、ハンドオーバ実行部28の各部は、報知情報受信部11、距離算出部13、距離比較部14、閾値決定部15、受信レベル測定部16、受信レベル差比較部17、ハンドオーバ実行部18にそれぞれ相当する。
【0053】
移動局20に特有の構成要素である伝搬損失算出部22は、基地局B0〜Bnの送信電力E0〜Enと上述の受信レベルR0〜Rnとに基づいて、基地局B0〜Bnと移動局10との間における伝搬損失を算出する。
【0054】
続いて、図7を参照して、第2の実施形態における閾値可変制御処理について説明する。併せて、本発明に係るハンドオーバ制御方法を構成する各ステップについて説明する。なお、本閾値可変制御処理は、第1の実施形態において詳述した閾値可変制御処理(図4参照)と基本的に同様である。具体的には、図7のT1〜T3,T7〜T14は、図4に示したS1〜S3,S8〜S15に相当する。
【0055】
以下、各閾値可変制御処理の差異であるT4〜T6について説明する。すなわち、T4では、T1において受信された報知情報Cxから、報知情報Cxに含まれる基地局Bxの送信電力Exが伝搬損失算出部22により取得される。T5では、受信レベル測定部26により、移動局10と基地局Bx間の電波強度を参照して報知情報Cxの受信レベルRxが測定される。
【0056】
そして、T6では、伝搬損失算出部22により、T4で取得された送信電力Exと、T5で測定された基地局Bxの受信レベルとに基づいて、移動局10と基地局Bx間の伝搬損失が算出される。更に、距離算出部13により、移動局10と基地局Bx間の距離Dxが算出される。伝搬損失から距離Dxを算出する手法に関しては、周知慣用の計測技術であるので詳細な説明は省略するが、公知文献(例えば、「電波伝搬ハンドブック 第15章 陸上移動通信の伝搬」 細矢良雄 監修 リアライズ社発行)に記載の伝搬損失計算式に所定のパラメータを代入して算出される。
【0057】
以上説明した様に、第2の実施形態における移動通信システムは、基地局B0〜Bnと移動局10間の距離Dxと伝搬損失との相関関係に着目して為されたものである。すなわち、距離Dxが長い程、基地局と移動局との間に存在する障害物や干渉波が多いので、電波の伝搬損失が増加する。換言すれば、伝搬損失が少ない程、移動局10は基地局の近傍に位置する可能性が高い。したがって、受信レベル差Gxの変動が大きいことが予見される基地局近傍に位置する移動局に関してのみ、ハンドオーバ閾値の幅(図5の幅W)が大きくなる様に制御する。これにより、基地局から遠方に位置する移動局は、最適な基地局を即時に選択し、その基地局にハンドオーバを実行することができる。したがって、基地局と移動局との間における送信電力が必要以上に増大することがなくなり干渉を防止できる。また、ハンドオーバの頻度を低減してばたつきを抑えることができ、基地局の負荷低減を図ることが可能となる。
【0058】
(第3の実施の形態)
次に、図8〜図11を参照して、本発明の第3実施形態について説明する。第3の実施形態における移動通信システムでは、受信レベルの変動の大小と、基地局と移動局間の距離との相関関係に着目し、受信レベルの変動が大きい場合に上記距離が短いものと推定する。変動の大小を判定する要素としては、所定時間当たりに受信レベルの差が増加から減少又は減少から増加に転じた回数、及び受信レベルの差の標準偏差を使用する。
【0059】
図8は、第3の実施形態における移動局30の機能的構成を示すブロック図である。移動局30は、第1の実施形態において詳述した移動局10の構成要素と共通の構成要素を複数有するので、その説明は省略すると共に、第1実施形態との差異について詳述する。
【0060】
すなわち、移動局30は、図8に示す様に、報知情報受信部31と、受信レベル記憶部32と、反転回数計数部33(計数手段に対応)と、反転回数比較部34と、標準偏差算出部35(標準偏差算出手段に対応)と、標準偏差比較部36と、閾値決定部37(決定手段に対応)と、受信レベル測定部38と、受信レベル差比較部39と、ハンドオーバ実行部310とを備えて構成される。
【0061】
報知情報受信部31、閾値決定部37、受信レベル測定部38、受信レベル差比較部39、ハンドオーバ実行部310の各部は、報知情報受信部11、閾値決定部15、受信レベル測定部16、受信レベル差比較部17、ハンドオーバ実行部18にそれぞれ相当する。
【0062】
受信レベル記憶部32は、受信レベル測定部38により測定された受信レベルR0〜Rnを保存する。また、受信レベル記憶部32は、受信レベル測定部38により算出された時刻tと時刻t−1における受信レベルの差G1(t)〜Gn(t)、及びその変化量S1(t)〜Sn(t)を履歴的に保存する。
【0063】
反転回数計数部33は、受信レベル差の変化量Sx(t)(xは1〜nの自然数)の符号が所定の時間間隔(図5のt1に対応し、例えば時速40km程度で移動している場合には1秒程度)当たりに反転した回数Jxを算出する。反転回数Jxは、受信レベルの差Gxが、増加から減少に転じた回数と減少から増加に転じた回数の和に相当する。例えば、図5に示す時間間隔t1においては、増加から減少に転じた回数はP1〜P5の5回であり、減少から増加に転じた回数はP6〜P9の4回であるので、反転回数は9回と計数される。
【0064】
反転回数比較部34は反転回数閾値格納領域34aを有する。反転回数閾値格納領域34aには、移動局30が基地局B0〜Bnの近傍に位置するか否かを推定するための基準として使用される反転回数閾値Tjが格納されている。反転回数閾値Tjは、反転回数の計数対象となる時間間隔の長短によって異なるが、例えば時速40km程度で移動している場合には1秒の時間間隔当たり2回程度である。なお、反転回数閾値Tjは複数設定してもよい。
【0065】
標準偏差算出部35は、所定の時間間隔における受信レベル差Gxの標準偏差Lxを算出する。標準偏差Lxは、受信レベル差Gxの平均値辺りのばらつきの度合いを示すので、この値が大きい程、受信レベルの変動が激しい、すなわち移動局30と基地局B0〜Bnとの距離が短いことが推定される。
【0066】
標準偏差比較部36は標準偏差閾値格納領域36aを有する。標準偏差閾値格納領域36aには、移動局30が基地局B0〜Bnの近傍に位置するか否かを推定するための基準として使用される標準偏差閾値TLが格納されている。標準偏差閾値TLの算出対象となる時間間隔は、上記推定に関して、一定レベル以上の精度を確保する観点から、充分に長くとることが望ましい。
【0067】
続いて、図9〜図10を参照して、移動通信システム1の動作を説明する。併せて、本発明に係るハンドオーバ制御方法を構成する各ステップについて説明する。動作説明の前提として、移動局30が、図2に示したセルA0内に在圏し、報知情報C0〜Cnを基地局B0から常時受信する場合を想定する。また、閾値可変制御処理の開始時刻をtとする(図9のU1)。
【0068】
図9は、第1の実施形態における閾値可変制御処理を説明する為のフローチャートである。U2では、基地局B0に隣接して設置された基地局B1〜Bnの内、何れの基地局に関してU5以降の処理を実行するかを識別するための計数カウンタxに、初期値として"1"が設定される。
【0069】
U3では、基地局B0から送信される報知情報C0〜Cnが報知情報受信部31により受信される。U4では、報知情報C0〜Cnと一致しない過去の受信レベルが受信レベル記憶部32から消去される。
【0070】
U5では、基地局B0に隣接する全ての基地局B1〜Bnに関してU6以降の処理が完了したか否かが判定される。すなわち、x=n+1が成立するか否かが判定され、成立していなければ(U5;N)U6以降の処理に移行する。成立していれば(U5;Y)U2に戻り、それ以降の処理が再び実行される。
【0071】
U6では、受信レベル測定部38により、移動局30と基地局Bx間の電波強度を参照して報知情報Cxの受信レベルRxが測定される。同様に、U7では、受信レベル測定部38により、移動局30と在圏する基地局B0間の電波強度を参照して報知情報C0の受信レベルR0が測定される。U6にて測定された受信レベルRxとU7にて測定された受信レベルR0とは、受信レベル記憶部32に保存される(U8)。
【0072】
U9では、受信レベル測定部38により、受信レベルRxと受信レベルR0との差(Rx−R0の絶対値)が、時刻tにおける受信レベル差Gx(t)して算出される。U9にて算出された受信レベル差Gx(t)は受信レベル記憶部32に保存される(U10)。
【0073】
U11では、受信レベル測定部38により、時刻tと時刻t−1における受信レベルの差の変化量Sx(t)が算出される。図10に移り、U11にて算出された変化量Sx(t)は受信レベル記憶部32に保存される(U12)。
U13では、反転回数計数部33により、U12にて保存された変化量Sx(t)の所定時間間隔における正負符号の反転回数Jxが計数される。
【0074】
U14では、反転回数比較部34により、反転回数閾値格納領域34aから反転回数閾値Tjが読み出され、U13で計数された反転回数Jxとの大小が比較される。当該比較の結果、Jx>Tjである場合(U14;Y)にはU15に移行する。すなわち、標準偏差算出部35により、U10にて保存された受信レベル差Gx(t)の標準偏差Lxが算出される(U15)。
【0075】
U16では、標準偏差比較部36により、標準偏差閾値格納領域36aから標準偏差閾値TLが読み出され、U15で算出された標準偏差Lxとの大小が比較される。当該比較の結果、Lx>TLである場合(U16;Y)にはU17に移行する。すなわち、移動局30が基地局Bxの近傍に位置しているものと判断し、閾値決定部37により、ハンドオーバ閾値が初期値TgからTghに変更される(U17)。
【0076】
U18では、受信レベル差比較部39により、ハンドオーバ閾値格納領域39aからハンドオーバ閾値Tghが読み出され、U9にて算出された受信レベル差Gx(t)との大小が比較される。当該比較の結果、Gx(t)>Tghである場合(U18;Y)には、受信レベルの高い最適な基地局が基地局Bxであるものと判断し、ハンドオーバ実行部310により、基地局B0から基地局Bxへのハンドオーバが実行される(U19)。
【0077】
ハンドオーバの実行後は、ハンドオーバ先の基地局が在圏セルに対応する基地局となるので当該基地局を基地局B0とし、時刻tに時間単位1を追加した上で(U20)、U2以降の処理が再度実行される。
【0078】
また、U14における比較の結果Jx≦Tjである場合(U14;N)、あるいは、U16における比較の結果Lx≦TLである場合(U16;N)には、移動局30が基地局Bxの遠方に位置しているものと判断される。したがって、受信レベル差比較部39により、ハンドオーバ閾値の初期値Tgと受信レベル差Gx(t)との大小が比較される(U21)。
【0079】
当該比較の結果、Gx(t)>Tgである場合(U21;Y)には、受信レベルの高い最適な基地局が基地局Bxであるものと判断され、基地局B0から基地局Bxへのハンドオーバが実行される(U19)。
【0080】
なお、U19における比較の結果Gx(t)≦Tghである場合(U18;N)、あるいは、U21における比較の結果Gx(t)≦Tgである場合(U21;N)には、基地局Bxが最適の基地局ではないものと判断される。したがって、更に別の基地局に関する受信レベル差を監視すべく、計数カウンタxに1を追加して(U22)、再びU5以降の処理を実行する。
【0081】
ここで、図5は、移動局10が基地局B0の近傍に位置する場合の受信レベル差Gxと、高低2種類のハンドオーバ閾値Tg,Tghとの関係を概念的に示す図である。移動局10が基地局B0の近傍に位置する場合には、受信レベル差Gxの経時的変動が激しいので、低い方のハンドオーバ閾値Tgを使用すると、ハンドオーバの回数が7回程度と多くなる。一方、高い方のハンドオーバ閾値Tghを使用すると、ハンドオーバの回数が1回(図5の点P参照)に減少する。
【0082】
以上説明した様に、第3の実施形態における移動通信システム1は、基地局と移動局間の距離を推定する手段として、受信レベルの変動の大小判定を使用する。すなわち、移動局30は、時間tにおける受信レベル差Gx(t)と、時間t-1における受信レベル差Gx(t-1)との差Sx(t)を監視し、所定時間当たりにSx(t)の符号が反転した回数Jxを計数する。この反転回数Jxが多い程、受信レベルの差が増加から減少あるいは減少から増加に転じる回数が多く、受信レベルRxの増減が激しいことが推定される。
【0083】
また、移動局30は、受信レベル差Gxの所定時間当たりの標準偏差Lxを算出する。この標準偏差Lxが大きい程、受信レベル差Gxの分散は大きく、受信レベルRxの増減が激しいことが推定される。そこで、移動局30は、反転回数Jxと反転回数閾値Jtとを比較し、標準偏差Lxと標準偏差閾値Ltとを比較する。比較の結果、反転回数Jx及び標準偏差Lxが共に、対応する閾値を上回った場合には、移動局30は、ハンドオーバのばたつきが生じる程、基地局の近傍に位置するものと判断し、高いハンドオーバ閾値Tghを使用する。一方、反転回数Jx、標準偏差Lxの何れか一方でも、対応する閾値以下になった場合には、送信電力が過剰に増大することを予防すべく、移動局30は、低いハンドオーバ閾値Tgを使用する。これにより、基地局と移動局との間における送信電力を抑制しつつ、ハンドオーバの頻度を低減することが可能となる。
【0084】
ここで、第3の実施形態の変形態様について説明する。本実施の形態では、標準偏差閾値TLを1つの数値に設定するものとしたが、複数設定しても勿論よい。例えば、標準偏差閾値を4段階に設定し、これに対応してハンドオーバ閾値を5段階に設定する。標準偏差閾値36aには4種類の標準偏差閾値TL1,TL2,TL3,TL4が予め格納されており、TL1<TL2<TL3<TL4を満たす。また、ハンドオーバ閾値39aには5種類のハンドオーバ閾値Tg,Tg1,Tg2,Tg3,Tg4が予め格納されており、Tg<Tg1<Tg2<Tg3<Tg4を満たす。
【0085】
図13は、4段階の標準偏差閾値TL1,TL2,TL3,TL4に応じてハンドオーバ閾値Tg,Tg1,Tg2,Tg3,Tg4が決定される過程を示すフローチャートである。本変形態様では、上述したU15の処理の後に、標準偏差Lxと標準偏差閾値TL1との大小比較が、標準偏差比較部36により行われる(U161)。
【0086】
当該比較の結果、Lx>TL1の場合(U161;Y)には、標準偏差Lxと標準偏差閾値TL2との大小比較が実行される(U162)。一方、Lx≦TL1の場合(U161;N)には、受信レベル差Gx(t)とハンドオーバ閾値Tgとの大小比較が、受信レベル差比較部39により行われる(U166)。当該比較の結果、Gx(t)>Tgの場合(U166;Y)には、基地局Bxへのハンドオーバが実行される。一方、Gx(t)≦Tgの場合(U166;N)には、図9のU22に戻り、現時点のxに1が加算される。
【0087】
以下、U162〜U164の処理はU161と同様に実行され、U167〜U169の処理はU166と同様に実行される。その結果、標準偏差Lxが、全ての標準偏差閾値TL1,TL2,TL3,TL4を上回った場合に、ハンドオーバ閾値としてTg4が使用される(U165)。なお、U19以降の処理は、図10を参照して説明したU19以降の処理と同一である。
【0088】
上述した様に、本変形態様では、移動局30は、受信レベル差の標準偏差Lxの高低に応じて、多段階に設定されたハンドオーバ閾値の中から最適なハンドオーバ閾値を選択して使用できる。これにより、移動局30周辺の受信電波状況に応じた、より木目細やかなハンドオーバ制御が可能となる。
【0089】
(第4の実施の形態)
最後に、図12〜図14を参照して、本発明の第4の実施形態について説明する。第3の実施形態における移動通信システムでは、受信レベル差の反転回数と標準偏差とに基づいてハンドオーバ閾値を決定したが、本実施形態では、更に受信レベル差の平均値を閾値の決定に使用する。
【0090】
図12は、第4の実施形態における移動局40の機能的構成を示すブロック図である。移動局40の構成は、第3の実施形態において詳述した移動局30の構成と類似するので、各構成要素には同列の符合を付しその説明は省略すると共に、第3の実施形態との差異について詳述する。
【0091】
すなわち、移動局30は、図12に示す様に、報知情報受信部41と、受信レベル記憶部42と、反転回数計数部43(計数手段に対応)と、反転回数比較部44と、標準偏差算出部45(標準偏差算出手段に対応)と、標準偏差比較部46と、閾値決定部47(決定手段に対応)と、受信レベル測定部48と、受信レベル差比較部49と、ハンドオーバ実行部410と、平均値算出部411とを備えて構成される。
【0092】
報知情報受信部41、受信レベル記憶部42、反転回数計数部43、反転回数比較部44、標準偏差算出部45、標準偏差比較部46、閾値決定部47、受信レベル測定部48、受信レベル差比較部49、ハンドオーバ実行部410の各部は、報知情報受信部31、受信レベル記憶部32、反転回数計数部33、反転回数比較部34、標準偏差算出部35、標準偏差比較部36、閾値決定部37、受信レベル測定部38、受信レベル差比較部39、ハンドオーバ実行部310にそれぞれ相当する。
【0093】
新規の構成要素である平均値算出部411は、受信レベル記憶部42に記憶された受信レベル差G1〜Gnの平均値K1〜Knを算出する。
また、受信レベル差比較部49の有するハンドオーバ閾値格納領域49aには、低いハンドオーバ閾値Tgが予め(閾値可変制御処理の実行に先立って)格納されている。高いハンドオーバ閾値Tghは、後述の閾値可変制御処理の実行に伴って算出されるものであり、ハンドオーバ閾値格納領域49aに予め格納されていない。
【0094】
続いて、図13及び図14を参照して、第4の実施形態における閾値可変制御処理について説明する。併せて、本発明に係るハンドオーバ制御方法を構成する各ステップについて説明する。なお、本閾値可変制御処理は、第1の実施形態において詳述した閾値可変制御処理(図9及び図10参照)と基本的に同様である。
【0095】
具体的には、図13のW1〜W11,W22,W24は、図9に示したU1〜U11,U20,U22に相当する。また、図14のW12〜W16,W19〜W21,W23は、図10に示したU12〜U16,U17〜U19,U21に相当する。更に、図13及び図14の連接記号D,E,Fは、図9及び図10の連接記号A,B,Cに相当する。
【0096】
以下、各閾値可変制御処理の差異であるW17,W18について説明する。すなわち、W17では、所定時間間隔における受信レベル差Gxの平均値Kxが、平均値算出部411により算出される。W18では、閾値決定部37により、W17にて算出された平均値Kxの絶対値に、W15にて算出された標準偏差Lxが加算され、高いハンドオーバ閾値Tghが算出される。
【0097】
以上説明した様に、第4の実施形態における移動通信システムでは、ハンドオーバ閾値を決定するに当たり、受信レベル差変化量の反転回数Jx(xは1〜nの自然数)の大小、受信レベル差の標準偏差Lxの大小に加えて、受信レベル差の平均値Kxが参酌される。すなわち、第1〜第3の実施形態では、ハンドオーバ閾値は、移動局に既存のハンドオーバ閾値Tg,Tghの中から選択的に決定されるのに対して、本実施形態では、高いハンドオーバ閾値Tghが受信レベル差Gxに基づく計算により決定される。
【0098】
例えば、受信レベル差の平均値Kxに依らず、高いハンドオーバ閾値Tghとして固定の閾値を使用すると、受信レベル差の平均値Kxが大きい場合に、受信レベルの変動が無視できる程度に微小であるにも拘わらずハンドオーバが発生することが予見される。これは、本発明の課題であるハンドオーバの頻度低減を達成する上で妨げとなる可能性がある。そこで、ハンドオーバ閾値Tghの算出に際して、受信レベル差の平均値Kxの絶対値を加算することで、平均値Kxの増減に連動してハンドオーバ閾値Tghも増減する様にしたものである。
【0099】
同様に、受信レベル差の標準偏差Lxに依らず、高いハンドオーバ閾値Tghとして固定の閾値を使用すると、受信レベル差の標準偏差Lxが大きい場合に、受信レベルの変動が相対的にみれば微小であるにも拘わらずハンドオーバが発生することが予見される。これは、本発明の課題であるハンドオーバの頻度低減を達成する上での妨げとなる可能性がある。そこで、ハンドオーバ閾値Tghの算出に際して、受信レベル差の標準偏差Lxを加算することで、標準偏差Lxの増減に連動してハンドオーバ閾値Tghも増減する様にしたものである。これにより、移動局40の周辺環境に応じた、より柔軟性の高いハンドオーバ閾値の可変制御が可能となる。その結果、基地局B0〜Bnと移動局40との間における送信電力の増大を抑制しつつ、ハンドオーバの頻度を低減することが可能となる。
【0100】
なお、上述した各実施形態に記載の態様は、本発明に係る移動通信システムの好適な一例であり、これに限定されるものではない。例えば、移動局10〜40は、携帯電話に限らず、PDA(Personal Digital Assistance)等の様に無線通信機能を備えた情報機器であればよい。
【0101】
【発明の効果】
本発明によれば、送信電力の増大を抑制しつつ、ハンドオーバの頻度を低減することが可能となる。
【図面の簡単な説明】
【図1】低いハンドオーバ閾値を採用した場合に発生するハンドオーバの頻度を概念的に示す図である。
【図2】移動通信システムの全体構成を示す模式図である。
【図3】第1の実施形態における移動局の機能的構成を示すブロック図である。
【図4】第1の実施形態における移動通信システムの動作を説明する為のフローチャートである。
【図5】高いハンドオーバ閾値を採用した場合に発生するハンドオーバの頻度、及び受信レベル差の増減回数を概念的に示す図である。
【図6】第2の実施形態における移動局の機能的構成を示すブロック図である。
【図7】第2の実施形態における移動通信システムの動作を説明する為のフローチャートである。
【図8】第3の実施形態における移動局の機能的構成を示すブロック図である。
【図9】第3の実施形態における移動通信システムの動作を説明する為のフローチャートの前半部分である。
【図10】第3の実施形態における移動通信システムの動作を説明する為のフローチャートの後半部分である。
【図11】第3の実施形態の変形態様を説明する為のフローチャートである。
【図12】第4の実施形態における移動局の機能的構成を示すブロック図である。
【図13】第4の実施形態における移動通信システムの動作を説明する為のフローチャートの前半部分である。
【図14】第4の実施形態における移動通信システムの動作を説明する為のフローチャートの後半部分である。
【符号の説明】
1…移動通信システム、10…移動局、11…報知情報受信部、12…位置測定部、13…距離算出部、14…距離比較部、14a…距離閾値格納領域、15…閾値決定部、16…受信レベル測定部、17…受信レベル差比較部、17a…ハンドオーバ閾値格納領域、18…ハンドオーバ実行部
A0…在圏セル、A1〜An…隣接セル、B0…在圏基地局、B1〜Bn…隣接基地局、C0〜Cn…報知情報、D0〜Dn…基地局B0〜Bnと移動局との距離、E0〜En…送信電力、R0〜Rn…受信レベル、G1〜Gn…受信レベルR1〜RnとR0との差、Td…距離閾値、Tg…低いハンドオーバ閾値、Tgh…高いハンドオーバ閾値、S1〜Sn…時刻tと時刻t-1間におけるG1〜Gnの変化量、J1〜Jn…S1〜Snの符号反転回数、Tj…反転回数閾値、L1〜Ln…G1〜Gnの標準偏差、TL…標準偏差閾値、K1〜Kn…G1〜Gnの平均値

Claims (3)

  1. 第1の基地局と第2の基地局における受信レベルの差が閾値を超えた場合に、前記第1の基地局と前記第2の基地局との間でハンドオーバを行う移動局において、
    前記受信レベルの差が増加から減少又は減少から増加に転じる増減回数を計数する計数手段と、
    前記受信レベルの差の標準偏差を算出する標準偏差算出手段と、
    前記計数手段により計数された増減回数と、前記標準偏差算出手段により算出された標準偏差とに基づいて、当該増減回数及び当該標準偏差が大きい程、大きい値となるように前記閾値を決定する決定手段と
    を備えることを特徴とする移動局。
  2. 請求項1に記載の移動局と、前記第1の基地局と前記第2の基地局とを備えて構成され、前記移動局は前記第1の基地局と前記第2の基地局との間でハンドオーバを行う移動通信システム。
  3. 第1の基地局と第2の基地局における受信レベルの差が閾値を超えた場合に、移動局が、前記第1の基地局と前記第2の基地局との間でハンドオーバを行うハンドオーバ制御方法において、
    前記移動局が、前記受信レベルの差が増加から減少又は減少から増加に転じる増減回数を計数する計数ステップと、
    前記移動局が、前記受信レベルの差の標準偏差を算出する標準偏差算出ステップと、
    前記移動局が、前記計数ステップにて計数された増減回数と、前記標準偏差算出ステップにて算出された標準偏差とに基づいて、当該増減回数及び当該標準偏差が大きい程、大きい値となるように前記閾値を決定する決定ステップと
    を含むことを特徴とするハンドオーバ制御方法。
JP2002211493A 2002-07-19 2002-07-19 移動局、移動通信システム、及びハンドオーバ制御方法 Expired - Lifetime JP3997120B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002211493A JP3997120B2 (ja) 2002-07-19 2002-07-19 移動局、移動通信システム、及びハンドオーバ制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002211493A JP3997120B2 (ja) 2002-07-19 2002-07-19 移動局、移動通信システム、及びハンドオーバ制御方法

Publications (2)

Publication Number Publication Date
JP2004056509A JP2004056509A (ja) 2004-02-19
JP3997120B2 true JP3997120B2 (ja) 2007-10-24

Family

ID=31934716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211493A Expired - Lifetime JP3997120B2 (ja) 2002-07-19 2002-07-19 移動局、移動通信システム、及びハンドオーバ制御方法

Country Status (1)

Country Link
JP (1) JP3997120B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4186957B2 (ja) 2005-06-15 2008-11-26 日本電気株式会社 通信エリアの受信品質測定方法及びその装置並びにプログラム
JP4768368B2 (ja) 2005-09-09 2011-09-07 富士通株式会社 無線通信システム、送信機および受信機
US20090010226A1 (en) * 2006-03-01 2009-01-08 Yasunori Nishimura Communication Terminal, Access Point Switching Method, and Access Point Switching Control Program
JP2008125011A (ja) * 2006-11-15 2008-05-29 Nec Engineering Ltd 無線lan端末,ハンドオーバおよびプログラム記録媒体
JP2008182313A (ja) * 2007-01-23 2008-08-07 Mitsubishi Electric Corp 移動体通信システムのハンドオーバ方法
JP5031434B2 (ja) 2007-04-26 2012-09-19 京セラ株式会社 無線通信装置
JP4941590B2 (ja) * 2010-11-29 2012-05-30 富士通株式会社 無線通信システム、送信機および受信機
JP5947343B2 (ja) * 2014-08-11 2016-07-06 ソフトバンク株式会社 アンテナ調整システム及びアンテナ調整方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06164477A (ja) * 1992-11-27 1994-06-10 Nec Commun Syst Ltd 無線基地局の呼量制御方式
JP2843956B2 (ja) * 1993-06-24 1999-01-06 エヌ・ティ・ティ移動通信網株式会社 移動通信チャネル切替方式および移動局装置
JP3647986B2 (ja) * 1996-08-29 2005-05-18 三菱電機株式会社 無線通信装置
JP3888761B2 (ja) * 1998-02-23 2007-03-07 富士通株式会社 移動通信システムにおけるチャネル切替方式
JP2000209632A (ja) * 1999-01-14 2000-07-28 Mitsubishi Electric Corp 無線通信端末装置
JP4297568B2 (ja) * 1999-09-02 2009-07-15 富士通株式会社 無線通信制御装置および移動無線通信システム
JP2002199428A (ja) * 2000-12-27 2002-07-12 Toshiba Corp 移動通信端末装置とそのハンドオーバ制御方法及び制御プログラム

Also Published As

Publication number Publication date
JP2004056509A (ja) 2004-02-19

Similar Documents

Publication Publication Date Title
AU756485B2 (en) Improved CDMA soft hand-off
US8369857B2 (en) Speed-dependent adaptation of mobility parameters with dual speed measurement
CN102958123B (zh) 将移动终端切换到目标小区的方法、无线通信系统和设备
US9326210B2 (en) Blind handover or blind redirection method and system
US20120322497A1 (en) Client side cellular handoff prediction
US10285121B2 (en) Cell selection in a cellular communication network
JP5138723B2 (ja) 移動端末および移動端末の制御方法
US8676212B2 (en) User equipment terminal and signal power measurement of neighboring cells
JP2005012429A (ja) 移動通信端末及びハンドオーバ制御方法
WO2010151198A1 (en) Methods and arrangements for mobility management
US20150010112A1 (en) Methods for Determining a Beam-Forming Gain Parameter, User Equipment, Base Station, Computer Programs and Computer Program Products
JP3997120B2 (ja) 移動局、移動通信システム、及びハンドオーバ制御方法
CN103096403A (zh) 一种自适应切换方法和装置
CN107534970B (zh) 无线通信网络中连接性调整的方法与装置
JP5987556B2 (ja) 通信制御システム
CN103491581A (zh) 一种基于高速铁路定点切换算法的最佳切换参考点选取方法
US20170188184A1 (en) PREDICTIVE ANALYTICS FOR LOCATION ESTIMATION OF IDLE UEs IN A CELLULAR NETWORK
US20050026618A1 (en) Methods and systems for controlling handoffs in a wireless communication system
WO2020052243A1 (en) Multimodal location sensing on a mobile phone
KR100943759B1 (ko) 이종 망간 핸드오버를 위한 링크계층 트리거링 장치 및방법
KR101436187B1 (ko) 단말기에서 수신신호 세기와 시신속도를 이용한 핸드오버 장치 및 방법
JP5056850B2 (ja) 移動体通信システムおよび位置登録方法
ES2434015T3 (es) Técnica de localización de terminal
JP2004260690A (ja) 移動通信システム、移動通信端末及び切替制御方法
Hindia et al. Enhancement the handovers accuracy and performance of WiMAX and LTE networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3997120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term