JP3995294B2 - Manufacturing method of ceramic laminated substrate - Google Patents

Manufacturing method of ceramic laminated substrate Download PDF

Info

Publication number
JP3995294B2
JP3995294B2 JP01263897A JP1263897A JP3995294B2 JP 3995294 B2 JP3995294 B2 JP 3995294B2 JP 01263897 A JP01263897 A JP 01263897A JP 1263897 A JP1263897 A JP 1263897A JP 3995294 B2 JP3995294 B2 JP 3995294B2
Authority
JP
Japan
Prior art keywords
conductor
laminated substrate
firing
ceramic laminated
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01263897A
Other languages
Japanese (ja)
Other versions
JPH10209639A (en
Inventor
真治 太田
浅井  康富
長坂  崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP01263897A priority Critical patent/JP3995294B2/en
Publication of JPH10209639A publication Critical patent/JPH10209639A/en
Application granted granted Critical
Publication of JP3995294B2 publication Critical patent/JP3995294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数のグリーンシートを各層間が電気的に導通するように導体を形成した状態で積層し、加圧した後、焼成してセラミック積層基板を製造する方法に関する。
【0002】
【従来の技術】
従来のセラミック積層基板の製造方法を図5に示す。まず、セラミックのグリーンシート1を複数用意し(図5(a)参照)、次に、各グリーンシートにスルーホールを形成し、スルーホールに導体2を充填し(図5(b)参照)、それぞれのグリーンシート上に配線形成のために導体3(導体ランド部の導体3aを含む)を印刷形成する(図5(c)参照)。そして、全てのグリーンシートを積層し、プレスにて加圧する(図5(d)参照)。この後、焼成してセラミック積層基板を得る。
【0003】
このようにして製造されたセラミック積層基板に対し、最表層の導体ランド部に形成された導体3aの表面に金属めっきを施して導体ランドを構成し、この後、導体ランド上にはんだペーストをスクリーン印刷する。この後、フリップチップICの電極端子に形成したはんだバンプを、はんだペーストが印刷された導体ランド上に位置合わせし、リフローを行ってフリップチップICをセラミック積層基板上にはんだ接続する。
【0004】
【発明が解決しようとする課題】
上記したセラミック積層基板の製造において、最表層に形成される導体3(3a)は、積層後に行われる加圧によりグリーンシート内に埋め込まれる。このため、焼成後において基板表面からの導体3(3a)の高さが低くなり、例えば10μm程度になってしまう。
【0005】
従って、導体ランド部に形成された導体3aを用いて、フリップチップICをはんだ接続すると、フリップチップICとセラミック積層基板間の隙間が狭くなる。この場合、フリップチップICとして大型のものを用い、その電極端子間のピッチが狭いと、フリップチップICとセラミック積層基板の熱膨張係数の相違により、それぞれに熱応力がかかり、フリップチップICの電極端子と導体ランド間のはんだ接合部の接合強度が低下するという問題が発生する。
【0006】
このような接合強度の低下に対しては、フリップチップICとセラミック積層基板間の隙間に補強用の樹脂を注入し充填することが考えられるが、上述したように、その隙間が狭くなっているため、樹脂の注入は困難である。また、セラミック積層基板においては、フリップチップICが搭載される領域において焼成収縮により反りが発生している場合があり、このときには樹脂の注入が一層困難になる。
【0007】
導体ランド部の導体3aを高くするためには、印刷時の導体を厚くする、あるいは複数回の印刷を行って導体を厚くする方法が考えられるが、積層後のプレスにより導体の突出部はグリーンシート内に埋め込まれるため、それによる効果をあまり期待することはできない。また、導体ランド部の導体3a上に形成する金属めっきを厚くすることも考えられるが、この場合にはコスト上の問題が生じる。
【0008】
本発明は上記問題に鑑みたもので、導体ランド部の導体を焼成後においても高く形成できるようにすることを目的とする。
【0009】
【課題を解決するための手段】
本発明は、導体ランド部の導体が高くならないのが積層後の加圧にある点に着目し、導体ランド部の導体印刷を積層プレス後に行うことにより、上記目的を達成するようにしている。具体的には、請求項1に記載の発明では、複数のグリーンシート(1)を各層間が電気的に導通するように導体(2、3)を形成した状態で積層し、最表層の導体ランド部に導体(3a)を印刷形成した状態で複数のグリーンシートに対する加圧を行った後、導体ランド部の導体上再度導体(3b)を印刷形成し、この後、加圧を行わずに焼成を行うことを特徴としている。
【0010】
従って、導体ランド部の導体印刷を積層プレス後に行っているから、焼成後において基板表面からの導体ランド部の導体を高くすることができる。この場合、請求項1に記載の発明のように、積層、加圧を行う前に形成した導体(3a)と、加圧後に形成した導体(3b)により導体ランド部の導体を形成すれば、一層、導体ランド部の導体を高くすることができる。
【0011】
【発明の実施の形態】
まず、以下に説明する各実施形態において、第1実施形態は特許請求の範囲に記載した発明の実施形態に相当し、第2、第3実施形態は参考例である。
(第1実施形態)図1に本発明の一実施形態に係るセラミック積層基板の製造方法を示す。まず、アルミナを主成分とするセラミックのグリーンシート1を複数用意し(図1(a)参照)、次に、各グリーンシートに金型によるパンチング等の方法にてスルーホールを形成し、スルーホールにモリブデンを主な材料とする導体2を充填する(図1(b)参照)。そして、それぞれのグリーンシート上に、配線形成のために、タングステンを主な材料とする導体3を印刷形成する(図1(c)参照)。このとき、最表層の導体ランド部の導体3aも印刷形成する。そして、全てのグリーンシートを積層し、プレスにて加圧する(図1(d)参照)。この後、導体ランド部の導体3a上に、再度、導体3bを印刷形成し(図1(e)参照)、プレスによる加圧を行わずに、1600℃程度の温度の還元雰囲気中で焼成を行い、セラミック積層基板を得る。
【0012】
このような製造方法によれば、グリーンシートの積層加圧後に、導体ランド部に導体3bを印刷形成し、この後は加圧を行わずに焼成を行っているので、導体ランド部の導体を焼成後において高くすることができる。
この後、最表層の導体ランド部の導体3bの表面に金属めっきを施し、はんだ濡れ性を確保する。めっき材料は、Cu、Ni、Au等のはんだ濡れ性の良好な金属が好ましい。また、めっき方法は、無電解めっき、電解めっき等いずれでもよい。
【0013】
このようにして構成された導体ランドの構成を図2に示す。グリーンシートを積層、加圧する前に印刷形成した1層目の導体3aは、焼成後において表面から10μmより低い高さになるが、積層、加圧後に印刷形成した2層目の導体3bは、焼成後において15μmの高さになり、また金属めっき4の厚さを10μmとすると、導体ランドの高さは合計で35μm程度となるため、十分な高さを得ることができる。
【0014】
このようにして導体ランドを形成した後、導体ランド上にはんだペーストをスクリーン印刷する。そして、フリップチップICの電極端子に形成したはんだバンプを、はんだペーストが印刷された導体ランド上に位置合わせし、リフローを行ってフリップチップICをセラミック積層基板上にはんだ接続する。
(第2実施形態)
図3に本発明の第2実施形態に係るセラミック積層基板の製造方法を示す。
【0015】
この実施形態においては、各グリーンシート1のスルーホールに導体2を充填するとともに、それぞれのグリーンシート上に配線形成のために導体3を印刷形成する(図3(a)参照)。但し、最表層の導体ランド部の導体は印刷形成しない。そして、全てのグリーンシートを積層し、プレスにて加圧する(図3(b)参照)。この後、最表層の導体ランド部の導体3cを印刷形成し(図3(c)参照)、この後、第1実施形態と同様、プレス加圧を行わずに焼成を行う。
【0016】
従って、この実施形態によれば、第1実施形態に比べ、1層目の導体3aがない分だけ導体ランドの高さが低くなるが、導体ランド部の導体印刷を積層プレス後に行っているため、従来のものよりも導体ランドを高くすることができる。
(第3実施形態)
図4に本発明の第3実施形態に係るセラミック積層基板の製造方法を示す。
【0017】
この実施形態においては、各グリーンシート1のスルーホールに導体2を充填するとともに、それぞれのグリーンシート上に配線形成のために導体3を印刷形成する(図4(a)参照)。但し、最表層の導体は印刷形成しない。そして、全てのグリーンシートを積層し、プレスにて加圧する(図4(b)参照)。この後、最表層の導体3dおよび3cを印刷形成し(図4(c)参照)、この後、第1実施形態と同様、プレス加圧を行わずに焼成を行う。
【0018】
従って、この実施形態においても、第2実施形態と同様、従来のものよりも導体ランドを高くすることができる。なお、他の導体部の導体3dも導体ランド部の導体3cと同様に高くなるが、それを通常の配線及びランドとして用いるのであれば何ら問題は生じない。
上記した第1乃至第3実施形態においては、グリーンシートの積層及び加圧を全層同時に行うものを示したが、一層ずつ、導体印刷と、積層・加圧を交互に行うようにしてもよい。
【0019】
また、グリーンシートとしてはアルミナを主成分にするものに限らず、ガラスを主成分とするものであってもよい。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係るセラミック積層基板の製造方法を示す工程図である。
【図2】図1に示す方法によって製造されたセラミック積層基板における導体ランドの構成を示す断面図である。
【図3】本発明の第2実施形態に係るセラミック積層基板の製造方法を示す工程図である。
【図4】本発明の第3実施形態に係るセラミック積層基板の製造方法を示す工程図である。
【図5】従来のセラミック積層基板の製造方法を示す工程図である。
【符号の説明】
1…グリーンシート、2、3…導体、4…金属めっき。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a ceramic laminated substrate by laminating a plurality of green sheets in a state where conductors are formed so that the respective layers are electrically connected, pressurizing, and firing.
[0002]
[Prior art]
A conventional method for manufacturing a ceramic laminated substrate is shown in FIG. First, a plurality of ceramic green sheets 1 are prepared (see FIG. 5A), then through holes are formed in each green sheet, and conductors 2 are filled in the through holes (see FIG. 5B). A conductor 3 (including the conductor 3a of the conductor land portion) is printed and formed on each green sheet for wiring formation (see FIG. 5C). And all the green sheets are laminated | stacked and it pressurizes with a press (refer FIG.5 (d)). Thereafter, firing is performed to obtain a ceramic laminated substrate.
[0003]
The surface of the conductor 3a formed on the outermost conductor land portion is subjected to metal plating on the ceramic multilayer substrate manufactured in this way to form a conductor land, and then a solder paste is screened on the conductor land. Print. Thereafter, the solder bumps formed on the electrode terminals of the flip chip IC are aligned on the conductor land on which the solder paste is printed, and reflow is performed to solder-connect the flip chip IC onto the ceramic multilayer substrate.
[0004]
[Problems to be solved by the invention]
In the manufacture of the ceramic laminated substrate described above, the conductor 3 (3a) formed on the outermost layer is embedded in the green sheet by the pressure applied after the lamination. For this reason, the height of the conductor 3 (3a) from the substrate surface after firing becomes low, for example, about 10 μm.
[0005]
Therefore, when the flip chip IC is solder-connected using the conductor 3a formed on the conductor land portion, the gap between the flip chip IC and the ceramic laminated substrate is narrowed. In this case, if a large flip chip IC is used and the pitch between the electrode terminals is narrow, thermal stress is applied to each of the flip chip IC and the ceramic laminated substrate due to the difference in thermal expansion coefficient, and the flip chip IC electrodes There arises a problem that the bonding strength of the solder joint between the terminal and the conductor land is lowered.
[0006]
To reduce the bonding strength, it is conceivable to inject and fill a reinforcing resin into the gap between the flip chip IC and the ceramic laminated substrate. However, as described above, the gap is narrowed. Therefore, resin injection is difficult. Further, in a ceramic laminated substrate, warping may occur due to firing shrinkage in a region where a flip chip IC is mounted, and at this time, it becomes more difficult to inject a resin.
[0007]
In order to increase the conductor 3a of the conductor land, a method of increasing the thickness of the conductor at the time of printing or increasing the thickness of the conductor by performing printing a plurality of times can be considered. Since it is embedded in the sheet, it is difficult to expect the effect. Further, it is conceivable to increase the thickness of the metal plating formed on the conductor 3a in the conductor land portion, but in this case, a cost problem arises.
[0008]
The present invention has been made in view of the above problems, and an object of the present invention is to enable a conductor in a conductor land portion to be formed high even after firing.
[0009]
[Means for Solving the Problems]
The present invention pays attention to the fact that the conductor in the conductor land portion does not become high in the pressurization after the lamination, and achieves the above object by performing the conductor printing of the conductor land portion after the lamination press. Specifically, in the invention described in claim 1, a plurality of green sheets (1) are laminated in a state in which conductors (2, 3) are formed so that the respective layers are electrically connected, and the outermost layer conductor is formed. After pressurizing a plurality of green sheets in a state where the conductor (3a) is printed on the land portion , the conductor ( 3b ) is printed again on the conductor of the conductor land portion , and then no pressure is applied. It is characterized by firing.
[0010]
Therefore, since the conductor printing of the conductor land portion is performed after the lamination press, the conductor of the conductor land portion from the substrate surface can be increased after firing. In this case, if the conductor of the conductor land portion is formed by the conductor (3a) formed before the lamination and pressurization and the conductor (3b) formed after the pressurization as in the invention described in claim 1 , In addition, the conductor of the conductor land portion can be increased.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
First, in each embodiment described below, the first embodiment corresponds to the embodiment of the invention described in the claims, and the second and third embodiments are reference examples.
(First Embodiment) FIG. 1 shows a method for manufacturing a ceramic laminated substrate according to an embodiment of the present invention. First, a plurality of ceramic green sheets 1 containing alumina as a main component are prepared (see FIG. 1A). Next, through holes are formed in each green sheet by a method such as punching using a die. Is filled with a conductor 2 whose main material is molybdenum (see FIG. 1B). Then, on each green sheet, a conductor 3 made of tungsten as a main material is printed and formed for wiring formation (see FIG. 1C). At this time, the conductor 3a on the outermost conductor land is also printed. And all the green sheets are laminated | stacked and it pressurizes with a press (refer FIG.1 (d)). Thereafter, the conductor 3b is printed again on the conductor 3a of the conductor land portion (see FIG. 1 (e)), and firing is performed in a reducing atmosphere at a temperature of about 1600 ° C. without applying pressure by a press. To obtain a ceramic laminated substrate.
[0012]
According to such a manufacturing method, after laminating and pressing the green sheets, the conductor 3b is printed and formed on the conductor land portion. After that, firing is performed without applying pressure. It can be increased after firing.
Thereafter, metal plating is applied to the surface of the conductor 3b of the conductor land portion on the outermost layer to ensure solder wettability. The plating material is preferably a metal with good solder wettability such as Cu, Ni, Au. The plating method may be any of electroless plating and electrolytic plating.
[0013]
The configuration of the conductor land thus configured is shown in FIG. The first conductor 3a printed and formed before the green sheet is laminated and pressed has a height lower than 10 μm from the surface after firing, but the second conductor 3b printed and formed after the lamination and press is When the height is 15 μm after firing and the thickness of the metal plating 4 is 10 μm, the total height of the conductor lands is about 35 μm, so that a sufficient height can be obtained.
[0014]
After forming the conductor lands in this way, a solder paste is screen-printed on the conductor lands. Then, the solder bump formed on the electrode terminal of the flip chip IC is positioned on the conductor land on which the solder paste is printed, and reflow is performed to solder-connect the flip chip IC onto the ceramic multilayer substrate.
(Second Embodiment)
FIG. 3 shows a method for manufacturing a ceramic laminated substrate according to the second embodiment of the present invention.
[0015]
In this embodiment, the conductor 2 is filled in the through hole of each green sheet 1, and the conductor 3 is printed and formed on each green sheet for wiring formation (see FIG. 3A). However, the conductor on the outermost conductor land is not printed. And all the green sheets are laminated | stacked and it pressurizes with a press (refer FIG.3 (b)). Thereafter, the conductor 3c of the outermost conductor land portion is printed and formed (see FIG. 3C), and thereafter, as in the first embodiment, firing is performed without pressing.
[0016]
Therefore, according to this embodiment, the height of the conductor land is reduced by the absence of the first-layer conductor 3a compared to the first embodiment, but the conductor printing of the conductor land portion is performed after the lamination press. The conductor land can be made higher than the conventional one.
(Third embodiment)
FIG. 4 shows a method for manufacturing a ceramic laminated substrate according to the third embodiment of the present invention.
[0017]
In this embodiment, the conductor 2 is filled in the through hole of each green sheet 1, and the conductor 3 is printed and formed on each green sheet for wiring formation (see FIG. 4A). However, the outermost layer conductor is not formed by printing. And all the green sheets are laminated | stacked and it pressurizes with a press (refer FIG.4 (b)). Thereafter, the outermost conductors 3d and 3c are formed by printing (see FIG. 4C), and thereafter, as in the first embodiment, firing is performed without pressing.
[0018]
Therefore, in this embodiment, similarly to the second embodiment, the conductor land can be made higher than the conventional one. Note that the conductor 3d of the other conductor portion becomes higher in the same manner as the conductor 3c of the conductor land portion, but there is no problem if it is used as a normal wiring and land.
In the first to third embodiments described above, the green sheets are stacked and pressed all at the same time. However, the conductor printing and the stacking and pressing may be alternately performed layer by layer. .
[0019]
Further, the green sheet is not limited to the one having alumina as a main component, and may be one having glass as a main component.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a method for producing a ceramic laminated substrate according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a configuration of conductor lands in a ceramic laminated substrate manufactured by the method shown in FIG.
FIG. 3 is a process diagram showing a method for manufacturing a ceramic laminated substrate according to a second embodiment of the present invention.
FIG. 4 is a process diagram showing a method for manufacturing a ceramic laminated substrate according to a third embodiment of the present invention.
FIG. 5 is a process diagram showing a conventional method for manufacturing a ceramic laminated substrate.
[Explanation of symbols]
1 ... green sheet, 2, 3 ... conductor, 4 ... metal plating.

Claims (1)

複数のグリーンシート(1)を各層間が電気的に導通するように導体(2、3)を形成した状態で積層し、前記複数のグリーンシートに対する加圧を行った後、焼成してセラミック積層基板を製造する方法において、
前記積層および最表層の導体ランド部に導体(3a)を印刷形成した状態で加圧を行った後、前記導体ランド部の導体上再度導体(3b)を印刷形成し、この後、前記加圧を行わずに前記焼成を行うことを特徴とするセラミック積層基板の製造方法。
A plurality of green sheets (1) are laminated in a state in which conductors (2, 3) are formed so that the respective layers are electrically connected. After pressing the plurality of green sheets, firing is performed to form a ceramic laminate. In a method of manufacturing a substrate,
Wherein after pressurization was carried out in a stacked and conditions the conductor lands of the outermost layer formed by printing a conductor (3a), said conductor land portions again conductor (3b) formed by printing on the conductor, after which the pressure A method for producing a ceramic laminated substrate, wherein the firing is performed without applying pressure.
JP01263897A 1997-01-27 1997-01-27 Manufacturing method of ceramic laminated substrate Expired - Fee Related JP3995294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01263897A JP3995294B2 (en) 1997-01-27 1997-01-27 Manufacturing method of ceramic laminated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01263897A JP3995294B2 (en) 1997-01-27 1997-01-27 Manufacturing method of ceramic laminated substrate

Publications (2)

Publication Number Publication Date
JPH10209639A JPH10209639A (en) 1998-08-07
JP3995294B2 true JP3995294B2 (en) 2007-10-24

Family

ID=11810924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01263897A Expired - Fee Related JP3995294B2 (en) 1997-01-27 1997-01-27 Manufacturing method of ceramic laminated substrate

Country Status (1)

Country Link
JP (1) JP3995294B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100692061B1 (en) * 2004-12-24 2007-03-12 엘지전자 주식회사 Manufacture Method of Multi Layer Ceramic Substrate of Plasma Display Pannel
JP4876997B2 (en) * 2007-03-22 2012-02-15 パナソニック株式会社 Manufacturing method of ceramic multilayer substrate

Also Published As

Publication number Publication date
JPH10209639A (en) 1998-08-07

Similar Documents

Publication Publication Date Title
US11923142B2 (en) Multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
CN113555215B (en) Multilayer ceramic capacitor
US5655209A (en) Multilayer ceramic substrates having internal capacitor, and process for producing same
WO2010067508A1 (en) Multilayer substrate and method for manufacturing same
CN113555220A (en) Multilayer ceramic capacitor
JP3995294B2 (en) Manufacturing method of ceramic laminated substrate
JPH10308582A (en) Multilayered wiring board
JP3755510B2 (en) Electronic component mounting structure and manufacturing method thereof
JP3508905B2 (en) Wiring board and its manufacturing method
CN113555219B (en) Multilayer ceramic capacitor
KR101805074B1 (en) Preparation method of ceramic multilayer circuit board
CN113555218B (en) Multilayer ceramic capacitor
KR100908674B1 (en) Method for manufacturing circuit board, circuit board and circuit module using the circuit board
CN113555221A (en) Multilayer ceramic capacitor
JP2005268672A (en) Substrate
JP2006032747A (en) Laminated electronic component and its manufacturing method
JP2788656B2 (en) Manufacturing method of package for integrated circuit
JP4779668B2 (en) Manufacturing method of laminated substrate
JP2776096B2 (en) Manufacturing method of polyimide multilayer wiring board
JP4016806B2 (en) Electronic equipment
JPS63239999A (en) Manufacture of ceramic multilayer laminated unit
JP2001160681A (en) Multilayer ceramic board and its manufacturing method
JP5516608B2 (en) Manufacturing method of ceramic laminated substrate
JP2004259714A (en) Electronic component comprising multilayer ceramic substrate and its producing method
JP4623988B2 (en) Capacitor and its mounting structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees