JP2776096B2 - Manufacturing method of polyimide multilayer wiring board - Google Patents

Manufacturing method of polyimide multilayer wiring board

Info

Publication number
JP2776096B2
JP2776096B2 JP3301430A JP30143091A JP2776096B2 JP 2776096 B2 JP2776096 B2 JP 2776096B2 JP 3301430 A JP3301430 A JP 3301430A JP 30143091 A JP30143091 A JP 30143091A JP 2776096 B2 JP2776096 B2 JP 2776096B2
Authority
JP
Japan
Prior art keywords
polyimide
layer
solder
plating
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3301430A
Other languages
Japanese (ja)
Other versions
JPH05206643A (en
Inventor
広治 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3301430A priority Critical patent/JP2776096B2/en
Priority to CA002059020A priority patent/CA2059020C/en
Priority to DE69223657T priority patent/DE69223657T2/en
Priority to EP92100269A priority patent/EP0494668B1/en
Priority to US07/818,529 priority patent/US5321210A/en
Priority to DE1992613890 priority patent/DE69213890T2/en
Priority to EP19920119617 priority patent/EP0543331B1/en
Priority to CA 2083077 priority patent/CA2083077C/en
Priority to US08/070,923 priority patent/US5426849A/en
Publication of JPH05206643A publication Critical patent/JPH05206643A/en
Application granted granted Critical
Publication of JP2776096B2 publication Critical patent/JP2776096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、セラミック基板または
硬質有機樹脂基板上にポリイミド樹脂を層間絶縁に使用
した多層配線層を有するポリイミド多層配線基板の製造
方法に関し、特に配線層間の電気的接続方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a polyimide multilayer wiring board having a multilayer wiring layer using a polyimide resin for interlayer insulation on a ceramic substrate or a hard organic resin substrate, and more particularly to a method for electrically connecting wiring layers. About.

【0002】[0002]

【従来の技術】LSIチップを搭載する配線基板とし
て、従来から多層プリント配線基板が使用されてきた。
多層プリント配線基板は、銅張積層板をコア材に、プリ
プレグをコア材の接着剤として構成され、コア材とプリ
プレグを交互に積層し熱プレスを使用して一体化する。
積層板間の電気的接続はコア材とプリプレグの一体化し
た後、ドリルによって貫通スルーホールを形成し、貫通
スルーホール内壁を銅メッキすることによって行なわれ
る。
2. Description of the Related Art A multilayer printed wiring board has conventionally been used as a wiring board on which an LSI chip is mounted.
The multilayer printed wiring board is configured by using a copper-clad laminate as a core material and a prepreg as an adhesive for the core material, alternately laminating the core material and the prepreg, and integrating them using a hot press.
The electrical connection between the laminated plates is performed by integrating the core material and the prepreg, forming a through-hole with a drill, and plating the inner wall of the through-hole with copper.

【0003】また、近年、多層プリント配線基板より高
配線密度を要求されている大型コンピュータ用配線基板
に、セラミック基板上にポリイミド樹脂を層間絶縁に使
用した多層配線基板が使用されてきている。このポリイ
ミド・セラミック多層配線基板の従来の製造方法では、
セラミック基板上にポリイミド前駆体ワニスを塗布、乾
燥し、この塗布膜にヴィアホールを形成するポリイミド
樹脂絶縁層形成工程と、フォトリソグラフィー、真空蒸
着およびメッキ法を使用した配線層形成工程とからな
り、かつ、この一連の工程を繰り返すことにより、ポリ
イミド多層配線層の形成を行っていた。
In recent years, a multilayer wiring board using a polyimide resin for interlayer insulation on a ceramic substrate has been used as a wiring board for a large computer which requires a higher wiring density than a multilayer printed wiring board. In the conventional manufacturing method of this polyimide ceramic multilayer wiring board,
A polyimide precursor varnish is applied on a ceramic substrate, dried, and a polyimide resin insulating layer forming step of forming a via hole in the applied film, and a photolithography, a wiring layer forming step using a vacuum deposition and plating method, Further, by repeating this series of steps, a polyimide multilayer wiring layer is formed.

【0004】また、上述したポリイミド・セラミック多
層配線基板の形成方法とは別にポリイミドシート上に配
線パターンを形成し、そのシートをセラミック基板上に
位置合わせを行なって順次、加圧積層を行い多層配線基
板の形成を行なうポリイミド多層配線基板の製造方法も
従来からあった。この方法は、信号層をシール単位で形
成するため、欠陥の無いシートを選別して積層する事が
可能となり、上述した逐次積層方法よりも製造歩留まり
をあげることができる。
In addition to the above-described method for forming a polyimide / ceramic multilayer wiring substrate, a wiring pattern is formed on a polyimide sheet, and the sheet is positioned on the ceramic substrate and sequentially laminated under pressure to perform multilayer wiring. There has also been a method of manufacturing a polyimide multilayer wiring board for forming a board. According to this method, since the signal layer is formed in units of seals, sheets having no defect can be selected and laminated, and the production yield can be increased as compared with the above-described sequential lamination method.

【0005】[0005]

【発明が解決しようとする課題】上述した多層プリント
配線基板は、積層板間の電気的接続をドリル加工で形成
した貫通スルーホールで行なうため、微細な貫通スルー
ホールの形成は不可能であり、そのためスルーホール間
に成形できる配線本数が限られてくる。また、一つの積
層板間の接続に一つの貫通スルーホールが必要となり、
積層数が増えるほど信号配線収容性が低下し、高配線密
度の多数プリント配線基板を形成することが困難になっ
てくるという欠点があった。
In the above-described multilayer printed wiring board, since the electrical connection between the laminated boards is performed by through-holes formed by drilling, it is impossible to form fine through-holes. Therefore, the number of wirings that can be formed between through holes is limited. Also, one through through hole is required for connection between one laminated board,
As the number of stacked layers increases, the signal wiring accommodating property decreases, and it is difficult to form a large number of printed wiring boards with a high wiring density.

【0006】また、上述した従来のポリイミド・セラミ
ック多層配線基板の製造方法は、ポリイミド絶縁層の積
層数と同じ回数だけ、セラミック基板上にポリイミド前
駆体ワニスの塗布、乾燥、ヴィアホールの形成、及びキ
ュアの各工程を繰り返し行なう必要がある。そのため、
多層配線基板の積層工程に、非常に時間がかかる。ま
た、ポリイミド絶縁層の形成工程が繰り返し行なわれる
ため、多層配線層の下層部分のポリイミド樹脂に多数回
にわたるキュア工程の熱ストレスが加わり、このため、
ポリイミド樹脂が劣化していくという欠点があった。さ
らにこのポリイミド多層配線層は逐次積層方式であるた
め製造歩留まりの向上が困難であるという欠点がある。
Further, the above-described conventional method for manufacturing a polyimide / ceramic multilayer wiring board involves applying a polyimide precursor varnish on a ceramic substrate by the same number of times as the number of laminated polyimide insulating layers, drying, forming via holes, and It is necessary to repeat each curing step. for that reason,
It takes a very long time to laminate the multilayer wiring board. Further, since the step of forming the polyimide insulating layer is repeatedly performed, the polyimide resin in the lower layer portion of the multilayer wiring layer is subjected to thermal stress in the curing step many times, and thus,
There is a disadvantage that the polyimide resin deteriorates. Further, since this polyimide multilayer wiring layer is of a sequential lamination type, there is a drawback that it is difficult to improve the production yield.

【0007】また、製造歩留まりを向上させる方法とし
て開発されたシート単位の積層方式によるポリイミド多
層配線基板の製造も、1層ずつ順次加圧積層を行なうた
め、高多層になるほど下層部分のポリイミド樹脂に熱ス
トレスが加わりポリイミド樹脂の劣化が起きること、お
よび、基板製作日数が長いという欠点は改善されていな
い。
Also, in the production of a polyimide multi-layer wiring board by a sheet-based lamination method developed as a method for improving the production yield, since the layers are successively pressed and laminated one by one, the higher the number of layers, the lower the polyimide resin in the lower layer portion. The disadvantages that the polyimide resin is deteriorated due to the application of thermal stress and that the number of days for manufacturing the substrate is long are not improved.

【0008】[0008]

【課題を解決するための手段】本発明のポリイミド多層
配線基板の製造方法は、複数の配線層を有するブロック
の複数個を積層し前記ブロックの一つに設けた半田プー
ルおよび前記ブロックの他のものに設けた金属バンプを
鑞着してブロック間の電気的接続を行うポリイミド多層
配線基板の製造方法において、前記半田プールは各層が
半田を構成する金属のいずれかの単体金属からなり異る
金属の層を交互に重ねた多層メッキであり、前記金属バ
ンプは前記半田プールに接する部分が前記半田プールを
構成する金属のうちの一つ以上のものであることを特徴
とする。
According to the present invention, there is provided a method of manufacturing a polyimide multilayer wiring board, comprising the steps of: laminating a plurality of blocks having a plurality of wiring layers and providing a solder pool provided in one of the blocks; In a method for manufacturing a polyimide multilayer wiring board in which electrical connections between blocks are made by soldering metal bumps provided on a substrate, the solder pool is formed of any one of the metals constituting the solder, and the different layers are made of different metals. Wherein the metal bumps have a portion in contact with the solder pool made of one or more of the metals constituting the solder pool.

【0009】本発明のポリイミド多層配線基板のブロッ
クは、絶縁層がポリイミド樹脂で複数の配線層を有し、
各層が半田を構成する金属のいずれかの単体金属からな
り異る金属のメッキ層を交互に重ねた多層メッキである
半田プールが表面に設けられたことを特徴とする。
In the block of the polyimide multilayer wiring board of the present invention, the insulating layer has a plurality of wiring layers made of polyimide resin.
It is characterized in that a solder pool is provided on the surface, which is a multilayer plating in which each layer is made of any one of the metals constituting the solder and alternately has plated layers of different metals.

【0010】[0010]

【実施例】次に本発明について図面を用いて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0011】図1は本発明の一実施例により製造したポ
リイミド多層配線基板の断面図である。
FIG. 1 is a sectional view of a polyimide multilayer wiring board manufactured according to one embodiment of the present invention.

【0012】本実施例で使用しているセラミック基板9
は、入出力ピン8が基板裏面にありモリブデン金属の内
部配線層を持つ同時焼成アルミナセラミック基板であ
る。ポリイミド多層配線層部分の仕様は次のとおりであ
る。信号配線層5の信号配線は信号幅25μm、配線厚
7μmの金メッキ配線である。信号配線層5はX方向の
配線のものとこれに直角なY方向の配線のものを1組と
しその上下を接地配線層ではさみインピーダンスの調整
およびクロストークノイズの低減を行なっている。ポリ
イミド樹脂23はガラス転移点を持つポリイミド(非感
光性なら日立化成のPIQ、デュポンのPYRALY
N、東レのセミコファイン等、感光性なら日立化成のP
L−1200、デュポンのP1−2702D、東レのフ
ォトニース、旭化成のPIMEL等)で各配線層間の膜
厚は20μmである。
The ceramic substrate 9 used in this embodiment
Is a co-fired alumina ceramic substrate having input / output pins 8 on the back surface of the substrate and having an internal wiring layer of molybdenum metal. The specifications of the polyimide multilayer wiring layer are as follows. The signal wiring of the signal wiring layer 5 is a gold-plated wiring having a signal width of 25 μm and a wiring thickness of 7 μm. The signal wiring layer 5 is composed of a pair of wiring in the X direction and a wiring in the Y direction perpendicular to the signal wiring layer 5. The upper and lower portions of the signal wiring layer 5 are sandwiched between ground wiring layers to adjust impedance and reduce crosstalk noise. The polyimide resin 23 is a polyimide having a glass transition point (for non-photosensitive, PIQ of Hitachi Chemical, PYRALY of DuPont)
N, Toray's Semico Fine, etc.
L-1200, DuPont P1-2702D, Toray Photo Nice, Asahi Kasei PIMEL, etc.), and the film thickness between each wiring layer is 20 μm.

【0013】信号配線層数は8層(4組)である。初め
に1組の信号配線層と1層の接地電極層を基本構成とす
るブロック24ごとに積層しておき、次に、セラミック
基板9上に複数のブロック24を接着して多層配線基板
とする。本実施例は4個のブロック24を積層する。ま
た、各ブロック24が完成した時点で電気検査を行な
い、良品ブロックを選別し、次工程のブロック間接続工
程に進む。
The number of signal wiring layers is eight (four sets). First, one set of signal wiring layers and one ground electrode layer are laminated for each block 24 having a basic configuration, and then, a plurality of blocks 24 are bonded on the ceramic substrate 9 to form a multilayer wiring board. . In this embodiment, four blocks 24 are stacked. Further, when each block 24 is completed, an electrical inspection is performed, non-defective blocks are selected, and the process proceeds to the next step of connecting blocks.

【0014】各々のブロック間の電気的接続はニッケル
メッキ上に金メッキを行なったニッケル・金からなる金
属バンプ7と、金と錫の多層メッキで形成された半田プ
ール17の鑞着で行なっている。半田プールのサイズ
は、例えば、50〜500μm角、深さ10〜100μ
m、ニッケル・金バンプのサイズは、例えば、25〜3
00μm角、10〜50μmの厚みで形成されている。
形成したポリイミド多層配線基板の最上層はLSIチッ
プを半田接続する接続用パッド19が銅メッキで形成さ
れている。
The electrical connection between the blocks is made by soldering a metal bump 7 made of nickel / gold plated with gold on nickel plating, and a solder pool 17 formed by multilayer plating of gold and tin. . The size of the solder pool is, for example, 50 to 500 μm square and 10 to 100 μ depth.
m, the size of the nickel-gold bump is, for example, 25 to 3
It is formed with a thickness of 00 μm square and 10 to 50 μm.
On the uppermost layer of the formed polyimide multilayer wiring board, connection pads 19 for soldering the LSI chip are formed by copper plating.

【0015】図2〜図4は本発明のポリイミド多層配線
基板の製造方法の一実施例を工程順に図示したものであ
る。本実施例により製造するポリイミド多層配線基板は
図1に示すものである。ポリイミド樹脂にはガラス転移
点約270°cの感光性ポリイミドを、配線金属には金
を使用している。
FIGS. 2 to 4 show an embodiment of a method for manufacturing a polyimide multilayer wiring board according to the present invention in the order of steps. The polyimide multilayer wiring board manufactured according to the present embodiment is as shown in FIG. Photosensitive polyimide having a glass transition point of about 270 ° C. is used for the polyimide resin, and gold is used for the wiring metal.

【0016】本実施例のポリイミド多層配線基板の製造
工程は以下のとおりである。
The steps of manufacturing the polyimide multilayer wiring board of this embodiment are as follows.

【0017】まず、図2に示すようにアルミニウムの平
坦な板(以下アルミニウム平板と略す)上に一組の信号
配線層と、ひとつの接地および接続配線層を以下の工程
順で形成する。
First, as shown in FIG. 2, a pair of signal wiring layers and one grounding and connection wiring layer are formed on a flat aluminum plate (hereinafter abbreviated as aluminum flat plate) in the following process order.

【0018】工程1〈図2(a)〉:アルミニウム平板
1上に接地および接続配線層をフォトレジストを用いた
フォトリソグラフィーでパターン化し、電解金メッキを
行ない接地および接続配線層2を形成する。
Step 1 (FIG. 2A): The ground and connection wiring layer is patterned on the aluminum flat plate 1 by photolithography using a photoresist, and electrolytic gold plating is performed to form the ground and connection wiring layer 2.

【0019】工程2〈図2(b)〉:感光性ポリイミド
ワニス4を工程1で接地および接続配線層2を形成した
アルミニウム平板1上に塗布し、露光・現像を行ない所
定の位置にヴィアホール3を形成し、キュアを行なう絶
縁層を形成する。
Step 2 (FIG. 2 (b)): A photosensitive polyimide varnish 4 is applied on the aluminum plate 1 on which the grounding and connection wiring layer 2 is formed in Step 1, exposed and developed, and a via hole is formed at a predetermined position. 3 is formed, and an insulating layer to be cured is formed.

【0020】工程3〈図2(c)〉:一組の信号配線層
5を層間絶縁に感光性ポリイミドを使用して形成する。
形成方法は、工程1で接地および接続層2を形成した方
法で信号配線層20を形成し、工程2で絶縁層を形成し
た方法で信号層間絶縁層を形成する。
Step 3 (FIG. 2C): A set of signal wiring layers 5 is formed using photosensitive polyimide for interlayer insulation.
As a forming method, the signal wiring layer 20 is formed by the method of forming the ground and connection layer 2 in the step 1, and the signal interlayer insulating layer is formed by the method of forming the insulating layer in the step 2.

【0021】工程4〈図2(d)〉:工程3で形成した
一組の信号配線層の上のものの上にポリイミドワニスを
塗布し、露光・現像を行い所定の位置にヴィアホール6
を形成し、キュアを行なう。
Step 4 (FIG. 2 (d)): A polyimide varnish is applied on the pair of signal wiring layers formed in Step 3 and exposed and developed to form via holes 6 at predetermined positions.
Is formed and cured.

【0022】工程5〈図2(e)〉:工程4で形成した
多層配線層の最上層に、下記の工程6以降で形成する多
層配線層と電気的接続を行う位置に接続用バンプ7を形
成する。バンプはフォトレジストを使用したフォトリソ
グラフィーでパターン化し、電解ニッケルメッキ及び電
解金メッキの2層メッキで形成する。ニッケルメッキは
金錫半田の金配線層への拡散防止層である。各々のメッ
キ厚はニッケル10μm、金3μmである。
Step 5 (FIG. 2E): A connection bump 7 is formed on the uppermost layer of the multilayer wiring layer formed in Step 4 at a position where electrical connection is made with the multilayer wiring layer formed in Step 6 and subsequent steps. Form. The bumps are patterned by photolithography using a photoresist, and are formed by two-layer plating of electrolytic nickel plating and electrolytic gold plating. Nickel plating is a layer for preventing the diffusion of gold-tin solder into the gold wiring layer. Each plating thickness is 10 μm for nickel and 3 μm for gold.

【0023】つぎに、上記とは別に図3に示すように裏
面に入出力ピンを有するセラミック基板上に一組の信号
配線層とそれをはさむ一組の接地および接続層を形成す
る。
Next, as shown in FIG. 3, a set of signal wiring layers and a set of grounding and connecting layers sandwiching the signal wiring layers are formed on a ceramic substrate having input / output pins on the back surface.

【0024】工程6〈図3(a)〉:入出力信号ピンお
よび電源ピン8が裏面にあるセラミック基板9上に接地
および接続配線層10をフォトレジストを用いたフォト
リソグラフィーでパターン化し、電解金メッキを行ない
接地および接続配線層10を形成する。
Step 6 (FIG. 3A): The grounding and connection wiring layer 10 is patterned by photolithography using a photoresist on a ceramic substrate 9 on which the input / output signal pins and power supply pins 8 are on the back side, and electrolytic gold plating To form the grounding and connection wiring layer 10.

【0025】工程7〈図3(b)〉:感光性ポリイミド
ワニス11を工程6で接地および接続層10を形成した
セラミック基板上に塗布し、露光・現像を行ない所定の
位置にヴィアホール12を形成し、キュアを行ない絶縁
層を形成する。
Step 7 (FIG. 3B): A photosensitive polyimide varnish 11 is applied on the ceramic substrate on which the grounding and connection layer 10 has been formed in Step 6, exposed and developed to form a via hole 12 at a predetermined position. Then, curing is performed to form an insulating layer.

【0026】工程8〈図3(c)〉:一組の信号配線層
13を層間絶縁に感光性ポリイミドを使用して形成す
る。形成方法は、工程1で接地および接続層を形成した
方法で信号配線層を形成し、工程2で絶縁層を形成した
方法で信号層間絶縁層21を形成する。
Step 8 (FIG. 3C): A pair of signal wiring layers 13 are formed using photosensitive polyimide for interlayer insulation. As a forming method, a signal wiring layer is formed by a method in which a ground and a connection layer are formed in Step 1, and a signal interlayer insulating layer 21 is formed by a method in which an insulating layer is formed in Step 2.

【0027】工程9〈図3(d)〉:感光性ポリイミド
ワニスを工程8で形成した信号配線上に塗布し、露光・
現像を行ない所定の位置にヴィアホール14を形成し、
キュアを行なう。
Step 9 (FIG. 3D): A photosensitive polyimide varnish is applied on the signal wiring formed in Step 8 and exposed.
By performing development, a via hole 14 is formed at a predetermined position,
Cure.

【0028】工程10〈図3(e)〉:セラミック基板
9側から2番目の第2接地および接続層15を工程6で
使用した方法で工程9で形成したポリイミド層上に形成
する。
Step 10 (FIG. 3E): The second grounding and connection layer 15 from the ceramic substrate 9 side is formed on the polyimide layer formed in Step 9 by the method used in Step 6.

【0029】工程11〈図3(f)〉:接地および接続
層15の上に工程9と同じようにヴィアホール16が形
成されたポリイミド層を形成する。
Step 11 (FIG. 3F): A polyimide layer having a via hole 16 formed thereon is formed on the grounding and connection layer 15 in the same manner as in Step 9.

【0030】工程12〈図4(a)〉:工程11で形成
したポリイミド層上に形成されたヴィアホール16に信
号配線と接続する金と錫の多層メッキによる半田プール
17を形成する。半田プールはフォトレジストを使用し
たフォトリソグラフィーでパターン化し、まず、厚さ3
μmの電解ニッケルメッキを形成し、次に、電解錫メッ
キ及び電解金メッキを交互に行い、金と錫の多層メッキ
を形成する。ニッケルメッキは金錫半田の金配線層への
拡散防止層である。金と錫の多層メッキは後工程のポリ
イミド層接着工程時の熱で融解し金錫の合金半田とな
る。また、金と錫の多層メッキは金対錫の重量比が4対
1になるように膜厚比を10対7とし、各々の膜厚は金
メッキが1μm、錫メッキが0.7μmで合計6層(金
錫多層メッキ部総膜厚10.2μm)形成する。
Step 12 (FIG. 4A): A solder pool 17 is formed in the via hole 16 formed on the polyimide layer formed in Step 11 by multi-layer plating of gold and tin to be connected to signal wiring. The solder pool is patterned by photolithography using a photoresist.
An electrolytic nickel plating of μm is formed, and then electrolytic tin plating and electrolytic gold plating are alternately performed to form a multilayer plating of gold and tin. Nickel plating is a layer for preventing the diffusion of gold-tin solder into the gold wiring layer. The multi-layer plating of gold and tin is melted by heat in the subsequent step of bonding the polyimide layer to form a gold-tin alloy solder. The multilayer plating of gold and tin has a film thickness ratio of 10: 7 so that the weight ratio of gold to tin is 4: 1. Each film thickness is 1 μm for gold plating and 0.7 μm for tin plating, for a total of 6 μm. A layer (gold-tin multi-layer plating portion total thickness 10.2 μm) is formed.

【0031】工程13〈図4(b)〉:工程1から工程
5で形成したアルミニウム平板1上のポリイミド多層配
線層25の工程5で形成した接続用金属バンプ7を有す
るポリイミド層と、工程6から工程12で形成したセラ
ミック基板9上の半田プール17を有するポリイミド多
層配線層26を位置合わせを行なった後重ね合わせ、加
圧およびポリイミド樹脂のガラス転移点を越える温度ま
で加熱を行ない互いのポリイミド膜を接着し固定する。
この時、半田プール17の金と錫の多層メッキは280
°c付近で融解し金錫の合金半田となり、工程5で形成
した金属バンプ7と接合し、ふたつの積層構造体が電気
的に接続する。同時に金属バンプ7の金が半田プール1
7の金錫合金に融解し、半田プール17の金属組成が変
化し金過剰の金錫半田となり、融点が上昇する。よっ
て、次のブロックの重ね合わせ工程で本工程の温度まで
加熱されても、今回接続した半田プール17およびバン
プ7による接点の半田は融解しないので、接続部分が再
び離れるという不良は発生しない。
Step 13 (FIG. 4B): a polyimide layer having the connection metal bumps 7 formed in step 5 of the polyimide multilayer wiring layer 25 on the aluminum flat plate 1 formed in steps 1 to 5; The polyimide multilayer wiring layer 26 having the solder pool 17 on the ceramic substrate 9 formed in the steps 12 to 12 is aligned, then superposed, pressed, and heated to a temperature exceeding the glass transition point of the polyimide resin. Adhere and fix the membrane.
At this time, the gold and tin multilayer plating of the solder pool 17 is 280.
It melts at around ° C and becomes a gold-tin alloy solder, which is joined to the metal bump 7 formed in the step 5, and the two laminated structures are electrically connected. At the same time, the gold of metal bump 7 is solder pool 1
7, and the metal composition of the solder pool 17 changes, resulting in gold-excess gold-tin solder, and the melting point rises. Therefore, even if the solder is heated to the temperature of this step in the next block superimposing step, the solder at the contact point due to the solder pool 17 and the bumps 7 connected this time does not melt, so that there is no occurrence of a defect that the connection part is separated again.

【0032】この半田の融点が上昇することは、示差走
査熱量測定法(DSC)で確認できる。加熱工程前の半
田プール17のDSCを図5に、加熱工程後の金過剰半
田プールのDSCを図6に示す。図5と図6とを比べる
とわかるように、加熱工程後は600°cまでの測定範
囲内で融点のピークが存在しない。ポリイミド多層配線
層の加圧及び加熱方法は次の通りである。加圧・加熱は
オートクレーブ型真空プレス装置を使用し、加圧気体は
窒素ガスを使用し、加圧は基板温度250°cまでは3
kg/cm2 、基板温度250°cから350°cまで
は14kg/cm2 で行う。この時、ポリイミド多層配
線層が積層された基板はプラテン上に置かれポリイミド
フィルムを用いて密封し、真空ポンプを接続して内部を
10Torr以下の減圧状態にする。
The increase in the melting point of the solder can be confirmed by differential scanning calorimetry (DSC). FIG. 5 shows the DSC of the solder pool 17 before the heating step, and FIG. 6 shows the DSC of the gold-excess solder pool after the heating step. As can be seen by comparing FIGS. 5 and 6, after the heating step, there is no melting point peak within the measurement range up to 600 ° C. The method of pressing and heating the polyimide multilayer wiring layer is as follows. Pressurization and heating use an autoclave type vacuum press device, pressurized gas uses nitrogen gas, and pressurization is performed up to a substrate temperature of 250 ° C.
kg / cm 2 , and a substrate temperature of 250 ° C. to 350 ° C. is set at 14 kg / cm 2 . At this time, the substrate on which the polyimide multilayer wiring layer is laminated is placed on a platen, sealed using a polyimide film, and connected to a vacuum pump to reduce the pressure inside to 10 Torr or less.

【0033】工程14〈図4(c)〉:16%塩酸水溶
液に工程13で接着済み基板のアルミニウム平板1の部
分を浸漬し、アルミニウム平板1を溶解除去する。
Step 14 <FIG. 4 (c)>: The part of the aluminum plate 1 of the bonded substrate in step 13 is immersed in a 16% hydrochloric acid aqueous solution to dissolve and remove the aluminum plate 1.

【0034】工程15〈図4(c)〉:工程14で新た
に露出した工程1で作成した接地および接続配線層2上
に感光性ポリイミドワニスを塗布し、露光・現像を行な
い所定の位置にヴィアホールを形成し、キュアを行な
う。
Step 15 (FIG. 4C): A photosensitive polyimide varnish is applied on the ground and connection wiring layer 2 newly formed in Step 1 and exposed and developed in Step 14, and exposed and developed to a predetermined position. A via hole is formed and cured.

【0035】工程16〈図4(c)〉:工程15で形成
したポリイミド層上に形成されたヴィアホールに信号配
線層と接続する金と錫の多層メッキによる半田プール1
8を形成する。形成方法は工程12と同じである。
Step 16 (FIG. 4C): Solder pool 1 by multi-layer plating of gold and tin to be connected to the signal wiring layer in the via hole formed on the polyimide layer formed in Step 15
8 is formed. The forming method is the same as that in Step 12.

【0036】工程17〈図4(d)〉:工程1から工程
16で形成したポリイミド配線層積層体上に、工程1か
ら工程5で形成した別のポリイミド配線層を、工程13
から工程16までの方法で積層一体化する。
Step 17 (FIG. 4D): On the polyimide wiring layer laminate formed in Steps 1 to 16, another polyimide wiring layer formed in Steps 1 to 5 is placed in Step 13 (FIG. 4D).
And the process from step 16 to lamination and integration.

【0037】工程18〈図4(d)〉:配線層数が8層
になるまでの工程17を繰り返す。
Step 18 <FIG. 4D>: Step 17 is repeated until the number of wiring layers becomes eight.

【0038】工程19〈図4(d)〉:最後に、多層配
線基板とLSIチップの配線とを接続する接続電極層1
9を形成する。この工程は工程18において工程13か
ら工程15までを行い、次に工程15で形成したポリイ
ミド層上に、LSIチップが封入されたチップキャリア
のバンプと半田接続を行なう接続電極パッドを形成す
る。この時、LSIチップキャリアのバンプと接続電極
パッドをつなぐ半田には錫鉛共晶半田を使用し、接続電
極パッドは錫鉛半田に食われのない銅メッキで形成す
る。
Step 19 <FIG. 4D>: Lastly, the connection electrode layer 1 for connecting the multilayer wiring board and the wiring of the LSI chip
9 is formed. In this step, steps 13 to 15 are performed in step 18, and then connection electrode pads for solder connection with bumps of the chip carrier in which the LSI chip is encapsulated are formed on the polyimide layer formed in step 15. At this time, tin-lead eutectic solder is used as solder for connecting the bumps of the LSI chip carrier and the connection electrode pads, and the connection electrode pads are formed by copper plating which is not affected by the tin-lead solder.

【0039】以上示したように本実施例により、高積層
数の高配線密度ポリイミド多層配線基板を、従来の逐次
積層方式のポリイミド・セラミック多層配線基板に比べ
非常に短い製造時間で形成することができ、かつ、ブロ
ック単位で電気検査を行ない良品ブロックを選別して積
層することが出来るため、高い製造保留まりを実現する
ことが出来る。さらに、ポリイミド多層配線層を相互に
接続する場合に、前の工程で既に接合した半田プール1
7と金属バンプ7の半田が融解することがないので、半
田プール17と金属バンプの接合の後の工程の加熱によ
る分離を防止できる。
As described above, according to the present embodiment, it is possible to form a polyimide multilayer wiring board having a high number of layers and a high wiring density in a very short manufacturing time as compared with a conventional polyimide / multilayer ceramic wiring board of a sequential lamination type. Since electrical inspection can be performed on a block-by-block basis and non-defective blocks can be selected and stacked, a high production suspension can be realized. Furthermore, when connecting the polyimide multilayer wiring layers to each other, the solder pool 1 already joined in the previous step is used.
Since the solder between the solder bump 7 and the metal bump 7 is not melted, it is possible to prevent the solder pool 17 from being separated by heating in a process after the joining of the solder bump 17 and the metal bump.

【0040】なお、半田プールは金と錫の多層メッキに
限られず、他の金属でもよい。例えば半田プールに錫と
鉛の多層メッキを用いることもできる。
The solder pool is not limited to the multi-layer plating of gold and tin, but may be another metal. For example, multi-layer plating of tin and lead can be used for the solder pool.

【0041】[0041]

【発明の効果】以上説明したように本発明のポリイミド
多層配線基板の製造方法は、ポリイミド多層配線層の構
造を、複数の配線層を含んだ積層体をひとつのブロック
とし、このブロックを複数積層した構造体とし、各々の
ブロック間の電気的接続は、各ブロックの積層体の表面
上に形成された金属バンプと半田プールの鑞着とし、そ
の半田プールの構造を半田を構成する金属の単体金属ご
との多層メッキとし、金属バンプの半田プールに接する
部分を半田プールを構成するひとつ以上の金属で形成す
ることによって、鑞着工程における半田融点上昇効果に
より、後工程における接点分離の発生を防止することが
でき、高品質高多層高配線密度ポリイミド多層配線基板
を、短い製造日数で、かつ、高い製造保留まりで形成で
きるという効果がある。
As described above, according to the method for manufacturing a polyimide multilayer wiring board of the present invention, the structure of the polyimide multilayer wiring layer is obtained by forming a laminate including a plurality of wiring layers into one block and stacking a plurality of blocks. The electrical connection between each block is made by soldering the metal bumps formed on the surface of the stacked body of each block and the solder pool, and the structure of the solder pool is a single metal of the solder Multi-layer plating for each metal, and the portion of the metal bump that contacts the solder pool is formed of one or more metals that make up the solder pool, thereby preventing the occurrence of contact separation in the subsequent process due to the effect of increasing the solder melting point in the soldering process The effect is that a high-quality, high-multilayer, high-wiring-density polyimide multi-layer wiring board can be formed in a short number of production days and with high production suspension. That.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の製造方法によるポリイミド
多層配線基板の断面図である。
FIG. 1 is a sectional view of a polyimide multilayer wiring board according to a manufacturing method of an embodiment of the present invention.

【図2】本発明の一実施例のアルミニウム平板上の信号
配線層ならびに接地および接続配線層の形成を工程順に
示す断面図である。
FIG. 2 is a cross-sectional view showing the formation of a signal wiring layer and a grounding and connection wiring layer on an aluminum flat plate according to an embodiment of the present invention in the order of steps.

【図3】本発明の一実施例のセラミック基板上の信号配
線層ならびに接地および接地配線層の形成を工程順に示
す断面図である。
FIG. 3 is a cross-sectional view showing the formation of a signal wiring layer, a ground, and a ground wiring layer on a ceramic substrate according to one embodiment of the present invention in the order of steps.

【図4】本発明の一実施例のアルミニウム平板上のポリ
イミド多層配線層およびセラミック基板上のポリイミド
多層配線層の接着を工程順に示す断面図である。
FIG. 4 is a cross-sectional view showing the bonding of a polyimide multilayer wiring layer on an aluminum flat plate and a polyimide multilayer wiring layer on a ceramic substrate in the order of steps according to one embodiment of the present invention.

【図5】加熱工程前の半田プール17のDSCチャート
を示す図である。
FIG. 5 is a view showing a DSC chart of the solder pool 17 before a heating step.

【図6】加熱工程後の金過剰となった半田プール17の
DSCチャートを示す図である。
FIG. 6 is a view showing a DSC chart of a solder pool 17 in which gold has become excessive after a heating step.

【符号の説明】[Explanation of symbols]

1 アルミニウム平板 2,10 接地および接続配線層 3,6,12,14,16 ヴィアホール 4,11 ポリイミドワニス 5,13 信号配線層 15 接地および接続層 7,28 接続用バンプ 8 入出力ピン 9 セラミック基板 17,18 半田プール 19 LSI接続用パット 23 ポリイミド 24 ブロック 25 アルミニウム平板上のポリイミド多層配線層 26 セラミック基板上のポリイミド多層配線層 DESCRIPTION OF SYMBOLS 1 Aluminum flat plate 2,10 Grounding and connection wiring layer 3,6,12,14,16 Via hole 4,11 Polyimide varnish 5,13 Signal wiring layer 15 Grounding and connection layer 7,28 Connection bump 8 Input / output pin 9 Ceramic Substrates 17, 18 Solder pool 19 LSI connection pad 23 Polyimide 24 Block 25 Polyimide multilayer wiring layer on aluminum flat plate 26 Polyimide multilayer wiring layer on ceramic substrate

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の配線層を有するブロックの複数個
を積層し前記ブロックの一つに設けた半田プールおよび
前記ブロックの他のものに設けた金属バンプを鑞着して
ブロック間の電気的接続を行うポリイミド多層配線基板
の製造方法において、前記半田プールは各層が半田を構
成する金属のいずれかの単体金属からなり異る金属の層
を交互に重ねた多層メッキであり、前記金属バンプは前
半田プールに接する部分が前記半田プールを構成する
金属のうちの一つ以上のものであることを特徴とするポ
リイミド多層配線基板の製造方法。
An electrical connection between blocks by laminating a plurality of blocks having a plurality of wiring layers and soldering a solder pool provided on one of the blocks and a metal bump provided on another of the blocks. In the method for manufacturing a polyimide multilayer wiring board for performing connection, the solder pool is a multilayer plating in which each layer is made of any one of the metals constituting the solder and alternately overlaps layers of different metals, and the metal bump is A method for manufacturing a polyimide multilayer wiring board, wherein a portion in contact with the solder pool is at least one of metals constituting the solder pool.
【請求項2】 絶縁層がポリイミド樹脂で複数の配線層
を有し、各層が半田を構成する金属のいずれかの単体金
属からなり異る金属のメッキ層を交互に重ねた多層メッ
キである半田プールが表面に設けられたことを特徴とす
るポリイミド多層配線基板のブロック。
2. A multi-layer solder in which an insulating layer has a plurality of wiring layers made of a polyimide resin, and each layer is made of any one of the metals constituting the solder and alternately has plated layers of different metals. A block of a polyimide multilayer wiring board, wherein a pool is provided on a surface.
【請求項3】 半田プールは金のメッキ層と錫のメッキ
層を交互に重ねた多層メッキである請求項1記載のポリ
イミド多層配線基板の製造方法。
3. The method for manufacturing a polyimide multilayer wiring board according to claim 1, wherein the solder pool is a multilayer plating in which gold plating layers and tin plating layers are alternately stacked.
【請求項4】 半田プールは錫のメッキ層と鉛のメッキ
層を交互に重ねた多層メッキである請求項1記載のポリ
イミド多層配線基板の製造方法。
4. The method for manufacturing a polyimide multilayer wiring board according to claim 1, wherein the solder pool is a multilayer plating in which tin plating layers and lead plating layers are alternately stacked.
【請求項5】 半田プールは金のメッキ層と錫のメッキ
層を交互に重ねた多層メッキである請求項2記載のポリ
イミド多層配線基板のブロック。
5. The block according to claim 2, wherein the solder pool is a multilayer plating in which gold plating layers and tin plating layers are alternately stacked.
【請求項6】 半田プールは錫のメッキ層と鉛のメッキ
層を交互に重ねた多層メッキである請求項2記載のポリ
イミド多層配線基板のブロック。
6. The block according to claim 2, wherein the solder pool is a multilayer plating in which tin plating layers and lead plating layers are alternately stacked.
JP3301430A 1991-01-09 1991-11-18 Manufacturing method of polyimide multilayer wiring board Expired - Fee Related JP2776096B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP3301430A JP2776096B2 (en) 1991-11-18 1991-11-18 Manufacturing method of polyimide multilayer wiring board
CA002059020A CA2059020C (en) 1991-01-09 1992-01-08 Polyimide multilayer wiring board and method of producing same
EP92100269A EP0494668B1 (en) 1991-01-09 1992-01-09 Polyimide multilayer wiring board and method of producing same
US07/818,529 US5321210A (en) 1991-01-09 1992-01-09 Polyimide multilayer wiring board and method of producing same
DE69223657T DE69223657T2 (en) 1991-01-09 1992-01-09 Multi-layer printed circuit board made of polyimide and method of production
DE1992613890 DE69213890T2 (en) 1991-11-18 1992-11-17 Multi-layer printed circuit board made of polyimide and method of production
EP19920119617 EP0543331B1 (en) 1991-11-18 1992-11-17 Polyimide multilayer interconnection board and method of making the same
CA 2083077 CA2083077C (en) 1991-11-18 1992-11-17 Polyimide multilayer interconnection board and method of making the same
US08/070,923 US5426849A (en) 1991-01-09 1993-07-28 Method of producing a polyimide multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3301430A JP2776096B2 (en) 1991-11-18 1991-11-18 Manufacturing method of polyimide multilayer wiring board

Publications (2)

Publication Number Publication Date
JPH05206643A JPH05206643A (en) 1993-08-13
JP2776096B2 true JP2776096B2 (en) 1998-07-16

Family

ID=17896790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3301430A Expired - Fee Related JP2776096B2 (en) 1991-01-09 1991-11-18 Manufacturing method of polyimide multilayer wiring board

Country Status (1)

Country Link
JP (1) JP2776096B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2138218C (en) 1993-12-16 2000-10-10 Shinji Tanaka Process for delaminating organic resin from board and process for manufacturing organic resin multi-layer wiring board
JP2748890B2 (en) * 1995-06-14 1998-05-13 日本電気株式会社 Organic resin multilayer wiring board and method of manufacturing the same
KR101009176B1 (en) * 2008-03-18 2011-01-18 삼성전기주식회사 A fabricating method of multilayer printed circuit board

Also Published As

Publication number Publication date
JPH05206643A (en) 1993-08-13

Similar Documents

Publication Publication Date Title
EP0526133B1 (en) Polyimide multilayer wiring substrate and method for manufacturing the same
US5321210A (en) Polyimide multilayer wiring board and method of producing same
JP3429734B2 (en) Wiring board, multilayer wiring board, circuit component package, and method of manufacturing wiring board
CA2053448C (en) Multilayer printed wiring board and process for manufacturing the same
JPH06310870A (en) Wiring board structure and its manufacture
JP4201436B2 (en) Manufacturing method of multilayer wiring board
JPH09116273A (en) Multilayered circuit board and its manufacture
JPH05267402A (en) Thin film multilayer printed circuit board and its manufacture
JP3653452B2 (en) WIRING CIRCUIT BOARD, ITS MANUFACTURING METHOD, SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE, AND ITS MANUFACTURING METHOD
JP4460341B2 (en) Wiring board and manufacturing method thereof
JP2001119147A (en) Multilayer board incorporating electronic device and production method therefor
JPH08148828A (en) Thin film multilayered circuit board and its manufacture
JP3016292B2 (en) Polyimide multilayer wiring board and method of manufacturing the same
JP2776096B2 (en) Manufacturing method of polyimide multilayer wiring board
JPH08181450A (en) Electronic circuit board and manufacture thereof
JP2002151853A (en) Multilayer printed wiring board and manufacturing method thereof
JP2817530B2 (en) Manufacturing method of polyimide multilayer wiring board
JP2751678B2 (en) Polyimide multilayer wiring board and method of manufacturing the same
JP4684454B2 (en) Printed wiring board manufacturing method and printed wiring board
JP2616588B2 (en) Polyimide multilayer wiring board and method of manufacturing the same
JP2921223B2 (en) Manufacturing method of polyimide multilayer wiring board
JP2712936B2 (en) Polyimide multilayer wiring board and method of manufacturing the same
JP3107535B2 (en) Wiring board, circuit component mounted body, and method of manufacturing wiring board
CA2083077C (en) Polyimide multilayer interconnection board and method of making the same
JPH04312999A (en) Polyimide multilayer wiring board and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980331

LAPS Cancellation because of no payment of annual fees