JP3990013B2 - 燃料集合体及び原子炉炉心 - Google Patents

燃料集合体及び原子炉炉心 Download PDF

Info

Publication number
JP3990013B2
JP3990013B2 JP33856997A JP33856997A JP3990013B2 JP 3990013 B2 JP3990013 B2 JP 3990013B2 JP 33856997 A JP33856997 A JP 33856997A JP 33856997 A JP33856997 A JP 33856997A JP 3990013 B2 JP3990013 B2 JP 3990013B2
Authority
JP
Japan
Prior art keywords
fuel
control rod
water
rod side
fuel rods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33856997A
Other languages
English (en)
Other versions
JPH11174178A (ja
Inventor
章広 山中
勝正 配川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33856997A priority Critical patent/JP3990013B2/ja
Publication of JPH11174178A publication Critical patent/JPH11174178A/ja
Application granted granted Critical
Publication of JP3990013B2 publication Critical patent/JP3990013B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、沸騰水型原子炉に用いる燃料集合体及びこれを用いた原子炉炉心に関する。
【0002】
【従来の技術】
一般的な沸騰水型原子炉炉心の部分構造を表す概念的横断面図を図10に示す。この図10において、炉心1は、多数の燃料集合体2を配置して構成されており、これら燃料集合体2は、4体を1組としてその間に横断面十字形の制御棒3が挿入されるようになっている。
【0003】
各燃料集合体2においては、多数の燃料棒4と1本以上(図では2本)の水ロッド5を正方格子状に配列して燃料バンドルを形成し、この燃料バンドルを単位セル(破線で示す)6の中央に据えるとともに燃料バンドルを囲むように横断面矩形のチャンネルボックス8を配置している。この燃料バンドルの上下端は、チャンネルボックスに挿入される上部タイプレート(図示せず)及び下部タイプレート(同)によってそれぞれ支持されている。
燃料棒4は、この例では74本が設けられており、それぞれ核燃料物質を充填した燃料ペレットが被覆管中に配置されて構成されている。またそれら74本のうち一部の燃料棒4の燃料ペレットには、燃焼初期の反応を抑制するための可燃性毒物(例えばガドリニア)がさらに添加されている。
水ロッド5は、燃料棒4の7本分のスペースに2本が配置されている。なお、水ロッド5ではなく、角型の水ボックスを用いる場合もある。
【0004】
この燃料集合体2では、運転時、わずかに未飽和状態の冷却水が下部タイプレートの孔から燃料棒4間に流入し、燃料棒4間を下部から上部に流れるにつれ燃料棒4により加熱されて沸騰し、二相流となって上部タイプレートの孔から流出していく。その結果、冷却材のボイド率は燃料集合体2下部では0%だが、上部では70%程度にも達し、燃料集合体2の核的な特性を決める要因である減速材対燃料比、即ち、水素対ウラン比(H/U比)が軸方向位置で大きく異なることになる。
このH/U比が燃料集合体2の核的な特性を決める原理は、以下のようである。すなわち、沸騰水型原子炉では減速材として軽水を用いるため、核分裂によって発生した高速中性子が減速材である水で散乱減速されて熱中性子になり次の核分裂を引き起こす、という連鎖反応によってエネルギーを発生する。つまり、核分裂反応を促進する上で水が重要な役割を果たし、水が相対的に多い領域では核分裂反応が促進され、水が相対的に少ない領域では核分裂反応が抑制されることとなる。
【0005】
ここで、図10に戻り、燃料集合体2のチャンネルボックス8の外側には、制御棒3や中性子検出器計装管(図示せず)を配置するための間隙が設けられている。この間隙は飽和水で満たされており、冷却材の軽水が沸騰せずに流れる流路となるギャップ水領域9,10を形成している。これらギャップ水領域9,10には制御棒3が挿入されるギャップ水領域9と、制御棒3の出し入れがないギャップ水領域10の2種類がある。このようなギャップ水領域9,10の存在のため、燃料集合体2の周辺部(間隙に近い領域)にある燃料棒4と燃料集合体2中心部の燃料棒4とでは、飽和水による影響が異なる。すなわち、ギャップ水領域9,10に近い燃料集合体2の周辺部は、中心部に比べH/U比が大きな領域となる。そのため、燃料集合体2の周辺部が中心部に比べて核分裂反応が促進されるため、局所出力ピーキングが増大することとなる。
また特に、図10の炉心1は、制御棒側のギャップ水領域9のギャップ幅が反制御棒側のギャップ水領域10のギャップ幅よりも広いD格子炉心となっており、ギャップ水領域9及びギャップ水領域10のギャップ幅が等しいC格子炉心とは異なるタイプとなっている。そのため、制御棒3に面する側と反対側とではH/U比が大きく異なり、局所出力ピーキングも大きく異なることとなる。
【0006】
以上のようなH/U比の径方向分布に関し、これを改善し最適化することは燃料集合体特性の向上の観点から非常に重要である。そのため、従来、種々の方法でこのH/U比の径方向分布の改善が行われている。以下、それらについて順次説明する。
【0007】
(1)水ロッドの配置による径方向H/U比の改善
燃料集合体の径方向のH/U比の改善のための方策としては、特に水の少なくなる燃料集合体中央部分に配置される水ロッド(あるいは水ボックス)の本数を増加させたり大型化する構成がある。この水ロッドや水ボックスの内部の水は沸騰することがないため、中性子減速効果の十分でない燃料集合体の中央領域に効果的に水を取り込むことができる。これにより、径方向のH/U比分布を改善し、燃料集合体の特性を向上させることが可能となっている。
【0008】
特に、D格子炉心に装荷される燃料集合体では、図10で前述したように、制御棒3が位置する側のギャップ水領域9とその反対側のギャップ水領域10の面積が等しくないことにより、径方向のH/U比が不均一となり、局所出力ピーキングが増大する傾向にある。これに対しては、従来より燃料棒4のウラン235の濃縮度を調整する方法が用いられている。すなわち、熱中性子束が相対的に小さい狭いギャップ水領域10に面する側の燃料棒4を比較的高い濃縮度とし、熱中性子束が相対的に大き広いギャップ水領域9に面する側の燃料棒4を比較的低い濃縮度とすることにより、両者の出力差を低減し、径方向の局所出力ピーキングを抑制するものである。
【0009】
(2)高燃焼度化におけるH/U比の改善
ところで、近年、沸騰水型原子炉において、プラント利用率の向上と共にウラン資源を有効に活用する方法として、燃料の高燃焼度化及び長期運転サイクル化が提唱されている。このとき、燃料集合体の取出燃焼度を高めるためには濃縮度を高める必要があるため燃料集合体のH/U比が影響を受けることになるが、適切な炉停止余裕やボイド反応度係数を得る減速状態となるように配慮する必要がある。また、長期運転サイクル化による炉内滞在期間の延長は、H/U比が径方向で異なるという影響を燃料が炉心内で長期間受けることを意味しており、このH/U比の影響がさらに拡大することになる。
【0010】
このような高燃焼度化を図った燃料集合体における径方向H/U比の改善に関する公知技術としては、例えば特開平3−296689号公報がある。この従来技術においては、D格子炉心に配置される燃料集合体内における、径方向H/U比の差を小さくする方法として、
▲1▼水ロッドを狭いギャップ水領域に近づける。
▲2▼飽和水領域を増加させる機能をもつ短尺燃料棒を設け、かつこの短尺燃料棒を狭いギャップ水領域に近づける。
という2つの方法が開示されている。これらはいずれも、狭いギャップ水領域付近ではH/U比を大きくし、広いギャップ水領域付近ではH/U比を小さくするものである。
上記▲1▼を実施した燃料集合体の構造の例を図11に示す。図10と共通の部分は同一の符号を付す。図11に示す燃料集合体は、9行9列正方格子状配列において、水ロッドの機能を果たす角型水ボックス11を、燃料集合体中央部から狭いギャップ水領域10側に一列だけ偏心させたものである。
また、上記従来技術においては、▲1▼を実施している場合には、▲2▼をさらに実施することはあまり効果がないことも示されている。
【0011】
【発明が解決しようとする課題】
しかしながら、上記従来技術においては、以下の課題が存在する。
すなわち、燃料集合体の燃焼度を増加させ高燃焼度化を図る場合には、一般的には集合体平均濃縮度を例えば3.8重量%以上に増加させるが、それに伴って、反応度を抑えるために一部の燃料棒の燃料ペレットに混入する可燃性毒物の量も多くなる。このとき、上記▲1▼を実施して径方向H/U比の差を小さくした場合には、例えば図11に示すように水ボックス11が反制御棒側に偏ることとなるため、その可燃性毒物入りの燃料棒の配置位置は、制御棒側に偏らざるを得なくなる。これは、以下の理由による。
すなわち、まず第一に、可燃性毒物入りの燃料棒は、熱中性子束が最も大きい正方格子状配列の最外周に配置すると早く燃え尽きてしまうため、通常は最外周には配置せず、最外周から2列目以降に配置するのが一般的である。また燃料集合体の安定的な性能発揮や可燃性毒物価値減少の防止等の観点から、可燃性毒物入りの燃料棒どうしを隣接配置(n×n行配列における同行隣接列又は同列隣接行となる位置)するのも避けるのが一般的である。これらにより、例えば図11の例においては、反制御棒側コーナー部(図中右下側コーナー部)近傍には可燃性毒物入りの燃料棒が配置しにくくなるので、可燃性毒物入りの燃料棒は制御棒側に配置されもののほうが多くなる。
【0012】
ここで、可燃性毒物の燃焼は中性子スペクトルに強く依存しており、中性子平均エネルギーが低く(中性子スペクトルが軟らかく)なるほど燃焼が進行する。制御棒側領域では、水ボックス11が反制御棒側に偏ることで最外周以外の内部領域では水が相対的に少なくなり、中性子スペクトルが硬くなっているため、その制御棒側領域に可燃性毒物入り燃料棒を配置するとそれら可燃性毒物の燃焼が遅れがちとなって可燃性毒物の径方向燃焼が不均一となる。
このとき特に、沸騰水型原子炉の燃料集合体では、冷却水が軸方向で沸騰、すなわち相変化しながら流れていくために、軸方向上部の方がボイド率が高く(=減速材密度が小さく)なり中性子スペクトルがさらに硬くなる。そのため、炉心上部では特に可燃性毒物の燃焼が遅れることになり、可燃性毒物の軸方向燃焼も不均一となる。
以上のような可燃性毒物の軸方向・径方向燃焼の不均一により、軸方向・径方向出力分布が不均一となり大きくひずむという課題があった。
【0013】
ここで、上記従来技術では、上記▲1▼(=水ロッド領域を狭いギャップ水領域に近づける)を実施すれば、狭いギャップ水領域付近の減速材量としてはほぼ十分であり、そのためさらに上記▲2▼(=短尺燃料棒を狭いギャップ水領域に近づける)を実施しても径方向H/U比の均一化にはあまり意味がないとしている。そこで、この均一化にあまり寄与しない短尺燃料棒を上記▲2▼とは逆に制御棒側の広いギャップ水領域に近づけることにより、径方向H/U比均一化の効果は▲1▼▲2▼両方を実施した場合とほぼ同等の効果を確保しつつ、その分制御棒側領域の特に軸方向上部の中性子スペクトルを軟らかくして可燃性毒物の燃焼を促進し軸方向・径方向出力分布の均一化を図れれば、そのほうがはるかに有益であると思われる。上記従来技術では、このような点について配慮されていない。
【0014】
本発明の目的は、高燃焼度化を図った燃料集合体において、H/U比の径方向均一化を確保しつつ、可燃性毒物の燃焼不均一を抑制し軸方向・径方向出力分布の均一化を図れる構成を提供するとともに、この燃料集合体を用いた原子炉炉心を提供することにある。
【0015】
【課題を解決するための手段】
(1)上記目的を達成するために、本発明は、正方格子状に配列された複数本の燃料棒と、該燃料棒が1本以上配列可能な領域に配置された少なくとも1本の水ロッド又は水ボックスと、チャンネルファスナーを固定するために制御棒側に設けられるガイドポストとを備え、かつ前記複数本の燃料棒が、核燃料物質を含み可燃性毒物を含まない複数本の第1の燃料棒と、核燃料物質及び可燃性毒物を含む複数本の第2の燃料棒と、これら第1及び第2の燃料棒より燃料有効長が短くかつ核燃料物質を含み可燃性毒物を含まない複数本の第3の燃料棒とを含んでいる燃料集合体において、燃料集合体内部を前記燃料棒の配列の対角線上に位置する鉛直方向の境界面によって制御棒側領域と反制御棒側領域とに2分したとき、前記水ロッド又は水ボックスは、前記反制御棒側領域側に偏って配置されており、かつ、前記第2の燃料棒及び第3の燃料棒は、それぞれ前記制御棒側領域に配置される本数が前記反制御棒側領域に配置される本数よりも多くなっている。沸騰水型原子炉用の燃料集合体をD格子炉心に装荷した場合には、制御棒側は燃料集合体間の間隔が広くなっているため減速材である水の量が相対的に多くなる一方、反制御棒側は燃料集合体間の間隔が狭く水の量が相対的に少なくなる。本発明においては、まず、水ロッド又は水ボックスを反制御棒側領域に偏って配置することにより、この水ロッド又は水ボックス内の飽和水領域の作用によって反制御棒側領域における水の量を増加させH/U比を増大させるとともに、制御棒側領域における燃料の量を増加させてH/U比を抑制する。これにより、水及び燃料の径方向の配置をより均等にして反制御棒側と制御棒側との径方向H/U比の差を低減し、燃料集合体内における径方向H/U比分布を均一に確保する。ここで、可燃性毒物を含む複数本の第2の燃料棒の配置可能箇所は、通常、正方格子状配列の最外周を除く等の制限がある。したがって上記のように水ロッド又は水ボックスの配置を反制御棒側へ偏って配置すると、反制御棒側領域の空きスペースが少なくなるため、第2の燃料棒を反制御棒側にはあまり配置できなくなる。したがって第2の燃料棒の本数を制御棒側と反制御棒側とで等しくしようとすると、全体の配置本数が限られてしまい、高燃焼度化を図る場合に必要な所定の可燃性毒物量入り燃料棒の本数を確保できない可能性がある。しかしながら、本発明においては、これら第2の燃料棒を反制御棒側よりも制御棒側に多く配置することにより、高燃焼度化を図る場合に必要な所定の可燃性毒物量入り燃料棒の本数を十分に確保することができる。ところで、一般に、可燃性毒物の燃焼は、中性子スペクトルに強く依存しており、中性子スペクトルが軟らかくなるほど燃焼が進行する。前述したように水ロッド又は水ボックスの反制御棒側へ偏在させると、制御棒側領域では最外周以外の内部領域に限っては水が相対的に少なくなり中性子スペクトルが硬くなる傾向となる。そのため、上記のようにこの制御棒側領域に可燃性毒物入り第2の燃料棒を配置すると可燃性毒物の燃焼が遅れ、その中でも特に軸方向上部で最も燃焼が遅れることとなり、径方向・軸方向出力分布が不均一となる。しかしながら本発明においては、可燃性毒物入り第2の燃料棒を制御棒側領域に多く配置するとともに、燃料有効長が短い第3の燃料棒もこの制御棒側領域に多く配置する。これにより、第3の燃料棒の上部に生じる飽和水領域の作用で、制御棒側領域の特に軸方向上部における水の量を増加させて中性子スペクトルを軟らかくすることができる。したがって、第2の燃料棒に含まれる可燃性毒物の特に軸方向上部における燃焼を促進して軸方向燃焼の均一化を図ることができる。またこれによって制御棒側領域全体でみても反制御棒側領域より燃焼が促進されることとなるので、径方向燃焼の均一化も図ることができる。したがって、軸方向・径方向出力分布の均一化を図ることができる。
【0016】
(2)上記(1)において、好ましくは、前記第2の燃料棒及び第3の燃料棒のすべてが、前記制御棒側領域に配列されている。
【0017】
(3)上記(1)において、また好ましくは、前記第2の燃料棒は、軸方向上部の可燃性毒物の濃度が軸方向下部の可燃性毒物の濃度よりも小さくなっている。
これにより、第2の燃料棒における軸方向上部の可燃性毒物の燃え残りをさらに効果的に防止できるので、さらに軸方向出力分布を均一化できる効果がある。
【0018】
(4)上記目的を達成するために、また本発明は、上記燃料集合体を装荷した原子炉炉心を提供する。
【0019】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照しつつ説明する。
本発明の第1の実施形態を図1〜図4により説明する。
本実施形態による沸騰水型原子炉用の燃料集合体の構造を表す縦断面図を図2に示し、図2中I−I断面でみた横断面図を図1に示す。これら図1及び図2において、本実施形態による燃料集合体100は、図10に示した炉心と同様、沸騰水型原子炉D格子炉心の単位セル107に装荷されるものであり、9行9列の正方格子状に配列され内部に核燃料物質としてのウラン−235が充填された72本の燃料棒101と、正方格子状配列の中央部領域の水の量を増やすのを目的として燃料棒101が9本配列可能な領域に配置された1本の水ボックス102と、これら燃料棒101及び水ボックス102により形成される燃料バンドルの周囲を囲むチャンネルボックス103とを備えている。燃料バンドルの上部及び下部はそれぞれ上部タイプレート104及び下部タイプレート105により支持されており、また燃料バンドルの軸方向複数箇所には、燃料棒101及び水ボックス102の間隔を保持するためのスペーサ106が設けられている。
また、上部タイプレート104の制御棒108側(以下適宜、単に制御棒側という)及びその反対側(以下適宜、反制御棒側という)のコーナー部には、ガイドポスト104a,104bがそれぞれ一体に形成されており、そのうち、制御棒側のガイドポスト104aには、チャンネルボックス103に接続されたチャンネルファスナー109が固定されている。
このチャンネルファスナー109は、1つの制御棒108まわりの4つの燃料集合体100を相互に連結するとともに、これら燃料集合体100間に制御棒108の挿入・引き抜きスペースを確保する機能を果たすものであり、各燃料集合体100の制御棒側のガイドポスト104aに固定されている。なお、反制御棒側のガイドポスト104bは、制御棒側のガイドポスト104aとの重量バランスをとるためのダミーとなっている。
【0020】
燃料棒101は、燃料有効長が通常の長さであって可燃性毒物を含まない52本の第1の燃料棒101aと、燃料有効長が通常の長さであって可燃性毒物としてガドリニアを含む6本の第2の燃料棒101bと、燃料有効長が第1及び第2の燃料棒101a,101bよりも短いいわゆる短尺燃料棒である14本の第3の燃料棒101cとから構成されている。なおこのとき、第2の燃料棒101bのガドリニアの混入濃度は軸方向に一様となっており、また第3の燃料棒101cの燃料有効長は、第1及び第2の燃料棒101a,101bの有効長の15/24(=5/8)となっている。
またこれら燃料棒は、特に図示や詳細な説明を行わないが、この種の燃料集合体として公知であるものと同様、濃縮度分布が異なる複数種類の燃料棒から構成されている。そして各種類ごとに適宜軸方向の濃縮度分布を設けることにより軸方向出力ピーキングの平坦化を図ったり、各種燃料棒の配置を適宜工夫することにより径方向出力ピーキングの平坦化が図られている。なお、このとき、このような燃料棒101の配置において、燃料集合体100における平均濃縮度は3.8重量%となっている。
【0021】
以上のような燃料集合体100における本実施形態の要部は、水ボックス102の配置方法と第2及び第3の燃料棒101b,101cの配置方法にある。すなわち、燃料集合体内部を前記燃料棒の配列の対角線上に位置する鉛直方向の境界面110によって制御棒側領域111と反制御棒側領域112とに2分して考えたとき、水ボックス102を反制御棒側領域112に偏って配置するとともに、制御棒側領域111に配置される第2及び第3の燃料棒101b,101cの本数を、反制御棒側領域112に配置される第2及び第3の燃料棒101b,101cの本数よりも多くしたことである。具体的には、制御棒側領域111には10本の第2の燃料棒101bと5本の第3の燃料棒101cが配置されているのに対し、反制御棒側領域112には4本の第2の燃料棒101bと1本の第3の燃料棒101cしか配置されていない。
【0022】
このような水ボックス102、第2の燃料棒101b、及び第3の燃料棒101cの配置により、本実施形態においては、以下の作用を奏する。
【0023】
(1)水ボックスの偏在によるH/U比の改善
すなわち、D格子炉心に装荷される場合、制御棒側においてチャンネルボックス103の外側に形成されるギャップ水領域113の面積が広くなっているため水の量が相対的に多くなる一方、反制御棒側でチャンネルボックス103の外側に形成されるギャップ水領域114の面積が狭くなっているため水の量が相対的に少なくなる。
しかしながら、本実施形態においては、水ボックス102を反制御棒側に偏って配置することにより、この水ボックス102内の飽和水領域の作用によって反制御棒側領域112における水の量を増加させH/U比を増大させるとともに、制御棒側領域111における燃料の量を増加させてH/U比を抑制する。これにより、水及び燃料の径方向の配置をより均等にして反制御棒側と制御棒側との径方向H/U比の差を低減し、燃料集合体100内における径方向H/U比分布を均一に確保することができる。
【0024】
(2)高燃焼度化の確保
通常、ガドリニアを含む燃料棒の配置箇所には、以下のような制限がある。すなわち、ガドリニア入りの燃料棒は、熱中性子束が最も大きい正方格子状配列の最外周に配置すると早く燃え尽きてしまうため、通常は最外周には配置せず、最外周から2列目以降に配置するのが一般的である。また、燃料集合体の安定的な性能発揮やガドリニア価値減少の防止等の観点から、ガドリニア入りの燃料棒どうしを隣接配置(n×n行配列における同行隣接列又は同列隣接行となる位置)するのも避けるのが一般的である。
したがって、上記(1)により水ボックス102の配置を反制御棒側領域112へ偏って配置すると、反制御棒側領域112の空きスペースが少なくなるため、第2の燃料棒101bを反制御棒側領域112にはあまり配置できなくなる。したがって第2の燃料棒101bの本数を制御棒側領域111と反制御棒側領域112とで等しくしようとすると、全体の配置本数が限られてしまい、高燃焼度化を図る場合に必要な所定のガドリニア入り第2の燃料棒101bの本数(図1の例では14本)を確保できない可能性がある。しかしながら、本実施形態においては、これら第2の燃料棒101bを反制御棒側領域112よりも制御棒側領域111に多く配置することにより、高燃焼度化を図る場合に必要な所定の可燃性毒物量入り第2の燃料棒101bの本数(14本)を全体として確保することができる。
【0025】
(3)軸方向・径方向燃焼均一化
一般に、ガドリニアの燃焼は、中性子スペクトルに強く依存しており、中性子スペクトルが軟らかくなるほど燃焼が進行する。上記(1)により水ボックス102を反制御棒側領域112へ偏在させると、制御棒側領域111では最外周以外の内部領域に限っては水が相対的に少なくなり中性子スペクトルが硬くなる傾向となる。そのため、上記(2)のようにこの制御棒側領域111にガドリニア入り第2の燃料棒101bを多く配置した場合ガドリニアの燃焼が遅れ、その中でも特に軸方向上部で最も燃焼が遅れることとなり、径方向・軸方向出力分布が不均一となる。しかしながら本実施形態においては、ガドリニア入り第2の燃料棒101bを制御棒側領域111に多く配置するとともに、燃料有効長が短い第3の燃料棒101cもこの制御棒側領域111に多く配置する。これにより、第3の燃料棒101cの上部に生じる飽和水領域の作用で、制御棒側領域111の特に軸方向上部における水の量を増加させて中性子スペクトルを軟らかくすることができる。したがって、第2の燃料棒101bに含まれるガドリニアの特に軸方向上部における燃焼を促進して軸方向燃焼の均一化を図ることができる。またこれによって制御棒側領域111全体でみても反制御棒側領域112より燃焼が促進されることとなるので、径方向燃焼の均一化も図ることができる。したがって、軸方向・径方向出力分布の均一化を図ることができる。
【0026】
以上説明したように、本実施形態の燃料集合体100によれば、高燃焼度化を図った構造において、H/U比の径方向均一化を確保しつつ、ガドリニアの燃焼不均一を抑制し、軸方向・径方向出力分布の均一化を図ることができる。
【0027】
上記効果のうち、特に、軸方向出力分布の均一化について比較例を用いて説明する。
本実施形態の燃料集合体100の比較例として、燃料集合体100における第3の燃料棒101cをすべて第1の燃料棒101aに置き換えたものを図3に示す。図3に示すように、この比較例による燃料集合体150は、上記置き換えによって第1の燃料棒101aの数が52本から58本に増えている。その他の構造は、本実施形態による燃料集合体100とほぼ同様となっている。
そして、図4は、本実施形態による燃料集合体100を図10と同様にして装荷した沸騰水型原子炉炉心の軸方向出力分布の解析結果(曲線ア)と、比較例による燃料集合体150を図10と同様にして装荷した沸騰水型原子炉炉心の軸方向出力分布の解析結果(曲線イ)とを比較して示したものである。図4に示されるように、比較例の燃料集合体150を適用した炉心では、減速材密度が少なく中性子スペクトルが硬い軸方向上部でガドリニアの燃焼が遅れるため出力分布が下膨らみとなっているが、本実施形態の燃料集合体100を適用した炉心では、第3の燃料棒101c上部の飽和水の作用で中性子スペクトルの硬化が緩和される分、可燃性毒物の軸方向燃焼差が緩和され、軸方向出力分布がより平坦化していることが分かる。
【0028】
なお、上記実施形態においては、高燃焼度化対応として、9行9列の正方格子状配列において集合体平均濃縮度を3.8重量%とし、これに応じてガドリニア入り第2の燃料棒101bを14本配置していたが、これに限られない。例えばこれよりも集合体平均濃縮度を若干小さくしてガドリニア入り第2の燃料棒101bの本数の割合を少なくしてもよい。このような場合の実施形態を以下、第2の実施形態〜第4の実施形態により説明する。なお以降の実施形態においては、煩雑を避けるために、制御棒側領域111及び反制御棒側領域112の図示を適宜省略する。
【0029】
本発明の第2の実施形態を図5〜図7により説明する。
本実施形態による沸騰水型原子炉用の燃料集合体の構造を表す横断面図を図5に示す。この図5は第1の実施形態の図1にほぼ相当する図であり、共通の部材には同一の符号を付し、説明を省略する。
【0030】
図5において、本実施形態による燃料集合体200が図1に示した第1の実施形態の燃料集合体100と異なる点は、第2の燃料棒101bの本数が若干減っていることである。すなわち、ガドリニア入り第2の燃料棒101bは、6本減って全体で8本となり、制御棒側領域111には6本、反制御棒側領域112には2本が配置されている。そしてこれに対応して第1の燃料棒101aの数が6本増えて58本となっている。第3の燃料棒101cについては本数も配置位置も変わらない。また、集合体平均濃縮度はx[重量%](但しx>3.8)となっている。
その他の構造は、第1の実施形態の燃料集合体100とほぼ同様である。
【0031】
本実施形態によっても、第1の実施形態と同様の効果を得る。
【0032】
なお、上記第1及び第2の実施形態においては、第2の燃料棒101bのガドリニアの混入濃度は軸方向に一様であったが、これに限られず、軸方向で濃度差を設けてもよい。すなわち、図6に示すように、第2の燃料棒101bのガドリニア濃度を、軸方向ノード15/24位置を境に上部をβ[重量%]、下部をα[重量%](但しα>β)としてもよい。この場合、上部のガドリニア濃度が相対的に小さい分、第2の燃料棒101bにおける軸方向上部のガドリニアの燃え残りをさらに効果的に防止できるので、さらに軸方向出力分布を均一化できる効果がある。
また、上記第1及び第2の実施形態においては、燃料棒101を9本配置できるスペースに水ボックス102を設けたが、これに限られず、横断面円形の水ロッドを設けてもよい。第2の実施形態の燃料集合体200において水ボックス102の代わりに2本の水ロッド102A,102Aを設けた燃料集合体200Aの構造を図7に示す。この場合も、第2の実施形態と同様の効果を得る。
【0033】
本発明の第3の実施形態を図8により説明する。
図8は、本実施形態による沸騰水型原子炉用の燃料集合体の構造を表す横断面図である。この図8は第1の実施形態の図1、第2の実施形態の図5にほぼ相当する図であり、共通の部材には同一の符号を付し、説明を省略する。
【0034】
図8において、本実施形態による燃料集合体300が図5に示した第2の実施形態の燃料集合体200と異なる点は、すべての第2の燃料棒101b及び第3の燃料棒101cを制御棒側領域111に配置していることである。
その他の構造は、第2の実施形態の燃料集合体200とほぼ同様である。
本実施形態によっても、第2の実施形態と同様の効果を得る。
【0035】
本発明の第4の実施形態を図9により説明する。本実施形態は10行10列の正方格子状に燃料棒を配列した燃料集合体に本発明を適用した場合の実施形態である。
図9は、本実施形態による沸騰水型原子炉用の燃料集合体400の構造を表す横断面図であり、第1の実施形態の図1、第2の実施形態の図5、第3の実施形態の図8にほぼ相当する図である。
【0036】
この図9において、本実施形態の燃料集合体400は、配列される燃料棒の本数が増えただけで基本的には第2の燃料集合体200と類似の構造である。すなわち、燃料集合体400は、沸騰水型原子炉D格子炉心の単位セル407に装荷されるものであり、10行10列の正方格子状に配列され内部に核燃料物質としてのウラン−235が充填された91本の燃料棒401と、正方格子状配列の中央部近傍の水の量を増やすのを目的として燃料棒401が9本配列可能な領域に配置された1本の水ボックス402と、これら燃料棒401及び水ボックス402により形成される燃料バンドルの周囲を囲むチャンネルボックス403とを備えている。
【0037】
燃料棒401は、燃料有効長が通常の長さであって可燃性毒物を含まない75本の第1の燃料棒401aと、燃料有効長が通常の長さであって可燃性毒物としてガドリニアを含む9本の第2の燃料棒401bと、燃料有効長が第1及び第2の燃料棒401a,401bよりも短いいわゆる短尺燃料棒である7本の第3の燃料棒401cとから構成されている。またこれら燃料棒401は、濃縮度分布が異なる複数種類の燃料棒から構成されており、各種類ごとに適宜軸方向の濃縮度分布を設けたり各種燃料棒の配置を適宜工夫することにより軸方向・径方向出力ピーキングの平坦化が図られている。そしてこのとき、燃料集合体400における平均濃縮度はx[重量%]となっている。また、燃料集合体内部を前記燃料棒の配列の対角線上に位置する鉛直方向の境界面410によって制御棒408側にある制御棒領域411とその反対側にある反制御棒側領域412とに2分して考えたとき、水ボックス402を反制御棒側領域412に偏って配置するとともに、制御棒側領域411に配置される第2及び第3の燃料棒401b,401cの本数を、反制御棒側領域412に配置される第2及び第3の燃料棒401b,401cの本数よりも多くし、それぞれの本数差が5本となっている。
【0038】
本実施形態によっても、第2の実施形態とほぼ同様の原理に基づき、ギャップ水領域313,314の面積差に基づくH/U比の不均一を水ボックス402の偏心によって改善し、第2の燃料棒401bを制御棒側領域111に多く配置することで高燃焼度化に必要な本数を確保し、第3の燃料棒401cを制御棒側領域111に多く配置することで中性子スペクトルを軟らかくしガドリニアの燃焼を促進して軸方向・径方向燃焼の均一化を図ることができる。
【0039】
なお、上記第1〜第4の実施形態においては、水ボックス102,402はいずれも9本の第2の燃料棒101b,401bが配列可能な領域に配置されていたが、これに限られず、少なくとも1本の第2の燃料棒101b,401bが配列可能な領域に配置すれば足りる。これらの場合も同様の効果を得る。
【0040】
【発明の効果】
本発明によれば、高燃焼度化を図った燃料集合体において、H/U比の径方向均一化を確保しつつ、可燃性毒物の燃焼不均一を抑制し軸方向・径方向出力分布の均一化を図ることができ、良好な炉心特性を実現することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態による沸騰水型原子炉用の燃料集合体の構造を表す横断面図である。
【図2】図1に示した燃料集合体の縦断面図である。
【図3】比較例にによる燃料集合体の構造を表す横断面図である。
【図4】図1及び図4の燃料集合体をそれぞれ装荷した沸騰水型原子炉炉心の軸方向出力分布の解析結果を比較して示した図である。
【図5】本発明の第2の実施形態による沸騰水型原子炉用の燃料集合体の構造を表す横断面図である。
【図6】第2の燃料棒のガドリニア混入濃度に関する変形例を説明するための図である。
【図7】水ボックスの代わりに2本の水ロッドを設けた変形例の構造を表す断面図である。
【図8】本発明の第3の実施形態による沸騰水型原子炉用の燃料集合体の構造を表す横断面図である。
【図9】本発明の第4の実施形態による沸騰水型原子炉用の燃料集合体の構造を表す横断面図である。
【図10】一般的な沸騰水型原子炉炉心の部分構造を表す概念的横断面図である。
【図11】径方向H/U比の差を小さくするために、水ロッドを狭いギャップ水領域に近づけた従来の燃料集合体の構造例を示す図である。
【符号の説明】
100 燃料集合体
101 燃料棒
101a 第1の燃料棒
101b 第2の燃料棒
101c 第3の燃料棒
102 水ボックス
102A 水ロッド
104a ガイドポスト
108 制御棒
109 チャンネルファスナー
110 境界面
111 制御棒側領域
112 反制御棒側領域
200 燃料集合体
200A 燃料集合体
300 燃料集合体
400 燃料集合体
401 燃料棒
401a 第1の燃料棒
401b 第2の燃料棒
401c 第3の燃料棒
402 水ボックス
408 制御棒
410 境界面
411 制御棒側領域
412 反制御棒側領域

Claims (4)

  1. 正方格子状に配列された複数本の燃料棒と、該燃料棒が1本以上配列可能な領域に配置された少なくとも1本の水ロッド又は水ボックスと、チャンネルファスナーを固定するために制御棒側に設けられるガイドポストとを備え、かつ前記複数本の燃料棒が、核燃料物質を含み可燃性毒物を含まない複数本の第1の燃料棒と、核燃料物質及び可燃性毒物を含む複数本の第2の燃料棒と、これら第1及び第2の燃料棒より燃料有効長が短くかつ核燃料物質を含み可燃性毒物を含まない複数本の第3の燃料棒とを含んでいる燃料集合体において、
    燃料集合体内部を前記燃料棒の配列の対角線上に位置する鉛直方向の境界面によって制御棒側領域と反制御棒側領域とに2分したとき、前記水ロッド又は水ボックスは、前記反制御棒側領域側に偏って配置されており、かつ、前記第2の燃料棒及び第3の燃料棒は、それぞれ前記制御棒側領域に配置される本数が前記反制御棒側領域に配置される本数よりも多くなっていることを特徴とする燃料集合体。
  2. 請求項1記載の燃料集合体において、前記第2の燃料棒及び第3の燃料棒のすべてが、前記制御棒側領域に配列されていることを特徴とする燃料集合体。
  3. 請求項1記載の燃料集合体において、前記第2の燃料棒は、軸方向上部の可燃性毒物の濃度が軸方向下部の可燃性毒物の濃度よりも小さくなっていることを特徴とする燃料集合体。
  4. 請求項1〜3記載の燃料集合体を装荷した原子炉炉心。
JP33856997A 1997-12-09 1997-12-09 燃料集合体及び原子炉炉心 Expired - Lifetime JP3990013B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33856997A JP3990013B2 (ja) 1997-12-09 1997-12-09 燃料集合体及び原子炉炉心

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33856997A JP3990013B2 (ja) 1997-12-09 1997-12-09 燃料集合体及び原子炉炉心

Publications (2)

Publication Number Publication Date
JPH11174178A JPH11174178A (ja) 1999-07-02
JP3990013B2 true JP3990013B2 (ja) 2007-10-10

Family

ID=18319416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33856997A Expired - Lifetime JP3990013B2 (ja) 1997-12-09 1997-12-09 燃料集合体及び原子炉炉心

Country Status (1)

Country Link
JP (1) JP3990013B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1141966B1 (de) * 1998-12-18 2005-06-01 Framatome ANP GmbH Brennelement für einen siedewasser-kernreaktor

Also Published As

Publication number Publication date
JPH11174178A (ja) 1999-07-02

Similar Documents

Publication Publication Date Title
JP3036810B2 (ja) 燃料集合体
JP3186546B2 (ja) 初装荷炉心
JPH07101237B2 (ja) 燃料集合体及び原子炉
EP2088600A1 (en) Core of a boiling water reactor
US20090196392A1 (en) Core Of A Boiling Water Reactor
JP3788045B2 (ja) 燃料集合体
JP3990013B2 (ja) 燃料集合体及び原子炉炉心
US6061416A (en) Fuel assembly
JP2928606B2 (ja) 燃料集合体
JP4094092B2 (ja) 沸騰水型原子炉用燃料集合体
JP3916807B2 (ja) Mox燃料集合体
JP2563287B2 (ja) 原子炉用燃料集合体
JP4046870B2 (ja) Mox燃料集合体
JP3262057B2 (ja) 燃料集合体
JP3036129B2 (ja) 燃料集合体
JP4351798B2 (ja) 燃料集合体および原子炉
JP2958856B2 (ja) 沸騰水型原子炉用燃料集合体
JP2004109085A (ja) 沸騰水型原子炉用燃料集合体
JP3309797B2 (ja) 燃料集合体
JP3262723B2 (ja) Mox燃料集合体及び原子炉の炉心
JPH1123762A (ja) 燃料集合体及び初装荷炉心
JP3852881B2 (ja) 原子炉の炉心
JP2005098924A (ja) Mox燃料集合体
JP2965317B2 (ja) 燃料集合体
JP2001272489A (ja) 燃料集合体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

EXPY Cancellation because of completion of term