JP3986903B2 - 寸法測定装置 - Google Patents

寸法測定装置 Download PDF

Info

Publication number
JP3986903B2
JP3986903B2 JP2002190620A JP2002190620A JP3986903B2 JP 3986903 B2 JP3986903 B2 JP 3986903B2 JP 2002190620 A JP2002190620 A JP 2002190620A JP 2002190620 A JP2002190620 A JP 2002190620A JP 3986903 B2 JP3986903 B2 JP 3986903B2
Authority
JP
Japan
Prior art keywords
light
measured
measurement
interference
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002190620A
Other languages
English (en)
Other versions
JP2004037104A (ja
Inventor
暢久 西沖
和彦 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2002190620A priority Critical patent/JP3986903B2/ja
Publication of JP2004037104A publication Critical patent/JP2004037104A/ja
Application granted granted Critical
Publication of JP3986903B2 publication Critical patent/JP3986903B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は寸法測定装置、特に多波長干渉法を用いた寸法測定が良好に行える機構に関する。
【0002】
【従来の技術】
従来より長さの基準として端度器が用いられている。端度器は両端の平行な二面間の距離で寸法(寸法)を表す標準であり、代表的なものとしてゲージブロックがある。
このゲージブロックは極めて高い寸法精度を持ち、その測定面が他のゲージブロックの測定面に容易に密着する。このため数個のゲージブロックを密着して得た合成寸法は、個々のゲージブロックの寸法の和に等しく、必要な寸法が得られる。その反面、このゲージブロックは、測定面が常に他の測定面と接触するような使い方をするので、傷や磨耗を生じ易く、材料の経年変化もあり、定期的な検査が必要である。
【0003】
このため、測定手段により個々のゲージブロックの相対向する端面間の寸法を検査する必要がある。
例えば、絶対値が予め定められている基準位置間に、平行な二平面を有する被測定物を挿入する。そして、絶対値測定手段により、被測定物の平面より基準位置までの絶対値を同定し、被測定物の寸法を求めていた。
【0004】
【発明が解決しようとする課題】
ところで、前記絶対値測定手段としては、光干渉計を用いたものが、非接触である点で注目されている。
光干渉計は、干渉によって光の伝播距離の変化を検出するものであるから、一般的な単一波長干渉計では、光の波長以上の距離の変化量は測定することができない。
【0005】
そこで、単一波長干渉法では測定することのできない光学波長を越える被測定物の変位量を測定することのできる多波長干渉計を用いることが考えられる。
多波長干渉計を用いた寸法測定装置では、波長の異なる複数種類の測定光を用い、各々の波長での干渉信号に基づき、単一波長での各々の位相を検出し、それらを比較することにより、等価波長における位相を測定する。そして、該等価波長における位相を変位量に換算すると、単一波長干渉法では測定することのできない光学波長を越える被測定物の変位量を求めることができる。
【0006】
しかしながら、前記寸法測定に多波長干渉計を採用しても、測定することができるのは被測定物の変位量であり、例えばブロック形状の被測定物の寸法を求めるには、平行に対向する二つの端面間の距離として測定する必要がある。しかも、実用性を考慮すると、被測定物を光軸上のどの位置に置いても同じ寸法値が測定できるようでなければならない。
そこで、従来は、例えば図7に示すような寸法測定が考えられる。
すなわち、同図(A)に示す寸法測定装置10は、例えば多波長干渉計よりなる絶対値(ABS)干渉測長計(以下、干渉測長計という)12と、案内部14に沿って直線移動するステージ16と、被測定物18の右側端面18aに設けられたミラー20を備える。
【0007】
ここで、同図(A)に示すようにミラー20の設けられている被測定物18は、ステージ16上に載置されている。干渉測長計12、ステージ16は、該干渉測長計12よりの測定光22の光軸と、案内部14に沿ったステージ16の移動方向が直交するように配置されている。
そして、同図(A)に示す状態では、干渉測長計12よりの測定光22は、被測定物18の左側端面18bで反射され、干渉測長計12に返光される。これににより干渉測長計12では、被測定物18の左側端面18bよりの距離情報Lが測定される。
【0008】
また同図(B)に示すようにステージ16を案内部14に沿って測定光22の光軸と直交方向(図中下方)に移動させ、測定光22の光軸とミラー20の反射面を直交させる。すると、干渉測長計12よりの測定光22は、ミラー20で反射され、干渉測長計12に返光される。これにより干渉測長計12では、ミラー20よりの距離、つまり被測定物の右側端面18aよりの距離情報Lが測定される。
ここで、前記距離情報L,Lは、干渉測長計12での光路長差がゼロとなる位置からの相対的な距離である。つまり前記距離情報L,Lは、被検反射面の絶対的な座標位置を示していないが、距離情報Lと距離情報Lの差(L−L)を求めることにより、被測定物の寸法Lを求めることができる。
【0009】
しかしながら、同図に示す寸法測定装置10であっても、被測定物18に予めミラー20を設ける必要があるので、厳密には非接触測定とは言えない。しかもミラー20の密着状態によっては、測定の不確かさが増大してしまうことがある。また同図に示す寸法測定装置10では、被測定物18を測定光22の光軸に対し直交方向にシフト移動させる必要があるので、ステージ16の移動に高い精度を要求する上、測定時間の短縮にはおのずと限界が生じる。
【0010】
このため、同図に示す寸法測定装置10は、多波長干渉計を用いた寸法測定装置として採用するには至らなかった。このように多波長干渉計を用いた寸法測定装置は、未だ実用化されていないので、その開発が急務であった。
本発明は前記従来技術の課題に鑑みなされたものであり、その目的は多波長干渉計を用いた寸法測定が良好に行える寸法測定装置を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らが多波長干渉計を用いた絶対値測定について鋭意検討を行った結果、まず波長の異なる複数種類の可干渉光を出射する光出射手段を用いた多波長干渉計を二系統用いる。そして、被測定物の相対向する平行な二平面に対して、各干渉計よりの測定光をそれぞれ対向させて入射し、各被検反射面の変位情報を測定する。これにより被測定物の相対向する二平面間の寸法測定が、被測定物に対し別部品を付加することなく完全な非接触で行えること、また機械的な移動機構を用いないで済むことを見出した。
【0012】
前述のような多波長干渉計を用いた絶対値測定について、本発明者らがさらに研究を進めた結果、前記二本の測定光が単に同軸上に配置されただけでは、相手の干渉計に飛込んでしまうことがわかった。これにより多波長干渉計により基準位置間の寸法の絶対値測定を行う際に、干渉計が誤動作してしまい、正確な測定が行えないことがわかった。そして、本発明者らによれば、この問題は、基準位置間での両側よりの投射光と反射光による複雑な干渉により生じているものであり、この干渉を回避することにより、干渉計の誤動作を防止することができることも解明したうえで、本発明を完成するに至った。
【0013】
すなわち、目的を達成するために本発明にかかる寸法測定装置は、多波長干渉計を用いて被測定物の相対向する第一端面と第二端面間の寸法Lを測定する寸法測定装置であって、第一干渉測長手段および第二干渉測長手段と、第一ミラーおよび第二ミラーと、を備える。
そして、前記第一干渉測長手段により、前記ミラー間に被測定物が存在せず第一干渉測長手段よりの第一測定光を第二ミラーで反射させた時の該第二ミラーの距離情報Lと、該ミラー間に被測定物が存在し該第一測定光を該被測定物の第一端面で反射させた時の該被測定物第一端面の距離情報Lとの距離差Xを測定する。
【0014】
前記第二干渉測長手段により、前記ミラー間に被測定物が存在せず第二干渉測長手段よりの第二測定光を第一ミラーで反射させた時の該第一ミラーの距離情報Lと、該ミラー間に被測定物が存在し該第二測定光を該被測定物の第二端面で反射させた時の該被測定物第二端面の距離情報Lとの距離差Xを測定する。そして、前記第一干渉測長手段により測定された距離差X、第二干渉測長手段により測定された距離差X、および予め定められた第一ミラーと第二ミラー間の離隔距離Xより、前記被測定物の相対向する第一端面と第二端面間の寸法Lを数3により求めることを特徴とする。
【0015】
【数3】
L=(X+X)−X
ただし、前記距離差X=前記距離情報L−前記距離情報L
前記距離差X=前記距離情報L−前記距離情報L
ここで、前記第一干渉測長手段および第二干渉測長手段は、波長の異なる複数種類の可干渉光の一部に基づく参照光と、該可干渉光の残りを測定光として被検反射面に入射させて得られた反射光を合成し干渉光を得、各測定波長での干渉信号に基づいて、個々の測定波長を越える被検反射面の変位を測定する。
【0016】
また前記第一ミラーおよび第二ミラーは、第一干渉測長手段よりの第一測定光の光軸と第二干渉測長手段よりの第二測定光の光軸が重ならないように平行にずれて配置され、且つ所定の離隔距離Xをおいて配置される。
ここにいう被検反射面とは、第一干渉測長手段側では、ミラー間に被測定物が存在しない時は第二ミラーをいい、被測定物が存在する時は被測定物の第一端面をいう。また第二干渉測長手段側では、ミラー間に被測定物が存在しない時は第一ミラーをいい、被測定物が存在する時は被測定物の第二端面をいう。
【0017】
このため、ここにいう被検反射面の変位とは、ミラー間に被測定物が存在しない時の対応ミラーの位置に対し、被測定物が存在する時の該被測定物の対応端面の位置が変わることをいう。
またここにいう距離情報とは、例えば対応干渉計での光路長差がゼロとなる位置からの距離情報等をいう。
またここにいう干渉測長手段は、測定光の波長を変えて同じ測定を繰り返すことにより、個々の測定波長以上の変位量を測定することができる多波長干渉計ををいう。例えば光出射手段の一例として半導体レーザを用いる際は、駆動条件によってその発振波長を変化させることが特に好ましい。その発振波長を変化させる方法としては、例えば特開平4−297807号公報、特開平4−297808号公報、特開2001−27512号公報等に記載の方法を用いることができる。
【0018】
なお、本発明においては、前記第一測定光の光軸上に位置する前記第一ミラーの部位に、前記第一測定光を通過させる第一光通過用穴を設ける。前記ミラー間に被測定物が存在しない時に、前記第一ミラーの第一光通過穴を通過した第一干渉測長手段よりの第一測定光を反射し、該第一光通過用穴に返光するように、第一測定光の光軸上に前記第二ミラーの鏡面が位置する。前記第二測定光の光軸上に位置する前記第二ミラーの部位に、前記第二測定光を通過させる第二光通過用穴を設ける。前記ミラー間に被測定物が存在しない時に、前記第二ミラーの第二光通過穴を通過した第二干渉測長手段よりの第二測定光を反射し、該第二光通過用穴に返光するように、第二測定光の光軸上に前記第一ミラーの鏡面が位置することが好適である。
【0019】
また前記目的を達成するために本発明にかかる寸法測定は、第一干渉測長手段および第二干渉測長手段と、第一の非干渉手段及び第二の非干渉手段と、を備える。
そして、前記第一干渉測長手段により、前記非干渉手段間に寸法が既知Lの標準サンプルが存在し、該第一干渉測長手段よりの第一測定光を標準サンプルの第一端面で反射させた時の該標準サンプル第一端面の距離情報Lと、該非干渉手段間に被測定物が存在し、該第一測定光を該被測定物の第一端面で反射させた時の該被測定物第一端面の距離情報Lとの距離差Xを測定する。
【0020】
前記第二干渉測長手段により、前記非干渉手段間に前記標準サンプルが存在し、該第二干渉測長手段よりの第二測定光を標準サンプルの第二端面で反射させた時の該標準サンプル第二端面の距離情報Lと、該非干渉手段間に被測定物が存在し、該第二測定光を該被測定物の第二端面で反射させた時の該被測定物第二端面の距離情報Lとの距離差Xを測定する。
そして、前記第一干渉測長手段により測定された距離差X、第二干渉測長手段により測定された距離差X、および予め値付けされた標準サンプルの寸法Lより、前記被測定物の相対向する第一端面と第二端面間の寸法Lを数4により求めることを特徴とする。
【0021】
【数4】
L=L−(X+X
ただし、前記距離差X=前記距離情報L−前記距離情報L
前記距離差X=前記距離情報L−前記距離情報L
【0022】
ここで、前記第一干渉測長手段および第二干渉測長手段は、波長の異なる複数種類の可干渉光の一部に基づく参照光と、該可干渉光の残りを測定光として被検反射面に入射させて得られた反射光を合成し干渉光を得、各測定波長での干渉信号に基づいて、該個々の測定波長を越える被検反射面の変位を測定する。
また前記第一非干渉手段及び第二非干渉手段は、前記被測定物の測長軸と一致した光軸を有し、かつ所定の離隔距離をおいて配置される。該第一非干渉手段は、測定光の通過と測定光の遮蔽を交互に行う。該第二非干渉手段は、第一非干渉手段で測定光の通過時は測定光の遮蔽かつ該第一非干渉手段で測定光の遮蔽時は測定光の通過を、前記第一非干渉手段での測定光の通過と遮蔽の切替と同期させて交互に行う。
【0023】
ここにいう被検反射面とは、第一干渉測長手段側では、非干渉手段間に標準サンプルが存在する時は、該標準サンプルの第一端面をいい、被測定物が存在する時は、被測定物の第一端面をいう。また第二干渉測長手段側では、非干渉手段間に標準サンプルが存在する時は、該標準サンプルの第二端面をいい、被測定物が存在する時は被測定物の第二端面をいう。
このため被検反射面の変位とは、非干渉手段間に標準サンプルが存在する時の対応端面の位置に対し、被測定物が存在する時の対応端面の位置が変わることをいう。
【0024】
またここにいう距離情報とは、例えば対応干渉計での光路長差がゼロとなる位置からの距離情報等をいう。
なお、本発明において、前記非干渉手段はシャッタであり、前記シャッタの開閉を行う駆動手段を備える。そして、前記駆動手段による前記シャッタの開閉により、前記測定光の通過と遮蔽の切替えを行うことが好適である。本発明のシャッタは、例えば液晶シャッタ等を一例として用いることができる。
【0025】
また本発明において、前記非干渉手段は音響光学素子であり、前記音響光学素子の変調、非変調を行う駆動手段を備える。そして、前記駆動手段による前記音響光学素子の変調、非変調により、前記測定光の通過と遮蔽の切替えを行うことも好適である。
また本発明において、前記非干渉手段は鏡面のチルトにより光路を変更するミラーであり、前記駆動手段による前記ミラーのチルトにより測定光の光路を変更することにより、前記測定光の通過と遮蔽の切替えを行うことも好適である。本発明のミラーは、例えばガルバノミラー等を一例として用いることができる。
【0026】
さらに本発明においては、測定光の光軸方向に平行な、被測定物の並進移動による測定量への影響を排除するために、前記第一干渉測長手段による距離差Xの測定と、前記第二干渉測長手段による距離差Xの測定を同時に行うことが好適である。
本発明者らは、被測定物の相対向する平行な二平面の寸法測定に、光学波長を越える変位量の測定が行える多波長干渉法を採用している。
この多波長干渉法の原理を図8に従って説明する。
【0027】
同図に示す寸法測定装置10は、干渉測長計12を備える。
ここで、前記干渉測長計12は、例えば多波長干渉計等よりなり、一の光出射手段を構成する光源24,26と、ビームスプリッタ28と、ビームスプリッタ30と、参照ミラー32と、ビームスプリッタ34と、光フィルタ36,38と、受光素子40,42と、位相比較器44を備える。
【0028】
ここで、前記光源24,26は、例えば半導体レーザ(LD)等よりなり、ドライバ46,48を備える。該ドライバ46,48は、例えば互いに反転した鋸歯波状変調電流で光源24,26を駆動しており、光源24はレーザ光(λ)を出射し、光源26はレーザ光(λ)を出射する。
そして、光源24よりのレーザ光(λ)と光源26よりのレーザ光(λ)は、直交偏光状態に置かれており、ビームスプリッタ28で重ね合わされ、ビームスプリッタ30に入射される。該ビームスプリッタ30では、ビームスプリッタ28よりの光が第一分割光50と第二分割光(測定光)22に分割される。
【0029】
前記参照ミラー32は、光路変調用圧電素子52により光軸方向に変位されることにより、第一分割光50に位相シフト、或いは周波数シフトを与えて反射する。また前記ビームスプリッタ30よりの測定光22の光軸上には、被測定物18が配置されており、該被測定物18で測定光22を反射する。
そして、参照ミラー32よりの反射光と被測定物18よりの反射光は、ビームスプリッタ30で合成され、干渉光が生起される。該2つの波長での干渉光は、偏光状態の違いを利用してビームスプリッタ34で分離され、2つの干渉ビート信号のクロストークを除くための光フィルタ36,38を介して、それぞれの干渉ビート信号が2つの受光素子40,42で検出される。
【0030】
前記受光素子40,42よりの出力信号は、位相比較器44に入力され、位相比較器44では、光源24,26への変調電流のいずれか一方を参照信号として、等価位相がヘテロダイン検出される。
このように本実施形態は、各々の波長での干渉信号に基づき、単一波長での各々の位相を検出し、各位相を比較することにより、等価波長における位相を測定することができる。等価波長はA=(λ・λ)/(|λ−λ|)となるので、絶対値測長範囲も、レーザ光の個々の波長λ,λを超える(λ・λ)/(|λ−λ|)となる。
【0031】
このような多波長干渉計を用いることにより、単一波長干渉法では測定することができない光学波長を越える被測定物の変位量を測定することができるので、該等価波長における位相、つまり等価位相から被検反射面の変位量に換算することができる。
なお、本発明では、測定光の波長を変える方法としては、種々のものを用いることができるが、例えば光源に半導体レーザ(LD)光源を用いて、該レーザへの注入電流等の駆動条件を変える方法等が、発振波長を容易に変化させることができるので、特に好ましい。
【0032】
【発明の実施の形態】
以下、図面に基づいて本発明の好適な一実施形態について説明する。
【0033】
第一実施形態
図1には本発明の第一実施形態にかかる寸法測定装置の概略構成が示されている。本実施形態では、高速で厚さまたは被検反射位置が変動する被測定物を想定しており、前記図8に示した干渉測長計12を2系統備え、該基準位置間に二本の測定光の光軸をオフセット配置し、二の干渉測長計を同時に動作させる例について説明する。前記図7,8と対応する部分には符号100を加えて示し説明を省略する。
同図に示す寸法測定装置110は、第一の干渉測長計(第一干渉測長手段)112a及び第二の干渉測長計(第二干渉測長手段)112bと、ミラー(第一ミラー,基準位置)160及びミラー(第二ミラー,基準位置)162と、コンピュータ164を備える。
【0034】
また本実施形態は、干渉測長計112aとミラー160間にミラー165,166を備え、干渉測長計112bとミラー162間にミラー168,169を備える。
ここで、ミラー160,162は、所定の離隔距離Xをおいて対向配置されており、基準位置として用いられる。
【0035】
またミラー160,162間での干渉測長計112aよりの第一測定光122aの光軸と、干渉測長計112bよりの第二測定光122bの光軸は、互いに重ならないようにオフセット配置されている。
ミラー160,162間に被測定物が存在しない時に、オフセット配置の第一測定光122aの光軸はミラー162と直交し、第二測定光122bの光軸は、ミラー160と直交している。
このために本実施形態では、ミラー160に第一光通過用穴172が設けられ、ミラー162に第二光通過用穴174が設けられている。
【0036】
ここで、前記第一光通過用穴172は、第一測定光122aの光軸上に位置するミラー160の部位に設けられているので、第一測定光122aを通過させる。 前記ミラー160,162間に被測定物が存在しない時に、ミラー160の第一光通過穴172を通過した干渉測長計112aよりの第一測定光122aを反射し、該第一光通過用穴172に返光するように、第一測定光122aの光軸上にミラー162の鏡面が位置している。該ミラー162で反射され、第一光通過用穴172に返光された測定光122aは、ミラー166,165を介して干渉測長計112aに入射される。
【0037】
また前記第二光通過用穴174は、測定光122bの光軸上に位置するミラー162の部位に設けられ、干渉測長計112bよりの測定光122bを通過させる。前記ミラー160,162間に被測定物が存在しない時に、ミラー162の第二光通過穴174を通過した干渉測長計112bよりの測定光122bを反射し、該第二光通過用穴174に返光するように、第二測定光122bの光軸上にミラー160の鏡面が位置している。該ミラー160で反射され、第二光通過用穴174に返光された測定光122bは、ミラー169,168を介して干渉測長計112bに入射される。
該干渉測長計112aでは、被測定物が存在しない時と被測定物が存在する時の右側被検反射面の距離差Xを測定する。
【0038】
すなわち、干渉測長計112aは、ミラー160,162間に被測定物が存在せず、干渉測長計112aよりの測定光122aをミラー(被検反射面)162で反射させた時の、該ミラー162よりの距離情報Lと、ミラー160,162間に被測定物が存在し、干渉測長計112aよりの測定光122aを該被測定物の右側端面(被検反射面,第一端面)で反射させた時の、該被測定物右側端面よりの距離情報Lとの距離差Xを測定する。
また干渉測長計112bでは、被測定物が存在しない時と被測定物が存在する時の左側被検反射面の距離差Xを測定する。
【0039】
すなわち、干渉測長計112bは、ミラー160,162間に被測定物が存在せず、干渉測長計112bよりの第二測定光122bを第一ミラー(被検反射面)160で反射させた時の、該第一ミラー160よりの距離情報Lと、ミラー160,162間に被測定物が存在し、干渉測長計112bよりの第二測定光122bを該被測定物の左側端面(被検反射面,第二端面)で反射させた時の、該被測定物左側端面よりの距離情報Lとの距離差Xを測定する。
そして、前記コンピュータ164は、前述のようにして干渉測長計112aにより測定された右側被検反射面の距離差Xと、干渉測長計112bにより測定された左側被検反射面の距離差Xと、予め定められたミラー160,162間の離隔距離Xより、被測定物の相対向する平行な二面間の寸法(厚さ)Lを数5により求める。
【0040】
【数5】
L=(X+X)−X
ただし、前記距離差X=前記距離情報L−前記距離情報L
前記距離差X=前記距離情報L−前記距離情報L
本実施形態にかかる寸法測定装置110は概略以上のように構成され、以下にその作用について説明する。
【0041】
まず同図に示すようにミラー160,162間に被測定物が存在しない時に、距離情報L,Lを得ておく。
すなわち、多波長干渉計を用いた寸法測定装置では、基準位置間の絶対値寸法を測定する必要があるが、この測定の際は、ミラー160,162間に被測定物が存在しない。ここで、第一測定光と第二測定光を単に同軸上に配置したのでは、測定光が相手側の干渉測長計に飛び込んで、受光素子や光源等に悪影響を及ぼすことがある。
【0042】
そこで、本実施形態では、基準位置間の絶対値測定の際の、両側の投射光と反射光による複雑な干渉を回避するために、基準位置間で第一測定光と第二測定光の光軸が重ならないようにオフセット配置している。つまり本実施形態では、測定光による測定位置(反射位置)をずらし、かつオフセットによる誤差を打ち消す二の光出射手段による同時投射を行っている。
すなわち、干渉測長計112aよりの第一測定光122aは、第一ミラー160の第一光通過用穴172に入射される。該第一光通過用穴172を通過した第一測定光122aは、被測定物が存在しない時の被検反射面としての第二ミラー162の鏡面に入射され、反射される。該第二ミラー162よりの反射光は、再度、第一ミラー160の第一光通過用穴172を通過して干渉測長計112aに入射される。該干渉測長計112aでは、被測定物が存在しない時の被検反射面としての第二ミラー162よりの距離情報Lが求められる。
【0043】
本実施形態では、前記干渉測長計112aによる測定と同時に、干渉測長計112bによる測定を行っている。
すなわち、干渉測長計112bよりの第二測定光122bは、第二ミラー162の第二光通過用穴174に入射される。第二光通過用穴174を通過した第二測定光122bは、被測定物が存在しない時の被検反射面としての第一ミラー160の鏡面に入射され、反射される。該第一ミラー160よりの反射光は、再度、第二ミラー162の第二光通過用穴174を通過して干渉測長計112bに入射される。該干渉測長計112bでは、被測定物が存在しない時の被検反射面としての第一ミラー160よりの距離情報Lが測定される。
【0044】
このように本実施形態は、干渉測長計112aによる、第一測定光122aが第二ミラー162で反射された時の距離情報L1と、干渉測長計112bによる、第二測定光122bが第一ミラー160で反射された時の距離情報Lを同時に測定している。
ここで、本実施形態は、2系統の干渉測長計112a,112bが、第一測定光122aと第二測定光122bをそれぞれ対向させて出射している。ミラー160,162間では、該二本の測定光122a,122bが互いに平行であるが、測定光同士が重なってしまわないように、測定光のビーム径以上の距離を持たせて並べている。光通過用穴172の開いたミラー160と光通過用穴174の開いたミラー162を測定光と垂直に配置している。このため、本実施形態では、該ミラー160,162間に被測定物の存在しない時には、対向する測定光をそれぞれ反射して、各干渉測長計に戻すようにしている。
【0045】
このため、本実施形態では、被測定物が存在しない時に、対向する測定光が相手側の干渉測長計に飛び込んで、受光素子や光源に悪影響を及ぼすことを防いでいる。
また図2に示すようにミラー160,162間に被測定物118が存在する状態で、干渉測長計112a,112bによる同時測定を行う。
【0046】
すなわち、同図に示すように干渉測長計112aよりの第一測定光122aは、第一ミラー160の光通過用穴172に入射される。該光通過用穴172を通過した第一測定光122aは、被測定物118が存在する時の被検反射面としての被測定物118の右側端面118aに入射され、反射される。該被測定物118の右側端面118aよりの反射光は、第一ミラー160の第一光通過用穴172を通過して干渉測長計112aに入射される。該干渉測長計112aでは、被測定物118が存在する時の被検反射面としての被測定物の右側端面118aよりの距離情報L3が測定される。
【0047】
本実施形態では、前記干渉測長計112aによる測定と同時に、干渉測長計112bによる測定を行う。
すなわち、干渉測長計112bよりの第二測定光122bは、第二ミラー162の光通過用穴174に入射される。該光通過用穴174を通過した第二測定光122bは、被測定物118が存在する時の被検反射面としての被測定物の左側端面118bに入射され、反射される。該被測定物の左側端面118bよりの反射光は、第二ミラー162の光通過用穴174を通過して干渉測長計112bに入射される。該干渉測長計112bでは、被測定物118が存在する時の被検反射面としての被測定物の左側端面118bよりの距離情報L4が測定される。
【0048】
このようにして本実施形態は、干渉測長計112aによる、第一測定光122aが被測定物の右側端面118aで反射された時の距離情報Lと、干渉測長計112bによる、第二測定光122bが被測定物の左側端面118bで反射された時の距離情報Lが、同時に測定される。
ここで、本実施形態では、個々の距離情報は、対応干渉測長計での光路長差が零となる点からの相対的な距離であり、反射面の絶対的な座標位置を示していないが、これらの距離情報より距離差X、距離差Xを求めることにより、光出射手段から遠くにいても近くにいても同じ値が測定できる。
【0049】
したがって、本実施形態は、被測定物が存在していない時と被測定物が存在している時の被検反射面の変位を同時測定することにより、平行な二平面間の距離(絶対値)として測定することができる。
ここで、本実施形態は、干渉測長計として多波長干渉計を用いることにより、個々の測定波長以上の変位を測定することができる。このような干渉測長計により、被検反射面の変位測定として、被測定物が存在しない時のミラーの鏡面と被測定物が存在する時のその端面の距離差を測定するので、個々の測定波長以上の変位を測定することのできる多波長干渉計を用いて、光学波長を越える寸法を求めることができる。
【0050】
また本実施形態は、所定の離隔距離Xをおいて配置された第一のミラー160と第二のミラー162間に被測定物118を配置し、第一測定光122aと第二測定光122bを被測定物118の両側より同時に対向させて入射して、測定を行っている。
このために被測定物118をミラー160,162間の光軸上のどの位置に置いても、光軸方向の相対的な変位が距離差Xと距離差Xの和をとった時点でキャンセルされるため、同じ値を測定することができる。
【0051】
このようにすれば、本実施形態は、寸法測定を完全に非接触で行うことができる。また本実施形態は、機械的な可動要素を必要としないので、高速で高精度な寸法測定が行える。
特に本実施形態では、被測定物が高速で出入りするようなものであっても、ミラー間での測定光の光軸のオフセット配置、測定光の被測定物両側よりの同時投射により、高精度な寸法測定が行える。
【0052】
このように本実施形態では、二系統の干渉測長計で得られる測定値は、被測定物118の右側端面118aと第二ミラー162の反射面との距離差X、および被測定物118の左側端面118bと第一ミラー160の反射面との距離差Xである。このミラー160の反射面とミラー162の反射面との離隔距離をXとすれば、寸法Lとの間には、数6で表せる関係がある。
【0053】
【数6】
+L=X+X
このため、本実施形態では、ミラー160,162間の離隔距離Xを予め求めておけば、寸法Lは、前記数式6を変形した前記数式5により算出することができる。なお、前記離隔距離Xの同定は、例えば寸法の正確に値付けされた標準サンプルを用いて逆算すれば、簡単に行える。
【0054】
以上のように本実施形態にかかる寸法測定装置によれば、光学波長を越える変位を測定することのできる多波長干渉計を用いて、基準位置間の被測定物の相対向する平面に対し両方向より測定光を対向入射させることとした。
この結果、本実施形態は、被測定物の相対向する平行な二平面間の寸法を完全な非接触で、被測定物に対し別部品の付加することなく、良好に測定することができる。
しかも、本実施形態は、被測定物を光軸上のどの位置に置いても、被測定物の位置や光軸方向の並進振動に影響を受けずに正確な寸法測定が行える。
【0055】
また本実施形態は、被測定物端面と基準位置としてのミラーの距離差を被検反射面の変位として考えているので、変位を測定する多波長干渉計を用いても、その距離差を、測定することができる。
しかも、本実施形態は、前記測定光のオフセット配置、二の光出射手段により測定光を対向させての同時投射を採用することにより、光学式干渉系を用いた寸法の絶対値測定において、高速で出入りする被測定物の高速測定であっても、高精度化が図られる。
【0056】
特に本実施形態は、前記基準位置にミラーを配置し、該ミラー間で測定光の光軸をオフセットすることとしたので、前記基準位置間の絶対値を多波長干渉計で測定をする際の、両側の投射光と反射光による複雑な干渉を確実に回避することができる。これにより本実施形態は、多波長干渉計の誤動作を防止することができるので、前記寸法測定がより正確に行える。
【0057】
また本実施形態では、例えば人手や、被測定物保持手段等の機械的な機構により、被測定物の出入れを高速に行っても、前記第一干渉測長計による距離差Xの測定と、第二干渉測長計による距離差Xの測定を同時に行っているため、前記被測定物の前記測定光の光軸方向に平行な並進移動による測定量への影響を大幅に排除することができる。そして、本実施形態は、被測定物と測定装置との相対的な並進振動に対して非常に安定した寸法測定が行えるため、ノギスやマイクロメータ等のハンドツール形態の非接触化に非常に有効となる。
【0058】
第二実施形態
図3には本発明の第二実施形態にかかる寸法測定装置の概略構成が示されている。本実施形態では基準位置間に二本の測定光をゼロオフセット配置し、二の干渉測長計を時分割に動作させる例について説明する。前記第一実施形態と対応する部分には符号100を加えて示し説明を省略する。
同図に示す寸法測定装置210では、多波長干渉計により基準位置間の寸法を絶対値測定する際の、両側の投射光と反射光による複雑な干渉を回避するために時分割で動作させる、例えば液晶シャッタ等を含む第一非干渉装置(第一非干渉手段,基準位置)276a及び第二非干渉装置(第二非干渉手段,基準位置)276bと、ドライバ(駆動手段)278a,278bと、コンピュータ264を備える。
【0059】
ここで、前記非干渉装置276a,276bは、測定光222a,222bの光軸と一致する光軸を有し、且つ所定の離隔距離をおいて配置されており、基準位置として用いられる。
そして、本実施形態は、コンピュータ264がドライバ278a,278bにより、前記液晶シャッタ等の非干渉装置276a,276bの動作を交互(時分割)に行わせ、測定が図中、右側経路と左側経路とで交互に行われる。つまり、測定光222aの干渉測長計212aへの入射及び干渉測長計212bへの非入射と、測定光222bの干渉測長計212aへの非入射及び干渉測長計212bへの入射を交互に切替えている。
【0060】
このように本実施形態では、常に非干渉装置276a,276bを交互に動作させているので、非干渉装置276a,276b間にたとえワークが存在していないときであっても、同軸で対向するビームが飛込んで誤動作しないようにしている。
また本実施形態では、干渉測長計212a,212bは、共通の光出射手段を用いており、つまり一の光出射手段を用いて、該干渉測長計212aによる測定光の投射とその反射光の測定と、該干渉測長計212bによる測定光の投射とその反射光の測定を行っている。
【0061】
すなわち、干渉測長計212aは、非干渉装置276a,276b間に予め値付けされた標準サンプル280が存在し、干渉測長計212aよりの第一測定光222aを該標準サンプル右側端面280aで反射させた時の、該標準サンプル右側端面280aよりの距離情報Lと、非干渉装置276a,276b間に寸法を求めたい被測定物が存在し、干渉測長計212aよりの第一測定光222aを該被測定物右側端面で反射させた時の、該被測定物右側端面よりの距離情報Lとの距離差Xを測定する。
【0062】
また干渉測長計212bは、非干渉装置276a,276b間に前記予め値付けされた標準サンプル280が存在し、干渉測長計212bよりの第二測定光222bを該標準サンプル左側端面280bで反射させた時の、該標準サンプル左側端面280bよりの距離情報Lと、非干渉装置276a,276b間に前記寸法を求めたい被測定物が存在し、干渉測長計212bよりの第二測定光222bを該被測定物左側端面で反射させた時の、該被測定物左側端面よりの距離情報Lとの距離差Xを測定する。
【0063】
このようにして干渉測長計212aと干渉測長計212bの時分割測定により、非干渉装置276a,276b間に、寸法が既知Lと予め値付けされた標準サンプル280が存在する時と、寸法を求めたい被測定物が存在する時の、左右の被検反射面の変位を測定する。
コンピュータ264は、前述のようにして干渉測長計212aにより測定された距離差X、干渉測長計212bにより測定された距離差X、および予め値付けされた標準サンプル280の寸法Lより、被測定物の対向する平行な二平面間の寸法(厚さ)Lを数7により求める。
【0064】
【数7】
L=L−(X+X
ただし、前記距離差X=前記距離情報L−前記距離情報L
前記距離差X=前記距離情報L−前記距離情報L
本実施形態にかかる寸法測定装置210は概略以上のように構成され、以下にその作用について説明する。
【0065】
まず図3に示すように寸法がLと正確に値付けされた標準サンプル280を用い、前記2系統の干渉測長計212a,212bにより、距離情報L,Lを得ておく。この作業は初期段階で最低1回行っておけばよい。
本実施形態においては、同図に示すように非干渉装置276a,276bは、ワークの有る無しに関らず、つまり標準サンプルの有る無し及び被測定物の有る無しに関らず、交互に動作している。
このために非干渉装置276aが開の状態でかつ非干渉装置276bが閉の状態のときに実質的に干渉測長計212aのみが動作していることとなり、干渉測長計212aによる測定を行っている。
【0066】
すなわち、同図に示すように非干渉装置276a,276b間に、予め値付けされた標準サンプル280が存在している。そして、干渉測長計212aよりの第一測定光222aは、非干渉装置276aを通過し、被検反射面としての前記標準サンプル右側端面280aに入射されて反射される。該標準サンプル右側端面280aよりの反射光は、非干渉装置276aを通過して干渉測長計212aに入射される。該干渉測長計212aでは、被検反射面としての前記標準サンプル右側端面280aよりの距離情報Lが測定される。
【0067】
一方、非干渉装置276aが閉の状態でかつ非干渉装置276bが開の状態のときに実質的に干渉測長計212bのみが動作していることとなり、干渉測長計212bによる測定を行っている。
すなわち、干渉測長計212bよりの第二測定光222bは、非干渉装置276bを通過し、被検反射面としての前記標準サンプル左側端面280bに入射され、反射される。該標準サンプル左側端面280bよりの反射光は、非干渉装置276bを通過して干渉測長計212bに入射される。該干渉測長計212bでは、被検反射面としての前記標準サンプル左側端面280bよりの距離情報Lが求められる。
【0068】
このように本実施形態では、同図のように2系統の干渉測長計を用いて、二本の測定光222a,222bをそれぞれ対向させて出射し時分割に入射している。 なお、図では便宜上、わざとずらして描かれているが、対向する二本の測定光222a,222bは互いに平行でしかも同一軸上にある。
そして、本実施形態では、前述のような干渉測長計212aによる距離情報Lの測定と前記干渉測長計212bによる距離情報Lの測定が交互に、つまり時分割に行われる。
【0069】
次いて前記予め値付けされた標準サンプル280に代えて、寸法を求めたい被測定物が光軸上に挿入される。このように前記標準サンプル280と寸法を求めたい被測定物の出入れを行うと、基準位置間にワーク(標準サンプル280或いは寸法を求めたい被測定物)が存在しない時がある。本実施形態のように基準位置間にて測定光の光軸が同軸上に位置すると、被測定物が存在しない時に、対向する測定光がそれぞれ相手側の干渉測長計に飛び込んで受光素子や光源に悪影響を及ぼすことがある。
そこで、本実施形態は、これを防ぐために、基準位置に液晶シャッタ等よりなる非干渉装置276a,276bを配置している。
【0070】
そして、本実施形態は、コンピュータ264がドライバ278a,278bにより、前記液晶シャッタ等の非干渉装置276a,276bの動作を交互に行わせている。このような非干渉装置276a,276bの時分割の動作は、非干渉装置276a,276b間にワークの有る無しに関らず行われている。
この結果、本実施形態は、前記液晶シャッタ等の非干渉装置276a,276bの動作を交互に行わせているので、たとえワークが存在しない時であっても、対向するビームが相手側の干渉測長計に飛び込んで受光素子や光源に悪影響を及ぼすことを防いでいる。
また非干渉装置276a,276b間にワークが存在するときであれば、測定が図中、右側経路と左側経路とで交互に行われる。
【0071】
次いて図4に示すように寸法を求めたい被測定物218を光軸上に挿入して該被測定物218の対向する二平面間の寸法Lを求める。
この場合も、前記予め値付けされた標準サンプル280の場合と同様に、前記二系統の干渉測長計212a,212bによる時分割測定で距離情報L,Lを得ている。
すなわち、干渉測長計212aよりの第一測定光222aは、非干渉装置276aに入射する。
【0072】
ここで、非干渉装置276aが開の状態、かつ非干渉装置276bが閉の状態のとき、第一測定光222aは非干渉装置276aを通過し、被検反射面としての被測定物右側端面218aに入射される。該被測定物右側端面218aよりの反射光は、非干渉装置276aを通過して干渉測長計212aに入射される。該干渉測長計212aでは、被検反射面としての被測定物右側端面218aよりの距離情報Lが測定される。
【0073】
一方、非干渉装置276aが閉の状態、かつ非干渉装置276bが開の状態のとき、干渉測長計212bよりの第二測定光222bは、非干渉装置276bに入射すると、この第二測定光222bは、非干渉装置276bを通過し、被検反射面としての被測定物左側端面218bに入射され、反射される。該被測定物左側端面218bよりの反射光は、非干渉装置276bを通過し、干渉測長計212bに入射される。該干渉測長計212bでは、被検反射面としての被測定物左側端面218bよりの距離情報Lが求められる。
【0074】
このように本実施形態は、前記第一実施形態と同様、波長の異なる複数種類の可干渉光を出射する光出射手段を用い、また個々の測定波長以上の距離の変位測定が行える多波長干渉測長計を二系統備えている。そして、被測定物の対向する平行な二つの端面に対して、二本の測定光をそれぞれ対向させて時分割に入射している。
ここで、本実施形態は、多波長干渉計により測定することのできる各被検反射面の変位情報として、右側経路では予め値付けされた標準サンプルの右側端面と、寸法Lを求めたい被測定物の右側端面との距離差を用いている。左側経路では予め値付けされた標準サンプルの左側端面と寸法Lを求めたい被測定物の左側端面との距離差を用いている。
【0075】
この結果、本実施形態は、前記第一実施形態と同様、変位量を測定することのできる多波長干渉計よりなる干渉測長計を用いて、非接触で、光学波長を越える距離差の測定が行える。
また本実施形態は、前記第一実施形態と同様、被測定物に対し対向方向より測定を行うことにより、寸法測定を完全に非接触で行うことができ、また機械的な可動要素を必要としないので、高速で高精度な寸法測定が行える。
【0076】
なお、本実施形態は、シャッタ(非干渉装置)での表面反射光(戻り光)があっても、空間一杯にワークがあるのと等価で、オフセット誤差発生要因くらいにはなるが、これは固定値なので容易に補正することができる。このため本実施形態では、シャッタ(非干渉装置)での表面反射光は測定には影響しない。
そして、本実施形態は、前述のようにして干渉測長計212aにより測定された距離差X、干渉測長計212bにより測定された距離差X、および予め値付けされた被測定物(標準サンプル)280の寸法Lより、被測定物218の右側端面218aと左側端面218b間の寸法Lが前記数7により求める。
【0077】
以上のように本実施形態は、基準位置間での測定光のゼロオフセット配置、一の光出射手段、液晶シャッタ等の非干渉装置による測定光の時分割投射を採用している。
この結果、本実施形態は、二つの非干渉装置を交互に動作させることにより、前記第一実施形態と同様、多波長干渉計により基準位置間の絶対値測定を行う際に、両側の投射光と反射光による複雑な干渉を回避することができる。
また本実施形態では、前記第一実施形態と同様、被測定物を光軸上のどの位置に置いても、光軸方向の相対的な変位が距離差Xと距離差Xの和をとった時点でキャンセルされるため、同じ値が測定できる。
【0078】
このように本実施形態においても、被測定物と測定装置との相対的な並進振動に対して非常に安定した寸法測定が行えるため、ノギスやマイクロメータ等のハンドツール形態の非接触化に非常に有効となる。
なお、本実施形態では、各干渉測長計にそれぞれ一の光出射手段を設けること、つまり装置全体で二の光出射手段を用いることもできるが、コストの大幅な低減を図るためには、二の干渉測長計で共通の光出射手段を用いること、つまり装置全体で一の光出射手段を用いることも好ましい。
【0079】
また本実施形態では、被測定物218の測定毎に、寸法を求めたい被測定物218、予め値付けされた標準サンプル280の測定を順に行うこともできるが、測定回数の低減、効率化のためには、例えば予め値付けされた標準サンプル280の測定を行った後に、寸法を求めたい複数の被測定物218の測定を行うようにしても良い。
また本実施形態においても、被測定物の測定光の光軸方向に平行な並進移動による測定量への影響を大幅に排除するために、該距離差Xの測定と距離差Xの測定を高速で切換えて行うことが好ましい。
【0080】
また本実施形態では、非干渉装置として液晶シャッタを用いた例について説明したが、液晶シャッタに代えて音響光学素子(AOM)或いはガルバノミラーを用いることも、液晶シャッタと同様、本発明の寸法測定装置の非干渉装置として特に好適である。
図5には非干渉装置として音響光学素子を用いた寸法測定装置の概略構成が示されている。なお、前記第二実施形態と対応する部分には符号100を加えて示し説明を省略する。
同図に示す非干渉装置(非干渉手段)376a,376bは、音響光学素子を含む。
【0081】
ここで、前記音響光学素子は、発生する0次光を音響光学素子の出力側で遮蔽もしくは吸収させている。同図では、測定光を遮蔽したい時に動作しないようにしておけば、なにも出力されないが、通過させたい時はドライバ278a,278bにより音響光学素子276a,276bへ高周波電圧を供給すると、1次光を出力するので、この1次光を寸法測定に用いればよい。
すなわち、非干渉装置376aが干渉測長計312aよりの測定光322aを被検反射面に出力し、かつ該測定光の該被検反射面よりの反射光を干渉測長計312aに出力しているとき、非干渉装置376bは光を遮蔽、つまり何も出力しない状態とし、干渉測長計312aによる該被検反射面の測定を行う。
【0082】
一方、非干渉装置376aが光を遮蔽、つまり何も出力していないとき、非干渉装置376bは干渉測長計312bよりの測定光322bを被検反射面に出力し、かつ該測定光の該被検反射面よりの反射光を干渉測長計312bに出力している状態とし、干渉測長計312bによる被検反射面の測定を行う。
このように本実施形態では、非干渉装置376a,376bでの変調、非変調を交互(時分割)に行うことにより、干渉測長計312aによる測定と干渉測長計312bによる測定を交互(時分割)に行えるので、前記液晶シャッタと同様の効果を得ることができる。
【0083】
図6には非干渉装置としてガルバノミラーを用いた寸法測定装置の概略構成が示されている。なお、前記第二実施形態と対応する部分には符号200を加えて示し説明を省略する。
同図に示す非干渉装置(非干渉手段)476a,476bは、測定光の光路を機械的に変更するガルバノミラーで構成されている。
【0084】
ここで、前記ガルバノミラーは、そのチルトにより測定光の光路を変化させるものである。そして、測定光を遮蔽したい時には一方の測定光が他方の干渉測長計に入射しないような光路となる角度にガルバノミラーをチルトしておけば、測定光は相手の干渉測長計に入射しない。被測定物を通過したい時は、測定光が干渉測長計に入射するような光路となる角度にガルバノミラーをチルトしておけば、寸法測定が行える。
このように測定光の通過と遮蔽の切替を、ガルバノミラーのチルトにより行っても、前記液晶シャッタ、音響光学素子と同様の効果を得ることができる。
【0085】
【発明の効果】
以上説明したように本発明にかかる寸法測定装置によれば、前記多波長干渉計よりなる第一干渉測長手段及び第二干渉測長手段と、所定の離隔距離をおいて配置され、被測定物が出入りされる第一ミラー及び第二ミラーを備え、該ミラー間での前記第一干渉測長手段よりの第一測定光の光軸及び第二干渉測長手段よりの第二測定光の光軸をオフセット配置し、同時測定を行うこととした。
この結果、本発明は、被測定物が存在しない時に、干渉測長手段の誤動作を防ぐことができるので、多波長干渉計を用いた寸法測定が良好に行える。
また本発明にかかる寸法測定装置によれば、前記多波長干渉計よりなる第一干渉測長手段及び第二干渉測長手段と、前記被測定物の測長軸と一致した光軸を有し、かつ所定の離隔距離をおいて配置された第一非干渉手段及び第二非干渉手段を備え、該非干渉手段を交互に動作させることとした。
この結果、本発明は、被測定物が存在しない時に、干渉測長手段の誤動作を防ぐことができるので、多波長干渉計を用いた寸法測定が良好に行える。
また本発明においては、前記非干渉手段としてシャッタ、音響光学素子あるいはミラーを採用することにより、前記多波長干渉計を用いた寸法測定がより良好に行える。
【図面の簡単な説明】
【図1】本発明の第一実施形態にかかる寸法測定装置の概略構成の説明図である。
【図2】図1に示した寸法測定装置の作用の説明図である。
【図3】本発明の第二実施形態にかかる寸法測定装置の概略構成の説明図である。
【図4】図3に示した寸法測定装置の作用の説明図である。
【図5】
【図6】図3に示した寸法測定装置の非干渉装置の変形例である。
【図7】一般的な寸法測定装置による一般的な寸法測定方法の説明図である
【図8】本実施形態の寸法測定装置に用いられる多波長干渉計の一例である。
【符号の説明】
110,210 寸法測定装置
112a,212a 干渉測長計(第一干渉測長手段)
112b,212b 干渉測長計(第二干渉測長手段)
118,218 被測定物
160 ミラー(第一ミラー)
162 ミラー(第二ミラー)
276a 非干渉装置(第一非干渉手段)
276b 非干渉装置(第二非干渉手段)
280 値付けされた標準サンプル

Claims (7)

  1. 多波長干渉法を用いて被測定物の相対向する第一端面と第二端面間の寸法Lを測定する寸法測定装置であって、
    波長の異なる複数種類の可干渉光の一部に基づく参照光と、該可干渉光の残りを測定光として被検反射面に入射させて得られた反射光を合成し干渉光を得、各測定波長での干渉信号に基づいて、個々の測定波長を越える被検反射面の変位を測定する第一干渉測長手段および第二干渉測長手段と、
    前記第一干渉測長手段よりの第一測定光の光軸と第二干渉測長手段よりの第二測定光の光軸が重ならないように平行にずれて配置され、且つ所定の離隔距離Xをおいて配置された第一ミラーおよび第二ミラーと、
    を備え、前記第一干渉測長手段により、前記ミラー間に被測定物が存在せず第一干渉測長手段よりの第一測定光を第二ミラーで反射させた時の該第二ミラーの距離情報Lと、該ミラー間に被測定物が存在し該第一測定光を該被測定物の第一端面で反射させた時の該被測定物第一端面の距離情報Lとの距離差Xを測定し、
    前記第二干渉測長手段により、前記ミラー間に被測定物が存在せず第二干渉測長手段よりの第二測定光を第一ミラーで反射させた時の該第一ミラーの距離情報Lと、該ミラー間に被測定物が存在し該第二測定光を該被測定物の第二端面で反射させた時の該被測定物第二端面の距離情報Lとの距離差Xを測定し、
    前記第一干渉測長手段により測定された距離差X、第二干渉測長手段により測定された距離差X、および予め定められた第一ミラーと第二ミラー間の離隔距離Xより、前記被測定物の相対向する第一端面と第二端面間の寸法Lを数1により求めることを特徴とする寸法測定装置。
    Figure 0003986903
    ただし、前記距離差X=前記距離情報L−前記距離情報L
    前記距離差X=前記距離情報L−前記距離情報L
  2. 請求項1記載の寸法測定装置において、
    前記第一測定光の光軸上に位置する前記第一ミラーの部位に、前記第一測定光を通過させる第一光通過用穴を設け、
    前記ミラー間に被測定物が存在しない時に、前記第一ミラーの第一光通過穴を通過した第一干渉測長手段よりの第一測定光を反射し、該第一光通過用穴に返光するように、第一測定光の光軸上に前記第二ミラーの鏡面が位置し、
    前記第二測定光の光軸上に位置する前記第二ミラーの部位に、前記第二測定光を通過させる第二光通過用穴を設け、
    前記ミラー間に被測定物が存在しない時に、前記第二ミラーの第二光通過穴を通過した第二干渉測長手段よりの第二測定光を反射し、該第二光通過用穴に返光するように、第二測定光の光軸上に前記第一ミラーの鏡面が位置することを特徴とする寸法測定装置。
  3. 多波長干渉法を用いて被測定物の相対向する第一端面と第二端面間の寸法Lを測定する寸法測定装置であって、
    波長の異なる複数種類の可干渉光の一部に基づく参照光と、該可干渉光の残りを測定光として被検反射面に入射させて得られた反射光を合成し干渉光を得、各測定波長での干渉信号に基づいて、該個々の測定波長を越える被検反射面の変位を測定する第一干渉測長手段および第二干渉測長手段と、
    前記被測定物の測長軸と一致した光軸を有し、かつ所定の離隔距離をおいて配置され、測定光の通過と測定光の遮蔽を交互に行う第一非干渉手段、及び該第一非干渉手段で測定光の通過時は測定光の遮蔽かつ該第一非干渉手段で測定光の遮蔽時は測定光の通過を、前記第一非干渉手段での測定光の通過と遮蔽の切替と同期させて交互に行う第二非干渉手段と、
    を備え、前記第一干渉測長手段により、前記非干渉手段間に寸法が既知Lの標準サンプルが存在し、該第一干渉測長手段よりの第一測定光を標準サンプルの第一端面で反射させた時の該標準サンプル第一端面の距離情報Lと、該非干渉手段間に被測定物が存在し、該第一測定光を該被測定物の第一端面で反射させた時の該被測定物第一端面の距離情報Lとの距離差Xを測定し、
    前記第二干渉測長手段により、前記非干渉手段間に前記標準サンプルが存在し、該第二干渉測長手段よりの第二測定光を標準サンプルの第二端面で反射させた時の該標準サンプル第二端面の距離情報Lと、該非干渉手段間に被測定物が存在し、該第二測定光を該被測定物の第二端面で反射させた時の該被測定物第二端面の距離情報Lとの距離差Xを測定し、
    前記第一干渉測長手段により測定された距離差X、第二干渉測長手段により測定された距離差X、および予め値付けされた標準サンプルの寸法Lより、前記被測定物の相対向する第一端面と第二端面間の寸法Lを数2により求めることを特徴とする寸法測定装置。
    Figure 0003986903
    ただし、前記距離差X=前記距離情報L−前記距離情報L
    前記距離差X=前記距離情報L−前記距離情報L
  4. 請求項3記載の寸法測定装置において、
    前記非干渉手段は、シャッタであり、
    前記シャッタの開閉を行う駆動手段を備え、
    前記駆動手段による前記シャッタの開閉により、前記測定光の通過と遮蔽の切替えを行うことを特徴とする寸法測定装置。
  5. 請求項3記載の寸法測定装置において、
    前記非干渉手段は、音響光学素子であり、
    前記音響光学素子の変調、非変調を行う駆動手段を備え、
    前記駆動手段による前記音響光学素子の変調、非変調により、前記測定光の通過と遮蔽の切替えを行うことを特徴とする寸法測定装置。
  6. 請求項3載の寸法測定装置において、
    前記非干渉手段は、鏡面のチルトにより光路を変更するミラーであり、
    前記駆動手段による前記ミラーのチルトにより測定光の光路を変更することにより、前記測定光の通過と遮蔽の切替えを行うことを特徴とする寸法測定装置。
  7. 請求項1又は2記載の寸法測定装置において、
    前記第一干渉測長手段による距離差Xの測定と、前記第二干渉測長手段による距離差Xの測定を同時に行うことを特徴とする寸法測定装置。
JP2002190620A 2002-06-28 2002-06-28 寸法測定装置 Expired - Lifetime JP3986903B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190620A JP3986903B2 (ja) 2002-06-28 2002-06-28 寸法測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190620A JP3986903B2 (ja) 2002-06-28 2002-06-28 寸法測定装置

Publications (2)

Publication Number Publication Date
JP2004037104A JP2004037104A (ja) 2004-02-05
JP3986903B2 true JP3986903B2 (ja) 2007-10-03

Family

ID=31700497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190620A Expired - Lifetime JP3986903B2 (ja) 2002-06-28 2002-06-28 寸法測定装置

Country Status (1)

Country Link
JP (1) JP3986903B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268887B2 (en) * 2004-12-23 2007-09-11 Corning Incorporated Overlapping common-path interferometers for two-sided measurement
JP2006275883A (ja) * 2005-03-30 2006-10-12 Mitsutoyo Corp 寸法測定方法および両端面干渉計
JP4931867B2 (ja) * 2008-06-27 2012-05-16 黒田精工株式会社 可変端度器

Also Published As

Publication number Publication date
JP2004037104A (ja) 2004-02-05

Similar Documents

Publication Publication Date Title
JP5142502B2 (ja) 位置測定装置
EP1307702B1 (en) Frequency transform phase shifting interferometry
EP3207339B1 (en) Interferometric encoder systems
KR102061632B1 (ko) 격자 측정 장치
JP2006317454A (ja) 少なくとも1つの方向に運動可能に配された位置決めテーブルの相対位置を求めるための測定装置及び方法
JPS62129711A (ja) 物体の形状誤差を測定する方法およびその装置
US7389595B2 (en) Position-measuring device and method for operating a position-measuring device
JP4915943B2 (ja) 屈折率測定方法及び装置
JP2001227927A (ja) 形状計測装置
JP4427632B2 (ja) 高精度三次元形状測定装置
JPS58191907A (ja) 移動量測定方法
JP3986903B2 (ja) 寸法測定装置
US6907372B1 (en) Device for position indication and detection of guidance errors
JP3851160B2 (ja) 測長装置
TW201723418A (zh) 運動物件之絕對定位距離與偏擺角度同步量測之光學系統與方法
JPH095059A (ja) 平面度測定装置
JP2002286409A (ja) 干渉計装置
JPS61155902A (ja) 干渉計測装置
JPH09196619A (ja) 微小変位量の測定方法及び装置
JP6321459B2 (ja) 干渉計測装置、及び変位量測定方法
JP3493329B2 (ja) 平面形状計測装置、平面形状計測方法及び該方法を実行するプログラムを記憶した記憶媒体
US5493394A (en) Method and apparatus for use in measuring frequency difference between light signals
EP0668483B1 (en) Laser interferometer
JPH10170340A (ja) Ft用干渉計の干渉効率測定装置
JP2022110874A (ja) レーザ波長測定方法、及びレーザ波長測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3