JP3984196B2 - Ultrasonic vibration device and wet processing device using the same - Google Patents

Ultrasonic vibration device and wet processing device using the same Download PDF

Info

Publication number
JP3984196B2
JP3984196B2 JP2003179676A JP2003179676A JP3984196B2 JP 3984196 B2 JP3984196 B2 JP 3984196B2 JP 2003179676 A JP2003179676 A JP 2003179676A JP 2003179676 A JP2003179676 A JP 2003179676A JP 3984196 B2 JP3984196 B2 JP 3984196B2
Authority
JP
Japan
Prior art keywords
wet processing
ultrasonic vibration
vibrator
thickness
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003179676A
Other languages
Japanese (ja)
Other versions
JP2005013809A (en
Inventor
宣明 芳賀
健一 三森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2003179676A priority Critical patent/JP3984196B2/en
Priority to TW093117498A priority patent/TWI289333B/en
Priority to CNB2004100598331A priority patent/CN1311529C/en
Priority to KR1020040046576A priority patent/KR100546425B1/en
Publication of JP2005013809A publication Critical patent/JP2005013809A/en
Application granted granted Critical
Publication of JP3984196B2 publication Critical patent/JP3984196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/20Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of a vibrating fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス基板や半導体基板等の被処理物にウエット処理液を供給して洗浄、剥離、現像、エッチング、メッキ、研磨等のウエット処理を施す際に上記ウエット処理液に超音波振動を付与するために用いられる超音波振動装置およびこれを用いたウエット処理装置に関するものである。
【0002】
【従来の技術】
洗浄装置の一種として超音波振動装置が備えられたタイプのものが知られており、このようなタイプの洗浄装置は超音波洗浄装置と呼ばれている。
図14は従来の超音波洗浄装置の例を示す概略構成図である(例えば、特許文献1参照。)
この超音波洗浄装置は、純水や洗浄液等の処理液101が満たされるとともに被洗浄物を収容し得る処理槽103と、この処理槽103の底面に接着された振動子105とを備えている。上記処理槽103は、振動板を兼ねている。振動子105はPZT(チタン酸ジルコン酸塩)素子等からなり、発振器によって所定の周波数の電圧が印加され、この周波数の超音波振動を出力する。この処理槽103の底板の厚みは上記超音波振動の半波長(λ/2)の整数倍(n倍)とされるのが一般的であり、実用的に用いられているものの厚みはλ/2にされていた。
このような構成の超音波洗浄装置では、振動子105から超音波振動が発振されると、超音波振動によって処理槽103の底板、処理液101が励振され、処理液101中に浸漬されている被洗浄物が洗浄されるようになっている。
【0003】
【特許文献1】
特開平10−94756号公報(図10、図1)
【0004】
【発明が解決しようとする課題】
しかしながら図14の超音波洗浄装置では、処理槽103の底板の厚みを超音波振動子105の共振周波数における半波長の整数倍にあわせるか、発振に影響がない程度に薄くする必要がある。そのため、製品の形状の自由度が小さく、汎用的な部材を採用できないため、個別に設計、製作しなけらばならない場合が多く、結果として製作費が高くなる。
また、従来の超音波洗浄装置では、何らかの原因より処理液101の液面が大きく下がった場合に、振動子105の上方に外部負荷として処理水101が存在しないことから、振動子105の振幅が大きくなって発熱量が増え、この発熱に起因して接着剤が損傷して振動子105が処理槽103から剥離してしまう。
なお、図10に、従来の超音波洗浄装置の振動子に電圧を印加し、振動子から超音波振動を発振したときの振動部(振動子と振動板からなる部分)の波形の例を示す模式図を示す。図10に示すような波形を示すときの振動部の各構成部材としては、振動子として厚さ2.0mmのPZT板、振動板として厚さ3.0mmのSUS板からなるものが使用されている。振動部の共振周波数は、約950kHzであった。
【0005】
そこで、このような問題を改善するため図15に示すような超音波洗浄装置提案されている(例えば、特許文献1参照。)。
この超音波洗浄装置は、処理液101が満たされるとともに被洗浄物を収容し得る処理槽103と、この処理槽103の底部に形成された開口部103aに挿通された超音波振動発生部106とが備えられたものである。超音波振動発生部106は、振動子107と、該振動子7に接着された導波体109とを有しており、この導波体109は処理液101に接液するように上側に配置され、振動子107は下側に配置されている。振動子107は発振器112によって所定周波数の電圧を印加され、この周波数の超音波振動を発する。導波体109は、振動子107からの超音波振動を処理液101に伝達する。なお、図15中、109aは導波体109に設けたフランジ部である。
【0006】
ところが図15の超音波洗浄装置では、処理水101の液面が下がった場合の発熱を抑えるために、導波体109の厚みを超音波振動の半波長の約20倍としているために、装置の重量が大きくなってしまう。
また、導波体109の厚みが大きい分、超音波ロスが多く、その部分で発熱が生じることがあるため、発熱が生じた部分の冷却が必要となり、フランジ部109aに形成した貫通孔109cに冷却流体を供給できるような冷却手段を設けているため装置構造が複雑になってしまう。
【0007】
本発明は、上記の事情に鑑みてなされたもので、製造工程を簡略化でき、コストダウンが可能な超音波振動装置の提供を目的の一つとする。
また、本発明は、軽量で、安定した超音波振動を供給できる超音波振動装置の提供を目的の一つとする。
また、本発明は、振動子の剥離を改善でき、安定した超音波振動を供給できる超音波振動装置の提供を目的の一つとする。
また、本発明は、製造工程を簡略化でき、コストダウンが可能な超音波振動装置を備えた超音波洗浄装置とウエット処理装置を提供することを目的の一つとする。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明は以下の構成を採用した。
本発明の超音波振動装置は、複数層構造の振動板と、該振動板に固着され超音波振動を発生する振動子とからなる振動部を有してなり、前記振動板の前記振動子が固着される層が高熱伝導材料から形成され、前記振動板の前記振動子が固着される側と反対側の最外層が耐液性材料から形成され、前記高熱伝導材料と前記耐液性材料とが熱間圧延により接合されており、前記振動部は、前記振動板の各層と前記振動子の各々における前記超音波振動の進行方向の厚みと各々の前記超音波振動の波長との比(以下、厚み/波長比と称する)の和が、1/2の整数倍となる厚みに設定されており、前記振動板の各層と前記振動子の各々における前記厚み/波長比が、1/2の整数倍以外の厚みに設定されていることを特徴とする。
【0009】
この超音波振動装置では、上記振動部は、上記振動板の各層と上記振動子の各々における上記超音波振動の進行方向の厚みと各々の上記超音波振動の波長との比(以下、厚み/波長比と称する)の和が、1/2の整数倍となる厚みとしており、言い換えれば、振動板と振動子からなる振動部全体の厚みが振動子から発せられる超音波振動の半波長の整数倍となるようにしているので、その製造の際には上記振動部の厚みが上記条件を満たすような振動板と振動子を組み合わせればよいので、従来の超音波振動装置のように振動板の厚みは超音波振動の半波長の整数倍に限定されない。従って、各部材の選定、設計の自由度が広がり、個別の設計寸法にあわせるための加工が必要なくなるので製造工程を簡略化でき、低コストとすることができる。
また、この超音波振動装置によれば、上記振動板の振動子が固着される層が高熱伝導材料から形成されたことにより、振動板の熱伝導性を向上できるので、振動子の振幅が大きくなって発熱量が増えても、上記発熱を振動板を介して逃がすことができ、一定時間は振動子が振動板に接着した状態を維持できる。また、上記振動板の上記振動子が固着される側と反対側の最外層は耐液性材料から形成されたことにより、振動板の耐液性を向上できるので、振動板の厚みが薄くなっても上記処理液で劣化されにくくなる。
更に、かかる構成の超音波振動装置によれば、この超音波振動装置が備えられた洗浄装置の処理液量が少なくなった場合などにおいて振動子の振幅が大きくなって発熱量が増えても、上記発熱を振動板を介して逃がすことができ、一定時間は振動子は振動板に接着した状態を維持できるので、従来に比べて振動子が剥がれにくくなり、一定時間振動子を駆動でき、超音波振動装置の寿命が長くなる。
【0010】
本発明の超音波振動装置において、上記振動部は、上記振動板の各層と上記振動子の各々における上記厚み/波長比の和が1/2となる厚みに設定されていてもよい。
かかる構成の超音波振動装置によれば、振動部の厚みを薄くできるので、超音波ロスが少なくなり、超音波ロスに起因する発熱を冷却するための冷却装置を設けなくてもよく、また、装置全体を軽量化できる。
【0011】
また、本発明の超音波振動装置において上記高熱伝導材料としては、銅、銀、金、アルミニウム、これらの金属の合金、アルミナ、シリコンカーバイド等のセラミックスのうちの1種または2種以上が用いられ、特に銅または銅合金が用いられる。
【0012】
また、本発明の超音波振動装置において上記耐液性材料としては、この超音波振動装置が備えられる超音波洗浄装置やウエット処理装置で使用される処理液が水の場合はステンレス鋼、表面処理したステンレス鋼が用いられ、処理液が酸やアルカリの場合はサファイヤ、高純度アルミナ又はPTFE(四ふっ化エチレン樹脂)でコートした金属材料、セラミックス、石英ガラス等が用いられる
【0013】
また、本発明の超音波振動装置においては、上記振動部の温度を測定する温度測定装置と、振動子への電力供給遮断装置が備えられていてもよい。
かかる構成の超音波振動装置では、上記処理液量が少なくなった場合などにおいて振動子の振幅が大きくなって発熱量が増えても、振動板に高熱伝導材料が用いられている場合は一定時間は振動子は剥がれないので、振動子が剥がれる前(一定時間経過後)に電力供給遮断装置により振動子への電力供給を電力供給を遮断することで、超音波振動装置が壊れるのを防止できる。
また、振動板が高熱伝導材料から構成されていない場合においても上記温度測定装置で振動部の温度を測定し、振動子が剥がれる温度になる前(一定時間経過後)に電力供給遮断装置により振動子への電力供給を遮断することで、超音波振動装置が壊れるのを防止できる。
【0014】
本発明の超音波洗浄装置は、洗浄用流体を貯溜する処理槽に、上記のいずれかの構成の本発明の超音波振動装置が備えられたことを特徴とする。
かかる構成の超音波洗浄装置によれば、製造が容易で、低コストの超音波洗浄装置を提供できる。
【0015】
本発明のウエット処理装置は、被処理物に対向する対向面を有するウエット処理本体部を有するウエット処理用ノズルが備えられ、上記被処理物と上記対向面との間の隙間に供給されたウエット処理液により上記被処理物にウエット処理を施すウエット処理装置であって、
上記ウエット処理本体部に上記のいずれかの構成の本発明の超音波振動装置が備えられ、該超音波振動装置の振動部は上記被処理物と対向する対向面を有していることを特徴とする。
かかる構成のウエット処理装置によれば、製造が容易で、低コストのウエット処理装置を提供できる。
【0016】
【発明の実施の形態】
以下、本発明に係る超音波振動装置およびこれを用いた超音波洗浄装置とウエット処理装置の実施形態を図面に基づいて説明する。
[第1の実施の形態]
図1は、第1の実施形態の超音波振動装置の概略構成を示す断面図である。
本実施形態の超音波振動装置1は、複数層構造の振動板2と、該振動板2の一方の面に固着され超音波振動を発生する振動子3とからなる振動部5と、振動子3に接続された発振器(図示略)と、振動部5の温度を測定する温度測定装置(図示略)と、振動子3への電力供給遮断装置(図示略)を備えたものである。
【0017】
振動板2は、上記耐液性材料からなる層(耐液性材料層と呼ぶこともある)2aと、この耐液性材料層2a上に形成された上記高熱伝導材料からなる層(高熱伝導材料層と呼ぶこともある)2bからなる2層構造のものである。また、この振動板2は、耐液性材料層2aと高熱伝導材料層2bが共に金属から構成されているときには、熱間圧延法より製造された熱圧延鋼板から構成されたものであることが、金属層どうしの接合面が存在せず、超音波のロスなく伝播が可能になる点で好ましい。なお、振動板2が熱圧延鋼板から構成されていない場合、耐液性材料層2aと高熱伝導材料層2bは接着剤等により接着されている。
上記高熱伝導材料層2bの上面に振動子3が接着剤により固着されている。
【0018】
振動子3は、PZT(チタン酸ジルコン酸塩)素子、チタン酸バリウム系素子、水晶、フェライト系素子等からなり、上記の発振器によって所定の周波数の電圧が印加され、約20kHz〜10MHzの範囲の周波数の超音波振動を出力可能なものが用いられる。
この振動部5では、上記発振器によって電圧を印加された振動子3が超音波振動を発振すると、高熱伝導材料層2b、耐液性材料層2aが励振される。
【0019】
振動部5の厚さtは、振動板2の各層と振動子3の各々における上記超音波振動の進行方向の厚みと各々の上記超音波振動の波長との比(以下、厚み/波長比と称する)の和が、1/2の整数倍となる厚みに設定されており、即ち、下記式(1)の条件を満たすような厚みに設定されている。
(t/λ)+(t/λ)+(t/λ)=n/2 ・・・式(1)
(式中、tは振動子3の超音波振動の進行方向の厚み、λは振動子3から発せられた超音波振動の波長、tは高熱伝導材料層2bの超音波振動の進行方向の厚み、λは振動子3から発せられた超音波振動の高熱伝導材料層2b内での波長、tは耐液性材料層2aの超音波振動の進行方向の厚み、λは振動子3から発せられた超音波振動の耐液性材料層2a内での波長、nは整数)
但し、振動子3は上記厚み/波長比が1/2の整数倍以外の厚み、即ち、下記式(2)の条件を満たさない厚みとされる。
(t/λ)=n/2 ・・・式(2)
【0020】
上記振動部5は、振動板2の各層と振動子3の各々における厚み/波長比の和が1/2となる厚みに設定されていてもよく、即ち、下記式(3)の条件を満たすような厚みに設定されているのが、先に述べた理由により好ましい。
(t/λ)+(t/λ)+(t/λ)=1/2 ・・・式(3)
【0021】
上記電力供給遮断装置は、振動子3が剥がれる前(一定時間経過後)振動子への電力供給を電力供給を遮断することで、超音波振動装置が壊れるのを防止できるようになっている。例えば、後述する第6の実施形態のように本実施形態の超音波振動装置を超音波洗浄装置に備えたときに、処理槽に満たされた処理液量の減少などによって振動子の振幅が大きくなって発熱量が増えても、振動板に高熱伝導材料が用いられている場合は一定時間は振動子は剥がれないので、振動子3が剥がれる前(一定時間経過後)に振動子への電力供給を遮断できるように設定しておくことで、振動子の剥離を防止できる。
また、上記電力供給遮断装置は、上記温度測定装置と接続されており、温度測定装置で測定した振動部の温度に基づいて振動子に供給する電力を遮断できるようになっている。上記温度測定装置で振動部の温度を測定し、振動子が剥がれる温度になる前(一定時間経過後)に振動子への電力供給を遮断できるように設定しておくことで、振動子の剥離を防止できる。
【0022】
上記のような構成の超音波振動装置1は、後述する第3〜第5の実施形態のようにウエット処理装置に備えられる場合は振動板2の耐液性材料層2aがウエット処理液と接する側に配置され、第6の実施形態のように超音波洗浄装置に備えられる場合は処理液に接する側に配置される。
【0023】
図8に、本実施形態の超音波振動装置1の振動子3に電圧を印加し、振動子3から超音波振動を発振したときの振動部5の波形(内部の振幅の大きさ分布を示す)の例を示す模式図を示す。図8に示すような波形を示すときの振動部5の各構成部材としては、振動子3として厚さ2.5mmのPZT板、振動板2として厚さ1.0mmのCu層(高熱伝導材料層2b)と厚さ1.0mmのSUS層(耐液性材料層2a)からなる熱圧延鋼板を用いた。振動部5の共振周波数は、966kHzであった。
【0024】
図9に、本実施形態の超音波振動装置1の振動子3に電圧を印加し、振動子3から超音波振動を発振したときの振動部5の波形のその他例を示す模式図を示す。図9に示すような波形を示すときの振動部5の各構成部材としては、振動子3として厚さ2.0mmのPZT板、振動板2として厚さ1.0mmのCu板(高熱伝導材料層2b)と厚さ4.0mmのサファイヤ板(耐液性材料層2a)からなるものを用いた。振動部5の共振周波数は、927kHzであった。
【0025】
本実施形態の超音波振動装置1によれば、振動部5の厚さtが式(1)の条件を満たすような厚みとされた、言い換えれば、振動板と振動子からなる振動部全体の厚みtが振動子から発せられる超音波振動の半波長(λ/2)の整数倍(n倍)とされたので、その製造の際には振動部の厚みが上記条件を満たすような耐液性材料層2aと高熱伝導層2bと振動子3を組み合わせばよいので、従来の超音波振動装置のように振動板の厚みを超音波振動の半波長の整数倍にあわせる必要がなく、加工の自由度が大きくなり、製造工程を簡略化でき、低コストとすることができる。
また、振動板2は、振動子3が設けられる側の層が高熱伝導材料層2bから形成されたことにより、振動板2の熱伝導性を向上できるので、振動子3の振幅が大きくなって発熱量が増えても、上記発熱を振動板2を介して逃がすことができ、一定時間は振動子3が振動板2に接着した状態を維持できる。また、振動板2は、振動子が設けられる側と反対側の層が耐液性材料層2aから形成されたことにより、振動板2の耐液性を向上できるので、振動板2の厚みが薄くなっても上記処理液で劣化されにくくなる。
【0026】
[第2の実施の形態]
図2は、第2の実施形態の超音波振動装置の概略構成を示す断面図である。
第2の実施形態の超音波振動装置11が図1に示した第1の実施形態の超音波振動装置1と異なるところは、振動板12が単層構造であり、また、振動板12一方の面に固着された振動子3とからなる振動部15の厚さtは振動板12と振動子3の各々における上記厚み/波長比の和が、1/2の整数倍となる厚みに設定されており、即ち、下記式(4)の条件を満たすような厚みに設定されている点である。
(t/λ)+(t/λ)=n/2 ・・・式(4)
(式中、tは振動子3の超音波振動の進行方向の厚み、λは振動子3から発せられた超音波振動の波長、tは振動板12の超音波振動の進行方向の厚み、λは振動板12の超音波振動の波長、nは整数)
振動板12の材質としては、上記耐液性材料からなる板又は上記高熱伝導材料からなる板が用いられ、あるいは高純度ガラス状カーボン、チタン、マグネシウムなども用いることができる。
上記第1〜第2の実施形態の超音波振動装置においては、振動板が板状である場合について説明したが、一方の面に振動子3を接着できれば他の形状であっても良く、例えば、断面コ字状、断面L字状、U字状であってもよい。
【0027】
[第3の実施の形態]
図3は、本発明に係わる第3の実施形態のウエット処理装置の概略構成を示す断面図であり、図4はこのウエット処理装置に備えられたウエット処理用ノズルを被処理物側から見たときの平面図である。
本実施形態のウエット処理装置31は、上下一対のウエット処理用ノズル(一対のプッシュ・プル型ノズル)41、41と、これら一対のウエット処理用ノズル41、41間に被処理物23を傾斜状態(傾斜角θ)で搬送するための複数の搬送コロ(傾斜搬送機構)25が備えられたものである。なお、図中符号Sは、被処理物23の搬送方向(移動方向)である。上記傾斜角θは、0≦θ<arctan(a/b)の範囲で、適宜設定することができる。水平搬送(θ=0)の場合でも本発明の効果は同様に得られる。
【0028】
各ウエット処理用ノズル41は、被処理物23に対向する対向面53a(被処理物対向面と呼ぶこともある)を有するウエット処理本体部53と、該本体部53の一方に隣接して設けられ、上記被処理物23と上記対向面53aとの間の隙間にウエット処理液50を導入する処理液導入部51と、本体部53の他方に設けられ、上記隙間からのウエット処理液50を回収する処理液回収部52が備えられたものである。
【0029】
ウエット処理本体部53は、図1に示すように超音波振動装置1と、該超音波振動装置1の振動板2の周縁部から立ち上がる側壁部67から構成されている。側板部67は振動板2と一体に形成されており、耐液性材料層2aの端面から立ち上がる側板67aと、高熱伝導材料層2bの端面から立ち上がる側板67bから構成されている。側板67aは、上記耐液性材料から構成され、側板67bは高熱伝導材料から構成されている。超音波振動装置1の振動子3は側壁部67の内側で、振動板2の高熱伝導材料層2b上に配置され、振動部5の振動子3が設けられる側と反対側の面が被処理物と対向する対向面53aとなっている。
【0030】
処理液導入部51は、一端に被処理物23に向けて開口する第1の開口部51bが設けられた導入管51cが備えられ、また、この導入管51cの他端にウエット処理液50を導入するための導入口51aが設けられている。
処理液回収部52は、一端に被処理基板21に向けて開口する第2の開口部52bが設けられた排出管52cが備えられ、また、この排出管52cの他端にウエット処理後のウエット処理液の排出液を外部(ウエット処理の系外)へ排出するための排出口52aが設けられている。
【0031】
上記第1の開口部51bと第2の開口部52bの間にウエット処理本体部53の被処理物対向面53aが介在され、これら開口部51b、52bと被処理物対向面53aはほぼ面一に配置されている。
処理本体部53の被処理物対向面53aと被処理物23の間の空間には、ウエット処理を行う領域55が形成されている。
【0032】
また、処理液回収部52には圧力制御部(図示略)が設けられている。この圧力制御部は、排出口52a側に設けられた減圧ポンプにより構成されており、被処理物23に接触したウエット処理液50がウエット処理後に排出管52cに流れるように、第1の開口部51bのウエット処理液の圧力(ウエット処理液の表面張力と被処理物の被処理面の表面張力も含む)と大気圧(ウエット処理用ノズルの外部の雰囲気)との均衡がとれるようにするためのものである。
【0033】
したがって、排出口52a側の圧力制御部に減圧ポンプを用いて、この減圧ポンプで処理本体部53のウエット処理液50を吸引する力を制御して、第1の開口部51bのウエット処理液50の圧力(ウエット処理液の表面張力と被処理物の被処理面の表面張力も含む)と大気圧との均衡をとるようになっている。つまり、第1の開口部51bのウエット処理液の圧力P(ウエット処理液の表面張力と被処理物23の被処理面の表面張力も含む)と大気圧Pとの関係をP≒Pとすることにより、第1の開口部51bを通じて被処理物23に供給され、被処理物23に接触した処理液は、被処理物23上のウエット処理液を供給した部分以外の部分に接触することなく、被処理物23上から除去されて、排出管52cに排出される。
【0034】
このような構成のウエット処理用ノズル41、41は、ウエット処理本体部53、53が隙間を隔てて対向するように設けられている。このような一対のウエット処理用ノズル41、41のウエット処理本体部53、53間の隙間に被処理物23が搬送コロ25により傾斜状態で搬送されて、被処理物23とウエット処理用ノズル41、41との間のウエット処理領域55、55でウエット処理が行われ、被処理物23の両面にウエット処理を施すことができる。
【0035】
各ウエット処理用ノズル41の接液面は、PFA等のフッ素樹脂や、用いるウエット処理液によっては最表面がクロム酸化物のみからなる不動態膜面のステンレス、あるいは酸化アルミニウムとクロム酸化物の混合膜を表面に備えたステンレス、オゾン水に対しては電解研磨表面を備えたチタン等とすることが、ウエット処理液への不純物の溶出がないことから好ましい。接液面を石英により構成すれば、フッ酸を除く全てのウエット処理液の供給に好ましい。
【0036】
上記ウエット処理液50としては、被処理物23に施す処理に応じて選択され、例えば、洗浄処理の場合は洗浄液や純水、エッチングの場合にはエッチング液、現像の場合は現像液、剥離の場合には剥離液が用いられる。
上記複数の搬送コロ25は、一対のウエット処理用ノズル41、41の対向面間に被処理物3を移動方向に上昇するような角度で搬送できるように配置されている。
【0037】
図3乃至図4に示したようなウエット処理装置を用いて被処理物23にウエット処理を施すには以下のように行われる。
被処理物23を搬送コロ25により一対のウエット処理用ノズル41、41の対向面間に傾斜搬送しながら一対のウエット処理用ノズル41、41の各第1の開口部51bからウエット処理液50をウエット処理領域55に供給した状態で振動子3から超音波振動を発振して、振動板2、ウエット処理液50を順次励振し、この励振されたウエット処理液50に被処理物23を接触してウエット処理した後、被処理物23に接触後のウエット処理液50を第2の開口部52bから排出管52cに排出する。ここでのウエット処理では、被処理物23の両面全部が一度にウエット処理されるのでなく、被処理物23ばノズル41、41の対向面53a、53a間を通過する際に、この対向面間を通る部分が順次ウエット処理されるのである。
【0038】
本実施形態のウエット処理装置によれば、上記のような構成の一対のウエット処理用ノズル41、41が備えられたことにより、上記導入管51cから供給されるウエット処理液50の圧力(上記被処理物と上記対向面との間の隙間に供給するウエット処理液の圧力)に対して排出管2cから排出されるウエット処理液の圧力(処理液回収部の吸引力)を制御することでウエット処理液をウエット処理の系外に漏らすことがなく、排出することができるので、少ない処理液で効率良くウエット処理ができる。また、本実施形態の超音波振動装置1が各ウエット処理本体部53に備えられたことにより、製造が容易で、低コストのウエット処理装置とすることができる。
なお、本実施形態のウエット処理装置においては、各ウエット処理本体部53に第1の実施形態の超音波振動装置1を備えた場合について説明したが、第2の実施形態の超音波振動装置11が備えられたものであってもよい。
また、上下一対のウエット処理用ノズル41、41を一組設けた場合について説明したが、複数組設け、各組で異なる種類のウエット処理を施すようにしてもよく、また、被処理物23の一方の面のみにウエット処理を施す場合には被処理物23の一方の面側にのみウエット処理用ノズルを設けるようにしてもよい。
【0039】
[第4の実施の形態]
図5は、本発明に係わる第4の実施形態のウエット処理装置の概略構成を示す断面図である。
第4の実施形態のウエット処理装置が、第3の実施形態のウエット処理装置と異なるところは、ウエット処理本体部53の他方に処理液回収部52が設けられていない以外は上記第3の実施形態と同様の上下一対のウエット処理用ノズル41a、41aが備えられた点である。
図5のウエット処理装置を用いて被処理物23にウエット処理を施すには以下のように行われる。
【0040】
被処理物23を搬送コロ25により一対のウエット処理用ノズル41a、41aの対向面間に傾斜搬送しながら一対のウエット処理用ノズル41a、41aの各第1の開口部51bからウエット処理液50をウエット処理領域55に供給した状態で振動子3から超音波振動を発振して、振動板2、ウエット処理液50が順次励振し、この励振されたウエット処理液50に被処理物23を接触させてウエット処理する。被処理物23は搬送コロ25により移動方向に上昇するような角度で傾斜搬送されているので、被処理物23の上面に接触後のウエット処理液50は被処理物23の移動方向と反対側に流れ落ち、被処理物23の下面に接触後のウエット処理液50はウエット処理本体53の他方の側(処理液導入部側と反対側)から流れ落ちるようになっている。
【0041】
[第5の実施の形態]
図6は、本発明に係わる第5の実施形態のウエット処理装置の概略構成を示す断面図である。
第5の実施形態のウエット処理装置が、第4の実施形態のウエット処理装置と異なるところは、ウエット処理本体部53の一方の側の近傍に処理液導入部として処理液供給用ノズル71が設けられた以外は上記第3の実施形態と同様のウエット処理用ノズル41bが用いられ、かつ、このウエット処理用ノズル41bは被処理物3の上面側のみに配置された点である。処理液供給用ノズル71はウエット処理領域55にウエット処理液50を供給するものである。
図6のウエット処理装置を用いて被処理物23にウエット処理を施すには以下のように行われる。
【0042】
被処理物23を搬送コロ25によりウエット処理用ノズル41bの対向面の下側を傾斜搬送しながら処理液供給用ノズル71からウエット処理液50をウエット処理領域55に供給した状態で振動子3から超音波振動を発振して、振動板2、ウエット処理液50を順次励振し、この励振されたウエット処理液50に被処理物23の上面を接触させてウエット処理する。
被処理物23は搬送コロ25により移動方向に上昇するような角度で傾斜搬送されているので、被処理物23の上面に接触後のウエット処理液50は被処理物23の移動方向と反対側に流れ落ちるようになっている。
【0043】
[第6の実施の形態]
図7は、本発明に係わる第6の実施形態の超音波洗浄装置の概略構成を示す図である。
本実施形態の超音波洗浄装置は、洗浄用流体81が満たされるとともに被洗浄物(図示略)を収容し得る処理槽83と、この処理槽83の底部に形成された開口部83aに挿通された超音波振動装置21とが備えられたものである。
超音波振動装置21は、複数層構造の導波体(振動板)22と、該導波体222の一方の面に固着され超音波振動を発生する振動子3とからなる振動部25と、振動子3に接続された発振器26と、振動部25の温度を測定する温度測定装置(図示略)と振動子3への電力供給遮断装置(図示略)を備えたものである。
【0044】
導波体22は、高熱伝導材料層22bと、この高熱伝導材料層22b上に形成された耐液性材料層22aからなる2層構造のものである。この導波体22の耐液性材料層22aは洗浄用流体81に接液するように上側に配置され、高熱伝導材料層22bは下側に配置されている。耐液性材料層22aは高熱伝導材料層22bよりも幅広に形成され、この幅広部がフランジ部22cとして機能する。
高熱伝導材料層22bの下面に振動子3が接着剤により固着されている。
この振動部25では、上記発振器26によって電圧を印加された振動子3が超音波振動を発振すると、導波体22が励振され、この導波体22により振動子37からの超音波振動が洗浄用流体81に伝達される。
【0045】
振動部25の厚さtは、導波体22の各層と振動子3の各々における上記超音波振動の進行方向の厚みと各々の上記超音波振動の波長との比(以下、厚み/波長比と称する)の和が、1/2の整数倍となる厚みに設定されており、即ち、下記式(5)の条件を満たすような厚みに設定されている。
(t/λ)+(t/λ)+(t/λ)=n/2 ・・・式(5)
(式中、tは振動子3の超音波振動の進行方向の厚み、λは振動子3から発せられた超音波振動の波長、tは高熱伝導材料層22bの超音波振動の進行方向の厚み、λは振動子3から発せられた超音波振動の高熱伝導材料層22b内での波長、tは耐液性材料層22aの超音波振動の進行方向の厚み、λは振動子3から発せられた超音波振動の耐液性材料層22a内での波長、nは整数)
【0046】
このような構成の超音波洗浄装置では、振動子3から超音波振動が発振されると、導波体22が励振され、この導波体22により振動子37からの超音波振動が洗浄用流体81に伝達され、洗浄用流体81中に浸漬されている被洗浄物(被処理物)が洗浄される。
本実施形態の超音波洗浄装置によれば、超音波振動装置21が備えられたことにより、製造が容易で、低コストの超音波洗浄装置とすることができる。
また、超音波振動装置21は振動部25の厚みを薄くできるので、超音波ロスがなく、超音波ロスに起因する発熱を冷却するための冷却装置を設けなくても済むので、装置全体を小型化及び軽量化でき、しかも装置構成の簡略化できる。
【0047】
【実施例】
以下、実施例により更に具体的に説明する。
(実施例1)
厚さ3.0mmの熱圧延鋼板からなる振動板2上に厚さ2.0mmのPZT素子からなる振動子3を接着剤で貼着した振動部5を用いた以外は図1と同様の超音波振動装置を作製し、実施例1の超音波振動装置とした。
振動板2を構成する熱圧延鋼板は、耐液性材料層2aとして厚さ2.0mmのSUS316L板(ステンレス鋼板)と、高熱伝導材料層2bとして厚さ1.0mmのCu層からなるものであった。なお、Cuの雰囲気温度300Kでの熱伝導度は398Wm−1−1、SUSの雰囲気温度300Kでの熱伝導度は14〜17Wm−1−1である。
ここで用いた振動部5は、上記振動板2の各層と振動子3の各々における上記超音波振動の進行方向の厚みと各々の上記超音波振動の波長との比の和がn/2(n=2)となる厚みに設定されたものである。
【0048】
実施例1の超音波振動装置をウエット処理本体部に備えたウエット処理用ノズルが備えられた以外は図6と同様のウエット処理装置を作製した。
作製したウエット処理装置を用い、発振器によって振動子3に電圧を印加し、振動子3から超音波振動を出力しながら被処理基板にウエット処理を施す際、ウエット処理本体部の被処理基板と対向する面(振動板の耐液性材料層2aの被処理基板と対向する面)と被処理基板との間に径5mm程度の気泡を故意に形成し、ウエット処理液を1分間に振動板2の長さ1cmあたり0.1リットル流し、1時間の連続処理を行ったが、振動子3と振動板2間の剥がれは観測されなかった。
上記振動部5の共振周波数は、918kHz(150Vp−p sin波)であった。また、振動部5の耐液性材料層2a側(接液側)の振幅変位は約2.5μmであった。
また、ウエット処理本体部の被処理基板と対向する面(振動板の耐液性材料層2aの被処理基板と対向する面)と被処理基板との間にウエット処理液を供給しないで振動子3を1分間駆動しても振動子の剥離は生じなかった。
【0049】
(実施例2)
厚さ5.0mmの振動板2上に厚さ2.0mmのPZT素子からなる振動子3を接着剤で貼着した振動部5を用いた以外は図1と同様の超音波振動装置を作製し、実施例2の超音波振動装置とした。
振動板2としては、耐液性材料層2aとしての厚さ4.0mmのサファイヤ板上に高熱伝導材料層2bとして厚さ1.0mmのCu板を接着剤で固着したものを用いた。
ここで用いた振動部5は、上記振動板2の各層と振動子3の各々における上記超音波振動の進行方向の厚みと各々の上記超音波振動の波長との比の和がn/2(n=2)となる厚みに設定されたものである。
【0050】
実施例2の超音波振動装置をウエット処理本体部に備えたウエット処理用ノズルが備えられた以外は図6と同様のウエット処理装置を作製した。
作製したウエット処理装置を用い、発振器によって振動子3に電圧を印加し、振動子3から超音波振動を出力しながら被処理基板にウエット処理を施す際、ウエット処理本体部の被処理基板と対向する面(振動板の耐液性材料層2aの被処理基板と対向する面)と被処理基板との間に上記実施例と同様に気泡を故意に形成し、1時間の連続処理を行ったが、振動子3と振動板2間の剥がれは観測されなかった。
振動部5の共振周波数は、926kHzであった。また、振動部5の耐液性材料層2a側(接液側)の振幅変位は約2.4μmであった。
また、ウエット処理本体部の被処理基板と対向する面(振動板の耐液性材料層2aの被処理基板と対向する面)と被処理基板との間にウエット処理液を供給しないで振動子3を1分間駆動しても振動子の剥離は生じなかった。
【0051】
(比較例1)
厚さ52.0mmのジュラルミンからなる振動板上に厚さ2.0mmのPZT素子からなる振動子を接着剤で貼着した振動部を用いた以外は実施例1と同様の超音波振動装置を作製し、比較例1の超音波振動装置とした。
上記振動板の厚みは、超音波振動の半波長の20倍となる厚みに設定されたものである。なお、ジュラルミンの雰囲気温度300Kでの熱伝導度は16Wm−1−1である。
比較例1の超音波振動装置をウエット処理本体部に備えたウエット処理用ノズルが備えられた以外は図6と同様のウエット処理装置を作製した。
このウエット処理装置を用い、発振器によって振動子に電圧を印加し、振動子から超音波振動を出力しながら被処理基板にウエット処理を施した。
上記振動部の共振周波数は、900kHz以上で2つあり、いずれの共振周波数の場合も振動部の接液側の振幅変位は約0.6μmであった。
比較例1の超音波振動装置は、振動部の厚さが54.0mmを超えてしまうため厚みが大きく、重量が重くなってしまう。
【0052】
図11に、実施例1〜2、比較例1の超音波振動装置の振動子に電圧を印加したときの振動部の共振周波数と平均振幅(振幅変位)との関係を示した。
図11の結果から実施例1〜2の超音波振動装置は、比較例1のものに比べて平均振幅が大きいことから、比較例1のものより強い洗浄力が得られると考えられる。
また、比較例1のものは、平均振幅のピークが複数有るため駆動の制御性が悪くなると考えられる。
【0053】
(比較例2)
厚さ3.0mmのSUSからなる振動板上に厚さ2.0mmのPZT素子からなる振動子を接着剤で貼着した振動部を用いた以外は実施例1と同様の超音波振動装置を作製し、比較例2の超音波振動装置とした。
上記振動板の厚みは、超音波振動の半波長の1倍となる厚みに設定されたものである。
比較例2の超音波振動装置をウエット処理本体部に備えたウエット処理用ノズルが備えられた以外は図6と同様のウエット処理装置を作製した。
このウエット処理装置を用い、発振器によって振動子に電圧を印加し、振動子から超音波振動を出力しながら被処理基板にウエット処理を施した。
【0054】
(比較例3)
厚さ3.0mmのSUS板と厚さ13mmのジュラルミン板からなる振動板上に厚さ2.0mmのPZT素子からなる振動子を接着剤で貼着した振動部を用いた以外は実施例1と同様の超音波振動装置を作製し、比較例3の超音波振動装置とした。
上記SUS板の厚みは、超音波振動の半波長の1倍となる厚みに設定されたものである。
また、上記ジュラルミン板の厚みは、超音波振動の半波長の5倍となる厚みに設定されたものである。
比較例3の超音波振動装置をウエット処理本体部に備えたウエット処理用ノズルが備えられた以外は図6と同様のウエット処理装置を作製した。
このウエット処理装置を用い、発振器によって振動子に電圧を印加し、振動子から超音波振動を出力しながら被処理基板にウエット処理を施した。
【0055】
図12に、実施例1、比較例2〜3の超音波振動装置の振動子に電圧を印加したときの振動部の共振周波数と振動面の変位(振幅変位)との関係を示した。
図12の結果から実施例1の超音波振動装置は、比較例2〜3のものと同等以上の振動面の変位が得られていることから、実施例1は比較例2〜3のものと同等以上の洗浄力が得られると考えられる。しかし比較例2〜3のものは振動板の構成部材を超音波振動の半波長の5倍にする加工が必要であるために、製造工程が多く必要であった。
【0056】
(実施例3)
厚さ2.6mmの熱圧延鋼板からなる振動板2上に厚さ2.0mmのPZT素子からなる振動子3を接着剤で貼着した振動部5を用いた以外は図1と同様の超音波振動装置を作製し、実施例3の超音波振動装置とした。
振動板2を構成する熱圧延鋼板は、耐液性材料層2aとして厚さ1.0mmのSUS316L板(ステンレス鋼板)と、高熱伝導材料層2bとして厚さ1.6mmのCu層からなるものであった。
ここで用いた振動部5は、振動板2の各層と振動子3の各々における上記超音波振動の進行方向の厚みと各々の上記超音波振動の波長との比の和がn/2(n=2)となる厚みに設定されたものである。
【0057】
実施例3の超音波振動装置をウエット処理本体部に備えたウエット処理用ノズルが備えられた以外は図6と同様のウエット処理装置を作製した。
作製したウエット処理装置を用い、発振器によって振動子3に電圧を印加し、振動子3から超音波振動を出力しながら被処理基板にウエット処理を施す際、ウエット処理本体部の被処理基板と対向する面(振動板の耐液性材料層2aの被処理基板と対向する面)と被処理基板との間に上記実施例と同様に気泡を故意に形成し、8時間の連続処理を行ったが、振動子3と振動板2間の剥がれは観測されなかった。
振動部5の共振周波数は、958kHzであった。また、振動部5の耐液性材料層2a側(接液側)の振幅変位は約3μmであった。
また、ウエット処理本体部の被処理基板と対向する面(振動板の耐液性材料層2aの被処理基板と対向する面)と被処理基板との間にウエット処理液を供給しないで振動子3を1分間駆動しても振動子の剥離は生じなかった。
【0058】
(実施例4)
厚さ3.2mmの熱圧延鋼板からなる振動板2上に厚さ2.0mmのPZT素子からなる振動子3を接着剤で貼着した振動部5を用いた以外は図1と同様の超音波振動装置を作製し、実施例4の超音波振動装置とした。
振動板2を構成する熱圧延鋼板は、耐液性材料層2aとして厚さ1.0mmのSUS316L板(ステンレス鋼板)と、高熱伝導材料層2bとして厚さ2.2mmのAl層からなるものであった。なお、Alの雰囲気温度300Kでの熱伝導度は237Wm−1−1である。
ここで用いた振動部5は、振動板2の各層と振動子3の各々における上記超音波振動の進行方向の厚みと各々の上記超音波振動の波長との比の和がn/2(n=2)となる厚みに設定されたものである。
【0059】
実施例4の超音波振動装置をウエット処理本体部に備えたウエット処理用ノズルが備えられた以外は図6と同様のウエット処理装置を作製した。
作製したウエット処理装置を用い、発振器によって振動子3に電圧を印加し、振動子3から超音波振動を出力しながら被処理基板にウエット処理を施す際、ウエット処理本体部の被処理基板と対向する面(振動板の耐液性材料層2aの被処理基板と対向する面)と被処理基板との間に上記実施例と同様に気泡を故意に形成し、8時間の連続処理を行ったが、振動子3と振動板2間の剥がれは観測されなかった。
振動部5の共振周波数は、925kHzであった。また、振動部5の耐液性材料層2a側(接液側)の振幅変位は約2.5μmであった。
また、ウエット処理本体部の被処理基板と対向する面(振動板の耐液性材料層2aの被処理基板と対向する面)と被処理基板との間にウエット処理液を供給しないで振動子3を1分間駆動しても振動子の剥離は生じなかった。
【0060】
図13に、実施例3〜4、比較例1の超音波振動装置の振動子に電圧を印加したときの振動部の共振周波数と平均振幅(振幅変位)との関係を示した。
図13の結果から実施例3〜4の超音波振動装置は、比較例1のものに比べて平均振幅が大きいことから、比較例1のものより強い洗浄力が得られると考えられる。
また、比較例1のものは、平均振幅のピークが複数有るため駆動の制御性が悪くなると考えられる。
【0061】
【発明の効果】
以上説明したように本発明の超音波振動装置によれば、製造工程を簡略化でき、コストダウンが可能な超音波振動装置を提供できる。
また、本発明の超音波洗浄装置によれば、本発明の超音波振動装置が備えられことにより、製造が容易で、低コストの超音波洗浄装置を提供できる。
また、本発明のウエット処理装置によれば、本発明の超音波振動装置を備えられたことにより、製造が容易で、低コストの超音波洗浄装置を提供できる。
【図面の簡単な説明】
【図1】 図1は、本発明に係わる第1の実施形態の超音波振動装置の概略構成を示す断面図。
【図2】 図2は、本発明に係わる第2の実施形態の超音波振動装置の概略構成を示す断面図。
【図3】 図3は、本発明に係わる第3の実施形態のウエット処理装置の概略構成を示す断面図。
【図4】 図4はこのウエット処理装置に備えられたウエット処理用ノズルを被処理物側から見たときの平面図。
【図5】 図5は、本発明に係わる第4の実施形態のウエット処理装置の概略構成を示す断面図。
【図6】 図6は、本発明に係わる第5の実施形態のウエット処理装置の概略構成を示す断面図。
【図7】 図7は、本発明に係わる第6の実施形態の超音波洗浄装置の概略構成を示す断面図。
【図8】 第1の実施形態の超音波振動装置に備えられた振動部の波形の例を示す模式図。
【図9】 第1の実施形態の超音波振動装置に備えられた振動部の波形のその他の例を示す模式図。
【図10】 従来タイプの超音波洗浄装置に備えられた振動部の波形のその他の例を示す模式図。
【図11】 実施例1〜2、比較例1の超音波振動装置の振動部の周波数と平均振幅との関係を示す図。
【図12】 実施例1、比較例2〜3の超音波振動装置の振動部の共振周波数と振動面の変位との関係
【図13】 実施例3〜4、比較例1の超音波振動装置の振動部の共振周波数と平均振幅との関係を示す図。
【図14】 図14は従来の超音波洗浄装置の例を示す概略構成図。
【図15】 図15は従来の超音波洗浄装置のその他の例を示す概略構成図。
【符号の説明】
1,11,21・・・超音波振動装置、2,12・・・振動板、22・・・導波体(振動板)、2a,22a・・・耐液性材料層、2b,22b・・・高熱伝導材料層、3・・・振動子、5,15,25・・・振動部、41,41a,41b・・・ウエット処理用ノズル、50・・・ウエット処理液、53・・・ウエット処理本体部、53a・・・対向面、51・・・処理液導入部、51a・・・導入口、51b・・・第1の開口部、51c・・・導入管、52・・・処理液回収部、52a・・・排出口、52b・・・第2の開口部、52c・・・排出管、55・・・ウエット処理領域、81・・・洗浄用流体、83・・・処理槽。
[0001]
BACKGROUND OF THE INVENTION
The present invention supplies ultrasonic treatment to the wet processing liquid when supplying the wet processing liquid to a processing object such as a glass substrate or a semiconductor substrate to perform wet processing such as cleaning, peeling, developing, etching, plating, and polishing. The present invention relates to an ultrasonic vibration device used for imparting and a wet processing device using the same.
[0002]
[Prior art]
As a type of cleaning device, a type equipped with an ultrasonic vibration device is known, and such a type of cleaning device is called an ultrasonic cleaning device.
FIG. 14 is a schematic configuration diagram illustrating an example of a conventional ultrasonic cleaning apparatus (see, for example, Patent Document 1).
The ultrasonic cleaning apparatus includes a processing tank 103 that is filled with a processing liquid 101 such as pure water or a cleaning liquid and that can store an object to be cleaned, and a vibrator 105 that is bonded to the bottom surface of the processing tank 103. . The processing tank 103 also serves as a diaphragm. The vibrator 105 is composed of a PZT (zirconate titanate) element or the like, and a voltage having a predetermined frequency is applied by an oscillator to output ultrasonic vibration of this frequency. The thickness of the bottom plate of the treatment tank 103 is generally an integral multiple (n times) of the half wavelength (λ / 2) of the ultrasonic vibration, and the thickness of what is practically used is λ / It was set to 2.
In the ultrasonic cleaning apparatus having such a configuration, when ultrasonic vibration is oscillated from the vibrator 105, the bottom plate of the processing tank 103 and the processing liquid 101 are excited by the ultrasonic vibration and are immersed in the processing liquid 101. The object to be cleaned is cleaned.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-94756 (FIGS. 10 and 1)
[0004]
[Problems to be solved by the invention]
However, in the ultrasonic cleaning apparatus of FIG. 14, it is necessary to make the thickness of the bottom plate of the processing bath 103 equal to an integral multiple of a half wavelength at the resonance frequency of the ultrasonic vibrator 105 or to reduce the thickness so as not to affect the oscillation. For this reason, the degree of freedom of the shape of the product is small, and general-purpose members cannot be adopted. Therefore, it is often necessary to individually design and manufacture, resulting in high manufacturing costs.
Further, in the conventional ultrasonic cleaning apparatus, when the liquid level of the processing liquid 101 is greatly lowered due to some cause, the processing water 101 does not exist as an external load above the vibrator 105, and therefore the amplitude of the vibrator 105 is increased. The amount of heat generation increases and the heat generation amount increases, and the adhesive is damaged due to the heat generation, and the vibrator 105 is peeled off from the treatment tank 103.
FIG. 10 shows an example of the waveform of the vibration part (part consisting of the vibrator and the diaphragm) when a voltage is applied to the vibrator of the conventional ultrasonic cleaning apparatus and ultrasonic vibration is oscillated from the vibrator. A schematic diagram is shown. As the constituent members of the vibration part when a waveform as shown in FIG. 10 is shown, a member made of a PZT plate having a thickness of 2.0 mm as a vibrator and a SUS plate having a thickness of 3.0 mm as a vibration plate is used. Yes. The resonance frequency of the vibration part was about 950 kHz.
[0005]
  Therefore, in order to improve such a problem, an ultrasonic cleaning apparatus as shown in FIG.ButIt has been proposed (see, for example, Patent Document 1).
  The ultrasonic cleaning apparatus includes a processing tank 103 that is filled with the processing liquid 101 and can store an object to be cleaned, and an ultrasonic vibration generation unit 106 that is inserted through an opening 103 a formed at the bottom of the processing tank 103. Is provided. The ultrasonic vibration generating unit 106 includes a vibrator 107 and a waveguide 109 bonded to the vibrator 7, and the waveguide 109 is disposed on the upper side so as to come into contact with the processing liquid 101. The vibrator 107 is arranged on the lower side. The vibrator 107 is applied with a voltage of a predetermined frequency by the oscillator 112 and emits ultrasonic vibration of this frequency. The waveguide 109 transmits ultrasonic vibration from the vibrator 107 to the processing liquid 101. In FIG. 15, reference numeral 109 a denotes a flange portion provided on the waveguide body 109.
[0006]
However, in the ultrasonic cleaning apparatus of FIG. 15, in order to suppress heat generation when the liquid level of the treated water 101 falls, the thickness of the waveguide 109 is about 20 times the half wavelength of ultrasonic vibration. Will become heavy.
Further, since the thickness of the waveguide 109 is large, there is a lot of ultrasonic loss, and heat may be generated in that portion. Therefore, it is necessary to cool the portion where the heat is generated, and the through-hole 109c formed in the flange portion 109a has to be cooled. Since the cooling means capable of supplying the cooling fluid is provided, the device structure becomes complicated.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ultrasonic vibration device capable of simplifying the manufacturing process and reducing the cost.
Another object of the present invention is to provide an ultrasonic vibration device that is lightweight and capable of supplying stable ultrasonic vibration.
Another object of the present invention is to provide an ultrasonic vibration device that can improve the peeling of the vibrator and supply a stable ultrasonic vibration.
Another object of the present invention is to provide an ultrasonic cleaning apparatus and a wet processing apparatus including an ultrasonic vibration device that can simplify the manufacturing process and reduce the cost.
[0008]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention employs the following configuration.
  The ultrasonic vibration device of the present invention isMulti-layer structureAnd a vibration part composed of a vibrator that is fixed to the vibration plate and generates ultrasonic vibrations,The layer of the diaphragm to which the vibrator is fixed is formed from a high heat conductive material, and the outermost layer on the opposite side of the diaphragm to the side to which the vibrator is fixed is formed from a liquid-resistant material. The material and the liquid resistant material are joined by hot rolling,The vibrating portion is a sum of ratios of thicknesses in the traveling direction of the ultrasonic vibrations and wavelengths of the ultrasonic vibrations (hereinafter referred to as thickness / wavelength ratios) in each layer of the diaphragm and each of the vibrators. Is set to a thickness that is an integral multiple of 1/2,In each layer of the diaphragm and each of the vibratorsThe thickness / wavelength ratio is set to a thickness other than an integral multiple of 1/2.
[0009]
  In this ultrasonic vibration device, the vibration unit includes a ratio of a thickness in the traveling direction of the ultrasonic vibration and a wavelength of each ultrasonic vibration (hereinafter referred to as thickness / The sum of the wavelength ratios) is an integral multiple of 1/2, in other words, the thickness of the entire vibration part composed of the diaphragm and the vibrator is an integer of the half wavelength of the ultrasonic vibration emitted from the vibrator. Since it is sufficient to combine the diaphragm and the vibrator so that the thickness of the vibrating part satisfies the above conditions at the time of manufacture, the diaphragm as in the conventional ultrasonic vibrator The thickness of is not limited to an integral multiple of a half wavelength of ultrasonic vibration. Accordingly, the degree of freedom in selecting and designing each member is widened, and processing for adjusting to individual design dimensions is not necessary, so that the manufacturing process can be simplified and the cost can be reduced.
  Further, according to this ultrasonic vibration device, since the layer to which the vibrator of the diaphragm is fixed is formed of a highly heat conductive material, the thermal conductivity of the diaphragm can be improved, so the amplitude of the vibrator is large. Even if the heat generation amount increases, the heat generation can be released through the diaphragm, and the state where the vibrator is adhered to the diaphragm can be maintained for a certain time. Further, since the outermost layer on the side opposite to the side on which the vibrator is fixed is formed of a liquid-resistant material, the liquid resistance of the diaphragm can be improved, so that the thickness of the diaphragm is reduced. However, it becomes difficult to be deteriorated by the treatment liquid.
  Further, according to the ultrasonic vibration device having such a configuration, even when the amount of the treatment liquid of the cleaning device provided with the ultrasonic vibration device is reduced, even if the amplitude of the vibrator is increased and the heat generation amount is increased, The above heat generation can be released through the diaphragm, and the vibrator can be kept attached to the diaphragm for a certain period of time. The life of the sonic vibration device is extended.
[0010]
In the ultrasonic vibration device according to the aspect of the invention, the vibration unit may be set to a thickness at which the sum of the thickness / wavelength ratios in each layer of the diaphragm and each of the vibrators is ½.
According to the ultrasonic vibration device having such a configuration, since the thickness of the vibration part can be reduced, the ultrasonic loss is reduced, and it is not necessary to provide a cooling device for cooling the heat generated by the ultrasonic loss. The entire device can be reduced in weight.
[0011]
  In the ultrasonic vibration device of the present invention,,Examples of the high thermal conductive material include one, two or more of ceramics such as copper, silver, gold, aluminum, alloys of these metals, alumina, and silicon carbide.In particular, copper or a copper alloy is used.
[0012]
  In the ultrasonic vibration device of the present invention,,As the liquid-resistant material, when the processing liquid used in the ultrasonic cleaning apparatus or wet processing apparatus provided with the ultrasonic vibration device is water, stainless steel, surface-treated stainless steel is used, and the processing liquid is In the case of acid or alkali, sapphire, high purity alumina or metal material coated with PTFE (tetrafluoroethylene resin), ceramics, quartz glass, etc. are used..
[0013]
In the ultrasonic vibration device of the present invention, a temperature measurement device that measures the temperature of the vibration unit and a power supply cutoff device for the vibrator may be provided.
In the ultrasonic vibration device having such a configuration, even if the amplitude of the vibrator is increased and the heat generation amount is increased when the amount of the treatment liquid is reduced, for example, when a highly heat conductive material is used for the vibration plate, a certain time is required. Since the vibrator does not peel off, it is possible to prevent the ultrasonic vibrator from being broken by shutting off the power supply to the vibrator by the power supply cut-off device before the vibrator is peeled off (after a certain time has elapsed). .
Even when the diaphragm is not made of a highly heat-conductive material, the temperature of the vibration part is measured by the temperature measuring device, and the vibration is vibrated by the power supply cutoff device before reaching the temperature at which the vibrator peels off (after a certain period of time). By interrupting the power supply to the child, the ultrasonic vibration device can be prevented from being broken.
[0014]
The ultrasonic cleaning apparatus of the present invention is characterized in that the treatment tank for storing the cleaning fluid is provided with the ultrasonic vibration apparatus of the present invention having any one of the above-described configurations.
According to the ultrasonic cleaning apparatus having such a configuration, an ultrasonic cleaning apparatus that is easy to manufacture and low in cost can be provided.
[0015]
The wet processing apparatus of the present invention is provided with a wet processing nozzle having a wet processing main body having a facing surface facing a workpiece, and is supplied to a gap between the workpiece and the facing surface. A wet processing apparatus for performing wet processing on the object to be processed with a processing liquid,
The wet processing main body is provided with the ultrasonic vibration device of the present invention having any one of the configurations described above, and the vibration portion of the ultrasonic vibration device has a facing surface facing the object to be processed. And
According to the wet processing apparatus having such a configuration, it is possible to provide a wet processing apparatus that is easy to manufacture and low in cost.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an ultrasonic vibration device according to the present invention, an ultrasonic cleaning device using the same, and a wet processing device will be described below with reference to the drawings.
[First Embodiment]
FIG. 1 is a cross-sectional view illustrating a schematic configuration of the ultrasonic vibration device according to the first embodiment.
The ultrasonic vibration device 1 according to this embodiment includes a vibration unit 5 including a vibration plate 2 having a multi-layer structure, and a vibrator 3 that is fixed to one surface of the vibration plate 2 and generates ultrasonic vibrations. 3, an oscillator (not shown) connected to 3, a temperature measuring device (not shown) for measuring the temperature of the vibrating section 5, and a power supply cutoff device (not shown) for the vibrator 3.
[0017]
The diaphragm 2 includes a layer made of the liquid resistant material (sometimes referred to as a liquid resistant material layer) 2a and a layer made of the high heat conductive material (high heat conductive material) formed on the liquid resistant material layer 2a. (It may be called a material layer) 2b structure of 2b. In addition, when the liquid-resistant material layer 2a and the high heat conductive material layer 2b are both made of metal, the diaphragm 2 may be made of a hot-rolled steel plate manufactured by a hot rolling method. It is preferable in that a joining surface between the metal layers does not exist and propagation is possible without loss of ultrasonic waves. In addition, when the diaphragm 2 is not composed of a hot-rolled steel plate, the liquid-resistant material layer 2a and the high thermal conductive material layer 2b are bonded with an adhesive or the like.
The vibrator 3 is fixed to the upper surface of the high thermal conductive material layer 2b with an adhesive.
[0018]
The vibrator 3 is composed of a PZT (zirconate titanate) element, a barium titanate element, a crystal, a ferrite element, and the like, and a voltage having a predetermined frequency is applied by the above-described oscillator, and the range of about 20 kHz to 10 MHz Those capable of outputting ultrasonic vibrations at a frequency are used.
In the vibrating section 5, when the vibrator 3 to which a voltage is applied by the oscillator oscillates ultrasonic vibration, the high thermal conductive material layer 2b and the liquid resistant material layer 2a are excited.
[0019]
The thickness t of the vibrating part 5 is the ratio of the thickness of the ultrasonic vibration in each layer of the diaphragm 2 and each of the vibrators 3 in the traveling direction and the wavelength of each ultrasonic vibration (hereinafter referred to as the thickness / wavelength ratio). Is set to a thickness that is an integral multiple of 1/2, that is, a thickness that satisfies the condition of the following formula (1).
(T1/ Λ1) + (T2/ Λ2) + (T3/ Λ3) = N / 2 Formula (1)
(Where t1Is the thickness of the vibrator 3 in the direction of ultrasonic vibration, λ1Is the wavelength of the ultrasonic vibration emitted from the vibrator 3, t2Is the thickness in the traveling direction of the ultrasonic vibration of the high thermal conductive material layer 2b, λ2Is the wavelength in the high thermal conductive material layer 2b of the ultrasonic vibration emitted from the vibrator 3, t3Is the thickness of the liquid-resistant material layer 2a in the traveling direction of ultrasonic vibration, λ3Is the wavelength in the liquid-resistant material layer 2a of the ultrasonic vibration emitted from the vibrator 3, and n is an integer)
However, the vibrator 3 has a thickness other than an integral multiple of 1/2 of the thickness / wavelength ratio, that is, a thickness that does not satisfy the condition of the following formula (2).
(T1/ Λ1) = N / 2 Formula (2)
[0020]
The vibrating part 5 may be set to a thickness that makes the sum of the thickness / wavelength ratios of each layer of the diaphragm 2 and each of the vibrators 3, that is, satisfy the condition of the following formula (3): Such a thickness is preferably set for the reason described above.
(T1/ Λ1) + (T2/ Λ2) + (T3/ Λ3) = 1/2 Formula (3)
[0021]
The power supply cutoff device can prevent the ultrasonic vibration device from being broken by cutting off the power supply to the vibrator before the vibrator 3 is peeled off (after a certain period of time has elapsed). For example, when the ultrasonic cleaning apparatus of this embodiment is provided in the ultrasonic cleaning apparatus as in the sixth embodiment described later, the amplitude of the vibrator increases due to a decrease in the amount of processing liquid filled in the processing tank. Even if the amount of generated heat increases, if a highly heat-conductive material is used for the diaphragm, the vibrator does not peel off for a certain time, so the power to the vibrator before the vibrator 3 peels off (after a certain time has elapsed). By setting the supply to be cut off, the vibrator can be prevented from peeling off.
In addition, the power supply cutoff device is connected to the temperature measurement device, and can cut off the power supplied to the vibrator based on the temperature of the vibration unit measured by the temperature measurement device. By measuring the temperature of the vibrating part with the above temperature measuring device and setting it so that the power supply to the vibrator can be cut off before reaching the temperature at which the vibrator peels off (after a certain period of time), the vibrator is peeled off. Can be prevented.
[0022]
When the ultrasonic vibration device 1 configured as described above is provided in a wet processing apparatus as in the third to fifth embodiments described later, the liquid-resistant material layer 2a of the diaphragm 2 is in contact with the wet processing liquid. When the ultrasonic cleaning apparatus is provided as in the sixth embodiment, it is arranged on the side in contact with the processing liquid.
[0023]
FIG. 8 shows a waveform (internal amplitude magnitude distribution) of the vibration unit 5 when a voltage is applied to the vibrator 3 of the ultrasonic vibration device 1 of the present embodiment and ultrasonic vibration is oscillated from the vibrator 3. ) Is a schematic diagram showing an example. The constituent members of the vibration part 5 when having a waveform as shown in FIG. 8 include a PZT plate having a thickness of 2.5 mm as the vibrator 3 and a Cu layer having a thickness of 1.0 mm as the vibration plate 2 (high heat conductive material). A hot-rolled steel sheet comprising a layer 2b) and a 1.0 mm thick SUS layer (liquid-resistant material layer 2a) was used. The resonance frequency of the vibration part 5 was 966 kHz.
[0024]
FIG. 9 is a schematic diagram showing another example of the waveform of the vibration unit 5 when a voltage is applied to the vibrator 3 of the ultrasonic vibration device 1 of the present embodiment and ultrasonic vibration is oscillated from the vibrator 3. The constituent members of the vibration part 5 when having a waveform as shown in FIG. 9 include a PZT plate having a thickness of 2.0 mm as the vibrator 3 and a Cu plate having a thickness of 1.0 mm as the vibration plate 2 (high heat conductive material). The layer 2b) and a sapphire plate (liquid resistant material layer 2a) having a thickness of 4.0 mm were used. The resonance frequency of the vibration part 5 was 927 kHz.
[0025]
According to the ultrasonic vibration device 1 of the present embodiment, the thickness t of the vibration part 5 is set to a thickness that satisfies the condition of the expression (1), in other words, the entire vibration part including the vibration plate and the vibrator. Since the thickness t is an integral multiple (n times) of the half wavelength (λ / 2) of the ultrasonic vibration emitted from the vibrator, the liquid resistance is such that the thickness of the vibration part satisfies the above-mentioned conditions during the production. Since the conductive material layer 2a, the high thermal conductive layer 2b, and the vibrator 3 are combined, it is not necessary to adjust the thickness of the diaphragm to an integral multiple of a half wavelength of the ultrasonic vibration unlike the conventional ultrasonic vibration device. The degree of freedom is increased, the manufacturing process can be simplified, and the cost can be reduced.
In addition, since the vibration plate 2 can improve the thermal conductivity of the diaphragm 2 because the layer on which the vibrator 3 is provided is formed of the high thermal conductive material layer 2b, the amplitude of the vibrator 3 is increased. Even if the amount of heat generation increases, the heat generation can be released through the diaphragm 2, and the state in which the vibrator 3 is adhered to the diaphragm 2 can be maintained for a certain period of time. Further, since the diaphragm 2 is formed of the liquid-resistant material layer 2a on the side opposite to the side where the vibrator is provided, the liquid resistance of the diaphragm 2 can be improved. Even if it becomes thinner, it is less likely to be deteriorated by the treatment liquid.
[0026]
[Second Embodiment]
FIG. 2 is a cross-sectional view illustrating a schematic configuration of the ultrasonic vibration device according to the second embodiment.
The difference between the ultrasonic vibration device 11 of the second embodiment and the ultrasonic vibration device 1 of the first embodiment shown in FIG. 1 is that the vibration plate 12 has a single-layer structure, The thickness t of the vibrating portion 15 composed of the vibrator 3 fixed to the surface is set to a thickness at which the sum of the thickness / wavelength ratios of the diaphragm 12 and the vibrator 3 is an integral multiple of 1/2. That is, the thickness is set so as to satisfy the condition of the following formula (4).
(T1/ Λ1) + (T4/ Λ4) = N / 2 Formula (4)
(Where t1Is the thickness of the vibrator 3 in the direction of ultrasonic vibration, λ1Is the wavelength of the ultrasonic vibration emitted from the vibrator 3, t4Is the thickness of the diaphragm 12 in the direction of ultrasonic vibration, λ2Is the wavelength of ultrasonic vibration of diaphragm 12, n is an integer)
As the material of the diaphragm 12, a plate made of the above liquid resistant material or a plate made of the above highly heat conductive material can be used, or high purity glassy carbon, titanium, magnesium or the like can be used.
In the ultrasonic vibration devices of the first to second embodiments, the case where the diaphragm is plate-shaped has been described. However, as long as the vibrator 3 can be bonded to one surface, other shapes may be used. , A U-shaped section, an L-shaped section, or a U-shaped section.
[0027]
[Third Embodiment]
FIG. 3 is a cross-sectional view showing a schematic configuration of a wet processing apparatus according to a third embodiment of the present invention, and FIG. 4 is a view of a wet processing nozzle provided in the wet processing apparatus from the object to be processed side. It is a top view at the time.
The wet processing apparatus 31 according to this embodiment includes a pair of upper and lower wet processing nozzles (a pair of push-pull type nozzles) 41 and 41, and the workpiece 23 is inclined between the pair of wet processing nozzles 41 and 41. A plurality of transport rollers (inclined transport mechanism) 25 for transporting at a tilt angle θ is provided. In addition, the code | symbol S in a figure is the conveyance direction (movement direction) of the to-be-processed object 23. FIG. The inclination angle θ can be appropriately set within the range of 0 ≦ θ <arctan (a / b). Even in the case of horizontal conveyance (θ = 0), the effect of the present invention can be obtained similarly.
[0028]
Each wet processing nozzle 41 is provided adjacent to one of the main body portions 53 and a wet processing main body portion 53 having a facing surface 53 a (sometimes referred to as a to-be-treated object facing surface) facing the workpiece 23. Provided in the other end of the main body 53 and the treatment liquid introduction part 51 for introducing the wet treatment liquid 50 into the gap between the workpiece 23 and the facing surface 53a. A treatment liquid recovery unit 52 for recovery is provided.
[0029]
As shown in FIG. 1, the wet processing main body 53 includes an ultrasonic vibration device 1 and a side wall portion 67 that rises from the peripheral edge of the diaphragm 2 of the ultrasonic vibration device 1. The side plate portion 67 is formed integrally with the diaphragm 2, and includes a side plate 67a rising from the end surface of the liquid-resistant material layer 2a and a side plate 67b rising from the end surface of the high thermal conductive material layer 2b. The side plate 67a is made of the liquid-resistant material, and the side plate 67b is made of a high heat conductive material. The vibrator 3 of the ultrasonic vibration device 1 is disposed on the high thermal conductive material layer 2b of the diaphragm 2 inside the side wall 67, and the surface of the vibration part 5 opposite to the side on which the vibrator 3 is provided is processed. It becomes the opposing surface 53a facing a thing.
[0030]
The treatment liquid introduction part 51 is provided with an introduction pipe 51c provided with a first opening 51b that opens toward the workpiece 23 at one end, and the wet treatment liquid 50 is placed at the other end of the introduction pipe 51c. An introduction port 51a for introduction is provided.
The treatment liquid recovery unit 52 is provided with a discharge pipe 52c provided with a second opening 52b that opens toward the substrate 21 at one end, and the other end of the discharge pipe 52c is wet after wet processing. A discharge port 52a is provided for discharging the discharged liquid of the processing liquid to the outside (outside the wet processing system).
[0031]
A workpiece facing surface 53a of the wet processing main body 53 is interposed between the first opening 51b and the second opening 52b, and the openings 51b and 52b and the workpiece facing surface 53a are substantially flush with each other. Is arranged.
In a space between the workpiece facing surface 53a of the processing body 53 and the workpiece 23, a region 55 for performing wet processing is formed.
[0032]
Further, the processing liquid recovery unit 52 is provided with a pressure control unit (not shown). The pressure control unit is constituted by a decompression pump provided on the discharge port 52a side, and the first opening is provided so that the wet processing liquid 50 in contact with the workpiece 23 flows into the discharge pipe 52c after the wet processing. In order to balance the pressure of the wet processing liquid 51b (including the surface tension of the wet processing liquid and the surface tension of the surface to be processed) and the atmospheric pressure (atmosphere outside the wet processing nozzle). belongs to.
[0033]
Accordingly, a pressure reducing pump is used for the pressure control unit on the discharge port 52a side, and the force for sucking the wet processing liquid 50 in the processing main body 53 with this pressure reducing pump is controlled, so that the wet processing liquid 50 in the first opening 51b. The pressure (including the surface tension of the wet processing liquid and the surface tension of the surface to be processed) and the atmospheric pressure are balanced. That is, the pressure P of the wet processing liquid in the first opening 51b.w(Including the surface tension of the wet processing liquid and the surface tension of the surface to be processed 23) and the atmospheric pressure PaRelationship with Pw≒ PaThus, the processing liquid supplied to the object to be processed 23 through the first opening 51b and in contact with the object to be processed 23 comes into contact with a part other than the part to which the wet processing liquid is supplied on the object to be processed 23. Without being removed from the workpiece 23 and discharged to the discharge pipe 52c.
[0034]
The wet processing nozzles 41 and 41 having such a configuration are provided so that the wet processing main body portions 53 and 53 face each other with a gap. The workpiece 23 is conveyed in an inclined state by the conveying roller 25 into the gap between the wet processing main body portions 53, 53 of the pair of wet processing nozzles 41, 41, and the workpiece 23 and the wet processing nozzle 41. , 41 in the wet processing regions 55, 55, so that the wet processing can be performed on both surfaces of the workpiece 23.
[0035]
The wetted surface of each wet processing nozzle 41 is made of a fluororesin such as PFA, or depending on the wet processing solution used, the outermost surface is made of a passive film surface made of only chromium oxide, or a mixture of aluminum oxide and chromium oxide. Stainless steel with a film on the surface, titanium with an electropolishing surface for ozone water, and the like are preferable because impurities do not elute into the wet treatment liquid. If the liquid contact surface is made of quartz, it is preferable for supplying all wet processing liquids except hydrofluoric acid.
[0036]
The wet processing liquid 50 is selected according to the processing performed on the workpiece 23. For example, the cleaning liquid or pure water in the case of the cleaning process, the etching liquid in the case of etching, the developer in the case of development, or the peeling liquid. In some cases, a stripping solution is used.
The plurality of transport rollers 25 are arranged between the opposing surfaces of the pair of wet processing nozzles 41, 41 so that the workpiece 3 can be transported at an angle so as to rise in the moving direction.
[0037]
The wet processing is performed on the workpiece 23 using the wet processing apparatus as shown in FIGS. 3 to 4 as follows.
The wet processing liquid 50 is supplied from the first openings 51b of the pair of wet processing nozzles 41 and 41 while the workpiece 23 is transported in an inclined manner between the opposing surfaces of the pair of wet processing nozzles 41 and 41 by the transport roller 25. Ultrasonic vibration is oscillated from the vibrator 3 while being supplied to the wet processing region 55, and the diaphragm 2 and the wet processing liquid 50 are sequentially excited, and the workpiece 23 is brought into contact with the excited wet processing liquid 50. After the wet treatment, the wet treatment liquid 50 after contacting the workpiece 23 is discharged from the second opening 52b to the discharge pipe 52c. In the wet processing here, not all of the both surfaces of the workpiece 23 are wet-treated at the same time, but when the workpiece 23 passes between the opposing surfaces 53a and 53a of the nozzles 41 and 41, the space between the opposing surfaces is reduced. The portions passing through are sequentially wet processed.
[0038]
According to the wet processing apparatus of the present embodiment, since the pair of wet processing nozzles 41, 41 having the above-described configuration is provided, the pressure of the wet processing liquid 50 supplied from the introduction pipe 51c (the above-described cover). Wet pressure is controlled by controlling the pressure of the wet treatment liquid discharged from the discharge pipe 2c (the suction force of the treatment liquid recovery unit) with respect to the pressure of the wet treatment liquid supplied to the gap between the processed material and the facing surface. Since the treatment liquid can be discharged without leaking out of the wet treatment system, the wet treatment can be efficiently performed with a small amount of treatment liquid. In addition, since the ultrasonic vibration device 1 of this embodiment is provided in each wet processing main body 53, the wet processing device can be manufactured easily and at a low cost.
In the wet processing apparatus of the present embodiment, the case where each wet processing main body 53 includes the ultrasonic vibration device 1 of the first embodiment has been described. However, the ultrasonic vibration device 11 of the second embodiment is described. May be provided.
Moreover, although the case where a pair of upper and lower wet processing nozzles 41, 41 is provided has been described, a plurality of sets may be provided, and different types of wet processing may be performed in each set. When wet processing is performed only on one surface, a wet processing nozzle may be provided only on one surface side of the workpiece 23.
[0039]
[Fourth Embodiment]
FIG. 5 is a sectional view showing a schematic configuration of a wet processing apparatus according to a fourth embodiment of the present invention.
The wet processing apparatus of the fourth embodiment is different from the wet processing apparatus of the third embodiment except that the processing liquid recovery unit 52 is not provided on the other side of the wet processing main body 53. This is that a pair of upper and lower wet processing nozzles 41a, 41a similar to the embodiment are provided.
The wet processing is performed on the workpiece 23 using the wet processing apparatus of FIG. 5 as follows.
[0040]
The wet processing liquid 50 is supplied from the first openings 51b of the pair of wet processing nozzles 41a and 41a while the workpiece 23 is transported at an angle between the opposing surfaces of the pair of wet processing nozzles 41a and 41a by the transport roller 25. Ultrasonic vibration is oscillated from the vibrator 3 while being supplied to the wet processing region 55, and the diaphragm 2 and the wet processing liquid 50 are sequentially excited, and the workpiece 23 is brought into contact with the excited wet processing liquid 50. To wet. Since the object to be processed 23 is transported at an angle that rises in the moving direction by the transport roller 25, the wet processing liquid 50 after contacting the upper surface of the object to be processed 23 is opposite to the moving direction of the object to be processed 23. Then, the wet processing liquid 50 after coming into contact with the lower surface of the workpiece 23 flows down from the other side of the wet processing main body 53 (the side opposite to the processing liquid introduction part).
[0041]
[Fifth Embodiment]
FIG. 6 is a sectional view showing a schematic configuration of a wet processing apparatus according to a fifth embodiment of the present invention.
The wet processing apparatus according to the fifth embodiment is different from the wet processing apparatus according to the fourth embodiment in that a processing liquid supply nozzle 71 is provided as a processing liquid introducing section in the vicinity of one side of the wet processing main body 53. Except for the above, the same wet processing nozzle 41b as in the third embodiment is used, and the wet processing nozzle 41b is arranged only on the upper surface side of the workpiece 3. The treatment liquid supply nozzle 71 supplies the wet treatment liquid 50 to the wet treatment region 55.
The wet processing is performed on the workpiece 23 using the wet processing apparatus of FIG. 6 as follows.
[0042]
While the workpiece 23 is being conveyed by the conveying roller 25 at an angle below the surface opposite the wet processing nozzle 41 b, the wet processing liquid 50 is supplied from the processing liquid supply nozzle 71 to the wet processing area 55 from the vibrator 3. Ultrasonic vibration is oscillated to sequentially excite the diaphragm 2 and the wet processing liquid 50, and the wet processing liquid 50 thus excited is brought into contact with the upper surface of the workpiece 23 for wet processing.
Since the object to be processed 23 is transported at an angle that rises in the moving direction by the transport roller 25, the wet processing liquid 50 after contacting the upper surface of the object to be processed 23 is opposite to the moving direction of the object to be processed 23. It is supposed to flow down.
[0043]
[Sixth Embodiment]
FIG. 7 is a diagram showing a schematic configuration of an ultrasonic cleaning apparatus according to the sixth embodiment of the present invention.
The ultrasonic cleaning apparatus of this embodiment is inserted into a processing tank 83 that is filled with a cleaning fluid 81 and can store an object to be cleaned (not shown), and an opening 83 a formed at the bottom of the processing tank 83. The ultrasonic vibration device 21 is provided.
The ultrasonic vibration device 21 includes a vibration unit 25 including a waveguide (vibration plate) 22 having a multi-layer structure and a vibrator 3 that is fixed to one surface of the waveguide 222 and generates ultrasonic vibrations. An oscillator 26 connected to the vibrator 3, a temperature measuring device (not shown) for measuring the temperature of the vibrator 25, and a power supply cutoff device (not shown) for the vibrator 3 are provided.
[0044]
The waveguide 22 has a two-layer structure including a high heat conductive material layer 22b and a liquid-resistant material layer 22a formed on the high heat conductive material layer 22b. The liquid-resistant material layer 22a of the waveguide 22 is disposed on the upper side so as to be in contact with the cleaning fluid 81, and the high thermal conductive material layer 22b is disposed on the lower side. The liquid resistant material layer 22a is formed wider than the high thermal conductive material layer 22b, and this wide portion functions as the flange portion 22c.
The vibrator 3 is fixed to the lower surface of the high thermal conductive material layer 22b with an adhesive.
In the vibration unit 25, when the vibrator 3 to which a voltage is applied by the oscillator 26 oscillates ultrasonic vibration, the waveguide 22 is excited, and the ultrasonic vibration from the vibrator 37 is washed by the waveguide 22. Is transmitted to the working fluid 81.
[0045]
The thickness t of the vibrating portion 25 is the ratio of the thickness of the ultrasonic vibration in each layer of the waveguide 22 and each of the vibrators 3 in the traveling direction and the wavelength of the ultrasonic vibration (hereinafter, thickness / wavelength ratio). Is set to a thickness that is an integral multiple of 1/2, that is, a thickness that satisfies the condition of the following formula (5).
(T1/ Λ1) + (T2/ Λ2) + (T3/ Λ3) = N / 2 Formula (5)
(Where t1Is the thickness of the vibrator 3 in the direction of ultrasonic vibration, λ1Is the wavelength of the ultrasonic vibration emitted from the vibrator 3, t2Is the thickness in the traveling direction of the ultrasonic vibration of the high thermal conductive material layer 22b, λ2Is the wavelength in the high thermal conductive material layer 22b of the ultrasonic vibration emitted from the vibrator 3, t3Is the thickness of the liquid-resistant material layer 22a in the traveling direction of ultrasonic vibration, λ3Is the wavelength within the liquid-resistant material layer 22a of the ultrasonic vibration emitted from the vibrator 3, and n is an integer)
[0046]
In the ultrasonic cleaning apparatus having such a configuration, when ultrasonic vibration is oscillated from the vibrator 3, the waveguide 22 is excited, and the ultrasonic vibration from the vibrator 37 is washed by the waveguide 22. The object to be cleaned (processed object) transmitted to 81 and immersed in the cleaning fluid 81 is cleaned.
According to the ultrasonic cleaning apparatus of this embodiment, since the ultrasonic vibration device 21 is provided, the ultrasonic cleaning apparatus can be manufactured easily and at a low cost.
Further, since the ultrasonic vibration device 21 can reduce the thickness of the vibration part 25, there is no ultrasonic loss, and it is not necessary to provide a cooling device for cooling the heat generated by the ultrasonic loss, so that the entire device can be reduced in size. And weight reduction, and the apparatus configuration can be simplified.
[0047]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
Except for using a vibrating part 5 in which a vibrator 3 made of a PZT element having a thickness of 2.0 mm is adhered to a diaphragm 2 made of a hot-rolled steel sheet having a thickness of 3.0 mm with an adhesive, the same super structure as in FIG. An ultrasonic vibration device was manufactured and used as the ultrasonic vibration device of Example 1.
The hot-rolled steel plate constituting the diaphragm 2 is composed of a SUS316L plate (stainless steel plate) having a thickness of 2.0 mm as the liquid-resistant material layer 2a and a Cu layer having a thickness of 1.0 mm as the high thermal conductive material layer 2b. there were. The thermal conductivity of Cu at an ambient temperature of 300 K is 398 Wm.-1K-1SUS thermal conductivity at an ambient temperature of 300K is 14-17Wm-1K-1It is.
In the vibrating part 5 used here, the sum of the ratio of the thickness of the ultrasonic vibration in each layer of the diaphragm 2 and each of the vibrators 3 in the traveling direction of each ultrasonic vibration and the wavelength of each ultrasonic vibration is n / 2 ( The thickness is set to n = 2).
[0048]
A wet processing apparatus similar to that shown in FIG. 6 was prepared except that a wet processing nozzle including the ultrasonic vibration device of Example 1 in the wet processing main body was provided.
When the wet processing apparatus is used to apply a voltage to the vibrator 3 by an oscillator and output the ultrasonic vibration from the vibrator 3 to perform a wet process on the substrate to be processed, the wet processing main body is opposed to the substrate to be processed. A bubble having a diameter of about 5 mm is intentionally formed between the surface to be processed (the surface of the liquid-resistant material layer 2a of the vibration plate facing the substrate to be processed) and the substrate to be processed, and the vibration processing plate 2 is applied to the wet processing liquid for 1 minute. Although 0.1 liter per 1 cm length was applied and continuous treatment was performed for 1 hour, no peeling between the vibrator 3 and the diaphragm 2 was observed.
The resonance frequency of the vibration part 5 was 918 kHz (150 Vp-p sin wave). Further, the amplitude displacement of the vibration part 5 on the liquid-resistant material layer 2a side (wet contact side) was about 2.5 μm.
In addition, the vibrator without supplying the wet processing liquid between the surface of the wet processing main body facing the substrate to be processed (the surface of the liquid-resistant material layer 2a of the vibration plate facing the substrate to be processed) and the substrate to be processed. The vibrator was not peeled even when 3 was driven for 1 minute.
[0049]
(Example 2)
An ultrasonic vibration device similar to that shown in FIG. 1 is produced except that the vibration unit 5 in which a vibrator 3 made of a PZT element having a thickness of 2.0 mm is adhered to a diaphragm 2 having a thickness of 5.0 mm with an adhesive is used. Thus, the ultrasonic vibration device of Example 2 was obtained.
As the vibration plate 2, a sapphire plate having a thickness of 4.0 mm as the liquid-resistant material layer 2 a and a Cu plate having a thickness of 1.0 mm as the high thermal conductive material layer 2 b fixed with an adhesive was used.
In the vibrating part 5 used here, the sum of the ratio of the thickness of the ultrasonic vibration in each layer of the diaphragm 2 and each of the vibrators 3 in the traveling direction of each ultrasonic vibration and the wavelength of each ultrasonic vibration is n / 2 ( The thickness is set to n = 2).
[0050]
A wet processing apparatus similar to that shown in FIG. 6 was produced, except that a wet processing nozzle provided with the ultrasonic vibration apparatus of Example 2 in the wet processing main body was provided.
When the wet processing apparatus is used to apply a voltage to the vibrator 3 by an oscillator and output the ultrasonic vibration from the vibrator 3 to perform a wet process on the substrate to be processed, the wet processing main body is opposed to the substrate to be processed. Bubbles were intentionally formed between the surface to be processed (the surface of the liquid-resistant material layer 2a of the diaphragm facing the substrate to be processed) and the substrate to be processed in the same manner as in the above example, and the continuous processing was performed for 1 hour. However, no peeling between the vibrator 3 and the diaphragm 2 was observed.
The resonance frequency of the vibration part 5 was 926 kHz. The amplitude displacement of the vibration part 5 on the liquid resistant material layer 2a side (wet contact side) was about 2.4 μm.
Further, the vibrator without supplying the wet processing liquid between the surface of the wet processing main body facing the substrate to be processed (the surface of the liquid-resistant material layer 2a of the vibration plate facing the substrate to be processed) and the substrate to be processed. The vibrator was not peeled even when 3 was driven for 1 minute.
[0051]
(Comparative Example 1)
An ultrasonic vibration device similar to that of Example 1 was used except that a vibration part in which a vibrator made of a PZT element having a thickness of 2.0 mm was attached to a vibration plate made of duralumin having a thickness of 52.0 mm with an adhesive was used. The ultrasonic vibration device of Comparative Example 1 was manufactured.
The thickness of the diaphragm is set to a thickness that is 20 times the half wavelength of ultrasonic vibration. The thermal conductivity of duralumin at an atmospheric temperature of 300 K is 16 Wm.-1K-1It is.
A wet processing apparatus similar to that shown in FIG. 6 was prepared, except that a wet processing nozzle including the ultrasonic vibration device of Comparative Example 1 in the wet processing main body was provided.
Using this wet processing apparatus, a voltage was applied to the vibrator by an oscillator, and wet processing was performed on the substrate to be processed while outputting ultrasonic vibration from the vibrator.
The resonance frequency of the vibration part was two at 900 kHz or higher, and the amplitude displacement on the liquid contact side of the vibration part was about 0.6 μm at any resonance frequency.
The ultrasonic vibration device of Comparative Example 1 has a large thickness and a heavy weight because the thickness of the vibration part exceeds 54.0 mm.
[0052]
FIG. 11 shows the relationship between the resonance frequency and the average amplitude (amplitude displacement) of the vibration part when a voltage is applied to the vibrators of the ultrasonic vibration devices of Examples 1 and 2 and Comparative Example 1.
From the results of FIG. 11, the ultrasonic vibration devices of Examples 1 and 2 have a larger average amplitude than that of Comparative Example 1, and thus it is considered that stronger cleaning power than that of Comparative Example 1 can be obtained.
Further, it is considered that the control example of Comparative Example 1 has poor drive controllability due to a plurality of average amplitude peaks.
[0053]
(Comparative Example 2)
An ultrasonic vibration device similar to that of Example 1 was used except that a vibration part in which a vibrator made of a PZT element having a thickness of 2.0 mm was attached to a vibration plate made of SUS having a thickness of 3.0 mm with an adhesive was used. The ultrasonic vibration device of Comparative Example 2 was produced.
The thickness of the diaphragm is set to a thickness that is one time the half wavelength of ultrasonic vibration.
A wet processing apparatus similar to that shown in FIG. 6 was prepared except that a wet processing nozzle including the ultrasonic vibration apparatus of Comparative Example 2 in the wet processing main body was provided.
Using this wet processing apparatus, a voltage was applied to the vibrator by an oscillator, and wet processing was performed on the substrate to be processed while outputting ultrasonic vibration from the vibrator.
[0054]
(Comparative Example 3)
Example 1 except that a vibrating part in which a vibrator made of a PZT element having a thickness of 2.0 mm was bonded with an adhesive on a diaphragm made of a SUS board having a thickness of 3.0 mm and a duralumin board having a thickness of 13 mm was used. The ultrasonic vibration device similar to that of Example 3 was produced, and the ultrasonic vibration device of Comparative Example 3 was obtained.
The thickness of the SUS plate is set to a thickness that is one time the half wavelength of ultrasonic vibration.
The thickness of the duralumin plate is set to a thickness that is 5 times the half wavelength of the ultrasonic vibration.
A wet processing apparatus similar to that shown in FIG. 6 was prepared except that a wet processing nozzle including the ultrasonic vibration apparatus of Comparative Example 3 in the wet processing main body was provided.
Using this wet processing apparatus, a voltage was applied to the vibrator by an oscillator, and wet processing was performed on the substrate to be processed while outputting ultrasonic vibration from the vibrator.
[0055]
FIG. 12 shows the relationship between the resonance frequency of the vibration part and the displacement (amplitude displacement) of the vibration surface when a voltage is applied to the vibrators of the ultrasonic vibration devices of Example 1 and Comparative Examples 2-3.
From the result of FIG. 12, since the ultrasonic vibration apparatus of Example 1 obtained the displacement of the vibration surface equivalent to or higher than that of Comparative Examples 2 to 3, Example 1 is that of Comparative Examples 2 to 3. It is considered that the cleaning power equivalent to or higher than that can be obtained. However, the comparative examples 2 to 3 require a number of manufacturing steps because it is necessary to make the constituent members of the diaphragm 5 times the half wavelength of ultrasonic vibration.
[0056]
(Example 3)
Except for using a vibrating part 5 in which a vibrator 3 made of a PZT element having a thickness of 2.0 mm is attached to a diaphragm 2 made of a hot-rolled steel sheet having a thickness of 2.6 mm with an adhesive, the same super structure as in FIG. An ultrasonic vibration device was produced and used as the ultrasonic vibration device of Example 3.
The hot-rolled steel plate constituting the diaphragm 2 is composed of a SUS316L plate (stainless steel plate) having a thickness of 1.0 mm as the liquid-resistant material layer 2a and a Cu layer having a thickness of 1.6 mm as the high thermal conductive material layer 2b. there were.
In the vibrating section 5 used here, the sum of the ratio of the thickness of the ultrasonic vibration in each layer of the diaphragm 2 and each of the vibrators 3 and the wavelength of the ultrasonic vibration is n / 2 (n = 2).
[0057]
A wet processing apparatus similar to that shown in FIG. 6 was prepared except that a wet processing nozzle including the ultrasonic vibration device of Example 3 in the wet processing main body was provided.
When the wet processing apparatus is used to apply a voltage to the vibrator 3 by an oscillator and output the ultrasonic vibration from the vibrator 3 to perform a wet process on the substrate to be processed, the wet processing main body is opposed to the substrate to be processed. Bubbles were intentionally formed between the surface to be processed (the surface of the liquid-resistant material layer 2a of the diaphragm facing the substrate to be processed) and the substrate to be processed in the same manner as in the above embodiment, and continuous processing was performed for 8 hours. However, no peeling between the vibrator 3 and the diaphragm 2 was observed.
The resonance frequency of the vibration part 5 was 958 kHz. Moreover, the amplitude displacement of the vibration part 5 on the liquid-resistant material layer 2a side (wet contact side) was about 3 μm.
Further, the vibrator without supplying the wet processing liquid between the surface of the wet processing main body facing the substrate to be processed (the surface of the liquid-resistant material layer 2a of the vibration plate facing the substrate to be processed) and the substrate to be processed. The vibrator was not peeled even when 3 was driven for 1 minute.
[0058]
Example 4
Except for using a vibrating part 5 in which a vibrator 3 made of a PZT element having a thickness of 2.0 mm is adhered to a vibration board 2 made of a hot rolled steel plate having a thickness of 3.2 mm with an adhesive, the same super structure as in FIG. An ultrasonic vibration device was produced and used as the ultrasonic vibration device of Example 4.
The hot-rolled steel plate constituting the diaphragm 2 is composed of a SUS316L plate (stainless steel plate) having a thickness of 1.0 mm as the liquid-resistant material layer 2a and an Al layer having a thickness of 2.2 mm as the high thermal conductive material layer 2b. there were. The thermal conductivity of Al at an ambient temperature of 300 K is 237 Wm.-1K-1It is.
In the vibrating section 5 used here, the sum of the ratio of the thickness of the ultrasonic vibration in each layer of the diaphragm 2 and each of the vibrators 3 and the wavelength of the ultrasonic vibration is n / 2 (n = 2).
[0059]
A wet processing apparatus similar to that shown in FIG. 6 was prepared except that a wet processing nozzle including the ultrasonic vibration device of Example 4 in the wet processing main body was provided.
When the wet processing apparatus is used to apply a voltage to the vibrator 3 by an oscillator and output the ultrasonic vibration from the vibrator 3 to perform a wet process on the substrate to be processed, the wet processing main body is opposed to the substrate to be processed. Bubbles were intentionally formed between the surface to be processed (the surface of the liquid-resistant material layer 2a of the diaphragm facing the substrate to be processed) and the substrate to be processed in the same manner as in the above embodiment, and continuous processing was performed for 8 hours. However, no peeling between the vibrator 3 and the diaphragm 2 was observed.
The resonance frequency of the vibration part 5 was 925 kHz. Further, the amplitude displacement of the vibration part 5 on the liquid-resistant material layer 2a side (wet contact side) was about 2.5 μm.
Further, the vibrator without supplying the wet processing liquid between the surface of the wet processing main body facing the substrate to be processed (the surface of the liquid-resistant material layer 2a of the vibration plate facing the substrate to be processed) and the substrate to be processed. The vibrator was not peeled even when 3 was driven for 1 minute.
[0060]
FIG. 13 shows the relationship between the resonance frequency and the average amplitude (amplitude displacement) of the vibration part when a voltage is applied to the vibrators of the ultrasonic vibration devices of Examples 3 to 4 and Comparative Example 1.
From the results of FIG. 13, the ultrasonic vibration devices of Examples 3 to 4 have a larger average amplitude than that of Comparative Example 1, and thus it is considered that a stronger cleaning power than that of Comparative Example 1 can be obtained.
Further, it is considered that the control example of Comparative Example 1 has poor drive controllability due to a plurality of average amplitude peaks.
[0061]
【The invention's effect】
As described above, according to the ultrasonic vibration device of the present invention, it is possible to provide an ultrasonic vibration device capable of simplifying the manufacturing process and reducing the cost.
In addition, according to the ultrasonic cleaning apparatus of the present invention, the ultrasonic vibration apparatus of the present invention is provided, so that an ultrasonic cleaning apparatus that is easy to manufacture and low in cost can be provided.
In addition, according to the wet processing apparatus of the present invention, since the ultrasonic vibration apparatus of the present invention is provided, it is possible to provide an ultrasonic cleaning apparatus that is easy to manufacture and low in cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic configuration of an ultrasonic vibration device according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a schematic configuration of an ultrasonic vibration device according to a second embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a schematic configuration of a wet processing apparatus according to a third embodiment of the present invention.
FIG. 4 is a plan view when the wet processing nozzle provided in the wet processing apparatus is viewed from the workpiece side.
FIG. 5 is a sectional view showing a schematic configuration of a wet processing apparatus according to a fourth embodiment of the present invention.
FIG. 6 is a sectional view showing a schematic configuration of a wet processing apparatus according to a fifth embodiment of the present invention.
FIG. 7 is a sectional view showing a schematic configuration of an ultrasonic cleaning apparatus according to a sixth embodiment of the present invention.
FIG. 8 is a schematic diagram illustrating an example of a waveform of a vibration unit provided in the ultrasonic vibration device according to the first embodiment.
FIG. 9 is a schematic diagram illustrating another example of a waveform of a vibration unit provided in the ultrasonic vibration device according to the first embodiment.
FIG. 10 is a schematic diagram showing another example of a waveform of a vibration unit provided in a conventional type ultrasonic cleaning apparatus.
11 is a graph showing the relationship between the frequency and the average amplitude of the vibration part of the ultrasonic vibration devices of Examples 1 and 2 and Comparative Example 1. FIG.
FIG. 12 shows the relationship between the resonance frequency of the vibration part and the displacement of the vibration surface of the ultrasonic vibration devices of Example 1 and Comparative Examples 2-3.
13 is a graph showing the relationship between the resonance frequency and the average amplitude of the vibration part of the ultrasonic vibration devices of Examples 3 to 4 and Comparative Example 1. FIG.
FIG. 14 is a schematic configuration diagram showing an example of a conventional ultrasonic cleaning apparatus.
FIG. 15 is a schematic configuration diagram showing another example of a conventional ultrasonic cleaning apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,11,21 ... Ultrasonic vibration apparatus, 2,12 ... Vibration plate, 22 ... Waveguide (vibration plate), 2a, 22a ... Liquid-resistant material layer, 2b, 22b. .. High heat conductive material layer, 3... Vibrator, 5, 15, 25... Vibrating part, 41, 41a, 41b .. wet processing nozzle, 50. Wet treatment main body, 53a ... opposing surface, 51 ... treatment liquid introduction part, 51a ... introduction port, 51b ... first opening, 51c ... introduction pipe, 52 ... treatment Liquid recovery part, 52a ... discharge port, 52b ... second opening, 52c ... discharge pipe, 55 ... wet treatment area, 81 ... cleaning fluid, 83 ... treatment tank .

Claims (5)

複数層構造の振動板と、該振動板に固着され超音波振動を発生する振動子とからなる振動部を有してなり、
前記振動板の前記振動子が固着される層が高熱伝導材料から形成され、前記振動板の前記振動子が固着される側と反対側の最外層が耐液性材料から形成され、前記高熱伝導材料と前記耐液性材料とが熱間圧延により接合されており、
前記振動部は、前記振動板の各層と前記振動子の各々における前記超音波振動の進行方向の厚みと各々の前記超音波振動の波長との比(以下、厚み/波長比と称する)の和が、1/2の整数倍となる厚みに設定されており、
前記振動板の各層と前記振動子の各々における前記厚み/波長比が、1/2の整数倍以外の厚みに設定されていることを特徴とする超音波振動装置。
It has a vibration part composed of a diaphragm having a multi-layer structure and a vibrator that is fixed to the diaphragm and generates ultrasonic vibrations.
The layer of the diaphragm to which the vibrator is fixed is formed from a high heat conductive material, and the outermost layer on the opposite side of the diaphragm to the side to which the vibrator is fixed is formed from a liquid-resistant material. The material and the liquid resistant material are joined by hot rolling,
The vibrating portion is a sum of ratios of thicknesses in the traveling direction of the ultrasonic vibrations and wavelengths of the ultrasonic vibrations (hereinafter referred to as thickness / wavelength ratios) in each layer of the diaphragm and each of the vibrators. Is set to a thickness that is an integral multiple of 1/2,
The ultrasonic vibration device, wherein the thickness / wavelength ratio in each layer of the diaphragm and each of the vibrators is set to a thickness other than an integral multiple of 1/2.
前記振動部は、前記振動板の各層と前記振動子の各々における前記厚み/波長比の和が1/2となる厚みに設定されていることを特徴とする請求項1記載の超音波振動装置。  2. The ultrasonic vibration device according to claim 1, wherein the vibration unit is set to have a thickness in which a sum of the thickness / wavelength ratios of each layer of the diaphragm and each of the vibrators is ½. . 前記高熱伝導材料が銅または銅合金であり、前記耐液性材料がステンレス鋼であることを特徴とする請求項1又は2に記載の超音波振動装置。 The ultrasonic vibration device according to claim 1, wherein the high thermal conductive material is copper or a copper alloy, and the liquid resistant material is stainless steel . 洗浄用流体を貯溜する処理槽に、請求項1乃至のいずれか一項に記載の超音波振動装置が備えられたことを特徴とする超音波洗浄装置。An ultrasonic cleaning apparatus comprising the ultrasonic vibration device according to any one of claims 1 to 3 in a processing tank for storing a cleaning fluid. 被処理物に対向する対向面を有するウエット処理本体部を有するウエット処理用ノズルが備えられ、前記被処理物と前記対向面との間の隙間に供給されたウエット処理液により前記被処理物にウエット処理を施すウエット処理装置であって、
前記ウエット処理本体部に前記請求項1乃至のいずれか一項に記載の超音波振動装置が備えられ、該超音波振動装置の振動部は前記被処理物と対向する対向面を有していることを特徴とするウエット処理装置。
There is provided a wet processing nozzle having a wet processing main body having an opposing surface facing the workpiece, and the wet processing liquid supplied to the gap between the workpiece and the opposing surface is applied to the workpiece. A wet processing apparatus for performing wet processing,
The ultrasonic treatment apparatus according to any one of claims 1 to 3 is provided in the wet processing main body, and the vibration part of the ultrasonic vibration apparatus has a facing surface that faces the object to be processed. A wet processing apparatus.
JP2003179676A 2003-06-24 2003-06-24 Ultrasonic vibration device and wet processing device using the same Expired - Fee Related JP3984196B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003179676A JP3984196B2 (en) 2003-06-24 2003-06-24 Ultrasonic vibration device and wet processing device using the same
TW093117498A TWI289333B (en) 2003-06-24 2004-06-17 Ultrasonic vibration device and wet processing device using the same
CNB2004100598331A CN1311529C (en) 2003-06-24 2004-06-22 Supersonic vibration device and wet type disposing device adopting same
KR1020040046576A KR100546425B1 (en) 2003-06-24 2004-06-22 Ultrasonic wave vibration device and wet processing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003179676A JP3984196B2 (en) 2003-06-24 2003-06-24 Ultrasonic vibration device and wet processing device using the same

Publications (2)

Publication Number Publication Date
JP2005013809A JP2005013809A (en) 2005-01-20
JP3984196B2 true JP3984196B2 (en) 2007-10-03

Family

ID=34180944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179676A Expired - Fee Related JP3984196B2 (en) 2003-06-24 2003-06-24 Ultrasonic vibration device and wet processing device using the same

Country Status (4)

Country Link
JP (1) JP3984196B2 (en)
KR (1) KR100546425B1 (en)
CN (1) CN1311529C (en)
TW (1) TWI289333B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288289A (en) * 2006-04-13 2007-11-01 Honda Electronic Co Ltd Ultrasonic transducer and ultrasonic cleaner
JP2010029815A (en) * 2008-07-30 2010-02-12 Hitachi Kokusai Denki Engineering:Kk Ultrasonic washing device
KR100947558B1 (en) * 2009-10-16 2010-03-12 우시 브라이트스카이 이렉트로닉 컴퍼니 리미티드 Water treatment system for ballast water
KR100986585B1 (en) * 2010-03-23 2010-10-08 (주) 경일메가소닉 The ultrasonic oscillator and cleaning apparatus having the same
JP6763843B2 (en) 2017-10-25 2020-09-30 株式会社カイジョー Ultrasonic cleaning equipment and ultrasonic cleaning system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119840A (en) * 1986-04-07 1992-06-09 Kaijo Kenki Co., Ltd. Ultrasonic oscillating device and ultrasonic washing apparatus using the same
JP3734333B2 (en) * 1996-07-31 2006-01-11 株式会社カイジョー Ultrasonic excitation device and ultrasonic cleaning device having the same
JP3374894B2 (en) * 1997-02-14 2003-02-10 株式会社カイジョー Substrate processing equipment
JP3839154B2 (en) * 1998-01-22 2006-11-01 忠弘 大見 Ultrasonic vibration generator and ultrasonic cleaning device
JP3809296B2 (en) * 1999-04-14 2006-08-16 株式会社カイジョー Ultrasonic cleaning equipment
CN1241241C (en) * 2001-09-04 2006-02-08 阿尔卑斯电气株式会社 Spraying nozzle for wet processing, wet processing apparatus and method

Also Published As

Publication number Publication date
JP2005013809A (en) 2005-01-20
TWI289333B (en) 2007-11-01
KR20050001351A (en) 2005-01-06
KR100546425B1 (en) 2006-01-26
CN1311529C (en) 2007-04-18
TW200509238A (en) 2005-03-01
CN1574239A (en) 2005-02-02

Similar Documents

Publication Publication Date Title
WO2010021405A1 (en) Ultrasonic cleaning apparatus
KR100852335B1 (en) Wet processing device
JP3984196B2 (en) Ultrasonic vibration device and wet processing device using the same
JP2009055024A (en) Substrate cleaning apparatus and substrate cleaning method
US20020026976A1 (en) Ultrasonic vibrator, wet-treatment nozzle, and wet-treatment apparatus
TWI473669B (en) Improved ultrasonic treatment method and apparatus
US20130019893A1 (en) Ultrasonic cleaning method and apparatus
JP2002289568A (en) Substrate washing equipment and ultrasonic vibration element used therein
JP4815000B2 (en) Ultrasonic cleaning equipment
JP4533406B2 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
JP3075356B1 (en) Ultrasonic cleaning equipment
JP2005169278A (en) Ultrasonic washing nozzle and ultrasonic washing apparatus
JP3809296B2 (en) Ultrasonic cleaning equipment
JPH11207258A (en) Ultrasonic oscillation generating device and ultrasonic cleaning device
JP4063562B2 (en) Wet processing nozzle and wet processing apparatus
JP4023103B2 (en) Ultrasonic fluid processing equipment
JP3734333B2 (en) Ultrasonic excitation device and ultrasonic cleaning device having the same
KR100502751B1 (en) Wet processing apparatus and wet processing method
JP2006167586A (en) Vibration plate for ultrasonic cleaner and ultrasonic cleaner equipped with the same
JP3839527B2 (en) Ultrasonic processing method and ultrasonic processing apparatus
JP3343781B2 (en) Ultrasonic cleaning equipment
JP2003088804A (en) Ultrasonic vibrator transducer, nozzle for wet treatment and wet treatment apparatus
US20220034846A1 (en) Fluid device
JPH0969506A (en) Ultrasonic cleaning system
JP2003039030A (en) Fluid treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees