JP3979800B2 - リチウム二次電池用電極の形成装置および形成方法 - Google Patents

リチウム二次電池用電極の形成装置および形成方法 Download PDF

Info

Publication number
JP3979800B2
JP3979800B2 JP2001196243A JP2001196243A JP3979800B2 JP 3979800 B2 JP3979800 B2 JP 3979800B2 JP 2001196243 A JP2001196243 A JP 2001196243A JP 2001196243 A JP2001196243 A JP 2001196243A JP 3979800 B2 JP3979800 B2 JP 3979800B2
Authority
JP
Japan
Prior art keywords
active material
material layer
current collector
forming
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001196243A
Other languages
English (en)
Other versions
JP2003017039A (ja
Inventor
洋一 堂本
久樹 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001196243A priority Critical patent/JP3979800B2/ja
Publication of JP2003017039A publication Critical patent/JP2003017039A/ja
Application granted granted Critical
Publication of JP3979800B2 publication Critical patent/JP3979800B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physical Vapour Deposition (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、リチウム二次電池用電極の形成方法および形成装置に関し、より特定的には、集電体の表面上に活物質層を形成するためのリチウム二次電池用電極の形成方法および形成装置に関する。
【0002】
【従来の技術】
近年、研究開発が盛んに行われているリチウム二次電池は、用いる電極によって、充放電電圧、充放電サイクル寿命特性および保存特性などの電池特性が大きく左右される。このため、電極に用いる活物質を改善することにより、電池特性の改善および向上が図られている。
【0003】
たとえば、従来では、充電時に電気化学的にリチウムと合金化するアルミニウム、シリコンまたは錫などを負極活物質として用いるリチウム二次電池が提案されている。これらは、Solid State Ionics,113−115,p57(1998)などに報告されている。これらのアルミニウム、シリコンおよび錫などのうち、特に、シリコンは理論容量が大きいので、高い容量を示す電池の負極活物質として有望な材料である。このため、シリコンを負極活物質とするリチウム二次電池が種々提案されている。これらは、たとえば、特開平10−255768号公報などに開示されている。
【0004】
従来では、上記のようなシリコンからなる負極活物質では、シリコンが、リチウムと合金化することによりリチウムを吸蔵するものであるので、充放電反応に伴うシリコンの体積の膨張および収縮が大きくなる。このため、充放電時に、シリコンが粉状になり(微粉化)、その結果、シリコンからなる負極活物質層が集電体から剥がれて、充放電サイクル特性が悪化するという不都合があった。
【0005】
そこで、本出願人は、国際公開WO01/29912号公報において、良好な充放電サイクル特性を示すリチウム二次電池用電極として、CVD法やスパッタリング法などを用いて、集電体上に微結晶シリコン膜または非晶質シリコン膜を形成したリチウム二次電池用電極を提案している。この本出願人が提案したリチウム二次電池用電極の形成方法では、金属箔からなる集電体上に、スパッタリング法などを用いてシリコンを堆積させることによりシリコン薄膜からなる活物質層を形成している。
【0006】
上記提案された技術を用いて、たとえば、銅箔からなる集電体上に、スパッタリング法を用いてシリコン薄膜からなる活物質層を形成する場合、従来では、所望の膜質および膜厚を有する活物質層を形成するために、予め最適化したRF電源の投入電力や成膜時間などの成膜条件を固定した状態で、活物質層の成膜を行っていた。なお、活物質層の所望の膜質とは、集電体の材料である銅と活物質層の材料であるシリコンとの相互拡散によって生じるSi/Cu固溶体、または、シリコンにその他の金属元素を添加する場合の各元素の組成比、結晶性または密度などを意味する。また、活物質層の所望の膜厚とは、負極と、正極、セパレータおよび電解質などとを組み合わせて電池を作製する場合に、最適な電池容量を得るために必要な膜厚を意味する。
【0007】
【発明が解決しようとする課題】
上記した従来のスパッタリング法を用いて集電体上に活物質層を形成する方法では、成膜時間の経過とともに集電体の温度が上昇するので、シリコン薄膜からなる活物質層の形成を繰り返し行う場合には、各サンプルの成膜温度が異なるという不都合が生じる。このため、従来では、各サンプルのSi/Cu固溶体の拡散量の変化に起因して、各サンプルのシリコンと銅との組成比が異なるので、所望の膜質を有する活物質層をバラツキなく形成することは困難であった。その結果、電池特性に優れたリチウム二次電池用電極を安定して形成することは困難であった。
【0008】
また、上記した従来のスパッタリング法を用いて集電体上に活物質層を形成する方法では、成膜時間の経過とともにシリコンからなるターゲットが消耗するので、長時間かけて活物質層を形成する際に、活物質層の膜厚を正確に制御することは困難であった。このため、所望の膜厚を有する活物質層をバラツキなく安定して形成することは困難であった。
【0009】
この発明は、上記のような課題を解決するためになされたものであり、
この発明の1つの目的は、所望の膜質および膜厚を有する活物質層をバラツキなく安定して形成することによって、電池特性に優れたリチウム二次電池用電極を安定して形成することが可能なリチウム二次電池用電極の形成方法を提供することである。
【0010】
この発明のもう1つの目的は、所望の膜質および膜厚を有する活物質層をバラツキなく安定して形成することによって、電池特性に優れたリチウム二次電池用電極を安定して形成することが可能なリチウム二次電池用電極の形成装置を提供することである。
【0011】
【課題を解決するための手段】
上記目的を達成するために、この発明の一の局面によるリチウム二次電池用電極の形成方法は、原料を気相中に放出して供給する方法を用いて集電体上に活物質層を形成する際に、活物質層の成膜速度、活物質層の組成および集電体の温度のうち少なくとも1つを測定する工程と、その測定結果に基づいて、活物質層の形成条件を制御しながら、活物質層を形成する工程とを備え、活物質層は、シリコンを主成分とする材料からなり、シリコンを主成分とする材料は、Cu、Co、Fe、Zn、Zr、Mn、NiおよびAgからなるグループより選択される少なくとも1つの金属元素を含有し、活物質層を形成する工程は、シリコンとそれ以外の元素とを、複数の蒸発源を用いて蒸発させる工程を含む。
【0012】
この一の局面によるリチウム二次電池用電極の形成方法では、上記のように、活物質層の成膜速度、活物質層の組成および集電体の温度のうち少なくとも1つを測定するとともに、その測定結果に基づいて、活物質層の形成条件を制御しながら、活物質層を形成することによって、活物質層の膜質および膜厚を正確に制御することができる。これにより、所望の膜質および膜厚を有する活物質層をバラツキなく安定して形成することができる。その結果、電池特性に優れたリチウム二次電池用電極を安定して形成することができる。この場合、好ましくは、活物質層は、シリコンを主成分とする材料からなり、シリコンを主成分とする材料は、Cu、Co、Fe、Zn、Zr、Mn、NiおよびAgからなるグループより選択される少なくとも1つの金属元素を含有する。このように、シリコンに上記金属元素を添加すれば、シリコンの微粉化を有効に防止することができる。また、この場合、好ましくは、活物質層を形成する工程は、シリコンとそれ以外の金属元素とを、複数の蒸発源を用いて蒸発させる工程を含む。このように構成すれば、容易に、シリコンに金属元素を添加した活物質層を形成することができる。
【0013】
上記一の局面によるリチウム二次電池用電極の形成方法において、好ましくは、活物質層の成膜速度、活物質層の組成および集電体の温度のうち少なくとも1つを測定する工程は、真空中で行う。このように構成すれば、大気中で測定する場合と異なり、活物質層の表面の酸化や水分吸着などの影響を除外することができる。これにより、活物質層の組成などのより高精度な測定が可能となる。
【0014】
上記のリチウム二次電池用電極の形成方法において、好ましくは、活物質層の形成条件は、活物質層となる原料の供給速度および集電体の温度の少なくとも1つを含む。このように構成すれば、活物質層の形成時に、活物質層となる原料の供給速度や集電体の温度の制御を行うことができるので、所望の膜厚および膜質を有する活物質層を容易に形成することができる。
【0015】
上記のリチウム二次電池用電極の形成方法において、好ましくは、活物質層の成膜速度、活物質層の組成および集電体の温度のうち少なくとも1つを測定する工程は、活物質層の組成を蛍光X線を用いて測定する工程を含む。このように構成すれば、電池特性に重大な影響を与える膜組成を簡単に測定することができる。
【0016】
上記のリチウム二次電池用電極の形成方法において、原料を気相中に放出して供給する方法は、スパッタリング法および真空蒸着法のいずれかを含んでいてもよい。
【0018】
た、この場合、好ましくは、活物質層を形成する工程は、活物質層の成膜速度、活物質層の組成および集電体の温度のうち少なくとも1つの測定結果に基づいて、複数の蒸発源からの蒸発速度をそれぞれ別個に制御する工程を含む。このように構成すれば、複数の蒸発源からの蒸発材料の量を独立して制御することができるので、シリコンとそれ以外の金属元素との組成比を正確に制御することができる。
【0019】
この発明の他の局面によるリチウム二次電池用電極の形成装置は、原料を気相中に放出して供給する装置を用いて集電体上に活物質層を形成する際に、活物質層の成膜速度、活物質層の組成および集電体の温度のうち少なくとも1つを測定する成膜状態測定手段と、成膜状態測定手段の測定結果に基づいて、活物質層の形成条件を制御する手段と、活物質層を形成するための複数の蒸発源とを備え、成膜状態測定手段は、各蒸発源ごとに設けられた蒸発速度を測定する機器を含む。
【0020】
この他の局面によるリチウム二次電池用電極の形成装置では、上記のように、活物質層の成膜速度、活物質層の組成および集電体の温度のうち少なくとも1つを測定する成膜状態測定手段と、成膜状態測定手段の測定結果に基づいて、活物質層の形成条件を制御する手段とを設けることによって、成膜状態測定手段の測定結果に基づいて、活物質層の形成条件を制御しながら、活物質層を形成することができる。これにより、活物質層の膜質および膜厚を正確に制御することができるので、所望の組成および膜厚を有する活物質層をバラツキなく安定して形成することができる。その結果、電池特性に優れたリチウム二次電池用電極を安定して形成することができる。この場合、好ましくは、活物質層を形成するための複数の蒸発源をさらに備え、上記成膜状態測定手段は、各蒸発源ごとに設けられた蒸発速度を測定する機器を含む。このように構成すれば、複数の蒸発源から蒸発材料の量を独立して制御することができるので、複数の蒸発材料の組成比を正確に制御することができる。
【0022】
この場合、好ましくは、蒸発速度を測定する機器とは別個に設けられ、複数の蒸発源を用いて形成される活物質層の膜厚を測定する膜厚測定機器をさらに備える。このように構成すれば、複数の蒸発源を用いて活物質層を形成する際に、その膜厚測定機器により、容易に、所望の膜厚に達したことを測定することができる。これにより、所望の膜厚に達した時点で成膜を終了させれば、容易に所望の膜厚を有する活物質層を形成することができる。
【0023】
また、上記のリチウム二次電池用電極の形成装置において、好ましくは、成膜状態測定手段は、活物質層の組成を蛍光X線を用いて測定する機器を含む。このように構成すれば、電池特性に重大な影響を与える膜組成を簡単に測定することができる。
【0024】
また、上記のリチウム二次電池用電極の形成装置において、原料を気相中に放出して供給する装置は、スパッタリング装置および真空蒸着装置のいずれかを含んでいてもよい。
【0025】
【実施例】
以下、本発明の実施例を具体的に説明する。
【0026】
(実施例1)
図1は、本発明の実施例1によるリチウム二次電池用電極(負極)の形成装置を示した概略図である。
【0027】
この実施例1では、スパッタ法を用いて、シリコンからなる負極活物質を集電体1上に堆積させることによって、負極を形成した。
【0028】
まず、図1を参照して、実施例1で用いた負極の形成装置の構成について説明する。この負極の形成装置は、真空チャンバ2と、回転ホルダ3と、Siターゲット4と、外部ヒータ5と、水晶振動子からなる膜厚計6と、熱電対7と、蛍光X線分析器8と、膜厚制御器9と、温度制御器10と、空気循環部11とを備える。回転ホルダ3は、集電体1をSiターゲット4に対して相対的に移動可能に保持する機能を有する。また、Siターゲット4は、RF電源4aを含む。なお、Siターゲット4は、本発明の「蒸発源」の一例である。外部ヒータ5は、外部から集電体1(回転ホルダ3の表面)を加熱するものである。また、空気循環部11は、回転ホルダ3内に空気を循環させることによって、回転ホルダ3にセットされた集電体1を冷却するものである。なお、空気循環部11は、図1では、便宜上、真空チャンバ2の外部に示されているが、実際には、回転ホルダ3内に配置されている。
【0029】
膜厚制御器9は、水晶振動子からなるリファレンスとしての膜厚計6上に単位時間に堆積するシリコン膜の膜厚からシリコンの蒸発速度を算出するとともに、その算出したシリコンの成膜速度に基づいて、RF電源4aの投入電力を制御することによって、Siターゲット4から集電体1上にスパッタされるシリコンの成膜速度が一定になるようにフィードバック制御する。温度制御器10は、熱電対7による回転ホルダ3の表面の温度の測定結果、または、蛍光X線分析器8による集電体1上の活物質層のSi/Cu組成比の測定結果に基づいて、空気循環部11または外部ヒータ5を制御することによって、集電体1の温度が所定の温度になるように、または、活物質層のSi/Cu組成比が所定の組成比になるように、フィードバック制御する。なお、膜厚計6、熱電対7、蛍光X線分析器8および膜厚制御器9は、本発明の「成膜状態測定手段」の一例である。また、膜厚制御器9および温度制御器10は、本発明の「活物質層の形成条件を制御する手段」の一例である。
【0030】
[実験1]
実験1では、上記のようなリチウム二次電池用負極の形成装置を用いて、以下の表1に示すような条件下で、集電体1上にシリコンからなる活物質層を形成した。
【0031】
【表1】
Figure 0003979800
具体的には、まず、圧延銅箔を電解処理することにより表面粗化された集電体1(厚み約26μm)を200mmの直径を有する回転ホルダ3の周面にセットした後、成膜の前に、ターボ分子ポンプ(図示せず)を用いて、10-4Pa台になるように真空チャンバ2内の真空排気を行った。
【0032】
次に、回転ホルダ3の温度を制御しない状態で、回転ホルダ3を約10rpmの速度で回転させながら、Siターゲット4から集電体1に対して、シリコンの成膜を行った。この場合、膜厚計6の位置におけるシリコンの蒸発速度を約0.6nm/秒に設定するとともに、膜厚計6上に形成される活物質層の積算膜厚を18μmに設定した状態で、シリコンの成膜を行った。具体的には、膜厚制御器9を用いて、膜厚計6上のシリコンの蒸発速度を算出するとともに、その算出したシリコンの蒸発速度が約0.6nm/秒になるように、Siターゲット4に接続されたRF電源4aの投入電力をフィードバック制御しながら、活物質層を形成した。
【0033】
なお、Siターゲット4としては、RF電源4a(投入電力:約350W,周波数:13.56MHz)が接続された10.2cm(4インチ)(直径)×5mm(厚み)のシリコン単結晶からなるSiターゲット4を用いた。また、活物質層を成膜中には、ターボ分子ポンプ(図示せず)を用いて、真空チャンバ2内の真空排気を行いながら、Arガス(流量:100sccm,圧力:約0.1Pa)を流した。
【0034】
上記の条件下でシリコンの成膜を約500分間行うことによって、集電体1の表面上に、約6μmの膜厚を有するシリコン膜からなる活物質層を形成した。また、このシリコン膜からなる活物質層に集電体1から拡散されるCu濃度は、約10%であった。さらに、上記表1と同様の条件下で、集電体1上に活物質層を複数回形成したが、常に、約6μmの膜厚を有する活物質層が形成された。
【0035】
実験1では、上記のように、膜厚制御器9を用いて、シリコンの蒸発速度が一定になるようにRF電源4aの投入電力(RF投入電力)をフィードバック制御しながら活物質層を形成することによって、活物質層の膜厚を正確に制御可能であることが判明した。これにより、所望の膜厚を有する活物質層をバラツキなく安定して形成することができる。
【0036】
また、実験1では、膜厚計6を真空チャンバ2内に設けることによって、真空中でシリコンの膜厚および蒸発速度の測定を行うことができる。これにより、大気中でシリコンの膜厚および蒸発速度を測定する場合と異なり、活物質層の表面の酸化や水分吸収などの影響を除外することができるので、より高精度にシリコンの膜厚および蒸発速度を測定することができる。
【0037】
次に、実験1の比較実験として、シリコンの膜厚および蒸発速度を制御しない状態で、RF投入電力を350W(一定)で、かつ、成膜時間も500分(一定)の条件で、集電体1の表面にシリコンからなる活物質層を複数回形成した。なお、この比較実験の膜厚および蒸発速度の制御以外の活物質層のその他の形成条件は、上記表1に示した実験1の活物質層の形成条件と同様である。
【0038】
この比較実験では、上記の条件下で、集電体1の表面上にシリコン膜からなる活物質層を複数回形成した結果、形成される活物質層の膜厚は、成膜回数を重ねるにしたがって徐々に減少した。そして、約20回目の成膜において形成された活物質層の膜厚は、約5.5μmであった。
【0039】
このことから、集電体1上に、所望の膜厚を有する活物質層をバラツキなく安定して形成するためには、膜厚制御器9を用いて、シリコンの蒸発速度が一定になるようにRF投入電力をフィードバック制御しながら活物質層を形成する必要があることがわかった。
【0040】
[実験2]
次に、上記実験1で得られた各サンプルにおける活物質層の組成について分析を行ったところ、活物質層中のCu濃度は、成膜回数の増加とともに、約10%から約15%まで変動することがわかった。さらに、上記実験1で得られた各サンプルにおける活物質層形成時の集電体1(回転ホルダ3の表面)の温度履歴を調べたところ、活物質層中のCu濃度が約15%程度の場合は、Cu濃度が約10%程度の場合に比べて、成膜初期の集電体1の温度が約20℃〜約50℃程度高いことがわかった。これは、直前の成膜に引き続き成膜を行う場合、回転ホルダ3の温度が前回の成膜前の温度と同じ温度にまで十分冷却されていないためであると考えられる。このように、集電体1(回転ホルダ3)の温度が高い状態で成膜を行うため、シリコンと銅との相互拡散量が増加し、その結果、活物質層中に拡散されるCu濃度が高くなったと考えられる。
【0041】
そこで、この実験2では、図1に示したリチウム二次電池用負極の形成装置において、実験1と同様、膜厚制御器9を用いてシリコンの蒸発速度が一定になるようにRF投入電力をフィードバック制御することに加えて、さらに、温度制御器10を用いて活物質層形成時の各集電体1(回転ホルダ3の表面)の温度履歴が一定になるようにフィードバック制御を行いながら、集電体1上に活物質層を複数回形成する実験を行った。具体的には、熱電対7による集電体1(回転ホルダ3の表面)の温度の測定結果に基づいて、温度制御器10を用いて、外部ヒータ5および空気循環部11によって、成膜初期の集電体1(回転ホルダ3の表面)の温度が20℃以下の一定値になるようにフィードバック制御するとともに、成膜終了時の集電体1(回転ホルダ3の表面)の温度が250℃以下の一定値になるようにフィードバック制御しながら、Siターゲット4から集電体1に対して、シリコンの成膜を複数回行った。なお、この実験2において、熱電対7の測定結果に基づいた集電体1(回転ホルダ3の表面)の温度制御以外の活物質層の形成条件は、上記表1に示した実験1の活物質層の形成条件と同様である。
【0042】
上記の条件下でシリコンの成膜を約500分間行うことによって、集電体1の表面上に、約6μmの膜厚を有するシリコン膜からなる活物質層を形成した。また、上記実験2で得られた各サンプルにおける活物質層の組成について分析を行ったところ、活物質層中のCu濃度は、常に約10%であった。
【0043】
実験2では、上記のように、温度制御器10を用いて、集電体1(回転ホルダ3の表面)の温度履歴が一定になるようにフィードバック制御しながら、活物質層を形成することによって、活物質層の膜質を正確に制御可能であることが判明した。これにより、所望の膜質を有する活物質層をバラツキなく安定して形成することができる。
【0044】
[実験3]
この実験3では、まず、上記実験2を行いながら、蛍光X線分析器8を用いて活物質層の組成分析を行うことによって、活物質層の膜厚とCu濃度との関係を測定した。蛍光X線分析器8を用いて活物質層の組成分析を行う場合、シリコン膜厚が小さいと、シリコン膜下の集電体1(銅箔)まで検出してしまうので、Si/Cu比が小さく測定される。そして、シリコン膜厚の増加とともに、Si/Cu膜厚は増加するが、熱によるCuのシリコン膜への拡散効果のため、Cu比の減少の割合は、シリコン膜厚の増加にともなうCu比の減少の割合に比べて若干小さくなる。
【0045】
次に、実験3では、図1に示したリチウム二次電池用負極の形成装置において、実験1と同様、膜厚制御器9を用いてシリコンの蒸発速度が一定になるようにフィードバック制御することに加えて、さらに、蛍光X線分析器8による集電体1上の活物質層の組成分析結果に基づいて、温度制御器10を用いて活物質層中のCu濃度が所定の値になるように集電体1の温度をフィードバック制御しながら、集電体1の表面にシリコンからなる活物質層を複数回形成する実験を行った。具体的には、活物質層中のCu濃度が所定の値より大きい場合は、空気循環部11によって集電体1(回転ホルダ3の表面)をリアルタイムで冷却することにより、Cuの活物質層への拡散を抑制した。一方、活物質層中のCu濃度が小さい場合は、外部ヒータ5によって集電体1(回転ホルダ3の表面)をリアルタイムで加熱することにより、Cuの拡散を促進した。
【0046】
上記実験3で得られた各サンプルにおける活物質層の組成について分析を行ったところ、活物質層中のCu濃度は、常に約10%であった。
【0047】
実験3では、上記のように、蛍光X線分析器8による集電体1上の活物質層の組成分析結果に基づいて、温度制御器10を用いて活物質層中のCu濃度が所定の値になるように集電体1の温度をフィードバック制御しながら活物質層を形成することによって、活物質層の膜質をより正確に制御可能であることが判明した。これにより、所望の膜質を有する活物質層をバラツキなく安定して形成することができる。
【0048】
また、実験3では、蛍光X線分析器8による活物質層の組成分析を真空チャンバ2内で行うことによって、真空中で活物質層の組成分析を行うことができる。これにより、大気中で活物質層の組成分析を行う場合と異なり、活物質層の表面の酸化や水分吸収などの影響を除外することができるので、より高精度に活物質層の組成分析を行うことができる。
【0049】
(実施例2)
図2は、本発明の実施例2によるリチウム二次電池用電極(負極)の形成装置を示した概略図である。
【0050】
この実施例2では、EB(Electron Beam)蒸着法を用いて、シリコンからなる負極活物質を集電体21上に堆積させることによって、負極を形成した。
【0051】
まず、図2を参照して、実施例2で用いた負極の形成装置の構成について説明する。この負極の形成装置は、巻き出しロール20aと、巻き取りロール20bと、真空チャンバ22と、回転ホルダ23と、シリコンを溶融・蒸発させるためのEBガン(Si蒸着源)24と、外部ヒータ25と、水晶振動子からなる膜厚計26と、放射温度計27と、蛍光X線分析器28と、膜厚制御器29と、温度制御器30と、空気循環部31とを備える。なお、EBガン24は、本発明の「蒸発源」の一例である。
【0052】
回転ホルダ23は、集電体1をEBガン24に対して相対的に移動可能に保持する機能を有する。また、外部ヒータ25は、外部から集電体21(回転ホルダ23の表面)を加熱するものであり、空気循環部31は、回転ホルダ23内に空気を循環させることによって、回転ホルダ23にセットされた集電体21を冷却するものである。なお、空気循環部31は、図2では、便宜上、外部ヒータ25の外側に示されているが、実際には、回転ホルダ23内に配置されている。放射温度計27は、真空チャンバ22に設けられた窓を通して、集電体21の表面の温度を測定するものである。蛍光X線分析器28は、集電体21上の活物質層のCu濃度を測定するものである。
【0053】
膜厚制御器29は、水晶振動子からなるリファレンスとしての膜厚計26上に堆積するシリコン膜の膜厚からシリコンの蒸発速度を算出するとともに、その算出したシリコンの成膜速度に基づいて、EBガン24のエミッション電流を制御することによって、EBガン24から集電体1上に蒸発されるシリコンの成膜速度が一定になるようにフィードバック制御する。温度制御器30は、蛍光X線分析器28による集電体21上の活物質層のSi/Cu組成比の測定結果に基づいて、その活物質層のSi/Cu組成比が所定の組成比になるように、空気循環部31または外部ヒータ25をフィードバック制御する。なお、膜厚計26、放射温度計27、蛍光X線分析器28および膜厚制御器29は、本発明の「成膜状態測定手段」の一例である。また、膜厚制御器29および温度制御器30は、本発明の「活物質層の形成条件を制御する手段」の一例である。
【0054】
上記のようなリチウム二次電池用負極の形成装置を用いて、以下の表2に示すような条件下で、集電体21上にシリコンからなる活物質層を形成した。
【0055】
【表2】
Figure 0003979800
具体的には、まず、圧延銅箔を電解処理することにより表面粗化された集電体21(厚み約26μm)を、巻き出しロール20aから回転ホルダ23を経て、巻き取りロール20bに、テンションがかけられた状態で巻き取られるようにセットした。この後、成膜の前に、ターボ分子ポンプ(図示せず)を用いて、10-4Pa台になるように真空チャンバ22内の真空排気を行った。
【0056】
次に、200mmの直径を有する回転ホルダ23上の集電体21を約5cm/minの速度で往復移動させながら、EBガン24によりシリコンを溶融・蒸発させることによって、集電体21に対してシリコンの成膜を行った。この場合、膜厚計26の位置におけるシリコンの蒸発速度を約1.2nm/秒に設定するとともに、膜厚計26上に形成される活物質層の積算膜厚を18μmに設定した状態で、シリコンの成膜を行った。具体的には、膜厚制御器29を用いて、膜厚計26上のシリコンの蒸発速度を算出するとともに、その算出したシリコンの蒸発速度が約1.2nm/秒になるように、EBガン24のエミッション電流をフィードバック制御しながら、活物質層を形成した。
【0057】
同時に、実施例2では、実施例1の実験3と同様、蛍光X線分析器28を用いた集電体21上の活物質層の組成分析結果に基づいて、温度制御器30を用いて、活物質層中のCu濃度が所定の値になるように集電体21の温度をフィードバック制御しながら、集電体21の表面にシリコンからなる活物質層を形成した。具体的には、蛍光X線分析器28による活物質層の組成分析結果に基づいて、活物質層中のCu濃度が所定の値より大きい場合は、空気循環部31によって集電体21(回転ホルダ23の表面)をリアルタイムで冷却することにより、Cuの活物質層への拡散を抑制した。一方、活物質層中のCu濃度が小さい場合は、外部ヒータ25によって集電体21(回転ホルダ23の表面)をリアルタイムで加熱することにより、Cuの拡散を促進した。なお、活物質層を成膜中は、真空チャンバ22内にはガスの導入を行わずに、10-4〜10-5Pa台になるように真空チャンバ22内の真空排気を行った。
【0058】
上記の条件下でシリコンの成膜を約250分間行うことによって、集電体21の表面上に、約6μmの膜厚を有するシリコン膜からなる活物質層を形成した。その後、銅箔のみをセットし直して同条件で繰り返し成膜を行った。その結果、約10%のCu濃度を有する活物質層を安定して形成することができた。
【0059】
実施例2では、上記のように、膜厚制御器29を用いて、EBガン24によるシリコンの蒸発速度が一定になるようにEBガン24のエミッション電流をフィードバック制御しながら活物質層を形成することによって、活物質層の膜厚を正確に制御可能であることが判明した。これにより、所望の膜厚を有する活物質層をバラツキなく安定して形成することができる。
【0060】
また、蛍光X線分析器28による集電体21上の活物質層の組成分析結果に基づいて、その活物質層中のCu拡散濃度が所定の値になるように、温度制御器30を用いて空気循環部31または外部ヒータ25をフィードバック制御しながら、活物質層を形成することによって、活物質層の膜質を正確に制御可能であることが判明した。これにより、所望の膜質を有する活物質層をバラツキなく安定して形成することができる。
【0061】
(実施例3)
図3は、本発明の実施例3によるリチウム二次電池用電極(負極)の形成装置を示した概略図である。
【0062】
この実施例3では、Siターゲット44およびCoターゲット45の2つのターゲットを用いて、Siに異種元素としてCoを添加した負極活物質を、集電体41上にスパッタ法により堆積させることによって、負極を形成した。
【0063】
まず、図3を参照して、実施例3で用いた負極の形成装置の構成について説明する。この負極の形成装置は、巻き出しロール40aと、巻き取りロール40bと、真空チャンバ42と、回転ホルダ43と、Siターゲット44と、Coターゲット45と、水晶振動子からなる第1膜厚計46および47と、レーザ変位計からなる第2膜厚計48と、外部ヒータ49と、放射温度計50と、蛍光X線分析器51と、膜厚制御器52と、温度制御器53と、空気循環部54とを備えている。なお、Siターゲット44およびCoターゲット45は、本発明の「蒸発源」の一例である。
【0064】
回転ホルダ43は、集電体41をSiターゲット44およびCoターゲット45に対して相対的に移動可能に保持する機能を有する。Siターゲット44は、RF電源44aを含み、Coターゲット45は、直流パルス電源45aを含む。また、Siターゲット44およびCoターゲット45は、互いの成膜領域が重なるように配置した。また、外部ヒータ49は、外部から集電体41(回転ホルダ43の表面)を加熱するものであり、空気循環部54は、回転ホルダ43内に空気を循環させることによって、回転ホルダ43にセットされた集電体41を冷却するものである。なお、空気循環部54は、図3では、便宜上、外部ヒータ49の外側に示されているが、実際には、回転ホルダ43内に配置されている。放射温度計50は、真空チャンバ42に設けられた窓を通して、集電体41の表面の温度を測定するものである。蛍光X線分析器51は、集電体41上の活物質層のCo濃度を測定するものである。
【0065】
また、第1膜厚計47は、遮蔽板(図示せず)を用いて、Siターゲット44から蒸発されるシリコン粒子のみを検出するように配置されているとともに、第1膜厚計46は、遮蔽板(図示せず)を用いて、Coターゲット45から蒸発されるコバルト粒子のみを検出するように配置されている。そして、膜厚制御器52は、水晶振動子からなるリファレンスとしての第1膜厚計46および47上に単位時間にそれぞれ堆積するコバルト膜およびシリコン膜の膜厚から、コバルトおよびシリコンの蒸発速度を算出するものである。また、レーザ変位計からなる第2膜厚計48は、集電体41上の活物質層の膜厚を直接測定するものである。
【0066】
また、膜厚制御器52は、蛍光X線分析器51によるCo濃度の測定結果、第1膜厚計46および47上のシリコン膜およびコバルト膜の膜厚から求めたシリコンおよびコバルトの蒸発速度、または、第2膜厚計48による集電体41上の活物質層の膜厚の測定結果に基づいて、RF電源44aおよび直流パルス電源45aの投入電力をそれぞれ別個に制御するものである。これにより、Siターゲット44から集電体41上にスパッタされるシリコンの量と、Coターゲット45から集電体41上にスパッタされるコバルトの量とを、独立して制御することができる。
【0067】
また、温度制御器53は、放射温度計50による回転ホルダ43の表面の温度の測定結果に基づいて、回転ホルダ43内の空気を循環させるための空気循環部54または外部ヒータ49を制御することによって、集電体41の温度が所定の温度になるようにフィードバック制御するものである。なお、第1膜厚計46、第1膜厚計47、第2膜厚計48、放射温度計50、蛍光X線分析器51および膜厚制御器52は、本発明の「成膜状態測定手段」の一例であり、膜厚制御器52および温度制御器53は、本発明の「活物質層の形成条件を制御するための手段」の一例である。また、第2膜厚計48は、「膜厚測定機器」の一例である。
【0068】
上記のようなリチウム二次電池用負極の形成装置を用いて、以下の表3に示すような条件下で、集電体41上にシリコンとコバルトとの合金薄膜からなる活物質層を形成した。
【0069】
【表3】
Figure 0003979800
具体的には、まず、圧延銅箔を電解処理することにより表面粗化された集電体41を、巻き出しロール40aから回転ホルダ43を経て、巻き取りロール40bに、テンションがかけられた状態で巻き取られるようにセットした。この後、成膜の前に、ターボ分子ポンプ(図示せず)を用いて、10-4Pa台になるように真空チャンバ42内の真空排気を行った。
【0070】
次に、回転ホルダ43上の集電体41を約5cm/minの速度で往復移動させながら、Siターゲット44およびCoターゲット45から集電体41に対して、シリコンおよびコバルトの成膜を同時に行った。この場合、Siターゲット44としては、10.2cm(4インチ)(直径)×5mm(厚み)のシリコン単結晶からなるSiターゲット44を用いた。Coターゲット45としては、10.2cm(4インチ)(直径)×5mm(厚み)のコバルト多結晶からなるCoターゲット45を用いた。また、この場合、第1膜厚計47の位置におけるシリコンの蒸発速度を約0.6nm/秒に設定するとともに、第1膜厚計46の位置におけるコバルトの蒸発速度を約0.06nm/秒に設定した。具体的には、膜厚制御器52を用いて、第1膜厚計46および47によるシリコンおよびコバルトの蒸発速度の測定結果に基づいて、シリコンおよびコバルトの蒸発速度が上記の値になるように、RF電源44aと直流パルス電源45aとを別個にフィードバック制御しながら、活物質層を形成した。
【0071】
また、放射温度計50の測定結果に基づいて、温度制御器53を用いて、集電体41(回転ホルダ43の表面)の温度が常に一定温度(250℃)に保持されるように、外部ヒータ49および空気循環部54を制御した。
【0072】
また、実施例3では、レーザ変位計からなる第2膜厚計48による活物質層の膜厚の測定結果に基づいて、活物質層の膜厚が設定膜厚(6.0μm)に達した時点で成膜を終了した。なお、活物質層を成膜中には、ターボ分子ポンプ(図示せず)を用いて、真空チャンバ42内の真空排気を行いながら、Arガス(流量:100sccm,圧力:約0.1Pa)を流した。
【0073】
上記の表3の条件下で、シリコンおよびコバルトの成膜を約450分間行うことによって、集電体41の表面上に、約6μmの膜厚を有するシリコンとコバルトとの合金薄膜からなる活物質層を形成した。その後、銅箔のみをセットし直して同条件で繰り返し成膜を行った。その結果、21%のCo濃度と10%のCu濃度とを有する活物質層を毎回ほぼ等しい濃度で安定して形成することができた。
【0074】
実施例3では、上記のように、膜厚制御器52を用いて、Siターゲット44およびCoターゲット45の2つの蒸発源からスパッタされるシリコンおよびコバルトの量を独立して制御することによって、活物質層中のシリコンおよびコバルトの組成比を正確に制御することができる。
【0075】
また、実施例3では、上記のように、レーザ変位計からなる第2膜厚計48を用いて、集電体41上の活物質層の膜厚が所望の膜厚(6.0μm)に達した時点で、成膜を終了させることによって、容易に所望の膜厚の活物質層を形成することができる。
【0076】
なお、今回開示された実施例は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施例の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
【0077】
たとえば、上記実施例では、原料を気相中に放出して供給する方法の一例として、スパッタ法およびEB蒸着法などを用いて活物質層を形成する例を示したが、本発明はこれに限らず、たとえば、プラズマCVD法などの他の原料を気相中に放出して供給する方法を用いても同様の効果を得ることができる。
【0078】
また、上記実施例では、水晶振動子からなる膜厚計6および26上に単位時間に堆積される活物質層の膜厚から活物質層の成膜速度を求める水晶振動子法を用いたが、本発明はこれに限らず、光の反射率の変化で膜厚を測定する繰返し反射干渉法、過電流を利用した膜厚測定法、レーザ変位計を利用した膜厚測定法、または、蛍光X線を利用した膜厚測定法などを用いて、活物質層の成膜速度を求めてもよい。水晶振動子法および繰返し反射干渉法は、リファレンス上の膜厚を測定する方法であり、過電流、レーザ変位計、または、蛍光X線を利用した膜厚測定法は、集電体上の活物質層の膜厚を直接測定することができる。
【0079】
また、上記実施例では、単一の回転ホルダ上にセットされた集電体上に活物質層を形成したが、本発明はこれに限らず、複数の回転ホルダの間を順次移動する集電体上に活物質層を形成しながら、膜質および膜厚の測定および制御を行うようにしてもよい。この場合、活物質層の形成を複数箇所に分けて行うことができる。そして、各活物質層形成時または各活物質層形成直後に、膜質および膜厚の測定および制御を行うことによって、活物質層全体として所望の膜質および膜厚を得ることができる。
【0080】
また、上記実施例3では、Siターゲット44およびCoターゲット45に投入する電力を制御することによって、膜中において一定のSi濃度およびCo濃度を有する活物質層を形成したが、本発明はこれに限らず、Siターゲット44およびCoターゲット45に投入する電力を時間とともに増加あるいは減少させることによって、傾斜組成を有するSi合金膜の形成も可能である。たとえば、Siターゲット44への投入電力は一定で、かつ、成膜時間とともにCoターゲット45への投入電力を小さくすることによって、集電体側から表面側に向かってCo濃度が小さくなるようなSi−Co合金膜を形成することができる。また、Coターゲット45の代わりに、Cuターゲットを用いるとともに、Siターゲット44への投入電力は一定で、かつ、成膜時間とともにCuターゲットへの投入電力を小さくすることによって、基板側から表面側に向かってCu濃度が小さくなるようなSi−Cu合金膜を形成することができる。この場合、Cuターゲットへの投入電力をたとえば直線的に減少させると、Cu濃度も直線的に減少する。
【0081】
【発明の効果】
以上のように、本発明によれば、所望の膜質および膜厚を有する活物質層をバラツキなく安定して形成することによって、電池特性に優れたリチウム二次電池用電極を安定して形成することができる。
【図面の簡単な説明】
【図1】本発明の実施例1による負極の形成装置を示した概略図である。
【図2】本発明の実施例2による負極の形成装置を示した概略図である。
【図3】本発明の実施例3による負極の形成装置を示した概略図である。
【符号の説明】
1、21、41 集電体
4、44 Siターゲット(蒸発源)
5、25、49 外部ヒータ
6、26 膜厚計(成膜状態測定手段)
7 熱電対(成膜状態測定手段)
8、28、51 蛍光X線分析器(成膜状態測定手段)
9、29、52 膜厚制御器(活物質層の形成条件を制御する手段)
10、30、53 温度制御器(活物質層の形成条件を制御する手段)
11、31、54 空気循環部
24 EBガン(蒸発源)
27、50 放射温度計(成膜状態測定手段)
45 Coターゲット(蒸発源)
46、47 第1膜厚計(成膜状態測定手段)
48 第2膜厚計(成膜状態測定手段)

Claims (9)

  1. 原料を気相中に放出して供給する方法を用いて集電体上に活物質層を形成する際に、前記活物質層の成膜速度、前記活物質層の組成および前記集電体の温度のうち少なくとも1つを測定する工程と、
    前記測定結果に基づいて、前記活物質層の形成条件を制御しながら、前記活物質層を形成する工程とを備え
    前記活物質層は、シリコンを主成分とする材料からなり、
    前記シリコンを主成分とする材料は、Cu、Co、Fe、Zn、Zr、Mn、NiおよびAgからなるグループより選択される少なくとも1つの金属元素を含有し、
    前記活物質層を形成する工程は、
    前記シリコンとそれ以外の前記元素とを、複数の蒸発源を用いて蒸発させる工程を含む、リチウム二次電池用電極の形成方法。
  2. 前記活物質層の成膜速度、前記活物質層の組成および前記集電体の温度のうち少なくとも1つを測定する工程は、真空中で行う、請求項1に記載のリチウム二次電池用電極の形成方法。
  3. 前記活物質層の形成条件は、
    前記活物質層となる原料の供給速度および前記集電体の温度の少なくとも1つを含む、請求項1または2に記載のリチウム二次電池用電極の形成方法。
  4. 前記活物質層の成膜速度、前記活物質層の組成および前記集電体の温度のうち少なくとも1つを測定する工程は、
    前記活物質層の組成を蛍光X線を用いて測定する工程を含む、請求項1〜3のいずれか1項に記載のリチウム二次電池用電極の形成方法。
  5. 前記活物質層を形成する工程は、
    前記活物質層の成膜速度、前記活物質層の組成および前記集電体の温度のうち少なくとも1つの測定結果に基づいて、複数の蒸発源からの蒸発速度をそれぞれ別個に制御する工程を含む、請求項1〜4のいずれか1項に記載のリチウム二次電池用電極の形成方法。
  6. 原料を気相中に放出して供給する装置を用いて集電体上に活物質層を形成する際に、前記活物質層の成膜速度、前記活物質層の組成および前記集電体の温度のうち少なくとも1つを測定する成膜状態測定手段と、
    前記成膜状態測定手段の測定結果に基づいて、前記活物質層の形成条件を制御する手段と
    前記活物質層を形成するための複数の蒸発源とを備え
    前記成膜状態測定手段は、前記各蒸発源ごとに設けられた蒸発速度を測定する機器を含む、リチウム二次電池用電極の形成装置。
  7. 前記蒸発速度を測定する機器とは別個に設けられ、前記複数の蒸発源を用いて形成される活物質層の膜厚を測定する膜厚測定機器をさらに備える、請求項に記載のリチウム二次電池用電極の形成装置。
  8. 前記成膜状態測定手段は、前記活物質層の組成を蛍光X線を用いて測定する機器を含む、請求項6または7に記載のリチウム二次電池用電極の形成装置。
  9. 前記原料を気相中に放出して供給する装置は、スパッタリング装置および真空蒸着装置のいずれかを含む、請求項のいずれか1項に記載のリチウム二次電池用電極の形成装置。
JP2001196243A 2001-06-28 2001-06-28 リチウム二次電池用電極の形成装置および形成方法 Expired - Fee Related JP3979800B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001196243A JP3979800B2 (ja) 2001-06-28 2001-06-28 リチウム二次電池用電極の形成装置および形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001196243A JP3979800B2 (ja) 2001-06-28 2001-06-28 リチウム二次電池用電極の形成装置および形成方法

Publications (2)

Publication Number Publication Date
JP2003017039A JP2003017039A (ja) 2003-01-17
JP3979800B2 true JP3979800B2 (ja) 2007-09-19

Family

ID=19034086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196243A Expired - Fee Related JP3979800B2 (ja) 2001-06-28 2001-06-28 リチウム二次電池用電極の形成装置および形成方法

Country Status (1)

Country Link
JP (1) JP3979800B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748970B2 (ja) * 2003-11-27 2011-08-17 パナソニック株式会社 エネルギーデバイス及びその製造方法
JP4850405B2 (ja) * 2003-11-27 2012-01-11 パナソニック株式会社 リチウムイオン二次電池及びその製造方法
US7816032B2 (en) 2003-11-28 2010-10-19 Panasonic Corporation Energy device and method for producing the same
JP2005197080A (ja) * 2004-01-07 2005-07-21 Nec Corp 二次電池用負極およびそれを用いた二次電池
JP2005293852A (ja) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd リチウム二次電池及びリチウム二次電池用負極の製造方法
JP4831946B2 (ja) * 2004-08-31 2011-12-07 三洋電機株式会社 非水電解質電池
JP4910297B2 (ja) * 2005-03-17 2012-04-04 パナソニック株式会社 リチウムイオン二次電池用負極、その製造方法およびそれを用いたリチウムイオン二次電池
JP4802570B2 (ja) * 2005-06-24 2011-10-26 パナソニック株式会社 リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP2008010408A (ja) * 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd 発光素子及び発光装置
JP2008210783A (ja) * 2007-02-01 2008-09-11 Matsushita Electric Ind Co Ltd 電池とその負極の製造方法、負極の製造装置
JP2008210787A (ja) * 2007-02-01 2008-09-11 Matsushita Electric Ind Co Ltd 二次電池と、その負極の検査方法と検査装置および製造方法と製造装置
JP5187335B2 (ja) * 2010-03-29 2013-04-24 日本電気株式会社 二次電池用負極およびその製造方法、二次電池

Also Published As

Publication number Publication date
JP2003017039A (ja) 2003-01-17

Similar Documents

Publication Publication Date Title
JP5095412B2 (ja) LiCoO2の堆積
JP3979800B2 (ja) リチウム二次電池用電極の形成装置および形成方法
JP3971911B2 (ja) 固体リチウム二次電池およびその製造方法
US7871667B2 (en) Method of operating vacuum deposition apparatus and vacuum deposition apparatus
CN101355145B (zh) 用于锂离子二次电池的负极、其制备方法及锂离子二次电池
US8221918B2 (en) Anode for lithium ion secondary battery, production method thereof, and lithium ion secondary battery using the same
JP5230946B2 (ja) リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP3486166B2 (ja) プラズマ処理によるリチウム遷移金属酸化物薄膜の結晶化方法
JP4910297B2 (ja) リチウムイオン二次電池用負極、その製造方法およびそれを用いたリチウムイオン二次電池
JP6357229B2 (ja) 結晶性リチウム含有化合物を調製するための蒸着方法
WO2007094311A1 (ja) 非水電解質二次電池用電極およびその製造方法、ならびに非水電解質二次電池用電極を備えた非水電解質二次電池
JPWO2007086411A1 (ja) リチウム二次電池用負極およびその製造方法、ならびにリチウム二次電池用負極を備えたリチウム二次電池
JP2008293970A (ja) 電気化学素子用電極およびその製造方法
JP4330290B2 (ja) リチウム二次電池用電極の製造方法
JP3979859B2 (ja) リチウム二次電池用電極の製造方法
JP2004171904A (ja) リチウム二次電池用電極の製造方法
JPH08287901A (ja) リチウム二次電池正極の製造方法
US20100129564A1 (en) Method for deposition of electrochemically active thin films and layered coatings
JP2002289180A (ja) リチウム二次電池用電極の製造方法及び製造装置
JP3913596B2 (ja) リチウム二次電池用電極の形成装置および形成方法
Yu et al. Surface-discharge characteristics of magnesium oxide thin films prepared by ion beam-assisted deposition
JP4526806B2 (ja) リチウムイオン二次電池の製造方法
JP2003308832A (ja) リチウム二次電池用電極の製造方法
JP3856879B2 (ja) 薄膜の製造方法
JP2010033744A (ja) リチウム二次電池用負極の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees