JP3978598B2 - センサユニット - Google Patents

センサユニット Download PDF

Info

Publication number
JP3978598B2
JP3978598B2 JP2002251144A JP2002251144A JP3978598B2 JP 3978598 B2 JP3978598 B2 JP 3978598B2 JP 2002251144 A JP2002251144 A JP 2002251144A JP 2002251144 A JP2002251144 A JP 2002251144A JP 3978598 B2 JP3978598 B2 JP 3978598B2
Authority
JP
Japan
Prior art keywords
vibration
sensor
detection element
signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002251144A
Other languages
English (en)
Other versions
JP2004093186A (ja
Inventor
郁紀 坂谷
岳史 滝澤
耕一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002251144A priority Critical patent/JP3978598B2/ja
Publication of JP2004093186A publication Critical patent/JP2004093186A/ja
Application granted granted Critical
Publication of JP3978598B2 publication Critical patent/JP3978598B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、転がり軸受装置や、リニアガイド、ボールねじ等の直動装置等の転動装置の運転状態を検知する転動装置用センサに係る。特に、信頼性が要求される鉄道車両、自動車等の移動体の車軸軸受、機械設備等の軸受等の異常判定を行う転がり軸受装置用センサに関する。また本発明は、リニアガイド、ボールねじ等の直動装置の異常判定や、映像・情報機器などの軸受装置の異常判定を行う転動装置用センサに関する。
【0002】
【従来の技術】
図10は、転動装置用センサを備えた転動装置を示す。転動装置100は、軸101と、軸101と径方向に対向するハウジング102と、軸方向に間隔をあけて軸101及びハウジング102間に配置された一対の転がり軸受103,103とを有する。
【0003】
転がり軸受103,103は、それぞれ軸101に外嵌する内輪104,104、内輪104,104と対向しハウジング102に内嵌する外輪105,105、及び、内輪104,104と外輪105,105との間に転動可能に配置された転動体106,106を有している。軸101は、転がり軸受103,103を介して、ハウジング102に対して回転可能に構成されている。
【0004】
ハウジング102の外表面102a上には、転動装置用センサ110が固定されている。この転動装置用センサ110は、転動装置100の振動を検出するための振動検出素子である。転動装置用センサ110は、検出した振動信号を振動測定用信号増幅器111に送出し、振動信号を増幅する。増幅された振動信号は、外部に配置された所定の回路に送られ、転動装置110のモニター、異常診断等が行われる。
【0005】
図11は、振動測定用信号増幅器111により増幅された信号波形を示すグラフである。この転動装置用センサ110は、転動装置110の振動がゼロの時に基準値0Vを出力する。従って、転動装置用センサ110は、正方向の振動を検出した場合にはプラスの電圧信号を、そして負方向の振動を検出した場合には、マイナスの電圧信号をそれぞれ出力する。従って、図11に示すように、増幅された値は、例えば+2.5〜―2.5Vまでの範囲の値をとる。
【0006】
【発明が解決しようとする課題】
しかしながら、図11に示すような構成をとるためには、振動測定用信号増幅器111に正の定電圧及び負の定電圧を発生する電源を用意する必要がある。図12に示すように、負の定電圧を与えない場合には、負方向の振動は、全て0Vとして検出されてしまい、全ての振動を正確に測定することができなくなってしまう。すなわち、振動測定用信号増幅器111は、正及び負の定電圧電源を内蔵しなければならない。そのため、装置の小型化や低コスト化が困難であった。
【0007】
また、外部から振動測定用信号増幅器111に電源を供給する場合であっても、プラス電源、グランド線、マイナス電源の3種類の電線を用意しなければならず、構成パーツの増加及び配線の複雑化により、必要スペースが増大してしまっていた。
【0008】
本発明は、上記課題を解決するために為されたものであり、簡易な構成で振動検出素子等の検出素子を動作可能な転動装置用センサを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1記載のセンサユニットは、転動装置の振動を検出して振動方向に応じた信号を出力する振動検出素子と、該振動検出素子から出力された信号を処理して振動センサ出力信号として出力する振動センサ用信号処理回路と、を備えるセンサユニットであって、前記振動センサ用信号処理回路が、正電圧の単電源で駆動され、前記振動検出素子から出力された信号を増幅する振動センサ用差動増幅器を有し、前記振動検出素子の負端子が、第1抵抗を介して前記振動センサ用差動増幅器を構成するオペアンプの負端子に電気的に接続され、前記振動検出素子の正端子が、第2抵抗を介して前記振動センサ用差動増幅器を構成するオペアンプの正端子に電気的に接続されているとともに該第2抵抗および第3抵抗を介して基準電圧設定器に電気的に接続され、前記振動センサ用差動増幅器を構成するオペアンプの出力端子が、第4抵抗を介して前記振動センサ用差動増幅器を構成するオペアンプの負端子に電気的に接続されており、前記基準電圧設定器が、前記振動センサ用差動増幅器を構成するオペアンプの正端子の電位をGND電位に対して上昇させ、それにより、前記振動センサ出力信号が正電圧を示すことを特徴とする。
また、本発明の請求項2記載のセンサユニットは、転動装置の振動を検出して振動方向に応じた信号を出力する振動検出素子と、該振動検出素子から出力された信号を処理して振動センサ出力信号として出力する振動センサ用信号処理回路と、を備えるセンサユニットであって、前記振動センサ用信号処理回路が、負電圧の単電源で駆動され、前記振動検出素子から出力された信号を増幅する振動センサ用差動増幅器を有し、前記振動検出素子の負端子が、第1抵抗を介して前記振動センサ用差動増幅器を構成するオペアンプの負端子に電気的に接続され、前記振動検出素子の正端子が、第2抵抗を介して前記振動センサ用差動増幅器を構成するオペアンプの正端子に電気的に接続されているとともに該第2抵抗および第3抵抗を介して基準電圧設定器に電気的に接続され、前記振動センサ用差動増幅器を構成するオペアンプの出力端子が、第4抵抗を介して前記振動センサ用差動増幅器を構成するオペアンプの負端子に電気的に接続されており、前記基準電圧設定器が、前記振動センサ用差動増幅器を構成するオペアンプの正端子の電位をGND電位に対して降下させ、それにより、前記振動センサ出力信号が負電圧を示すことを特徴とする。
【0010】
具体的には、前記振動センサ出力信号の電圧は、正電圧又は負電圧であって、前記振動検出素子の基準電圧を正電圧又は負電圧に設定する基準電圧設定回路を設けることにより、出力電圧の符号が変化しないように構成することが可能となる。
【0011】
基本的に、前記基準電圧は、電源電圧とグランド(0V)のほぼ中央となるように設定される。
【0012】
また、本構成によれば、振動センサ用差動増幅器は、正電圧及び負電圧の何れか一方により駆動される。従って、正電圧及び負電圧の何れか一方のみを振動センサ用差動増幅器に供給すればよいため、構成パーツを減らし、構造が簡素化される。
【0014】
また、前記センサユニットは、前記転動装置の温度を検出して温度変化に応じた信号を出力する温度検出素子と、該温度検出素子から出力された信号を処理して温度センサ出力信号として出力する温度センサ用信号処理回路と、をさらに備えていてもよい。前記温度センサ用信号処理回路が、単電源で駆動され、前記温度検出素子から出力された信号を増幅する温度センサ用増幅器を有しており、前記温度センサ用増幅器は、前記振動センサ用差動増幅器と共通の電源により駆動される。このように、温度センサ用増幅器と振動センサ用差動増幅器は、電源を共有しているため、センサユニット内部の構造を簡素化することが可能となる。
【0015】
また、前記センサユニットは前記転動装置の回転数を検出して回転数に応じた信号を出力する回転検出素子と、該回転検出素子から出力された信号を処理して回転センサ出力信号として出力する回転センサ用信号処理回路と、をさらに備えていてもよい。前記回転センサ用信号処理回路が、単電源で駆動され、前記回転検出素子から出力された信号を増幅する回転センサ用増幅器を有しており、前記回転センサ用増幅器は、前記振動センサ用差動増幅器と共通の電源により駆動される。このように、回転センサ用増幅器と振動センサ用差動増幅器は、電源を共有しているため、センサユニット内部の構造を簡素化することが可能となる。
【0016】
上記センサユニットは、センサ付転動装置又は直動装置等に適用することが可能である。
【0017】
【発明の実施の形態】
以下、図面を参照しながら本発明に係るセンサユニットの実施形態について詳細に説明する。
【0018】
(第1実施形態)
以下、本発明に係るセンサユニットの第1実施形態について説明する。
【0019】
図1は、転動装置用センサを備えた転動装置を示す。転動装置10は、軸11と、軸11と径方向に対向するハウジング12と、軸方向に間隔をあけて軸11及びハウジング12間に配置された一対の転がり軸受13,13とを備えている。
【0020】
転がり軸受13,13は、それぞれ軸11に外嵌する内輪14,14、内輪14,14と対向しハウジング12に内嵌する外輪15,15、及び、内輪14,14と外輪15,15との間に転動可能に配置された転動体16,16を有している。軸11は、転がり軸受13,13を介して、ハウジング12に対して回転可能に構成されている。
【0021】
ハウジング12の外表面12a上には、センサユニット20が固定されている。センサユニット20は、転動装置10の振動を検出するための振動検出素子21、転動装置10の温度を検出するための温度検出素子22、振動検出素子21とともに振動センサを構成する振動センサ用信号処理回路23、及び、温度検出素子22とともに温度センサを構成する温度センサ用信号処理回路24を有している。
【0022】
図2は、センサユニット20の内部構成を示すブロック図である。センサユニット20には、ケーブル30が接続されており、振動センサ及び温度センサにより検出された信号を外部に送出する。また、センサユニット20には、たとえば+5Vの定電圧を供給する+5V線と、GND線とが配線されている。センサユニット20に配線された+5V線とGND線は、振動検出素子21、温度検出素子22、及び、各信号処理回路23,24が動作するための電力を供給する。
なお、供給する定電圧は、センサの種類やセンサの内部回路に応じて選択され、+5Vに限らず、+12Vや+24V等、他の電圧を供給するようにしてもよい。
【0023】
振動検出素子21は、転動装置10の振動方向に応じた電圧を信号処理回路23に出力する素子である。振動検出素子21は、変位、速度、加速度検出素子等から構成されている。振動検出素子として加速度センサを用いる場合、両端支持のバイモルフ型加速度センサや、片もち構造の加速度センサ、リング状の圧電素子型加速度センサ等を用いることが可能である。また、複数の振動検出素子をセンサユニット内部に配置するようにしてもよい。
【0024】
信号処理回路23は、振動検出素子21の出力の増幅等の所定の処理を施す回路である。具体的に信号処理回路23は、出力増幅用のアンプ等を有している。
【0025】
図3は、振動検出素子21及び信号処理回路23の構成例を示す回路図である。図3では、説明の簡便化のため、信号処理回路23が、単電源オペアンプ25aのみから構成されている差動増幅器として説明する。
【0026】
振動検出素子21は、正方向の振動を検出した場合にはプラスの電圧信号を、そして負方向の振動を検出した場合には、マイナスの電圧信号をそれぞれ出力する素子である。図3において振動検出素子の電位基準端子(負端子)は、抵抗R1を介してオペアンプ25aの負端子に接続されている。
【0027】
オペアンプ25aは、外部から供給される+5V定電圧線とGND線によって動作する単電源オペアンプである。オペアンプ25aは、出力の一部が抵抗R4を介して負端子に接続された負帰還接続構造を有している。ここで、オペアンプ25aで差動増幅器を構成するためにR1=R2、R3=R4とするのが望ましい。オペアンプ25aは、振動検出素子21の出力を所定の増幅率で増幅して出力している。
【0028】
振動検出素子21の正端子は、抵抗R2を介してオペアンプ25aの正端子と接続されており、また抵抗R2及びR3を介して基準電圧設定器21aに接続されている。基準電圧設定器21aは、GND電位に対して、オペアンプ25aの正端子電位を上昇させるための回路であり、ここではGNDに対して抵抗R3の一端を2.5Vとしている。基準電圧設定器21aとしては、電池、定電圧レギュレータ、DC−DCコンバータ、基準電圧IC、定電圧ダイオード等を用いることが可能である。なお、基準電圧設定器21aとして、定電圧レギュレータ、DC−DCコンバータ、基準電圧IC、定電圧ダイオードなどを用いる場合には、オペアンプ25aへの供給電源電圧5Vなどのような基準電圧設定器21aの設定電圧(この場合は2.5V)以上の電圧を基準電圧設定器21aに供給する必要がある。
【0029】
この構成により、振動0Gのときの振動検出素子21の出力電圧は0Vであるので、オペアンプ25aの検出信号電圧は、2.5V(基準電圧設定器21aの電圧)となる。振動が加わり、振動検出素子21に出力電圧が発生した場合には、この2.5V(基準電圧設定器の電圧)にオペアンプ25aにより増幅(増幅率:R4/R1(=R2/R3))された電圧が重畳された検出信号が出力される。
【0030】
温度検出素子22は、転動装置10の温度を測定する温度検出素子である。温度検出素子22は、所定の温度測定範囲を有しており、温度変化に応じて、抵抗値や出力電圧が変化する素子である。温度検出素子としては、サーミスタ、温度IC、白金等からなる測温抵抗、熱電対等が使用可能である。
【0031】
信号処理回路24は、温度検出素子22の出力を増幅する回路である。具体的に、信号処理回路24は、出力増幅用の単電源アンプ等を有している。前述の通り、信号処理回路24は、信号処理回路23と同様に、+5V線により供給される+5V電圧で駆動する。なお、温度検出素子を使用した温度センサの回路としては、増幅が必要でない構成とすることも可能である。
【0032】
信号処理回路23及び信号処理回路24の両出力は、一本のケーブル30内にまとめられ外部に設置された異常診断装置に出力され、モニター表示される。信号処理回路23及び信号処理回路24の出力を別々のケーブルを介して出力するように構成してもよい。
【0033】
図4は、信号処理回路23を介して増幅出力された振動検出素子21の出力信号を示す図である。図4において、出力信号は、約2.5Vを中心に、正負に振動していることがわかる。これより、単電源オペアンプであるオペアンプ25aは、基準電圧設定器21aにより振動検出素子22からの出力を適切に増幅し、2.5Vのオフセット電圧を加えて出力していることがわかる。
【0034】
センサユニット20は、転動装置10内にて軸11が回転すると、振動検出素子21により転動装置10に生じる振動を検出し、同時に温度検出素子22により転動装置10の温度を検出する。検出された振動信号及び温度信号は、信号処理回路23及び24によりそれぞれ増幅され、ケーブル30を介して外部の異常診断装置に出力される。異常診断装置は、受け取った振動信号及び温度信号をもとに、転動装置の温度を計算し、振動を構成する周波数の分布及び温度の時間変化等を基に転動装置に異常が発生していないかどうかを診断する。
【0035】
本実施形態によれば、GND電圧と+5V電圧により動作する単電源オペアンプを用いている。そして、基準電圧設定器21aにより振動検出素子の出力の基準値を変更し、単電源オペアンプで増幅することにより、適切な出力信号を得ている。このように、基準値を変更しかつ単電源オペアンプを使用することにより、各検出素子及び信号処理回路のそれぞれにGND電圧と+5V電圧の2種類のみの共通外部供給電圧を用いて、センサユニットを動作可能に構成することが可能となる。
【0036】
従って、プラス電源線、グランド線、マイナス電源線の3種類の電線を用意することなく、簡易な電源構成により、センサユニットを動作させることが可能となる。また、2種類の電圧を供給する電源を用意する必要がないため、電源及びその周辺回路を構成する部品数を減少させることが可能となり、低コスト化を図ることができる。
【0037】
なお、本実施形態では、電源をセンサユニット20の外部に設ける構成としたが、これに限られず、センサユニット20の内部に定電圧電源を設けるように構成してもよい。この場合には、発生させる定電圧としてプラス電圧のみを発生させればよい。従って、電源の配置による回路の複雑化を招くことがなく、センサユニット20のサイズを小さく構成することが可能となる。
【0038】
なお、本実施形態では、振動出力信号の基準電圧値(振動0Gのときの出力)は、グランドと正電圧間の中央近傍となるように調整したが、これに限られず、正電圧またはグランド(0V)の何れか一方に基準電圧が偏っていてもよい。図5は、振動出力信号の基準電圧値が、正電圧とグランドの中央近傍でない場合の出力例を示す図である。この図では、振動出力信号の基準電圧値がグランド(0V)と正電圧間の中央である2.5Vから2Vにずれている。出力信号が、正又は負の何れか一方向に偏る傾向がある場合には、何れか一方向に基準電圧値をずらしてやることにより、全ての波形を適切に精度よく増幅出力することが可能となる。
【0039】
なお、本実施形態では、基準電圧設定器21aは、2.5Vに設定したが、これに限られず、検出素子からの出力の大きさや回路構成に応じて、適切な値に設定してもよい。
【0040】
なお、本実施形態では、図3に示される回路構造により、出力の基準電圧を0Vから変更するよう構成したが、これに限られず、種々の変形が可能である。単電源アンプが、出力信号を適切に増幅することができるような回路構成であれば、上記と同様の結果を得ることが可能となる。
【0041】
(第2実施形態)
以下、本発明に係るセンサユニットの第2実施形態について説明する。
【0042】
図6は、転動装置用センサを備えた転動装置を示す。転動装置50は、軸51と、軸51と径方向に対向するハウジング52と、軸方向に間隔をあけて軸51及びハウジング52間に配置された一対の転がり軸受53,53とを備えている。
【0043】
転がり軸受53,53は、それぞれ軸51に外嵌する内輪54,54、内輪54,54と対向しハウジング52に内嵌する外輪55,55、及び、内輪54,54と外輪55,55との間に転動可能に配置された転動体56,56を有している。軸51は、転がり軸受53,53を介して、ハウジング52に対して回転可能に構成されている。
【0044】
ハウジング52の外表面52a上には、ハウジング52の内部に連通している取り付け孔12bが形成されており、そして取り付け孔12bを介して、センサユニット60が固定されている。センサユニット60は、フランジ60aと、フランジ60aと連続して一体形成された筒状の凸部60bとを有する。ハウジング52の取り付け孔12bには、センサユニット60の凸部60bが差し込まれている。センサユニット60は、フランジ60aがハウジング52の外表面52a上に当接した状態で図示せぬ固定手段により固定されている。
【0045】
センサユニット60の凸部60b内部には、凸部60bの形状に沿って筒型のセンサユニット収納空間60cが形成されている。センサユニット60は、転動装置10の振動を検出するための振動検出素子61、転動装置10の温度を検出するための温度検出素子62、軸51の回転数を測定する回転検出素子63、振動検出素子61とともに振動センサを構成する振動センサ用信号処理回路64、温度検出素子62とともに温度センサを構成する温度センサ用信号処理回路65、及び、回転検出素子と共に回転センサを構成する回転センサ用信号処理回路66とをセンサユニット収納空間60c内に収納している。
【0046】
図7は、センサユニット60の内部構造を示すブロック図である。センサユニット60には、ケーブル69が接続されており、振動センサ、温度センサ、及び、回転センサによって検出された信号を外部に送出する。また、センサユニット60には、+12Vの定電圧を供給する+12V線と、GND線とが配線されている。センサユニット60に供給された+12V線とGND線は、回転速度検出素子63、及び、信号処理回路66が動作するための電力を供給する。また、定電圧回路67は、+12Vの定電圧から+5Vを生成し、振動検出素子61、温度検出素子62、信号処理回路65、及び、信号処理回路64に+5Vを供給する。
【0047】
振動検出素子61は、転動装置50の振動方向に応じた電圧を信号処理回路65に出力する素子である。振動検出素子61は、変位、速度、加速度検出素子等が使用できる。振動検出素子として加速度センサを用いる場合、両端支持のバイモルフ型加速度センサや、片もち構造の加速度センサ、リング状の圧電素子型加速度センサ等を用いることが可能である。また、複数の振動検出素子をセンサユニット内部に配置するようにしてもよい。
【0048】
信号処理回路65は、振動検出素子61の出力の増幅処理を施す回路である。具体的に信号処理回路65は、出力増幅用のアンプ等を有している。
【0049】
振動検出素子61及び信号処理回路65の基本構成は、図3に示す第1実施形態と同一である。信号処理回路65は、単電源オペアンプ65aを有しており、振動検出素子61の電位基準端子(負端子)は、抵抗R1を介してオペアンプ65aの負端子に接続されている。
【0050】
オペアンプ65aは、+12V電源を降圧して作られた+5V電源電圧とGNDによって動作する単電源オペアンプである。オペアンプ65aは、出力の一部が抵抗R4を介して負端子に接続された負帰還接続構造を有している。ここで、オペアンプ65aで差動増幅器を構成するためにR1=R2、R3=R4とするのが望ましい。オペアンプ65aは、振動検出素子61の出力を所定の増幅率で増幅して出力している。
【0051】
振動検出素子61の正端子は、抵抗R2を介してオペアンプ65aの正端子と接続されており、また抵抗R2及びR3を介して基準電圧設定器61aに接続されている。基準電圧設定器61aは、GND電位に対して、オペアンプ65aの正端子電位を上昇させるための回路であり、ここではGNDに対して抵抗R3の一端を2.5Vとしている。基準電圧設定器61aとしては、電池、定電圧レギュレータ、DC−DCコンバータ、基準電圧IC、定電圧ダイオード等を用いることが可能である。
【0052】
この構成により、振動0Gのときの振動検出素子61の出力電圧は0Vであるので、オペアンプ65aの検出信号電圧は、2.5V(基準電圧設定器61aの電圧)となる。振動が加わり、振動検出素子61に出力電圧が発生した場合には、この2.5V(基準電圧設定器の電圧)にオペアンプ65aにより増幅(増幅率:R4/R1(=R2/R3))された電圧が重畳された検出信号が出力される。
【0053】
温度検出素子62は、転動装置50の温度を測定する温度検出素子である。温度検出素子62は、所定の温度測定範囲を有しており、温度変化に応じて、抵抗値や出力電圧が変化する素子である。温度検出素子62としては、サーミスタ、温度IC、白金等からなる測温抵抗、熱電対等が使用できる。
【0054】
信号処理回路64は、温度検出素子62の出力の増幅処理等を施す回路である。具体的に、信号処理回路64は、出力増幅用の単電源アンプ等を有している。本実施形態では、信号処理回路64は、+12V電源より降圧して作られた+5V定電圧回路で駆動してもよいし、+12Vで駆動してもよい。
【0055】
回転検出素子63は、センサユニット60の凸部60bの先端部近傍に配置され、軸51と対向している。回転検出素子63は、ホール素子、ホールIC、MR素子、GMR素子等のアクティブタイプの速度センサや、磁石、コイル、及びポールピースからなるパッシブタイプの速度センサが使用できる。回転検出素子63は、軸51上に周期的に形成された、スリット、凹凸、S・N着磁領域等を有するパルサリングによる磁束の変化を検出することにより、回転速度及び回転数に対応するパルス信号を生成し、信号処理回路66に出力する。
【0056】
信号処理回路66は、回転検出素子63の出力の増幅、波形整形、ノイズカット等の所定の処理を施す回路である。具体的に、信号処理回路66は、出力増幅用の単電源アンプ、波形整形回路、ノイズカット用の周波数フィルタ等を有している。本実施例においては、信号処理回路66は、+12V電圧線により供給される+12V電圧で駆動されているが、これ以外の電圧で駆動されるように構成してもよい。
【0057】
信号処理回路64〜66の各出力は、一本のケーブル69内にまとめられ外部に設置された異常診断装置に出力され、モニター表示される。各信号処理回路64〜66の出力を別々のケーブルを介して出力するように構成してもよい。
【0058】
センサユニット60は、転動装置50内にて軸51が回転すると、振動検出素子61により転動装置50に生じる振動を検出し、同時に温度検出素子62及び回転検出素子63により転動装置50の温度及び回転パルスを検出する。検出された振動信号、温度信号及び回転速度信号は、信号処理回路64〜66によりそれぞれ増幅や、波形処理され、ケーブル69を介して外部の異常診断装置に出力される。異常診断装置は、受け取った振動信号、温度信号及び回転速度信号をもとに、転動装置の温度及び回転速度を計算し、振動を構成する周波数の分布、温度の時間変化及び回転数等を基に転動装置に異常が発生していないかどうかを診断する。
【0059】
本実施形態では、振動センサに単電源オペアンプを用いている。そして、基準電圧設定器61aにより振動センサ出力の基準電圧値を変更し、単電源オペアンプで増幅することにより、適切な出力信号を得ている。このように、振動センサに単電源オペアンプを使用し、出力の基準電圧値を変更することにより、+12V電圧の1種類のみの外部供給電圧を用いて、センサユニットを動作可能に構成することが可能となる。
【0060】
従って、プラス電源線、グランド線、マイナス電源線の3本の電線を用意することなく、2本の電線により、センサユニットを動作させることが可能となる。また、2種類の電圧を供給する電源を用意する必要がないため、電源及びその周辺回路を構成する部品数を減少させることが可能となり、低コスト化を図ることができる。
【0061】
なお、本実施形態では、電源をセンサユニット20の外部に設ける構成としたが、これに限られず、センサユニット20の内部に定電圧電源を設けるように構成してもよい。この場合には、発生させる定電圧として正電圧のみを発生させればよい。従って、電源の配置による回路の複雑化を招くことがなく、センサユニット20のサイズを小さく構成することが可能となる。
【0062】
なお、本実施形態では、振動センサ出力の基準電圧値(振動0Gのときの出力)は、電源電圧とGND(0V)のほぼ中央となるように調整したが、これに限られず、図5に示すように、正または負の何れか一方に出力の基準電圧値が偏っていてもよい。出力信号が、正又は負の何れか一方向に偏る傾向がある場合には、何れか一方向に出力の基準電圧値をずらしてやることにより、全ての波形を適切に精度よく増幅出力することが可能となる。
【0063】
なお、本実施形態では、基準電圧設定器21aは、2.5Vに設定したが、これに限られず、検出素子からの出力の大きさや回路構成に応じて、適切な値に設定してもよい。
【0064】
なお、本実施形態では、図3に示される回路構造により、基準値を0Vから変更するよう構成したが、本発明はこれに限られず、種々の変形が可能である。単電源アンプが、出力信号を適切に増幅することができるような回路構成があれば、上記と同様の結果を得ることが可能となる。
【0065】
なお、本実施形態では、12Vの定電圧を5Vに降圧して、振動センサ及び温度センサに供給したが、これに限られず、所定の定電圧を各センサに供給し、各センサ内にて必要な降圧または昇圧を行うように構成してもよい。例えば、振動センサが5V駆動、温度センサが3V駆動、回転センサが12V駆動の場合には、各センサに12Vをそのまま供給し、振動センサ及び温度センサ内にて、それぞれ電圧を5V及び3Vに降圧するように構成可能である。
【0066】
(変形例)
以下、本発明に係る振動検出素子および信号処理回路の変形例について説明する。
【0067】
図8は、振動検出素子および信号処理回路の変形例を示す図である。本変形例においては振動検出素子70および単電源オペアンプ71には、―5V電圧が供給されている。
【0068】
振動検出素子70は、正方向の振動を検出した場合にはプラスの電圧信号を、そして負方向の振動を検出した場合には、マイナスの電圧信号をそれぞれ出力する素子である。図8において振動検出素子の電位基準端子(負端子)は、抵抗R1を介してオペアンプ71の負端子に接続されている。
【0069】
オペアンプ71は、外部から供給される−5V定電圧線とGND線によって動作する単電源オペアンプである。オペアンプ71は、出力の一部が抵抗R4を介して負端子に接続された負帰還接続構造を有している。ここで、オペアンプ71で差動増幅器を構成するためにR1=R2、R3=R4とするのが望ましい。オペアンプ71は、振動検出素子70の出力を所定の増幅率で増幅して出力している。
【0070】
振動検出素子70の正端子は、抵抗R2を介してオペアンプ71の正端子と接続されており、また抵抗R2及びR3を介して基準電圧設定器72に接続されている。基準電圧設定器72は、−5V線に対して、オペアンプ71の正端子電位を上昇させるための回路であり、ここでは−5V線に対して抵抗R3の一端を−2.5Vとしている。基準電圧設定器72としては、電池、定電圧レギュレータ、DC−DCコンバータ、基準電圧IC、定電圧ダイオード等を用いることが可能である。
【0071】
この構成により、振動0Gのときの振動検出素子70の出力電圧は0Vであるので、オペアンプ71の検出信号電圧は、―2.5V(基準電圧設定器72の電圧)となる。振動が加わり、振動検出素子70に出力電圧が発生した場合には、この−2.5V(基準電圧設定器の電圧)にオペアンプ71により増幅(増幅率:R4/R1(=R2/R3))された電圧が重畳された検出信号が出力される。
【0072】
本変形例に示す構成によれば、得られる出力電圧は、出力電圧の基準値(振動0Gのときの出力)が−5Vから−2.5Vに変更され、―5Vから0Vの範囲で変動する。このように、負電原のみを用意し、―電圧電源線とGND線により単電源オペアンプを駆動し、さらに出力の基準値電圧を変更することにより、センサおよびセンサユニットを駆動することが可能となる。
【0073】
なお、第1、第2実施形態及び変形例で示したセンサユニットは、転動装置に限らず、図9に示すようにボールねじ80に適用することもできる。ボールねじ80では、ナット81にセンサ20(60)を配置することにより、ねじ軸82との係合部における剥離や傷等の初期的な異常及び、急激な温度上昇等の末期的な異常を検知することができる。なお、センサ20(60)は、ナット81に限らず、ねじ軸82をサポートしている固定側のサポートユニット83や単純支持側のサポートユニット84に取付けても良い。ねじ軸82はロックナット85により固定側のサポートユニット83に軸方向に固定されており、カップリング86を介して結合された駆動ユニット87によって回転する。
【0074】
また更に、ボールねじに限らず、リニアガイドやその他の直動部品における可動部やレールにセンサ20(60)を取り付けることによって、剥離や傷等の初期的な異常及び、急激な温度上昇等の末期的な異常を検知することもできる。
【0075】
【発明の効果】
本発明によれば、簡易な構成で振動検出素子等の検出素子を動作可能な転動装置用センサを提供することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る第1実施形態の転動装置用センサを備えた転動装置を示す図である。
【図2】第1実施形態のセンサユニットの内部構成を示すブロック図である。
【図3】振動検出素子及び信号処理回路の具体的な構成例を示す回路図である。
【図4】信号処理回路を介して増幅出力された振動検出素子の出力信号を示す図である。
【図5】基準値が、出力波形の中心値でない場合の出力例を示す図である。
【図6】本発明に係る第2実施形態の転動装置用センサを備えた転動装置を示す図である。
【図7】第2実施形態のセンサユニットの内部構成を示すブロック図である。
【図8】振動検出素子および信号処理回路の変形例を示す図である。
【図9】センサユニットを有するボールねじを示す図である。
【図10】従来の転動装置用センサを備えた転動装置を示す図である。
【図11】従来の振動測定用信号増幅器により増幅された信号波形を示すグラフである。
【図12】従来の振動測定用信号増幅器により増幅された信号波形を示すグラフである。
【符号の説明】
10,50 転動装置
20,60 センサユニット
21,61 振動検出素子
22,62 温度検出素子
63 回転検出素子
21a,61a 基準電圧設定器
80 ボールねじ

Claims (6)

  1. 転動装置の振動を検出して振動方向に応じた信号を出力する振動検出素子と、該振動検出素子から出力された信号を処理して振動センサ出力信号として出力する振動センサ用信号処理回路と、を備えるセンサユニットであって、
    前記振動センサ用信号処理回路が、正電圧の単電源で駆動され、前記振動検出素子から出力された信号を増幅する振動センサ用差動増幅器を有し、
    前記振動検出素子の負端子が、第1抵抗を介して前記振動センサ用差動増幅器を構成するオペアンプの負端子に電気的に接続され、
    前記振動検出素子の正端子が、第2抵抗を介して前記振動センサ用差動増幅器を構成するオペアンプの正端子に電気的に接続されているとともに該第2抵抗および第3抵抗を介して基準電圧設定器に電気的に接続され、
    前記振動センサ用差動増幅器を構成するオペアンプの出力端子が、第4抵抗を介して前記振動センサ用差動増幅器を構成するオペアンプの負端子に電気的に接続されており、
    前記基準電圧設定器が、前記振動センサ用差動増幅器を構成するオペアンプの正端子の電位をGND電位に対して上昇させ、それにより、前記振動センサ出力信号が正電圧を示すことを特徴とするセンサユニット。
  2. 転動装置の振動を検出して振動方向に応じた信号を出力する振動検出素子と、該振動検出素子から出力された信号を処理して振動センサ出力信号として出力する振動センサ用信号処理回路と、を備えるセンサユニットであって、
    前記振動センサ用信号処理回路が、負電圧の単電源で駆動され、前記振動検出素子から出力された信号を増幅する振動センサ用差動増幅器を有し、
    前記振動検出素子の負端子が、第1抵抗を介して前記振動センサ用差動増幅器を構成するオペアンプの負端子に電気的に接続され、
    前記振動検出素子の正端子が、第2抵抗を介して前記振動センサ用差動増幅器を構成するオペアンプの正端子に電気的に接続されているとともに該第2抵抗および第3抵抗を介して基準電圧設定器に電気的に接続され、
    前記振動センサ用差動増幅器を構成するオペアンプの出力端子が、第4抵抗を介して前記振動センサ用差動増幅器を構成するオペアンプの負端子に電気的に接続されており、
    前記基準電圧設定器が、前記振動センサ用差動増幅器を構成するオペアンプの正端子の電位をGND電位に対して降下させ、それにより、前記振動センサ出力信号が負電圧を示すことを特徴とするセンサユニット。
  3. 前記基準電圧設定器が、電池、定電圧レギュレーター、DC−DCコンバータ、基準電圧IC、定電圧ダイオードのいずれかであることを特徴とする請求項1または請求項2に記載のセンサユニット。
  4. 前記第1抵抗の抵抗値をR1、前記第2抵抗の抵抗値をR2、前記第3抵抗の抵抗値をR3、前記第4抵抗の抵抗値をR4として、R1=R2であり、R3=R4であることを特徴とする請求項1から請求項3のいずれか一項に記載のセンサユニット。
  5. 前記転動装置の温度を検出して温度変化に応じた信号を出力する温度検出素子と、該温度検出素子から出力された信号を処理して温度センサ出力信号として出力する温度センサ用信号処理回路と、をさらに備え、
    前記温度センサ用信号処理回路が、単電源で駆動され、前記温度検出素子から出力された信号を増幅する温度センサ用増幅器を有しており、
    前記温度センサ用増幅器が、前記振動センサ用差動増幅器と共通の電源により駆動されることを特徴とする請求項1から請求項4のいずれか一項に記載のセンサユニット。
  6. 前記転動装置の回転数を検出して回転数に応じた信号を出力する回転検出素子と、該回転検出素子から出力された信号を処理して回転センサ出力信号として出力する回転センサ用信号処理回路と、をさらに備え、
    前記回転センサ用信号処理回路が、単電源で駆動されて、記回転検出素子から出力された信号を増幅する回転センサ用増幅器を有しており、
    前記回転センサ用増幅器が、前記振動センサ用差動増幅器と共通の電源により駆動されることを特徴とする請求項1から請求項5のいずれか一項に記載のセンサユニット。
JP2002251144A 2002-08-29 2002-08-29 センサユニット Expired - Fee Related JP3978598B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002251144A JP3978598B2 (ja) 2002-08-29 2002-08-29 センサユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251144A JP3978598B2 (ja) 2002-08-29 2002-08-29 センサユニット

Publications (2)

Publication Number Publication Date
JP2004093186A JP2004093186A (ja) 2004-03-25
JP3978598B2 true JP3978598B2 (ja) 2007-09-19

Family

ID=32057803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251144A Expired - Fee Related JP3978598B2 (ja) 2002-08-29 2002-08-29 センサユニット

Country Status (1)

Country Link
JP (1) JP3978598B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507918B2 (ja) * 2005-03-01 2010-07-21 富士電機システムズ株式会社 単電源電圧計測回路
US20080127734A1 (en) * 2006-11-30 2008-06-05 Van Der Merwe Gert Johannes Vibration measurement system and gas turbine engine including the same
AU2013251854B2 (en) * 2012-04-24 2015-12-17 Aktiebolaget Skf Method and arrangement of measuring a mechanical bearing oscillation

Also Published As

Publication number Publication date
JP2004093186A (ja) 2004-03-25

Similar Documents

Publication Publication Date Title
US5231374A (en) Apparatus and method for acquiring electrical signals from rotating members
US7845243B2 (en) Torque sensor assembly
JP3830319B2 (ja) 回転角度検出センサの温度特性調整方法
EP2698619A1 (en) Rotational torsion tester
CN101750100B (zh) 旋转角度传感器
EP1403540A2 (en) Sensor-equipped bearing assembly and motor using the same
WO2022065199A1 (ja) 軸受装置
JP3978598B2 (ja) センサユニット
JP2741388B2 (ja) 相対変位検出装置
JP4925389B2 (ja) エンコーダ
JP2003065835A (ja) センサ付軸受装置
JP6149340B2 (ja) センサ装置及びセンサ付転がり軸受ユニット、転動装置
JP2003172347A (ja) センサ付転動装置
JP7344517B2 (ja) 磁気センサ及び生体磁気計測装置
JP2003214452A (ja) 検出器及びセンサ付転動装置
JP2004093254A (ja) センサ装置
JP2003307228A (ja) センサ付軸受装置
JP4521808B2 (ja) エンコーダ
JP2007322441A (ja) 異常検出装置
JP2003207426A (ja) センサ付転動装置及び検出器
JP4321171B2 (ja) 鉄道車両用センサ付軸受装置
JP2005037298A (ja) センサ付転動装置
JP5030744B2 (ja) 軸受装置
JPH0542749U (ja) 転がり軸受運転状態監視装置
JP4218361B2 (ja) センサ付き転がり軸受ユニット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070612

R150 Certificate of patent or registration of utility model

Ref document number: 3978598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees