JP3966516B2 - Mounting method and apparatus - Google Patents

Mounting method and apparatus Download PDF

Info

Publication number
JP3966516B2
JP3966516B2 JP2003507883A JP2003507883A JP3966516B2 JP 3966516 B2 JP3966516 B2 JP 3966516B2 JP 2003507883 A JP2003507883 A JP 2003507883A JP 2003507883 A JP2003507883 A JP 2003507883A JP 3966516 B2 JP3966516 B2 JP 3966516B2
Authority
JP
Japan
Prior art keywords
pressure
conductive particles
bump
bonding
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003507883A
Other languages
Japanese (ja)
Other versions
JPWO2003001586A1 (en
Inventor
朗 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Publication of JPWO2003001586A1 publication Critical patent/JPWO2003001586A1/en
Application granted granted Critical
Publication of JP3966516B2 publication Critical patent/JP3966516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10674Flip chip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

技 術 分 野
本発明は、少なくとも一方がバンプを有する被接合物同士を(たとえば、チップと基板とを)導電粒子を含有する異方導電性接着剤を介して接合する実装方法および装置に関する。
背 景 技 術
少なくとも一方がバンプを有する被接合物同士を加熱接合する実装方法はよく知られている。代表的な方法の一つに、導電粒子を含有する異方導電性接着剤(異方導電性フィルムや異方導電性ペースト)を介して接合する工法が知られている。この工法は、導電粒子を含有する異方導電性接着剤を被接合物間に介在させ、加熱、加圧により、導電粒子をバンプ間やバンプと電極間に挟み込んで電気的接続を確保するとともに、その周囲に存在する接着剤成分を固めて外部に対する電気絶縁性、シール性を確保する接合方法である。
従来、この工法は、たとえば、基板の上に導電粒子を含有する異方導電性フィルムを貼り付けたり異方導電性ペーストを塗布した後、たとえば面積が5000μmのバンプを250個有するチップにおいて、チップを低温(たとえば、60℃)、低加圧力(たとえば、15MPa)で仮圧着して仮接合し、次工程で、高温(たとえば、220℃)、高圧力(たとえば、95MPa)で本圧着して本接合するようにしている。本圧着後に基板の電極とチップのバンプの間に挟み込まれた導電粒子によってこの間の電気的接続が確保される。
この電気的接続の状態を所望の状態に保つためには、たとえば、バンプ面積が5000μmのバンプ上に捕獲される粒子径が6μmの導電粒子の数として、1バンプあたり約5個以上が必要である。図7は、上記のように基板の電極とチップのバンプを異方導電性接着剤を介して接合した場合における、接続された基板とチップ間の、−40℃〜100℃の冷熱サイクルを1000サイクル繰り返した後の抵抗上昇値(Ω)と、1バンプあたりの捕獲導電粒子数との関係を示している。図7に示すように、捕獲導電粒子数を1バンプあたり約5個以上とすることにより、たとえば使用条件や環境条件が繰り返し変動しても、抵抗上昇の少ない安定した接合状態が得られることが判る。
ところが、上記のような従来の実装方法では、とくに最近のバンプのファインピッチ化、それに伴うバンプ面積の縮小化の要求への対応が難しくなってきた。すなわち、従来のバンプは、小さいものでも約5000μm程度の面積を有していたが、たとえばより高精細の液晶装置に用いられるチップや基板のバンプとして、ファインピッチ化のために約3000μm程度の面積のバンプ、およびその接合が求められるようになってきた。このような小面積のバンプの場合、1バンプあたりの捕獲導電粒子数を5個以上確保することが難しくなってきた。
この理由は、たとえば図8に示すように、本圧着の際に、チップ101と基板102の間に介在された接着剤成分103が高温に加熱され、その状態で、チップ101のバンプ104と基板102の電極105間に圧力が加えられその間に導電粒子106が挟み込まれて捕獲されるが、接着剤成分103が高温に加熱されることによりその粘度が大きく低下しているので、加圧に伴い接着剤成分103がバンプ104と電極105間から周囲に向かって流動し、それに伴って導電粒子106もバンプ104と電極105間から逃げてしまい、結果的にバンプ104上に捕獲される導電粒子106の数を多く確保できないことにある。1バンプあたりの捕獲導電粒子数を5個以上確保できないと、前述の如く、電気的な接続状態が不安定になるおそれが生じる。
この問題に対し、異方導電性接着剤中の導電粒子数を増やすことも考えられる。すなわち、上記のような従来方法で接合する場合の、バンプ面積(単位:μm)と1バンプあたりの捕獲導電粒子数との関係は、異方導電性接着剤中の導電粒子数(単位:万個/mm)に関して、たとえば図9に示すようになる。図9には、異方導電性接着剤中の導電粒子数として100万個/mmと150万個/mmの場合が示されており、バンプ面積に対する、1バンプあたりの捕獲導電粒子数が、平均値と、該平均値に対し標準偏差σに関して±3σまでの特性として表されている。通常、異方導電性接着剤中の導電粒子数としては、100万個/mm程度のものが使用されているので、面積が約5000μm程度のバンプの場合、−3σの特性を呈した場合でも、バンプ上に5個以上の捕獲導電粒子を確保することが可能である。しかし、バンプ面積が約3000μm程度になると、−3σの特性を呈した場合、バンプ上に5個以上の捕獲導電粒子を確保することは困難になる。これに対し、異方導電性接着剤中の導電粒子数を150万個/mmまで増やせば、バンプ面積が約3000μm程度に小さくなっても、バンプ上に5個以上の捕獲導電粒子を確保することが可能となる。
しかしながら、バンプのファインピッチ化に伴うバンプ面積の縮小化に対応するために、単純に異方導電性接着剤中の導電粒子数を増加させるだけでは、ショートやノイズの問題が新たに発生するおそれがある。すなわち、異方導電性接着剤中の導電粒子数を増加させると、バンプ上に残る導電粒子数を増やすことはできるものの、接着剤成分の流動に伴って周囲に逃げる導電粒子数も増え、接合部周囲における電気的接合に使用されない導電粒子の密度も高くなるので、とくにバンプ間の寸法が小さくなるファインピッチ化に伴って、ショートのおそれが生じる。また、とくに高周波領域では、接合部において周囲からのノイズを拾ってしまうおそれも生じる。
発 明 の 開 示
そこで本発明の目的は、バンプ面積が縮小される場合にあっても、バンプ上に望ましい個数以上の導電粒子を捕獲できるようにし、ショートやノイズ等の不都合を発生させることなく、所望の電気的接合を達成できる実装方法および装置を提供することにある。
上記目的を達成するために、本発明に係る実装方法は、少なくとも一方がバンプを有する被接合物同士を、導電粒子を含有する異方導電性接着剤を介して接合する実装方法において、両被接合物の仮圧着を、接着剤中で導電粒子が実質的に流動しない低温でかつ、本圧着以上の加圧力で行い、しかる後に、本圧着を行うことを特徴とする方法からなる。
この実装方法においては、仮圧着後、圧力を解除することなく本圧着に移行することも可能であり、これによって、接合工程の簡素化、時間短縮が可能となる。すなわち、従来方法では、仮圧着時には、一方の被接合物を他方の被接合物上に実質的に置くだけのごく小さな圧力しか加えられず、仮圧着後に一旦圧力を解除して、次工程である本圧着に移行するようにしていたが、本発明に係る実装方法では、仮圧着時に本圧着以上の高い圧力が加えられるから、そのまま圧力を解除することなく本圧着に移行することが可能となる。
また、本発明に係る実装方法において、上記接着剤中で導電粒子が実質的に流動しない低温として、90℃よりも低い温度、たとえば60℃程度の温度を採用できる。また、本圧着以上の加圧力として、バンプ圧力にて40MPa以上の加圧力を採用できる。この40MPa以上の加圧力は、従来の仮圧着時の加圧力に比べはるかに高い加圧力であり、接着剤の温度が低く接着剤の粘度が高いときにも、導電粒子を流動させないようにバンプ上に挟み込むための十分に高い加圧力である。さらに、仮圧着時の被接合物の移動速度としては、0.1mm/s〜10mm/sの範囲内に設定することが好ましい。
また、本発明に係る実装方法においては、仮圧着時に本圧着以上の高い圧力が加えられるから、本圧着時には、仮圧着時に加えられていた圧力を低減して加圧するか、あるいは、接着剤の硬化作用によって仮圧着時に加えられていた圧力のうち本圧着に必要な力を維持できる場合には、外部からの圧力を実質的に加えず本圧着することも可能となる。後者の場合、たとえば、異方導電性接着剤の接着剤成分に収縮性接着剤を使用し、本圧着時には実質的に加圧しないようにすることができる。この接着剤成分としては、たとえば、加熱により硬化し、かつ、収縮する熱硬化性接着剤、または、紫外線照射により硬化し、かつ、収縮する紫外線硬化型接着剤を使用するができる。
本発明に係る実装装置は、少なくとも一方がバンプを有する被接合物同士を、導電粒子を含有する異方導電性接着剤を介して接合する実装装置であって、少なくとも、接着剤中で導電粒子が実質的に流動しない低温で、かつ、バンプ圧力にて40MPa以上の加圧力で両被接合物を仮圧着する仮圧着手段を有することを特徴とするものからなる。
この実装装置においては、仮圧着後に本圧着を行う本圧着手段として、実質的に加圧手段を持たず昇温手段のみ、または紫外線照射手段のみを有するものに構成することもできる。
上記のような本発明に係る実装方法および装置においては、仮圧着工程において、接着剤中で導電粒子が実質的に流動しない低温で、つまり、低温で粘度が高いためバンプ上に存在していた導電粒子はバンプ上から逃げにくくなり、バンプ上に多量に捕獲された状態で、加圧される。そして、このときの加圧力が、本圧着以上の高い加圧力とされるので、バンプ上に残された導電粒子は確実に接合部に挟み込まれ、所定の電気的接合に供される。したがって、異方導電性接着剤中における導電粒子数をとくに増加させないでも、つまり、従来方法と同等の導電粒子数でありながら、バンプのファインピッチ化に伴いバンプ面積が小さくなっても、所定個数以上(たとえば、5個以上)の導電粒子を各バンプ上に捕獲することが可能になる。その結果、面積の小さなバンプを使用する場合にあっても、容易にバンプ上に望ましい個数以上の導電粒子を捕獲できるようになり、異方導電性接着剤中の導電粒子数は増加させなくてもよいためショートやノイズ等の不都合を発生させることなく、所望の電気的接合を確実に達成することができる。また、仮圧着後圧力を解除することなく本圧着に移行することが可能になり、実装工程全体の簡素化、時間短縮をはかることも可能となる。
発明を実施するための最良の形態
以下に、本発明の望ましい実施の形態について、図面を参照して説明する。
図1は、本発明の一実施態様に係る実装装置1を示している。図1においては、被接合物として、一方はチップ2で他方は基板3である場合を例示している。チップ2上には多数のバンプ4(図1には2つのバンプ4を示してある)が設けられており、基板3には対応するパッド5が設けられている。これらチップ2と基板3が異方導電性接着剤を介して接合され、異方導電性接着剤中に含有された導電粒子がバンプ4とパッド5の間に挟み込まれて捕獲され、この間の電気的接続が確保される。
ここで、チップとは、たとえば、ICチップ、半導体チップ、光素子、表面実装部品、ウエハーなど、種類や大きさに関係なく、基板と接合させる側の全てのものをいう。バンプとは、たとえば、ハンダバンプ、スタッドバンプなど基板に設けられたパッドと接合する全てのものをいう。また、基板とは、たとえば、樹脂基板、ガラス基板、フィルム基板、チップ、ウエハーなど、種類や大きさに関係なく、チップと接合される側の全てのものを指す。パッドとは、たとえば、電気配線を伴った電極、電気配線につながっていないダミー電極など、チップに設けられたバンプと接合する全てのものをいう。
本実施態様では、基板3を保持するステージ6とチップ2を保持するツール7が設けられている。ステージ6はX、Y方向(水平方向)および/または回転方向(θ方向)に位置調整できるようになっており、ツール7はZ方向(上下方向)またはZ方向と回転方向(θ方向)に位置調整できるようになっている。本実施態様では、このツール7は、加熱手段を内蔵しており、かつ、チップ2を基板3に対し、バンプ圧力にて40MPa以上の圧力で加圧できるようになっている。また、上下の被接合物の位置ずれ量を検出し、それに基づいて所望の位置精度範囲内に調整できるようにするために、ステージ6とツール7の間には、上下の被接合物側に付された認識マークを読み取る手段としての認識手段8が、進退可能に設けられている。この認識手段8も、X、Y方向(場合によっては、さらにZ方向に)位置調整できるようになっている。
なお、上記のようなステージ、ツール、認識手段は、一般には、平行移動および/または回転自在に装着されるが、必要に応じて、それらと昇降とを組み合わせた態様に装着してもよい。また、認識手段は、CCDカメラ、赤外線カメラ、X線カメラ、適当なセンサー等、認識マークを認識できる全ての手段を含む概念である。
このように構成された実装装置1を用いて、本発明に係る実装方法は次のように実施される。
まず、図2、図3に示すように、導電粒子9を含有する異方導電性接着剤10が、チップ2側または基板3側あるいは両側に設けられる。異方導電性接着剤10は、異方導電性フィルムや異方導電性ペーストからなり、図2は、チップ2側に異方導電性フィルム10aを貼り付けた場合を、図3は、チップ2側に異方導電性ペースト10bを塗布した場合を、それぞれ示している。
上記状態から、ツール7が下降され、チップ2と基板3間に圧力が加えられ、バンプ4とパッド5が接合される。まず、仮圧着されるが、このとき、異方導電性接着剤10中で導電粒子9が実質的に流動しない低温、たとえば90℃よりも低い温度で、望ましくは70℃程度の温度で、かつ、次の本圧着工程における加圧力以上の高い加圧力、たとえばバンプ圧力にて40MPa以上の加圧力で、望ましくは59MPa以上の加圧力(=30gf/5000μm以上の加圧力)で加圧される。
上記異方導電性接着剤10の温度と粘度との関係は、たとえば図4に示すようになっている。図4に示す例では、90℃よりも低い温度では比較的高い粘度を示し、90℃〜110℃近傍で最低粘度を示し、それ以上高温になると再び粘度が上昇してある温度以上で硬化を開始する。前述の図8に示したような従来の仮圧着時の状態は、90℃〜110℃近傍の温度でごく低加圧力で行われたときの状態を示したものである。本発明では、たとえば70℃程度の温度で、つまり、導電粒子9が流動しにくい(実質的に流動しない)低温で加圧され、しかも、その加圧力として、従来の仮圧着時の加圧力よりもはるかに高い圧力(本圧着以上の加圧力)が付与される。したがって、たとえば図5に示すように、バンプ4とパッド5間に存在していた導電粒子9はきわめて逃げにくい状態で加圧されることになり、多量の導電粒子9がバンプ4上に残されたままバンプ4とパッド5間に挟み込まれて捕獲されることになる。
この接合時の導電粒子の挙動について、より具体的かつ詳細に考察してみる。異方導電性接着剤として、たとえば異方導電性フィルムには、接着剤層中に均一に導電粒子が拡散された通常の異方導電性フィルムと、下層部分にのみ導電粒子が集中的に拡散されたダブレイヤータイプの異方導電性フィルムとの2種類がある。従来の、高温高圧で接合する本圧着方法においては、ダブレイヤータイプの異方導電性フィルムの場合には、下層部分まで流動してしまい、捕獲できる粒子の数は減少する。また、通常の異方導電性フィルムの場合には、流動により、均一な粒子拡散状態にバラツキが生じたり、高温下での接着剤層中の生成ガスによる気泡により、その部分での粒子数が減少し、捕獲できる粒子数が減少してしまう。しかし、本発明のように、仮圧着時に低温高圧で押し込むと、流動が抑えられ、かつ、気泡も発生しないため、初期に均一に拡散された粒子数をそのまま捕獲することができ、粒子数減少の問題を解決することができる。
また、仮圧着時に、ゆっくりと被接合物を移動させるよりも、0.1mm/s以上の速度で移動させることにより、粒子が移動する前に押さえ込むことが可能となる。特にダブレイヤータイプの異方導電性フィルムの場合に、被接合物の移動速度が低すぎると、その被接合物の温度が下層部分にまで伝わってしまい、粒子を流動させてしまうことになる。また、気泡の発生により、粒子が押しのけられてしまうおそれも生じる。そのため、仮圧着時の被接合物の移動速度を所定速度以上とし、流動や気泡が発生する前に押し込んでしまい、粒子を逃がすことなく捕獲するのである。ただし、被接合物の移動速度が高すぎると、衝撃で下層部分まで動いてしまうため、最適な速度範囲がある。この速度範囲としては、0.1mm/s〜10mm/sの範囲が最適である。
上記のような条件により、たとえば1バンプ4の面積が3000μm程度と小さくされても、異方導電性接着剤10中の導電粒子9の数が従来と同等の100万個/mmのままで、十分に5個以上の導電粒子9を捕獲することが可能になり、この間の良好な電気的接続が確保される。また、異方導電性接着剤10中の導電粒子9の数を増やす必要がないから、ショートやノイズ発生のおそれもない。
条件によって多少ばらつきはあるものの、異方導電性接着剤10中の導電粒子数が100万個/mmの場合の、上記仮圧着時の加圧力と、面積3000μmのバンプ4上に捕獲される導電粒子数との関係は、おおよそ図6に示すようになった。すなわち、−3σの特性でみても、5個以上の導電粒子9を捕獲することが可能である。
上記のような仮圧着後に、たとえば昇温して、本圧着が行われる。昇温により、異方導電性接着剤10の接着剤成分の粘度は一旦低下し、流動しやすくなるが、このときには既にバンプ4上に望ましい数の導電粒子9が捕獲されており、所望の電気接合状態が確保されたまま、さらなる昇温によって硬化が開始される。
また、従来方法では、本圧着が導電粒子捕獲機能を担っていたが、本発明では仮圧着で既に所望の状態で導電粒子が捕獲されることになるので、仮圧着に引続き、圧力を解除することなくそのまま本圧着に移行することが可能となる。ただし、仮圧着で本圧着よりも高い圧力を加えていた場合には、本庄着への移行に伴い加圧力を所定の圧力まで弱めることになる。
また、この本圧着では、積極的に圧力を加えることなく、仮圧着で加えた圧力の一部を残存させる形態にて、必要な加圧力を維持するようにすることもできる。たとえば、異方導電性接着剤の接着剤成分に収縮性接着剤を使用し、本圧着時には外部から実質的に機械的な圧力を加えない方法である。このとき、接着剤成分として、加熱により硬化し、かつ、収縮するものや、紫外線照射により硬化し、かつ、収縮するものを使用することができる。したがってこの場合には、本圧着手段として、実質的に加圧手段を持たず、昇温手段のみ、または紫外線照射手段のみを有するものに構成することも可能である。
このように、本発明に係る実装方法および装置においては、ファインピッチ化に伴う面積の小さなバンプを使用する場合にあっても、容易にバンプ上に望ましい個数以上の導電粒子を捕獲できるようになり、異方導電性接着剤中の導電粒子数は増加させなくてもよいためショートやノイズ等の不都合を発生させることなく、所望の電気的接合を確実に達成することができる。また、仮圧着後圧力を解除することなく本圧着に移行することが可能になり、実装工程全体の簡素化、時間短縮をはかることもできる。
産業上の利用可能性
本発明に係る実装方法および装置は、導電粒子を含有する異方導電性接着剤を介して被接合物同士を接合するあらゆる実装に適用できる。とくに本発明は、バンプがファインピッチ化される場合、面積の小さなバンプを使用する場合に有効である。また本発明は、実装工程全体の簡素化、時間短縮を目指す場合にも有用である。
【図面の簡単な説明】
図1は、本発明の一実施態様に係る実装方法の実施に用いる実装装置の概略構成図である。
図2は、チップ上に異方導電性接着剤(異方導電性フィルム)を付与した状態の一例を示す概略断面図である。
図3は、チップ上に異方導電性接着剤(異方導電性ペースト)を付与した状態の一例を示す概略断面図である。
図4は、異方導電性接着剤の温度と粘度との関係図である。
図5は、本発明の一実施態様に係る実装方法における仮圧着時の導電粒子捕獲の様子を示す概略断面図である。
図6は、本発明に係る実装方法における仮圧着時の加圧力とバンプ上捕獲導電粒子数との関係図である。
図7は、バンプ上捕獲導電粒子数と繰り返しサイクル後の抵抗上昇値との関係図である。
図8は、従来の実装方法における仮圧着時の導電粒子捕獲の様子を示す概略断面図である。
図9は、従来の実装方法におけるバンプ面積とバンプ上捕獲導電粒子数との関係図である。
〔符号の説明〕
1 実装装置
2 一方の被接合物としてのチップ
3 他方の被接合物としての基板
4 バンプ
5 パッド
6 ステージ
7 ツール
8 認識手段
9 導電粒子
10 異方導電性接着剤
10a 異方導電性接着剤としての異方導電性フィルム
10b 異方導電性接着剤としての異方導電性ペースト
TECHNICAL FIELD The present invention relates to a mounting method for joining objects to be joined, each of which has a bump (for example, a chip and a substrate) via an anisotropic conductive adhesive containing conductive particles. And apparatus.
Background Technology A mounting method in which at least one of the objects to be joined having bumps is heat-bonded is well known. As one of typical methods, a method of joining via an anisotropic conductive adhesive (an anisotropic conductive film or anisotropic conductive paste) containing conductive particles is known. In this method, an anisotropic conductive adhesive containing conductive particles is interposed between the objects to be joined, and the conductive particles are sandwiched between the bumps or between the bumps and the electrodes by heating and pressurizing to ensure electrical connection. This is a joining method in which the adhesive component existing in the periphery thereof is hardened to ensure electrical insulation and sealing properties with respect to the outside.
Conventionally, this method is, for example, in a chip having 250 bumps having an area of 5000 μm 2 after applying an anisotropic conductive film containing conductive particles on a substrate or applying an anisotropic conductive paste, for example. The chip is temporarily bonded by temporary pressure bonding at a low temperature (for example, 60 ° C.) and a low pressure (for example, 15 MPa). In the next step, the chip is finally pressure bonded at a high temperature (for example, 220 ° C.) and high pressure (for example, 95 MPa). To be joined. Electrical connection between the electrodes is ensured by the conductive particles sandwiched between the electrodes of the substrate and the bumps of the chip after the main pressure bonding.
In order to keep the state of the electrical connection to the desired state, for example, as the number of conductive particles having a particle diameter bump area is captured on the bumps of 5000 .mu.m 2 is 6 [mu] m, required about 5 or more per bump It is. FIG. 7 shows a cooling cycle of −40 ° C. to 100 ° C. between the connected substrate and the chip when the electrode of the substrate and the bump of the chip are bonded via an anisotropic conductive adhesive as described above. The relationship between the resistance increase value (Ω) after repeating the cycle and the number of trapped conductive particles per bump is shown. As shown in FIG. 7, by setting the number of trapped conductive particles to about 5 or more per bump, for example, a stable bonding state with little increase in resistance can be obtained even if the use conditions and environmental conditions fluctuate repeatedly. I understand.
However, in the conventional mounting method as described above, it has become difficult to meet the recent demand for finer pitch of bumps and the accompanying reduction in bump area. That is, even though the conventional bump is small, it has an area of about 5000 μm 2. For example, as a bump of a chip or a substrate used in a higher-definition liquid crystal device, about 3000 μm 2 for fine pitch. A bump having a large area and its bonding have been demanded. In the case of such a small area bump, it has become difficult to secure five or more capture conductive particles per bump.
This is because, for example, as shown in FIG. 8, the adhesive component 103 interposed between the chip 101 and the substrate 102 is heated to a high temperature during the main pressure bonding, and in this state, the bump 104 and the substrate of the chip 101 are heated. A pressure is applied between the electrodes 105 of 102, and the conductive particles 106 are sandwiched and captured between them, but the viscosity of the adhesive component 103 is greatly reduced by heating to a high temperature. The adhesive component 103 flows from between the bump 104 and the electrode 105 toward the periphery, and accordingly, the conductive particle 106 also escapes from between the bump 104 and the electrode 105, and as a result, the conductive particle 106 captured on the bump 104. This is because it is impossible to secure a large number. If five or more capture conductive particles per bump cannot be secured, the electrical connection state may become unstable as described above.
In order to solve this problem, the number of conductive particles in the anisotropic conductive adhesive may be increased. That is, the relationship between the bump area (unit: μm 2 ) and the number of captured conductive particles per bump when bonding by the conventional method as described above is the number of conductive particles in the anisotropic conductive adhesive (unit: thousands respect / mm 3), for example, as shown in FIG. FIG. 9 shows cases where the number of conductive particles in the anisotropic conductive adhesive is 1 million / mm 3 and 1.5 million / mm 3 , and the number of captured conductive particles per bump with respect to the bump area. Is expressed as a characteristic up to ± 3σ with respect to the average value and the standard deviation σ with respect to the average value. Usually, the number of conductive particles in the anisotropic conductive adhesive is about 1 million particles / mm 3, and therefore, a bump having an area of about 5000 μm 2 exhibited a characteristic of −3σ. Even in this case, it is possible to secure five or more capture conductive particles on the bump. However, when the bump area is about 3000 μm 2, it becomes difficult to secure five or more capture conductive particles on the bump when the characteristic of −3σ is exhibited. In contrast, by increasing the conductive particle number in the anisotropic conductive adhesive to 1.5 million / mm 3, even if small bump area about 3000 .mu.m 2, five or more capture conductive particles on the bump It can be secured.
However, simply to increase the number of conductive particles in the anisotropic conductive adhesive in order to cope with the reduction of the bump area accompanying the finer pitch of the bump, there is a possibility that a new problem of short circuit or noise may occur. There is. That is, if the number of conductive particles in the anisotropic conductive adhesive is increased, the number of conductive particles remaining on the bump can be increased, but the number of conductive particles escaping to the surroundings with the flow of the adhesive component also increases. Since the density of the conductive particles that are not used for electrical bonding around the part is also increased, there is a risk of short-circuiting, particularly with a fine pitch that reduces the dimension between the bumps. Further, particularly in a high frequency region, there is a possibility that noise from the surroundings may be picked up at the joint.
Disclosure <br/> therefore an object of the present invention the inventions, even in cases where the bump area is reduced, to allow capturing the desired number or more of the conductive particles on the bump, the disadvantages such as short circuit or noise It is an object of the present invention to provide a mounting method and apparatus capable of achieving a desired electrical connection without causing the occurrence.
In order to achieve the above object, a mounting method according to the present invention is a mounting method in which at least one of the objects to be bonded has bumps bonded to each other via an anisotropic conductive adhesive containing conductive particles. The bonded product is temporarily pressed at a low temperature at which the conductive particles do not substantially flow in the adhesive and at a pressure higher than that of the final pressing, and then the final pressing is performed.
In this mounting method, it is also possible to shift to the main pressure bonding without releasing the pressure after the temporary pressure bonding, thereby simplifying the joining process and shortening the time. That is, in the conventional method, at the time of provisional pressure bonding, only a very small pressure can be applied so as to substantially place one object to be bonded onto the other object to be bonded. Although it was supposed to shift to a certain pressure bonding, in the mounting method according to the present invention, since a pressure higher than the pressure bonding is applied at the time of provisional pressure bonding, it is possible to move to the pressure bonding without releasing the pressure as it is. Become.
In the mounting method according to the present invention, a temperature lower than 90 ° C., for example, a temperature of about 60 ° C. can be adopted as a low temperature at which the conductive particles do not substantially flow in the adhesive. Further, as the pressing force beyond the main pressure bonding, a pressing force of 40 MPa or more can be adopted as the bump pressure. This applied pressure of 40 MPa or more is much higher than the applied pressure at the time of conventional pre-bonding, and bumps are applied so that the conductive particles do not flow even when the temperature of the adhesive is low and the viscosity of the adhesive is high. The pressure is sufficiently high to be sandwiched above. Furthermore, it is preferable to set the moving speed of the object to be joined at the time of temporary pressure bonding within a range of 0.1 mm / s to 10 mm / s.
Further, in the mounting method according to the present invention, a pressure higher than the main pressure is applied at the time of the temporary pressure bonding. Therefore, at the time of the main pressure bonding, the pressure applied at the time of the temporary pressure bonding is reduced, or the pressure is applied. In the case where the force necessary for the main press-bonding can be maintained among the pressures applied during the temporary press-bonding due to the curing action, the main press-bonding can be performed without substantially applying external pressure. In the latter case, for example, a shrinkable adhesive can be used for the adhesive component of the anisotropic conductive adhesive so that no substantial pressure is applied during the main compression bonding. As the adhesive component, for example, a thermosetting adhesive that cures and contracts by heating, or an ultraviolet curable adhesive that cures and contracts by irradiation with ultraviolet rays can be used.
A mounting device according to the present invention is a mounting device that joins objects to be joined, each of which has a bump, via an anisotropic conductive adhesive containing conductive particles, and at least the conductive particles in the adhesive. Has a provisional pressure bonding means for temporarily pressure bonding both objects to be bonded at a low pressure at which the pressure does not substantially flow and a pressure of 40 MPa or more at the bump pressure.
In this mounting apparatus, the main pressure bonding means for performing the final pressure bonding after the temporary pressure bonding can be configured to have substantially no temperature raising means or only an ultraviolet irradiation means without any pressure means.
In the mounting method and apparatus according to the present invention as described above, in the temporary press-bonding step, the conductive particles are present on the bumps at a low temperature at which the conductive particles do not substantially flow in the adhesive, that is, at a low temperature because of high viscosity. The conductive particles are difficult to escape from the bumps, and are pressed in a state where they are captured in large quantities on the bumps. Since the applied pressure at this time is higher than the main pressure bonding, the conductive particles left on the bumps are surely sandwiched between the joined portions and used for predetermined electrical joining. Therefore, even if the number of conductive particles in the anisotropic conductive adhesive is not particularly increased, that is, the number of conductive particles is equal to that of the conventional method, even if the bump area is reduced due to the fine pitch of the bump, the predetermined number The above (for example, 5 or more) conductive particles can be captured on each bump. As a result, even when a bump with a small area is used, it becomes possible to easily capture a desired number or more of conductive particles on the bump, without increasing the number of conductive particles in the anisotropic conductive adhesive. Therefore, the desired electrical connection can be reliably achieved without causing inconveniences such as short circuit and noise. In addition, it is possible to shift to the main pressure bonding without releasing the pressure after the temporary pressure bonding, and it is possible to simplify the entire mounting process and shorten the time.
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a mounting apparatus 1 according to an embodiment of the present invention. In FIG. 1, the case where one is a chip 2 and the other is a substrate 3 is illustrated as an object to be bonded. A large number of bumps 4 (two bumps 4 are shown in FIG. 1) are provided on the chip 2, and corresponding pads 5 are provided on the substrate 3. The chip 2 and the substrate 3 are joined via an anisotropic conductive adhesive, and the conductive particles contained in the anisotropic conductive adhesive are sandwiched between the bumps 4 and the pads 5 and captured. Connection is secured.
Here, the term “chip” refers to, for example, an IC chip, a semiconductor chip, an optical element, a surface mount component, a wafer, or the like on the side to be bonded to the substrate regardless of the type or size. The bump means, for example, anything that is bonded to a pad provided on a substrate, such as a solder bump or a stud bump. Moreover, a board | substrate refers to all the things by the side joined to a chip | tip irrespective of a kind and magnitude | size, such as a resin substrate, a glass substrate, a film substrate, a chip | tip, a wafer, for example. The pad refers to anything that is bonded to a bump provided on a chip, such as an electrode with electrical wiring and a dummy electrode not connected to electrical wiring.
In this embodiment, a stage 6 for holding the substrate 3 and a tool 7 for holding the chip 2 are provided. The position of the stage 6 can be adjusted in the X, Y direction (horizontal direction) and / or the rotation direction (θ direction), and the tool 7 can be adjusted in the Z direction (vertical direction) or the Z direction and the rotation direction (θ direction). The position can be adjusted. In this embodiment, this tool 7 has a built-in heating means, and can press the chip 2 against the substrate 3 with a bump pressure of 40 MPa or more. Further, in order to detect the positional deviation amount of the upper and lower workpieces, and to adjust within the desired position accuracy range based on the detected amount, the upper and lower workpieces are positioned between the stage 6 and the tool 7. Recognizing means 8 as means for reading the attached recognition mark is provided so as to be able to advance and retreat. The position of the recognizing means 8 can also be adjusted in the X and Y directions (and in some cases in the Z direction).
The stage, tool, and recognition means as described above are generally mounted so as to be movable in parallel and / or rotatable, but may be mounted in a combination of lifting and lowering as necessary. The recognition means is a concept including all means capable of recognizing a recognition mark, such as a CCD camera, an infrared camera, an X-ray camera, and an appropriate sensor.
Using the mounting apparatus 1 configured as described above, the mounting method according to the present invention is performed as follows.
First, as shown in FIGS. 2 and 3, an anisotropic conductive adhesive 10 containing conductive particles 9 is provided on the chip 2 side, the substrate 3 side, or both sides. The anisotropic conductive adhesive 10 is made of an anisotropic conductive film or anisotropic conductive paste. FIG. 2 shows a case where the anisotropic conductive film 10a is attached to the chip 2 side, and FIG. The cases where the anisotropic conductive paste 10b is applied to the side are respectively shown.
From the above state, the tool 7 is lowered, pressure is applied between the chip 2 and the substrate 3, and the bump 4 and the pad 5 are joined. First, temporary pressure bonding is performed, but at this time, the conductive particles 9 do not substantially flow in the anisotropic conductive adhesive 10 at a low temperature, for example, a temperature lower than 90 ° C., preferably about 70 ° C., and The pressure is higher than the pressure in the next main pressure bonding step, for example, the bump pressure is 40 MPa or more, preferably 59 MPa or more (= 30 gf / 5000 μm 2 or more). .
The relationship between the temperature and the viscosity of the anisotropic conductive adhesive 10 is as shown in FIG. 4, for example. In the example shown in FIG. 4, a relatively high viscosity is shown at a temperature lower than 90 ° C., a minimum viscosity is shown in the vicinity of 90 ° C. to 110 ° C., and the viscosity is increased again when the temperature is higher than that. Start. The state at the time of the conventional temporary pressure bonding as shown in FIG. 8 described above shows a state in which the pressure is applied at a temperature in the vicinity of 90 ° C. to 110 ° C. with a very low pressure. In the present invention, for example, the conductive particles 9 are pressurized at a temperature of about 70 ° C., that is, at a low temperature at which the conductive particles 9 hardly flow (substantially does not flow). A much higher pressure (pressing force more than the main pressure bonding) is applied. Therefore, for example, as shown in FIG. 5, the conductive particles 9 existing between the bumps 4 and the pads 5 are pressed in a state in which they are extremely difficult to escape, and a large amount of the conductive particles 9 is left on the bumps 4. It is sandwiched between the bump 4 and the pad 5 and captured.
The behavior of the conductive particles at the time of joining will be considered more specifically and in detail. As an anisotropic conductive adhesive, for example, an anisotropic conductive film has a normal anisotropic conductive film in which conductive particles are uniformly diffused in the adhesive layer, and conductive particles diffuse only in the lower layer portion. There are two types of double layer type anisotropic conductive film. In the conventional press bonding method for bonding at high temperature and high pressure, in the case of a double layer type anisotropic conductive film, it flows to the lower layer portion, and the number of particles that can be captured decreases. In addition, in the case of a normal anisotropic conductive film, variation in the uniform particle diffusion state occurs due to flow, or the number of particles in that portion is caused by bubbles due to generated gas in the adhesive layer at high temperature. The number of particles that can be captured decreases. However, as in the present invention, when it is pressed at a low temperature and a high pressure at the time of pre-bonding, the flow is suppressed and bubbles are not generated, so the number of particles uniformly dispersed in the initial stage can be captured as it is, and the number of particles is reduced. Can solve the problem.
In addition, it is possible to press the particles before moving by moving them at a speed of 0.1 mm / s or more, rather than slowly moving the object to be bonded, during temporary pressing. In particular, in the case of a double layer type anisotropic conductive film, if the moving speed of the object to be bonded is too low, the temperature of the object to be bonded is transmitted to the lower layer part, and the particles are caused to flow. In addition, the generation of bubbles may cause the particles to be pushed away. For this reason, the moving speed of the object to be bonded at the time of temporary press-bonding is set to a predetermined speed or more, and the object is pushed in before flowing or bubbles are generated, and the particles are captured without escaping. However, if the moving speed of the object to be joined is too high, it moves to the lower layer portion due to impact, so there is an optimum speed range. As the speed range, a range of 0.1 mm / s to 10 mm / s is optimal.
For example, even if the area of one bump 4 is reduced to about 3000 μm 2 under the above conditions, the number of conductive particles 9 in the anisotropic conductive adhesive 10 remains 1 million / mm 3 , which is the same as the conventional one. Thus, it becomes possible to sufficiently capture five or more conductive particles 9, and a good electrical connection between them is ensured. Further, since there is no need to increase the number of conductive particles 9 in the anisotropic conductive adhesive 10, there is no possibility of short circuit or noise generation.
Although there are some variations depending on the conditions, when the number of conductive particles in the anisotropic conductive adhesive 10 is 1 million particles / mm 3 , it is captured on the bump 4 having an area of 3000 μm 2 and the applied pressure at the time of the temporary bonding. The relationship with the number of conductive particles is as shown in FIG. That is, even with the characteristic of −3σ, it is possible to capture five or more conductive particles 9.
After the temporary pressure bonding as described above, for example, the temperature is raised and the main pressure bonding is performed. As the temperature rises, the viscosity of the adhesive component of the anisotropic conductive adhesive 10 decreases once and becomes easy to flow, but at this time, a desired number of conductive particles 9 have already been captured on the bumps 4, and the desired electrical properties are obtained. Curing is started by further temperature rise while the bonding state is secured.
Further, in the conventional method, the main pressure bonding was responsible for the conductive particle capturing function. However, in the present invention, the conductive particles are already captured in a desired state by the temporary pressure bonding, so the pressure is released following the temporary pressure bonding. It becomes possible to shift to the main pressure bonding as it is. However, when a pressure higher than that of the main pressure bonding is applied in the temporary pressure bonding, the applied pressure is reduced to a predetermined pressure with the shift to the main bonding.
Further, in this main pressure bonding, a necessary pressure can be maintained in a form in which a part of the pressure applied in the temporary pressure bonding is left without actively applying pressure. For example, a shrinkable adhesive is used as the adhesive component of the anisotropic conductive adhesive, and no mechanical pressure is applied from the outside at the time of the final press bonding. At this time, an adhesive component that cures and contracts by heating, or that cures and contracts by ultraviolet irradiation can be used. Therefore, in this case, it is also possible to configure the main pressure bonding means to have substantially no pressurizing means and only a temperature raising means or only an ultraviolet irradiation means.
As described above, in the mounting method and apparatus according to the present invention, it is possible to easily capture a desired number or more of conductive particles on the bump even when a bump having a small area accompanying fine pitching is used. Since the number of conductive particles in the anisotropic conductive adhesive does not need to be increased, a desired electrical connection can be reliably achieved without causing inconveniences such as a short circuit and noise. Further, it is possible to shift to the main pressure bonding without releasing the pressure after the temporary pressure bonding, and the whole mounting process can be simplified and the time can be shortened.
INDUSTRIAL APPLICABILITY The mounting method and apparatus according to the present invention can be applied to any mounting in which objects to be bonded are bonded via an anisotropic conductive adhesive containing conductive particles. In particular, the present invention is effective when bumps having a small area are used when the bumps are fine pitched. The present invention is also useful for the purpose of simplifying the entire mounting process and reducing the time.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a mounting apparatus used to implement a mounting method according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing an example of a state in which an anisotropic conductive adhesive (anisotropic conductive film) is applied on a chip.
FIG. 3 is a schematic cross-sectional view showing an example of a state where an anisotropic conductive adhesive (anisotropic conductive paste) is applied on a chip.
FIG. 4 is a relationship diagram between the temperature and the viscosity of the anisotropic conductive adhesive.
FIG. 5 is a schematic cross-sectional view showing a state of capturing conductive particles during temporary pressure bonding in the mounting method according to one embodiment of the present invention.
FIG. 6 is a diagram showing the relationship between the applied pressure during temporary pressure bonding and the number of captured conductive particles on the bump in the mounting method according to the present invention.
FIG. 7 is a graph showing the relationship between the number of conductive particles captured on the bump and the resistance increase value after repeated cycles.
FIG. 8 is a schematic cross-sectional view showing a state of capturing conductive particles during temporary pressure bonding in a conventional mounting method.
FIG. 9 is a relationship diagram between the bump area and the number of trapped conductive particles on the bump in the conventional mounting method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mounting apparatus 2 Chip | tip as one to-be-joined object 4 Board | substrate 4 as the other to-be-joined object Bump 5 Pad 6 Stage 7 Tool 8 Recognition means 9 Conductive particle 10 Anisotropic conductive adhesive 10a As an anisotropic conductive adhesive Anisotropic conductive film 10b Anisotropic conductive paste as anisotropic conductive adhesive

Claims (8)

少なくとも一方がバンプを有する被接合物同士を、導電粒子を含有する異方導電性接着剤を介して接合する実装方法において、両被接合物の仮圧着を、接着剤中で導電粒子が実質的に流動しない低温でかつ、本圧着以上の加圧力で行い、しかる後に、本圧着を行うことを特徴とする実装方法。  In a mounting method in which at least one of the objects to be bonded having bumps is bonded to each other via an anisotropic conductive adhesive containing conductive particles, the temporary bonding of both objects to be bonded is substantially performed by the conductive particles in the adhesive. The mounting method is characterized in that it is performed at a low temperature that does not flow into the substrate and at a pressurizing force that is equal to or higher than the main pressure bonding, and then the main pressure bonding is performed. 仮圧着後、圧力を解除することなく本圧着に移行する、請求項1の実装方法。  The mounting method according to claim 1, wherein after the temporary pressure bonding, the pressure bonding is performed without releasing the pressure. 仮圧着を、バンプ圧力にて40MPa以上の加圧力で行う、請求項1の実装方法。  The mounting method according to claim 1, wherein the temporary pressure bonding is performed at a bump pressure of 40 MPa or more. 仮圧着を、90℃よりも低い温度で行う、請求項1の実装方法。  The mounting method according to claim 1, wherein the temporary pressure bonding is performed at a temperature lower than 90 ° C. 仮圧着時の被接合物の移動速度を0.1mm/s〜10mm/sの範囲内に設定する、請求項1の実装方法。  The mounting method of Claim 1 which sets the moving speed of the to-be-joined object at the time of temporary pressure bonding in the range of 0.1 mm / s-10 mm / s. 異方導電性接着剤の接着剤成分に収縮性接着剤を使用し、本圧着時には実質的に外部から加圧しない、請求項1の実装方法。  The mounting method according to claim 1, wherein a shrinkable adhesive is used as an adhesive component of the anisotropic conductive adhesive, and no substantial pressure is applied from the outside during the main compression bonding. 接着剤成分として、加熱により硬化し、かつ、収縮するもの、または紫外線照射により硬化し、かつ、収縮するものを使用する、請求項6の実装方法。  7. The mounting method according to claim 6, wherein an adhesive component that cures and contracts by heating, or that cures and contracts by ultraviolet irradiation is used. 少なくとも一方がバンプを有する被接合物同士を、導電粒子を含有する異方導電性接着剤を介して接合する実装装置であって、少なくとも、接着剤中で導電粒子が実質的に流動しない低温で、かつ、バンプ圧力にて40MPa以上の加圧力で両被接合物を仮圧着する仮圧着手段を有することを特徴とする実装装置。  A mounting device that joins objects to be joined, each having a bump, via an anisotropic conductive adhesive containing conductive particles, at least at a low temperature at which the conductive particles do not substantially flow in the adhesive. And the mounting apparatus characterized by having the temporary crimping | compression-bonding means which temporarily crimps | bonds both to-be-joined objects with the applied pressure of 40 Mpa or more with bump pressure.
JP2003507883A 2001-06-20 2002-06-17 Mounting method and apparatus Expired - Fee Related JP3966516B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001187160 2001-06-20
JP2001187160 2001-06-20
PCT/JP2002/006010 WO2003001586A1 (en) 2001-06-20 2002-06-17 Mounting method and device

Publications (2)

Publication Number Publication Date
JPWO2003001586A1 JPWO2003001586A1 (en) 2004-10-14
JP3966516B2 true JP3966516B2 (en) 2007-08-29

Family

ID=19026493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003507883A Expired - Fee Related JP3966516B2 (en) 2001-06-20 2002-06-17 Mounting method and apparatus

Country Status (3)

Country Link
JP (1) JP3966516B2 (en)
TW (1) TW563215B (en)
WO (1) WO2003001586A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158666A1 (en) * 2010-06-15 2011-12-22 ソニーケミカル&インフォメーションデバイス株式会社 Process for production of connected structure

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099987B2 (en) * 2005-07-25 2012-12-19 旭化成イーマテリアルズ株式会社 Circuit connection method and connection structure
JP4925405B2 (en) * 2005-10-03 2012-04-25 旭化成イーマテリアルズ株式会社 Method for manufacturing connection structure
JP5093482B2 (en) 2007-06-26 2012-12-12 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive material, connection structure and manufacturing method thereof
WO2009001605A1 (en) * 2007-06-26 2008-12-31 Sony Chemical & Information Device Corporation Anisotropic elctroconductive material, connection structure, and process for producing the connection structure
JP5370694B2 (en) * 2011-03-11 2013-12-18 デクセリアルズ株式会社 Connection structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513120A (en) * 1991-07-04 1993-01-22 Sharp Corp Electronic part mounting structure using anisotropic conductive tape connector and optical hardening resin
JP2629502B2 (en) * 1991-11-20 1997-07-09 富士通株式会社 Connection method of film mounted with semiconductor chip
JP3241943B2 (en) * 1994-09-16 2001-12-25 アルプス電気株式会社 Circuit connection method
JP3438583B2 (en) * 1998-05-08 2003-08-18 松下電器産業株式会社 Anisotropic conductive film connection method
JP4311862B2 (en) * 2000-05-29 2009-08-12 東レエンジニアリング株式会社 Chip mounting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158666A1 (en) * 2010-06-15 2011-12-22 ソニーケミカル&インフォメーションデバイス株式会社 Process for production of connected structure
KR101355709B1 (en) 2010-06-15 2014-01-27 데쿠세리아루즈 가부시키가이샤 Process for production of connected structure and connected structure produced therefrom
US8835772B2 (en) 2010-06-15 2014-09-16 Dexerials Corporation Production method of connection structure

Also Published As

Publication number Publication date
WO2003001586A1 (en) 2003-01-03
JPWO2003001586A1 (en) 2004-10-14
TW563215B (en) 2003-11-21

Similar Documents

Publication Publication Date Title
JP3921459B2 (en) Mounting method and mounting apparatus for electrical parts
JP3402267B2 (en) Electronic element mounting method
JP3880775B2 (en) Mounting electronic components on a circuit board
KR100750014B1 (en) Method of mounting chip
KR20010092458A (en) Electronic parts mounting method and device therefor
US20030178132A1 (en) Method for manufacturing connection structure
JP2009141269A (en) Packaging method and apparatus of electrical component
JP3871634B2 (en) COF semiconductor device manufacturing method
JP2000286297A (en) Mounting method for electronic component and its device
US6674178B1 (en) Semiconductor device having dispersed filler between electrodes
JP3966516B2 (en) Mounting method and apparatus
JP2002343829A (en) Method of packaging semiconductor device
JP2009141267A (en) Packaging method and apparatus of electrical component
JPH0997816A (en) Mounting method and mounting structure of semiconductor device
JP2000286298A (en) Method for mounting electronic component and device thereof
JP4274126B2 (en) Crimping apparatus and crimping method
JP4129837B2 (en) Manufacturing method of mounting structure
JP2005116596A (en) Bonding method
JP3575384B2 (en) Method for manufacturing semiconductor device
JP4640380B2 (en) Mounting method of semiconductor device
JP5164499B2 (en) Electronic component mounting method and electronic component mounting substrate
JP5075569B2 (en) Wiring board and IC chip mounting method
JP4768188B2 (en) Chip mounting method and apparatus
JP2009032948A (en) Ic chip, and method of mounting ic chip
JP2000353424A (en) Anisotropic conductive adhesive, conductive connection structure and conductive connection method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees