JP5164499B2 - Electronic component mounting method and electronic component mounting substrate - Google Patents

Electronic component mounting method and electronic component mounting substrate Download PDF

Info

Publication number
JP5164499B2
JP5164499B2 JP2007250641A JP2007250641A JP5164499B2 JP 5164499 B2 JP5164499 B2 JP 5164499B2 JP 2007250641 A JP2007250641 A JP 2007250641A JP 2007250641 A JP2007250641 A JP 2007250641A JP 5164499 B2 JP5164499 B2 JP 5164499B2
Authority
JP
Japan
Prior art keywords
pressure
electronic component
thermocompression bonding
chip
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007250641A
Other languages
Japanese (ja)
Other versions
JP2009081337A (en
Inventor
孝 ▲松▼村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2007250641A priority Critical patent/JP5164499B2/en
Priority to PCT/JP2008/065906 priority patent/WO2009041235A1/en
Priority to TW097136757A priority patent/TW200939370A/en
Publication of JP2009081337A publication Critical patent/JP2009081337A/en
Application granted granted Critical
Publication of JP5164499B2 publication Critical patent/JP5164499B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/06Platens or press rams
    • B30B15/065Press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B5/00Presses characterised by the use of pressing means other than those mentioned in the preceding groups
    • B30B5/02Presses characterised by the use of pressing means other than those mentioned in the preceding groups wherein the pressing means is in the form of a flexible element, e.g. diaphragm, urged by fluid pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75251Means for applying energy, e.g. heating means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75314Auxiliary members on the pressing surface
    • H01L2224/75315Elastomer inlay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75314Auxiliary members on the pressing surface
    • H01L2224/75315Elastomer inlay
    • H01L2224/75316Elastomer inlay with retaining mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

An electronic part mounting method and device for mounting an electronic part while making the most of the advantages of thermocompression bonding using an elastic body so as to enable reduction of voids to an irreducible minimum and significant reduction of defective connections. An electronic part (IC chip (12)) is placed on a wiring board (11) through an adhesive (for example, an anisotropic conductive adhesive film (13)). The IC chip (12), or the electronic part, is pressed with a thermocompression bonding head (2) having a press-bonding portion (4) made of an elastic body, and the anisotropic conductive adhesive film (13) is heated, thereby thermocompression-bonding the IC chip (12) to the wiring board (11). The applied pressure by the thermocompression bonding head (2) is determined so as to reach a predetermined pressure (pressure necessary to get rid of the voids) before the temperature of the anisotropic conductive adhesive film (13) reaches the curing start temperature K of a binding resin (13a) contained in the anisotropic conductive adhesive film (13).

Description

本発明は半導体素子等の電子部品を異方導電性接着フィルム等を介して配線基板上に実装する電子部品の実装方法及び電子部品実装基板に関するものであり、特に、弾性体を用いて電子部品を加圧し熱圧着する電子部品の実装方法の改良に関する。 The present invention relates to an electronic component mounting method for mounting an electronic component such as a semiconductor element on a wiring board via an anisotropic conductive adhesive film or the like, and particularly to an electronic component mounting substrate using an elastic body. The present invention relates to an improvement in a mounting method for electronic components in which components are pressurized and thermocompression bonded.

例えば半導体素子の配線基板への実装においては、いわゆるフェースダウン状態で配線基板上に実装するフリップチップ実装法が提案されており、電極間の電気的接続及び半導体素子の物理的固定のために、異方導電性接着フィルム(ACF)が用いられている。異方導電性接着フィルムは、接着剤として機能する結着樹脂中に導電性粒子が分散されたものであり、配線基板上の電極と対向する半導体素子の電極間にこれを挟み込み、加熱加圧することにより前記導電性粒子が電極間で押し潰され、電極間の電気的な接続が図られる。電極の無い部分では、導電性粒子は結着樹脂中に分散した状態が維持され、電気的に絶縁された状態が保たれるので、電極のある部分でのみ電気的導通が図られることになる。   For example, in mounting a semiconductor element on a wiring board, a flip chip mounting method for mounting on a wiring board in a so-called face-down state has been proposed, and for electrical connection between electrodes and physical fixing of the semiconductor element, An anisotropic conductive adhesive film (ACF) is used. An anisotropic conductive adhesive film is a film in which conductive particles are dispersed in a binder resin that functions as an adhesive. The anisotropic conductive adhesive film is sandwiched between electrodes of a semiconductor element facing an electrode on a wiring board and heated and pressurized. Thereby, the said electroconductive particle is crushed between electrodes, and the electrical connection between electrodes is achieved. In the portion where there is no electrode, the conductive particles are kept dispersed in the binder resin and kept in an electrically insulated state, so that electrical conduction can be achieved only in the portion where the electrode is present. .

異方導電性接着フィルムを用いた半導体素子の実装方法では、異方導電性接着フィルムを貼り付けた配線基板上に半導体素子を配置した後、異方導電性接着フィルムを加熱しながら半導体素子を熱圧着ヘッドで加圧し、電極間の導電性粒子を押し潰すとともに異方導電性接着フィルムを硬化させ、半導体素子の熱圧着を行う。この場合、熱圧着ヘッドとしては、例えばセラミック製のヘッドや金属製のヘッド等の硬質の熱圧着ヘッドが用いられているが、均一な加圧が難しく、半導体素子の周囲に対する加圧不足等により接続信頼性が低下したり、複数の半導体素子を一括して実装することが難しい等の問題がある。さらには、硬質の熱圧着ヘッドを用いた場合には、半導体素子に過剰な衝撃が加わるおそれもあり、それによる半導体素子の損傷等も懸念される。   In the mounting method of the semiconductor element using the anisotropic conductive adhesive film, after placing the semiconductor element on the wiring board on which the anisotropic conductive adhesive film is attached, the semiconductor element is heated while heating the anisotropic conductive adhesive film. Pressure is applied with a thermocompression bonding head to crush the conductive particles between the electrodes and harden the anisotropic conductive adhesive film to perform thermocompression bonding of the semiconductor element. In this case, as the thermocompression bonding head, for example, a hard thermocompression bonding head such as a ceramic head or a metal head is used. However, uniform pressurization is difficult, and due to insufficient pressurization around the semiconductor element. There are problems such as low connection reliability and difficulty in mounting a plurality of semiconductor elements at once. Furthermore, when a hard thermocompression bonding head is used, there is a possibility that excessive impact may be applied to the semiconductor element, which may cause damage to the semiconductor element.

このような状況から、近年、シリコーンゴム等の弾性体からなる熱圧着ヘッドを用いて半導体素子等の電子部品を加圧し、前述の熱圧着を行う技術が提案されている(例えば、特許文献1や特許文献2等を参照)。   Under such circumstances, in recent years, a technique has been proposed in which an electronic component such as a semiconductor element is pressed using a thermocompression bonding head made of an elastic body such as silicone rubber and the above-described thermocompression bonding is performed (for example, Patent Document 1). And Patent Document 2).

例えば、特許文献1には、接着剤を用いて電気部品を配線基板上に熱圧着する工程を有し、当該熱圧着の際に、所定のゴム硬度を有するエラストマーからなる圧着部を用い、電気部品の頂部領域を所定の圧力で押圧する一方、電気部品の側部領域を頂部領域に対する圧力より小さい圧力で押圧する電気部品の実装方法が開示されている。   For example, Patent Document 1 includes a step of thermocompression bonding an electrical component on a wiring board using an adhesive, and a thermocompression bonding is performed using a crimping portion made of an elastomer having a predetermined rubber hardness. An electrical component mounting method is disclosed in which a top region of a component is pressed with a predetermined pressure while a side region of the electrical component is pressed with a pressure smaller than the pressure on the top region.

特許文献2には、チップ高さの異なる場合や基板の両面に実装する場合に有効な実装法が開示されており、基板上の電極形成面とチップ電極面間に接着剤を介在させ、基板の電極とこれに相対峙するチップ電極を位置合わせした状態で、チップ背面に緩衝層を介在させて加熱加圧することが開示されている。
特許第3921459号公報 特開平10−256311号公報
Patent Document 2 discloses a mounting method effective when the chip height is different or when mounting on both surfaces of the substrate. An adhesive is interposed between the electrode forming surface on the substrate and the chip electrode surface, and the substrate It is disclosed that heating and pressurization is performed with a buffer layer interposed on the back surface of the chip in a state where the electrode and the chip electrode facing the electrode are aligned.
Japanese Patent No. 3921459 Japanese Patent Laid-Open No. 10-256311

前述のような弾性体からなる熱圧着ヘッドを用いた実装方法を採用すれば、衝撃による電子部品の破損を回避することができ、複数の電子部品を一括して実装することが可能である。また、均一な加圧が可能となり、接続信頼性を確保することが可能である。   If a mounting method using a thermocompression bonding head made of an elastic body as described above is employed, damage to electronic components due to impact can be avoided, and a plurality of electronic components can be mounted together. Further, uniform pressurization is possible, and connection reliability can be ensured.

しかしながら、本発明者が更なる検討を重ねたところ、弾性体からなる熱圧着ヘッドを用いた実装においては、接続信頼性の点で課題を残していることがわかってきた。具体的には、弾性体からなる熱圧着ヘッドを用いた場合、ボイドが抜けきらない現象が発生することがあり、これが接続不良等の原因となっている。特に、厚さの薄いリジッド配線基板やフレキシブル配線基板への熱圧着においては、基台からの熱の伝わりが早く、前記傾向が顕著である。同様に、常時加熱方式等を採用した場合にも、パルスヒート方式を採用した場合等に比べて異方導電性接着フィルムの温度上昇速度が著しく早くなり、接続不良の発生が著しい。   However, as a result of further studies by the present inventor, it has been found that there is a problem in connection reliability in mounting using a thermocompression bonding head made of an elastic body. Specifically, when a thermocompression bonding head made of an elastic body is used, a phenomenon in which voids cannot be removed may occur, which causes a connection failure or the like. In particular, in thermocompression bonding to a rigid wiring board or a flexible wiring board having a small thickness, heat is rapidly transmitted from the base, and this tendency is remarkable. Similarly, even when the constant heating method is employed, the temperature increase rate of the anisotropic conductive adhesive film is remarkably faster than when the pulse heat method is employed, and the occurrence of poor connection is remarkable.

本発明は、このような従来の実情に鑑みて提案されたものであり、弾性体を用いた熱圧着の利点を活かしながら、ボイドの発生を最小限に抑え、接続不良の発生を大幅に低減することが可能な電子部品の実装方法及び電子部品実装基板を提供することを目的とする。 The present invention has been proposed in view of such a conventional situation, while minimizing the occurrence of voids by minimizing the occurrence of voids while utilizing the advantages of thermocompression bonding using an elastic body. An object of the present invention is to provide an electronic component mounting method and an electronic component mounting board that can be used.

前述の目的を達成するために、本発明の実装方法は、配線基板上に接着剤を介して電子部品を配置し、ゴム硬度が40以上80以下のエラストマーからなる弾性体が配された熱圧着ヘッドによって電子部品を加圧するとともに接着剤を加熱し、電子部品を熱圧着する電子部品の実装方法であって、前記電子部品の厚さをDとし、前記弾性体のゴム硬度をxとし、圧力をPとしたときに、次式、P=aD+b、a=23.6e 0.0279x 、b=0.0775x+15.0の関係を満たす圧力Pを理想圧力と定義し、前記接着剤の温度が当該接着剤の硬化開始温度に到達する前に、前記弾性体による加圧力が前記接着剤中のボイドを排除し得る必要圧力となるように、前記理想圧力の75%以上の圧力に到達するように設定することを特徴とする。 In order to achieve the above-described object, the mounting method of the present invention includes a thermocompression bonding in which an electronic component is disposed on a wiring board via an adhesive and an elastic body made of an elastomer having a rubber hardness of 40 to 80. An electronic component mounting method in which an electronic component is pressurized with a head and an adhesive is heated to thermocompression-bond the electronic component, wherein the thickness of the electronic component is D, the rubber hardness of the elastic body is x, and the pressure Is defined as an ideal pressure, the pressure P satisfying the relationship of the following formula: P = aD + b, a = 23.6e 0.0279x , b = 0.0775x + 15.0, and the temperature of the adhesive is before reaching the curing initiation temperature of the adhesive, wherein as the pressing force of the elastic body becomes necessary pressure can eliminate voids in the adhesive, so as to reach more than 75% of the pressure of the ideal pressure Features to set To.

本発明者が種々検討を重ねたところ、例えば接着剤の温度上昇速度が速い場合、弾性体を用いた熱圧着では所定の圧力が加わる前に接着剤の硬化が始まり、このことが接続不良の発生の原因となっていることがわかってきた。所定の圧力が加わる前に接着剤の硬化が始まると、ボイドが抜けきらないうちに硬化が進行し、導通不良が多発する。弾性体による加圧では、硬質の熱圧着ヘッドを用いた場合と比較して加わる圧力の立ち上がりカーブが緩やかであり、このことが加熱先行となる原因の一つと考えられる。   When the inventor has made various studies, for example, when the temperature rise rate of the adhesive is fast, the thermocompression bonding using an elastic body begins to cure the adhesive before a predetermined pressure is applied. It has been found that this is the cause of the outbreak. If the curing of the adhesive starts before the predetermined pressure is applied, the curing proceeds before the voids are completely removed, resulting in frequent conduction failures. In the pressurization by the elastic body, the rising curve of the applied pressure is gentle compared to the case where a hard thermocompression bonding head is used, and this is considered to be one of the causes leading to heating.

これらの知見から、本発明者は、所定の圧力(接着剤中のボイドを排除し得る必要圧力)に到達するタイミングと加熱のタイミングとを適正なものとすることで、ボイドの発生を回避することができるものと考え、本願発明を案出するに至った。本発明では、接着剤の温度が当該接着剤の硬化開始温度に到達する前に、弾性体による加圧力が所定の圧力に到達するように設定しているので、ボイドが抜けきらないうちに硬化が進行することがない。したがって、ボイドレス実装が実現され、接続信頼性が保たれる。   From these knowledge, this inventor avoids generation | occurrence | production of a void by making the timing which reaches | attains a predetermined pressure (necessary pressure which can exclude the void in an adhesive agent), and the timing of a heating appropriately. The present invention has been devised. In the present invention, the pressure applied by the elastic body is set to reach a predetermined pressure before the temperature of the adhesive reaches the curing start temperature of the adhesive. Will not progress. Therefore, voidless mounting is realized and connection reliability is maintained.

本発明の実装方法によれば、ボイドの発生を最小限に抑えることができ、接続信頼性に優れた電子部品の実装状態を実現することが可能である。また、本発明の実装方法においては、熱圧着ヘッドに弾性体を用いたことによる利点はそのまま享受することができ、電子部品に過剰な衝撃が加わることがなく、均一な加圧を実現し、複数の電子部品を一括して実装することが可能である。さらに、本発明の実装方法においては、実装装置の装置構成をほとんど変更する必要がなく、設備投資の点でも有利である。 According to the mounting method of the present invention, it is possible to minimize the generation of voids and realize a mounting state of an electronic component having excellent connection reliability. Further, in the mounting method of the present invention, the advantage of using an elastic body for the thermocompression bonding head can be enjoyed as it is, without applying excessive shock to the electronic component, realizing uniform pressurization, A plurality of electronic components can be mounted together. Furthermore, in the mounting method of the present invention, there is almost no need to change the device configuration of the mounting device, which is advantageous in terms of capital investment.

以下、本発明を適用した電子部品の実装方法及び実装装置について、図面を参照して詳細に説明する。   Hereinafter, an electronic component mounting method and a mounting apparatus to which the present invention is applied will be described in detail with reference to the drawings.

先ず、電子部品の実装に用いられる実装装置の構成例について説明する。図1は、実装装置の一例を示すものであり、当該実装装置は、配線基板11を載置する基台1と、電子部品であるICチップ12を加圧する熱圧着ヘッド2とを備えて構成されている。   First, a configuration example of a mounting apparatus used for mounting electronic components will be described. FIG. 1 shows an example of a mounting apparatus, and the mounting apparatus includes a base 1 on which a wiring board 11 is placed and a thermocompression bonding head 2 that presses an IC chip 12 that is an electronic component. Has been.

配線基板11には配線パターン11aが形成されており、一方、ICチップ12には接続用のバンプ12aが形成されている。そして、これら配線基板11とICチップ12間に結着樹脂13a中に導電性粒子13bが分散された異方導電性接着フィルム13を接着剤として挟み込み、熱圧着することにより、ICチップ12の配線基板11への実装が行われる。   A wiring pattern 11 a is formed on the wiring substrate 11, while a connection bump 12 a is formed on the IC chip 12. Then, the anisotropic conductive adhesive film 13 in which conductive particles 13b are dispersed in the binder resin 13a is sandwiched between the wiring substrate 11 and the IC chip 12 as an adhesive, and thermocompression bonded, whereby the wiring of the IC chip 12 is obtained. Mounting on the substrate 11 is performed.

ここで、前記基台1は、例えば金属等により形成され、内部に加熱ヒータ3等の加熱手段が内蔵されている。基台1に内蔵された加熱ヒータ3によって基台1上に載置された配線基板11の加熱を行うことにより、異方導電性接着フィルム13に熱が伝達され、硬化開始温度以上に加熱される。加熱方式としては、常時加熱方式やパルスヒート方式等が知られているが、いずれを採用してもよい。   Here, the said base 1 is formed, for example with a metal etc., and heating means, such as the heater 3, is incorporated in the inside. By heating the wiring substrate 11 placed on the base 1 by the heater 3 built in the base 1, heat is transmitted to the anisotropic conductive adhesive film 13 and is heated to the curing start temperature or higher. The As the heating method, a constant heating method, a pulse heat method, and the like are known, but any of them may be adopted.

熱圧着ヘッド2は、弾性体からなる圧着部4と、当該圧着部4を保持する金属製のヘッド本体5とから構成され、ヘッド本体5の凹部内に圧着部4が収容された形で取り付けられている。ICチップ12には、弾性体からなる圧着部4が当接し、加圧が行われる。したがって、圧着部4のICチップ12と当接する圧着面4aの面積は、ICチップ12の頂部の面積よりも大とされている。また、弾性体からなる圧着部4の厚さは、ICチップ12の厚さと同等以上とされている。   The thermocompression bonding head 2 is composed of a compression bonding portion 4 made of an elastic body and a metal head main body 5 that holds the compression bonding portion 4, and is attached in a form in which the compression bonding portion 4 is accommodated in a recess of the head main body 5. It has been. The IC chip 12 is in contact with the pressure-bonding portion 4 made of an elastic body, and is pressurized. Therefore, the area of the crimping surface 4 a that contacts the IC chip 12 of the crimping part 4 is made larger than the area of the top part of the IC chip 12. Further, the thickness of the pressure-bonding portion 4 made of an elastic body is equal to or greater than the thickness of the IC chip 12.

前述の通り、熱圧着ヘッド2の圧着部4は弾性体により形成されている。弾性体としては、例えば各種エラストマー等が用いられるが、用いるエラストマーの種類は任意である。ただし、接続信頼性を向上させる観点からは、日本工業規格(JIS S 6050)に規定されるゴム硬度が40以上、80以下のエラストマーを用いることが好ましい。具体的には、天然ゴムや合成ゴム等を挙げることができるが、耐熱性や耐油性に優れることからシリコーンゴム等が好適である。   As described above, the crimping portion 4 of the thermocompression bonding head 2 is formed of an elastic body. As the elastic body, for example, various elastomers are used, but the type of elastomer to be used is arbitrary. However, from the viewpoint of improving the connection reliability, it is preferable to use an elastomer having a rubber hardness specified by Japanese Industrial Standard (JIS S 6050) of 40 or more and 80 or less. Specific examples include natural rubber and synthetic rubber. Silicone rubber is preferred because of its excellent heat resistance and oil resistance.

以上の構成を有する実装装置を用いてICチップ12を配線基板11に実装するには、図1に示すように、配線基板11を基台1上に設置し、さらに配線基板11上に異方導電性接着フィルム13を配置する。さらに、その上にICチップ12をバンプ12aが所定の配線パターン11aと対向するように載置する。   In order to mount the IC chip 12 on the wiring board 11 using the mounting apparatus having the above configuration, as shown in FIG. 1, the wiring board 11 is placed on the base 1 and further anisotropically placed on the wiring board 11. A conductive adhesive film 13 is disposed. Further, the IC chip 12 is placed thereon so that the bumps 12a face the predetermined wiring pattern 11a.

この状態で熱圧着を行うが、熱圧着に際しては、図2に示すように、熱圧着ヘッド2の圧着部4をICチップ12に押し当て、所定の設定圧力で加圧するとともに、基台1に設けられた加熱ヒータ3により異方導電性接着フィルム13を加熱する。熱圧着時には、熱圧着ヘッド2の圧着部4が弾性変形し、ICチップ12の頂部のみならず、周辺部も圧着部4による加圧力が加わる。   In this state, thermocompression bonding is performed. In thermocompression bonding, as shown in FIG. 2, the pressure-bonding portion 4 of the thermocompression-bonding head 2 is pressed against the IC chip 12 to pressurize at a predetermined set pressure, and to the base 1. The anisotropic conductive adhesive film 13 is heated by the heater 3 provided. At the time of thermocompression bonding, the pressure-bonding portion 4 of the thermocompression-bonding head 2 is elastically deformed, and the pressure applied by the pressure-bonding portion 4 is applied not only to the top of the IC chip 12 but also to the peripheral portion.

異方導電性接着フィルム13においては、前記熱圧着ヘッド2による加圧により、配線パターン11aとバンプ12aとが対向する部分において導電性粒子13bが圧潰し、配線パターン11aとバンプ12aの間の電気的導通が図られる。また、接着剤である結着樹脂13aは、硬化開始温度以上に加熱されると硬化が始まり、ICチップ12が配線基板11に対して機械的に固定される。   In the anisotropic conductive adhesive film 13, the conductive particles 13b are crushed by the pressure applied by the thermocompression bonding head 2 at the portion where the wiring pattern 11a and the bump 12a face each other. Continuity is achieved. Further, the binder resin 13a, which is an adhesive, is cured when heated to a temperature higher than the curing start temperature, and the IC chip 12 is mechanically fixed to the wiring substrate 11.

以上のような熱圧着においては、熱圧着ヘッド2の圧着部4に弾性体を用いているので、設定圧力に到達するまでの圧力カーブが曲線的になり、例えば金属ヘッドを用いた場合に比べて設定圧力に到達するまでに時間を要することになる。図3は、弾性体ヘッドを用いた熱圧着の際の圧力カーブと、金属ヘッドを用いた熱圧着の際の圧力カーブとを比較して示す図である。   In the above-described thermocompression bonding, since an elastic body is used for the pressure-bonding portion 4 of the thermocompression bonding head 2, the pressure curve until the set pressure is reached is curved, for example, compared with a case where a metal head is used. It takes time to reach the set pressure. FIG. 3 is a diagram showing a comparison between a pressure curve at the time of thermocompression bonding using an elastic head and a pressure curve at the time of thermocompression bonding using a metal head.

金属ヘッドを用いてICチップ12を加圧する場合、加わる圧力が直線的に上昇し、短時間のうちに設定圧力(ここではP1)に到達する。設定圧力に到達するまでの時間T1は、概ね0.3秒である。これに対して、弾性体ヘッドを用いてICチップ12を加圧する場合には、熱圧着ヘッド2の加圧力が弾性体からなる圧着部4で緩和され、曲線状に圧力が上昇する。設定圧力に到達するまでの時間T2(図3において、設定圧力P1に到達した後の圧力カーブ(直線)を延長し、この直線に対する曲線の接点を前記到達時点T2とする。)は、概ね2.5秒である。同様に、異方導電性接着フィルム13に加わる加圧力が所定の圧力(ボイドを十分に排除し得る圧力。以下、必要圧力と称する。)(ここではP2)に到達する前に硬化開始温度に到達すると、ボイド抜けが不十分となるおそれがあるが、前記必要圧力に到達するまでの時間T3にも遅れが生ずる。   When the IC chip 12 is pressed using a metal head, the applied pressure rises linearly and reaches the set pressure (here, P1) within a short time. Time T1 until reaching the set pressure is approximately 0.3 seconds. On the other hand, when the IC chip 12 is pressurized using the elastic body head, the pressure applied by the thermocompression bonding head 2 is relaxed by the pressure bonding portion 4 made of an elastic body, and the pressure rises in a curved shape. Time T2 until reaching the set pressure (in FIG. 3, the pressure curve (straight line) after reaching the set pressure P1 is extended, and the contact point of the curve with respect to this straight line is defined as the arrival time T2) is approximately 2. .5 seconds. Similarly, the pressure applied to the anisotropic conductive adhesive film 13 reaches a predetermined pressure (pressure that can sufficiently eliminate voids, hereinafter referred to as required pressure) (here, P2) before reaching the curing start temperature. If it reaches, there is a risk that void removal becomes insufficient, but there is a delay in the time T3 until the required pressure is reached.

一方、配線基板11として用いられるリジッド基板の薄型化に伴い、基台1からの熱の伝達が速くなる傾向にあり、特に、常時加熱方式を採用した場合には、パルスヒート方式を採用した場合に比べて温度上昇速度が著しく速くなる。配線基板11としてフレキシブルプリント基板等を用いた場合にも同様である。   On the other hand, as the rigid board used as the wiring board 11 is made thinner, the heat transfer from the base 1 tends to be faster. Particularly, when the constant heating method is adopted, the pulse heat method is adopted. As compared with the above, the temperature rise rate is remarkably increased. The same applies when a flexible printed circuit board or the like is used as the wiring board 11.

このような状況においては、接着剤である異方導電性接着フィルム13に加わる圧力プロファイルと温度プロファイルの関係は、図4に示すようなものとなる。すなわち、弾性体を用いた熱圧着ヘッドによる緩慢な圧力上昇と、急激な温度上昇の結果、圧力プロファイルにおける必要圧力到達時よりも前に、温度プロファイルにおいて硬化開始温度Kに到達する。具体的には、圧力プロファイルにおいて必要圧力に到達する時点をT、温度プロファイルにおいて硬化開始温度Kに到達する時点をtとすると、硬化開始温度Kに到達する時点tが必要圧力に到達する時点Tよりも早くなる。   In such a situation, the relationship between the pressure profile applied to the anisotropic conductive adhesive film 13 that is an adhesive and the temperature profile is as shown in FIG. That is, as a result of the slow pressure increase by the thermocompression bonding head using the elastic body and the rapid temperature increase, the curing start temperature K is reached in the temperature profile before reaching the necessary pressure in the pressure profile. Specifically, when the time point at which the required pressure is reached in the pressure profile is T and the time point at which the curing start temperature K is reached in the temperature profile is t, the time point T at which the curing start temperature K is reached reaches the required pressure. Faster than.

なお、接着剤である異方導電性接着フィルム13における硬化開始温度Kは、結着樹脂13aが熱硬化性の接着剤である場合には、溶融粘度変化から求めることが可能である。前記溶融粘度変化においては、温度上昇とともに結着樹脂13aの粘度が次第に低下し、最低溶融粘度を示した後に急激に粘度が上昇する。この最低溶融粘度を示す温度が硬化開始温度Kである。   In addition, the curing start temperature K in the anisotropic conductive adhesive film 13 that is an adhesive can be obtained from a change in melt viscosity when the binder resin 13a is a thermosetting adhesive. In the melt viscosity change, as the temperature rises, the viscosity of the binder resin 13a gradually decreases, and after showing the minimum melt viscosity, the viscosity rapidly increases. The temperature showing the minimum melt viscosity is the curing start temperature K.

前述のように硬化開始温度Kに到達する時点tが必要圧力に到達する時点Tよりも早くなると、すなわち硬化開始温度K到達時に必要圧力に未到達であると、異方導電性接着フィルム13に対して所定の圧力がかかりきる前に硬化が開始されることになり、ボイドが抜けきらずに信頼性の低下を引き起こすことになる。   As described above, when the time t when the curing start temperature K is reached is earlier than the time T when the required pressure is reached, that is, when the required pressure is not reached when the curing start temperature K is reached, the anisotropic conductive adhesive film 13 On the other hand, the curing is started before the predetermined pressure is completely applied, and the void is not completely removed and the reliability is lowered.

そこで、本発明においては、加圧のタイミングや加熱のタイミング等を調整することにより、図5に示すように、温度プロファイルにおいて硬化開始温度Kに到達する時点tよりも前に、圧力プロファイルにおいて必要圧力に到達するようにする。すなわち、必要圧力に到達する時点Tを硬化開始温度Kに到達する時点tよりも早くする。なお、必要圧力に到達する時点Tと硬化開始温度Kに到達する時点tとが同時である場合は、本発明の範囲には含まれない。   Therefore, in the present invention, by adjusting the timing of pressurization, the timing of heating, etc., as shown in FIG. 5, it is necessary in the pressure profile before the time t at which the curing profile reaches the curing start temperature K as shown in FIG. Allow to reach pressure. That is, the time T at which the necessary pressure is reached is made earlier than the time t at which the curing start temperature K is reached. In addition, when the time T which reaches | attains a required pressure and the time t which reaches | attains hardening start temperature K are simultaneous, it is not included in the scope of the present invention.

図5に示すように、異方導電性接着フィルム13の温度が硬化開始温度Kに到達する前に必要圧力への到達が完了していれば、異方導電性接着フィルム13中のボイドを十分に追い出すことができ、硬化後にはボイドが抜けきり接続信頼性が大幅に向上する。   As shown in FIG. 5, if reaching the necessary pressure is completed before the anisotropic conductive adhesive film 13 reaches the curing start temperature K, the voids in the anisotropic conductive adhesive film 13 are sufficient. The void is completely removed after curing, and the connection reliability is greatly improved.

ここで、前記必要圧力は、例えば実装するICチップ12のサイズ(厚さ)や熱圧着ヘッド2の圧着部4のゴム硬度等によって決まる。図6は、前記圧着部4のゴム硬度を40(線a)、60(線b),80(線c)とした場合について、それぞれICチップ12の厚さと単位面積(1cm)当たりの必要圧力の関係を示すものである。ICチップ12の厚さが厚いほど、またゴム硬度が高いほど、必要圧力が大きくなる傾向にある。この図6に基づき必要圧力を求め、前述のように、必要圧力に到達する時点Tを硬化開始温度Kに到達する時点tよりも早くする。例えば、圧着部4のゴム硬度が40でありICチップ12の厚さが0.6mmである場合、必要圧力は約22.4kgf/cmである。この場合には、必要圧力である22.4kgf/cmに到達する時点Tを硬化開始温度Kに到達する時点tよりも早くする。 Here, the required pressure is determined by, for example, the size (thickness) of the IC chip 12 to be mounted, the rubber hardness of the crimping portion 4 of the thermocompression bonding head 2, and the like. FIG. 6 shows the required thickness per unit area (1 cm 2 ) of the IC chip 12 when the rubber hardness of the crimping part 4 is 40 (line a), 60 (line b), and 80 (line c). It shows the relationship of pressure. The required pressure tends to increase as the thickness of the IC chip 12 increases and the rubber hardness increases. The required pressure is obtained based on FIG. 6, and the time T at which the required pressure is reached is made earlier than the time t at which the curing start temperature K is reached, as described above. For example, when the rubber hardness of the crimping part 4 is 40 and the thickness of the IC chip 12 is 0.6 mm, the required pressure is about 22.4 kgf / cm 2 . In this case, the time T at which the required pressure of 22.4 kgf / cm 2 is reached is set earlier than the time t at which the curing start temperature K is reached.

前記必要圧力は、図6に基づいて式(1)に示すように一般式化することができる。
P=aD+b ・・・(1)
前記(1)式において、Pは必要圧力(kgf/cm)、DはICチップの厚さ(cm)、aは図6の各直線の傾き(kgf/cm・cm)、bは図6の各直線の切片(kgf/cm)である。図6において、ゴム硬度40の場合はP=73.4D+18.0、ゴム硬度60の場合はP=122.4D+19.7、ゴム硬度80の場合はP=224.6D+21.1である。
The required pressure can be generalized as shown in Expression (1) based on FIG.
P = aD + b (1)
In the above equation (1), P is the required pressure (kgf / cm 2 ), D is the thickness of the IC chip (cm), a is the slope of each straight line in FIG. 6 (kgf / cm 2 · cm), and b is the figure. 6 is an intercept (kgf / cm 2 ) of each straight line. In FIG. 6, P = 73.4D + 18.0 for rubber hardness 40, P = 12.4D + 19.7 for rubber hardness 60, and P = 224.6D + 21.1 for rubber hardness 80.

これら直線から前記a,bを算出することができる。図7は、ゴム硬度とa,bの値の関係を示す図である。ゴム硬度をxとすると、a=23.6e0.0279x、b=0.0775x+15.0なる関係を有する。したがって、前記圧着部4のゴム硬度を代入することで前記a,bの値を求めることができ、さらにこれらa,bの値とICチップの厚さを代入することで、(1)式から必要圧力を算出することができる。算出される必要圧力の75%以上の圧力であればボイドはある程度抑えることが可能であること等を考慮すると、(1)式で算出された圧力P×0.75を前記必要圧力の下限とすればよい。 The a and b can be calculated from these straight lines. FIG. 7 is a diagram showing the relationship between the rubber hardness and the values of a and b. When the rubber hardness is x, a = 23.6e 0.0279x and b = 0.0775x + 15.0. Therefore, the values of a and b can be obtained by substituting the rubber hardness of the crimping part 4, and further by substituting the values of a and b and the thickness of the IC chip, The required pressure can be calculated. Considering that the void can be suppressed to some extent if the pressure is 75% or more of the calculated required pressure, the pressure P × 0.75 calculated by the equation (1) is set as the lower limit of the required pressure. do it.

なお、通常は前記設定圧力が前記必要圧力となるように設定するので、前記必要圧力に到達する時点Tは、設定圧力に到達する時点と同じになる。ただし、前記設定圧力が必要圧力よりも高くなるように設定することも可能であり、この場合には、先に必要圧力に到達することになるが、このような場合にも、必要圧力に到達する時点Tが硬化開始温度Kに到達する時点tよりも早くなるように設定すればよい。例えば、前記の通り、圧着部4のゴム硬度が40でありICチップ12の厚さが0.6mmである場合、必要圧力は約22.4kgf/cmであるが、この場合に装置側の設定圧力を22.4kgf/cm以上、例えば25kgf/cmとすることも可能である。このような場合にも、必要圧力である22.4kgf/cmに到達する時点Tを硬化開始温度Kに到達する時点tよりも早くすればよい。 Since the set pressure is normally set to be the required pressure, the time T when the required pressure is reached is the same as the time when the set pressure is reached. However, it is possible to set the set pressure to be higher than the required pressure. In this case, the required pressure is reached first. In such a case, the required pressure is reached. What is necessary is just to set so that the time T to perform becomes earlier than the time t which reaches the hardening start temperature K. For example, as described above, when the rubber hardness of the crimping part 4 is 40 and the thickness of the IC chip 12 is 0.6 mm, the necessary pressure is about 22.4 kgf / cm 2 . The set pressure may be 22.4 kgf / cm 2 or more, for example, 25 kgf / cm 2 . Even in such a case, the time T at which the required pressure of 22.4 kgf / cm 2 is reached may be set earlier than the time t at which the curing start temperature K is reached.

前述のように、異方導電性接着フィルム13の温度が硬化開始温度Kに到達する前に必要圧力への到達を完了するためには、昇温速度を緩やかにしたり、熱圧着ヘッド2による加圧を早めに開始すればよい。例えば、加熱方式としてパルスヒート方式を採用した場合には、加熱のタイミングを比較的自由に設定することができ、加圧が十分された後に昇温を開始すればよい。   As described above, in order to complete the reaching of the required pressure before the temperature of the anisotropic conductive adhesive film 13 reaches the curing start temperature K, the temperature increase rate is made slow or the pressure applied by the thermocompression bonding head 2 is increased. The pressure should be started early. For example, when the pulse heat method is adopted as the heating method, the heating timing can be set relatively freely, and the temperature rise may be started after sufficient pressure is applied.

加熱方式として常時加熱方式を採用した場合には、温度上昇速度を遅くするために、基台1と配線基板11の間に金属板や樹脂板等の熱伝導を抑制する部材を介在させ、温度上昇をコントロールするようにすることも有効である。   When the constant heating method is adopted as the heating method, a member for suppressing heat conduction such as a metal plate or a resin plate is interposed between the base 1 and the wiring board 11 in order to slow down the temperature rise rate. It is also effective to control the rise.

また、例えば熱圧着ヘッド2による加圧を加熱前に開始し、必要圧力に到達してから加熱を開始する等、加圧と加熱のタイミングを調整することで前記設定とすることも可能であるが、この場合には、1回の操作に要する時間が長くなることになる。1回当たりの実装に要する時間は極力短くすることが要求されており、この点を考慮すると、加圧と加熱は同時に開始し、温度上昇の傾きを調整する等により前記設定とすることが好ましい。   Further, for example, the setting can be made by adjusting the timing of pressurization and heating, such as starting pressurization by the thermocompression bonding head 2 before heating and starting heating after reaching the necessary pressure. In this case, however, the time required for one operation becomes longer. The time required for one mounting is required to be as short as possible. In consideration of this point, it is preferable to start the pressurization and heating at the same time, and to set the setting by adjusting the gradient of the temperature rise. .

以下、本発明の具体的な実施例について、実験結果を基に説明する。   Hereinafter, specific examples of the present invention will be described based on experimental results.

使用した実装装置、配線基板、ICチップ及び異方導電性接着フィルムの構成
実装装置としては、熱圧着ヘッドの圧着部に弾性体(シリコーンゴム)を組み込んだ実装装置を用いた。前記シリコーンゴムのゴム硬度は60度(JIS S 6050に準拠)である。
As the mounting device used for the mounting device, the wiring board, the IC chip, and the anisotropic conductive adhesive film used, a mounting device in which an elastic body (silicone rubber) was incorporated in the crimping portion of the thermocompression bonding head was used. The rubber hardness of the silicone rubber is 60 degrees (conforming to JIS S 6050).

配線基板としては、厚さ0.6mmのガラスエポキシ基板を用いた。配線パターンの仕様は、Cu+Ni−Auである。すなわち、幅90μm、ピッチ150μmの銅(Cu)パターンを形成し、その上にニッケル−金めっきを施した。ICチップとしては、サイズが6.3mm×6.3mm、厚さが0.4μmのICチップを使用した。ICチップのバンプ電極はAuスタッドバンプであり、150μmピッチで形成されている。バンプ高さは30μm〜35μmである。   As the wiring substrate, a glass epoxy substrate having a thickness of 0.6 mm was used. The specification of the wiring pattern is Cu + Ni-Au. That is, a copper (Cu) pattern having a width of 90 μm and a pitch of 150 μm was formed, and nickel-gold plating was applied thereon. As the IC chip, an IC chip having a size of 6.3 mm × 6.3 mm and a thickness of 0.4 μm was used. The bump electrodes of the IC chip are Au stud bumps formed at a pitch of 150 μm. The bump height is 30 μm to 35 μm.

異方導電性接着フィルム(ACF)としては、ソニーケミカル&インフォメーションデバイス社製、商品名FP5530(厚さ50μm)を用いた。用いた異方導電性接着フィルムの溶融粘度カーブを図8に示す。図8から、用いた異方導電性接着フィルムの硬化開始温度Kは、100℃と算出された。なお、溶融粘度カーブの測定条件は下記の通りである。
[測定条件]
測定装置:HAAKE RS150
周波数 :1.0Hz
測定温度:30℃〜180℃
昇温条件:10℃/min
使用プローブ:直径20mm(20φ)
圧力 :一定
As an anisotropic conductive adhesive film (ACF), a product name FP5530 (thickness 50 μm) manufactured by Sony Chemical & Information Device Co., Ltd. was used. The melt viscosity curve of the anisotropically conductive adhesive film used is shown in FIG. From FIG. 8, the curing start temperature K of the anisotropic conductive adhesive film used was calculated to be 100 ° C. Measurement conditions for the melt viscosity curve are as follows.
[Measurement condition]
Measuring device: HAAKE RS150
Frequency: 1.0Hz
Measurement temperature: 30 ° C to 180 ° C
Temperature rising condition: 10 ° C / min
Probe used: Diameter 20mm (20φ)
Pressure: constant

実施例
前述の実装装置、配線基板、ICチップ及び異方導電性接着フィルムを用い、ICチップを配線基板に対して熱圧着した。熱圧着に際しては、図5に示すようなプロファイル[異方導電性接着フィルムの温度が硬化開始温度K(100℃)に到達する前に必要圧力(=設定圧力)への到達が完了]で加熱及び加圧を行った。実装条件は、到達温度180℃、必要圧力(=設定圧力)25.2kgf/cm、熱圧着時間20秒とした。実施例における実際の圧力カーブ及び温度カーブを図9に示す。なお、異方導電性接着フィルムの温度は、異方導電性接着フィルム中に直接温度計を差し込んで実測した。圧力値は、熱圧着ヘッドに加わる圧力を実装装置側で計測した値を用いた。なお、計測される圧力には0.1kgf/cm程度の誤差がある。
Example Using the mounting device, wiring board, IC chip, and anisotropic conductive adhesive film described above, the IC chip was thermocompression bonded to the wiring board. Upon thermocompression bonding, heating is performed with a profile as shown in FIG. 5 [Achieving the necessary pressure (= set pressure) before the anisotropic conductive adhesive film temperature reaches the curing start temperature K (100 ° C.)). And pressurization. The mounting conditions were an ultimate temperature of 180 ° C., a required pressure (= set pressure) of 25.2 kgf / cm 2 , and a thermocompression bonding time of 20 seconds. The actual pressure curve and temperature curve in the example are shown in FIG. The temperature of the anisotropic conductive adhesive film was measured by inserting a thermometer directly into the anisotropic conductive adhesive film. As the pressure value, a value obtained by measuring the pressure applied to the thermocompression bonding head on the mounting device side was used. The measured pressure has an error of about 0.1 kgf / cm 2 .

比較例
熱圧着時の加熱及び加わる圧力のプロファイルを図4に示すようなプロファイル[異方導電性接着フィルムが硬化開始温度K(100℃)に到達した時に必要圧力(=設定圧力)に未到達]とし、他は実施例と同様にICチップを配線基板に対して熱圧着した。
Comparative Example The profile of heating and applied pressure during thermocompression bonding is a profile as shown in FIG. 4 [the required pressure (= set pressure) has not been reached when the anisotropic conductive adhesive film reaches the curing start temperature K (100 ° C.). The IC chip was thermocompression bonded to the wiring substrate in the same manner as in the example.

評価
実施例及び比較例においてICチップを熱圧着した配線基板に対し、吸湿処理及びリフロー処理を行った後、導通チェーン抵抗を測定し、超音波顕微鏡により内部気泡(ボイド)の発生状態を観察した。吸湿処理は、85℃、相対湿度60%、168時間(JEDEC Level2)とした。リフロー条件としては、ピーク温度265℃、3回とした。
In the evaluation example and the comparative example, after performing moisture absorption treatment and reflow treatment on the wiring substrate on which the IC chip was thermocompression bonded, the conduction chain resistance was measured, and the occurrence of internal bubbles (voids) was observed with an ultrasonic microscope. . The moisture absorption treatment was 85 ° C., relative humidity 60%, and 168 hours (JEDEC Level 2). The reflow conditions were a peak temperature of 265 ° C. and 3 times.

導通チェーン抵抗は、初期(吸湿処理及びリフローを行う前)と、処理後(吸湿処理及びリフローを行った後)について、それぞれ最大値を測定するとともに、オープン不良の発生数を計測した。導通チェーン抵抗の判定においては、導通チェーン抵抗の最大値が初期値の1.5倍以下である場合を○、導通チェーン抵抗の最大値が初期値の1.5倍を越えた場合を×とした。内部気泡(ボイド)の発生状態については、超音波顕微鏡によって観察し、ボイドの発生が認められなかった場合を○、ボイドの発生が認められた場合を×とした。評価数は、それぞれ20サンプルである。結果を表1に示す。   The conduction chain resistance was measured for the maximum value at the initial stage (before moisture absorption treatment and reflow) and after the treatment (after moisture absorption treatment and reflow), and the number of occurrences of open defects was measured. In the determination of the conduction chain resistance, ○ when the maximum value of the conduction chain resistance is 1.5 times or less of the initial value, and x when the maximum value of the conduction chain resistance exceeds 1.5 times the initial value. did. The state of occurrence of internal bubbles (voids) was observed with an ultrasonic microscope. The case where no generation of voids was observed was marked with ◯, and the case where generation of voids was recognized was marked with x. Each of the evaluation numbers is 20 samples. The results are shown in Table 1.

Figure 0005164499
Figure 0005164499

表1から明らかなように、図5に示すプロファイルで熱圧着した実施例においては、導通チェーン抵抗の値が小さく、オープン不良も発生していない。また、ボイドの発生も見られなかった。これに対して、図4に示すプロファイルで熱圧着した比較例では、導通チェーン抵抗値が高く、オープン不良が発生した。また、ボイドの発生も見られた。   As is apparent from Table 1, in the example in which thermocompression bonding is performed with the profile shown in FIG. 5, the value of the conduction chain resistance is small, and no open defect occurs. Moreover, generation | occurrence | production of the void was not seen. On the other hand, in the comparative example thermocompression bonded with the profile shown in FIG. 4, the conduction chain resistance value was high and an open defect occurred. The generation of voids was also observed.

必要圧力に関する検討
本実験では、式(1)から算出される必要圧力を基準とし、どの程度の圧力を加えることでボイドを抑え且つ信頼性を確保することが可能であるか、確認した。すなわち、本実験では、下記の条件で導通試験を行い、信頼性を確保するために必要な圧力を調べた。結果を表2に示す。
Examination concerning necessary pressure In this experiment, it was confirmed based on the necessary pressure calculated from the formula (1) as to how much pressure can be applied to suppress voids and ensure reliability. That is, in this experiment, a continuity test was performed under the following conditions, and the pressure required to ensure reliability was examined. The results are shown in Table 2.

<評価部材>
熱圧着ヘッド(弾性体)のゴム硬度:60(度)(JIS S 6050に準拠)
実装部品(ICチップ):実施例と同様
基板:実施例と同様
ACF:実施例と同様
<実装条件>
180℃、20秒(ICチップ1個当たり5kgf、7.5kgf、10kgfの3水準)
<導通評価数>
1基板40ポイント、評価基板数N=3
<環境試験>
吸湿→リフロー→プレッシャークッカー試験(PCT)
吸湿条件:JEDEC Level2
リフロー:ピーク温度265℃、3回
プレッシャークッカー試験:121℃飽和200時間
<測定時期>
初期及びPCT試験後(信頼性試験後)
<導通判定>
1Ω以下:○
1Ωを越える場合(オープン不良を含む):×
<Evaluation member>
Rubber hardness of thermocompression bonding head (elastic body): 60 (degrees) (conforms to JIS S 6050)
Mounted component (IC chip): Same as in the embodiment Substrate: Same as in the embodiment ACF: Same as in the embodiment
180 ° C, 20 seconds (3 levels of 5kgf, 7.5kgf, 10kgf per IC chip)
<Continuity evaluation number>
40 points per board, N = 3 evaluation boards
<Environmental test>
Moisture absorption → reflow → pressure cooker test (PCT)
Moisture absorption condition: JEDEC Level2
Reflow: Peak temperature 265 ° C, 3 times Pressure cooker test: 121 ° C saturation 200 hours <Measurement time>
Initial and after PCT test (after reliability test)
<Continuity determination>
1Ω or less: ○
When exceeding 1Ω (including open failure): ×

Figure 0005164499
Figure 0005164499

本実験において、理想圧力[(1)式から算出される必要圧力]は、ICチップ1個当たり10kgfである。表2から明らかなように、信頼性試験後の導通判定において差が生じていた。具体的には、圧力をICチップ1個当たり5kgfとした場合には、信頼性試験後の導通判定が×であったのに対して、圧力をICチップ1個当たり7.5kgf、あるいは10kgfとした場合には、信頼性試験後の導通判定がいずれも○であり同等の結果であった。したがって、理想圧力の75%以上の圧力を必要圧力に設定すれば、ボイドの発生が抑えられ、導通信頼性も確保できることがわかった。   In this experiment, the ideal pressure [necessary pressure calculated from equation (1)] is 10 kgf per IC chip. As is apparent from Table 2, there was a difference in the continuity determination after the reliability test. Specifically, when the pressure is 5 kgf per IC chip, the continuity determination after the reliability test is x, whereas the pressure is 7.5 kgf or 10 kgf per IC chip. In this case, the continuity determination after the reliability test was all ◯, which was an equivalent result. Therefore, it has been found that if the pressure of 75% or more of the ideal pressure is set to the required pressure, the generation of voids can be suppressed and the conduction reliability can be ensured.

また、熱圧着ヘッド(弾性体)のゴム硬度を40度〜80度の範囲で変え、さらには実装するICチップの厚さを変えて同様の実験を行ったところ、いずれの場合にも、理想圧力の75%以上の圧力を必要圧力に設定すれば、ボイドの発生が抑えられ、導通信頼性も確保できることが確認された。   In addition, the same experiment was conducted by changing the rubber hardness of the thermocompression bonding head (elastic body) in the range of 40 to 80 degrees, and further changing the thickness of the IC chip to be mounted. It was confirmed that if the pressure of 75% or more of the pressure is set to the required pressure, the generation of voids can be suppressed and the conduction reliability can be secured.

弾性体からなる熱圧着ヘッドを備えた実装装置の一例を模式的に示す図である。It is a figure which shows typically an example of the mounting apparatus provided with the thermocompression-bonding head which consists of an elastic body. 弾性体からなる熱圧着ヘッドによる押圧状態を模式的に示す図である。It is a figure which shows typically the press state by the thermocompression-bonding head which consists of an elastic body. 弾性体ヘッドを用いた場合の圧力カーブを金属ヘッドを用いた場合の圧力カーブと比較して示す特性図である。FIG. 7 is a characteristic diagram showing a pressure curve when an elastic head is used in comparison with a pressure curve when a metal head is used. 温度プロファイルと加わる圧力プロファイルの一例(従来例に相当)を示す図である。It is a figure which shows an example (equivalent to a prior art example) of the pressure profile added with a temperature profile. 温度プロファイルと加わる圧力プロファイルの他の例(本発明の実施形態に相当)を示す図である。It is a figure which shows the other example (equivalent to embodiment of this invention) of the pressure profile added with a temperature profile. ICチップの厚さ及び圧着部のゴム硬度と単位面積当たりの必要圧力の関係を示す特性図である。It is a characteristic view which shows the relationship between the thickness of an IC chip, the rubber hardness of a crimping part, and the required pressure per unit area. ゴム硬度xと傾きa,切片bの関係を示す特性図である。It is a characteristic view which shows the relationship between rubber hardness x, inclination a, and intercept b. 異方導電性接着フィルムの溶融粘度カーブの一例を示す特性図である。It is a characteristic view which shows an example of the melt viscosity curve of an anisotropically conductive adhesive film. 実施例における温度プロファイル及び圧力プロファイルを示す図である。It is a figure which shows the temperature profile and pressure profile in an Example.

符号の説明Explanation of symbols

1 基台、2 熱圧着ヘッド、3 加熱ヒータ、4 圧着部(弾性体)、11 配線基板、11a 配線パターン、12 ICチップ(電子部品)、12a バンプ、13 異方導電性接着フィルム、13a 結着樹脂、13b 導電性粒子 DESCRIPTION OF SYMBOLS 1 Base, 2 Thermocompression-bonding head, 3 Heating heater, 4 Crimping part (elastic body), 11 Wiring board, 11a Wiring pattern, 12 IC chip (electronic component), 12a Bump, 13 Anisotropic conductive adhesive film, 13a Connection Resin, 13b conductive particles

Claims (4)

配線基板上に接着剤を介して電子部品を配置し、ゴム硬度が40以上80以下のエラストマーからなる弾性体が配された熱圧着ヘッドによって電子部品を加圧するとともに接着剤を加熱し、電子部品を熱圧着する電子部品の実装方法であって、
前記電子部品の厚さをDとし、前記弾性体のゴム硬度をxとし、圧力をPとしたときに、次式、P=aD+b、a=23.6e 0.0279x 、b=0.0775x+15.0の関係を満たす圧力Pを理想圧力と定義し、前記接着剤の温度が当該接着剤の硬化開始温度に到達する前に、前記弾性体による加圧力が前記接着剤中のボイドを排除し得る必要圧力となるように、前記理想圧力の75%以上の圧力に到達するように設定することを特徴とする電子部品の実装方法。
An electronic component is placed on a wiring board through an adhesive, and the electronic component is pressurized and heated by a thermocompression bonding head in which an elastic body made of an elastomer having a rubber hardness of 40 to 80 is disposed. A method for mounting electronic components by thermocompression bonding,
When the thickness of the electronic component is D, the rubber hardness of the elastic body is x, and the pressure is P, the following equations are used: P = aD + b, a = 23.6e 0.0279x , b = 0.0775x + 15. A pressure P that satisfies the relationship of 0 is defined as an ideal pressure, and the pressure applied by the elastic body can eliminate voids in the adhesive before the temperature of the adhesive reaches the curing start temperature of the adhesive. A method for mounting an electronic component, wherein the pressure is set to reach 75% or more of the ideal pressure so that the required pressure is reached.
前記熱圧着ヘッドの設定圧力を前記理想圧力の75%よりも大きく設定することを特徴とする請求項記載の電子部品の実装方法。 Electronic part mounting method according to claim 1, wherein the set larger than 75% of the ideal pressure set pressure of the thermocompression bonding head. 前記接着剤は、結着樹脂中に導電性粒子が分散された異方導電性接着フィルムであることを特徴とする請求項1または2記載の電子部品の実装方法。 3. The electronic component mounting method according to claim 1, wherein the adhesive is an anisotropic conductive adhesive film in which conductive particles are dispersed in a binder resin. 請求項1からのいずれか一項記載の電子部品の実装方法により電子部品が実装された電子部品実装基板。 Electronic component mounting board on which electronic components are mounted by the electronic part mounting method according to any one of claims 1 to 3.
JP2007250641A 2007-09-27 2007-09-27 Electronic component mounting method and electronic component mounting substrate Expired - Fee Related JP5164499B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007250641A JP5164499B2 (en) 2007-09-27 2007-09-27 Electronic component mounting method and electronic component mounting substrate
PCT/JP2008/065906 WO2009041235A1 (en) 2007-09-27 2008-09-03 Electronic part mounting method and device
TW097136757A TW200939370A (en) 2007-09-27 2008-09-24 Method and apparatus for mounting electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007250641A JP5164499B2 (en) 2007-09-27 2007-09-27 Electronic component mounting method and electronic component mounting substrate

Publications (2)

Publication Number Publication Date
JP2009081337A JP2009081337A (en) 2009-04-16
JP5164499B2 true JP5164499B2 (en) 2013-03-21

Family

ID=40511125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007250641A Expired - Fee Related JP5164499B2 (en) 2007-09-27 2007-09-27 Electronic component mounting method and electronic component mounting substrate

Country Status (3)

Country Link
JP (1) JP5164499B2 (en)
TW (1) TW200939370A (en)
WO (1) WO2009041235A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199546A (en) * 2009-11-25 2010-09-09 Sony Chemical & Information Device Corp Electronic component mounting structure and method of manufacturing same
JP6069143B2 (en) 2013-09-11 2017-02-01 デクセリアルズ株式会社 Underfill material and method for manufacturing semiconductor device using the same
CN113611688A (en) * 2021-08-03 2021-11-05 东莞记忆存储科技有限公司 Chip structure and processing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219579A (en) * 1996-02-13 1997-08-19 Oki Electric Ind Co Ltd Connecting method and device of electronic part
JP3301075B2 (en) * 1999-04-20 2002-07-15 ソニーケミカル株式会社 Method for manufacturing semiconductor device
JP2002368395A (en) * 2001-06-11 2002-12-20 Sony Corp Method for fixing component by thermal compression bonding and apparatus therefor
JP3921459B2 (en) * 2003-07-11 2007-05-30 ソニーケミカル&インフォメーションデバイス株式会社 Mounting method and mounting apparatus for electrical parts
JP4996859B2 (en) * 2006-02-10 2012-08-08 ソニーケミカル&インフォメーションデバイス株式会社 Crimping device

Also Published As

Publication number Publication date
TW200939370A (en) 2009-09-16
WO2009041235A1 (en) 2009-04-02
JP2009081337A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP3921459B2 (en) Mounting method and mounting apparatus for electrical parts
US8486212B2 (en) Method and apparatus for mounting electric component
KR101034166B1 (en) Mounting method using thermocompression head
WO2006082744A1 (en) Electric component mounting apparatus
US8419888B2 (en) Method and apparatus for mounting electric component
JP4494785B2 (en) Anisotropic conductive adhesive film, method for producing the same, and semiconductor device
JP5164499B2 (en) Electronic component mounting method and electronic component mounting substrate
JP2001093938A (en) Semiconductor device and its manufacturing method
US20100123258A1 (en) Low Temperature Board Level Assembly Using Anisotropically Conductive Materials
JP3966516B2 (en) Mounting method and apparatus
JP5406974B2 (en) Thermocompression bonding apparatus and electrical component mounting method
JP2009032845A (en) Thermocompression bonding device and packaging method for electrical component
JP4378788B2 (en) IC chip connection method
JP4767518B2 (en) Implementation method
JP3828122B2 (en) Electrical component connection method
JP2007214596A (en) Method of packaging
JP2010147033A (en) Flip-chip mounting method and flip-chip mounting device
JP2005286181A (en) Semiconductor device, method for manufacturing the same, and portable electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees