JP3828122B2 - Electrical component connection method - Google Patents

Electrical component connection method Download PDF

Info

Publication number
JP3828122B2
JP3828122B2 JP2004154225A JP2004154225A JP3828122B2 JP 3828122 B2 JP3828122 B2 JP 3828122B2 JP 2004154225 A JP2004154225 A JP 2004154225A JP 2004154225 A JP2004154225 A JP 2004154225A JP 3828122 B2 JP3828122 B2 JP 3828122B2
Authority
JP
Japan
Prior art keywords
electrode terminals
adhesive
gold
gold particles
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004154225A
Other languages
Japanese (ja)
Other versions
JP2005340326A (en
Inventor
直人 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP2004154225A priority Critical patent/JP3828122B2/en
Publication of JP2005340326A publication Critical patent/JP2005340326A/en
Application granted granted Critical
Publication of JP3828122B2 publication Critical patent/JP3828122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Wire Bonding (AREA)

Description

本発明は、リジッド基板とフレキシブル基板、フレキシブル基板どうし、リジッド基板
又はフレキシブル基板とリードフレーム状金属端子を有するコネクタや半導体パッケージ
、あるいはリジッド基板又はフレキシブル基板と表面が金からなるバンプを有する半導体
チップ等の組み立てに際して、互いの電極端子を接続する方法に関するものである。
The present invention relates to a rigid substrate and a flexible substrate, a flexible substrate, a connector or a semiconductor package having a rigid substrate or a flexible substrate and a lead frame-like metal terminal, a semiconductor chip having a bump made of a rigid substrate or a flexible substrate and a surface made of gold, etc. The present invention relates to a method of connecting the electrode terminals to each other.

従来から電極端子間の接続には、異方性導電フィルムを電極端子間に介在させて接続す
る方法が広く行われており、これは一般にACF法と呼ばれている。この方法は特許文献
1や特許文献2にも記載されているように、熱硬化性樹脂又はこれに熱可塑性樹脂を含む
接着剤中に、ニッケル、銅、金、銀等の導電粒子、又は樹脂ボールの表面にニッケルめっ
きを施したもの、また更にその上に金めっきを施したものを導電粒子として分散させる。
Conventionally, a method of connecting an anisotropic conductive film between electrode terminals is widely used for connection between electrode terminals, and this is generally called an ACF method. As described in Patent Document 1 and Patent Document 2, this method includes conductive particles such as nickel, copper, gold, silver, or resin in a thermosetting resin or an adhesive containing a thermoplastic resin. A ball-plated nickel surface or a gold-plated surface is dispersed as conductive particles.

そしてこのような異方性導電材を接続すべき電極端子間に介在させ、過熱した接合ツー
ルで加圧することにより、電気部品の電極端子や基材あるいは樹脂ボールを弾性変形させ
、この弾性変形を維持したまま接着剤を硬化させることによって前記弾性変形の復元力に
よる接触圧を得て、半永久的な接続を実現しようというものである。
Then, by interposing such an anisotropic conductive material between the electrode terminals to be connected and pressurizing with an overheated bonding tool, the electrode terminal of the electrical component, the base material, or the resin ball is elastically deformed. The adhesive is cured while being maintained, thereby obtaining a contact pressure by the restoring force of the elastic deformation to realize a semi-permanent connection.

ここで、前述した接続方法の結果を断面模式図として示す。図2(a)は加圧の結果電
極端子と基材が弾性変形した様子、図2(b)は樹脂ボールが弾性変形した様子を表す。
11は一方の電気部品、12は前記一方の電気部品11に形成された電極端子、13は他
方の電気部品、14は前記他方の電気部品13に形成された電極端子、15は接着剤、1
6はニッケル等からなる比較的硬度の高い導電粒子、17は樹脂ボールに金属めっきを施
した導電粒子である。
Here, the result of the connection method described above is shown as a schematic cross-sectional view. 2A shows a state in which the electrode terminal and the base material are elastically deformed as a result of pressurization, and FIG. 2B shows a state in which the resin ball is elastically deformed.
11 is one electrical component, 12 is an electrode terminal formed on the one electrical component 11, 13 is the other electrical component, 14 is an electrode terminal formed on the other electrical component 13, 15 is an adhesive, 1
6 is a conductive particle made of nickel or the like having a relatively high hardness, and 17 is a conductive particle obtained by applying metal plating to a resin ball.

図2(a)においては導電粒子16が硬いので、荷重を受けた結果電極端子12、14
の弾性変形(矢印Xで示す)や電気部品の基材の弾性変形(矢印Yで示す)が発生する。
一方図2(b)においては導電粒子17が軟らかいので、導電粒子17の弾性変形(矢印
Zで示す)が発生する。
In FIG. 2A, since the conductive particles 16 are hard, the electrode terminals 12 and 14 as a result of receiving a load.
Elastic deformation (indicated by arrow X) and elastic deformation (indicated by arrow Y) of the base material of the electrical component occur.
On the other hand, in FIG. 2B, since the conductive particles 17 are soft, elastic deformation (indicated by an arrow Z) of the conductive particles 17 occurs.

なお本明細書に添付する図面では構造を分かり易くするため、電気部品に形成された電
極端子をそれぞれ1つ、その電極端子上に位置する導電粒子を1つとして表現するが、実
際はこれらが多数あり、近年益々多数化し高密度化していることは言うまでもない。
In the drawings attached to the present specification, in order to make the structure easy to understand, one electrode terminal formed on the electrical component is represented as one, and one conductive particle located on the electrode terminal is represented as one. Needless to say, in recent years it has become more and more dense.

また特許文献2で開示されているように、前述したような接合構造において電極端子の
めっきをスズめっきとし、導電粒子の金めっきとのあいだで金−スズ共晶の生成を図る方
法も提案されている。
In addition, as disclosed in Patent Document 2, a method has also been proposed in which the electrode terminal plating is tin plating in the joining structure as described above, and a gold-tin eutectic is formed between the conductive particles and the gold plating. ing.

さらに他の態様として特許文献3に開示されているように、基板の電極端子としてアル
ミ箔を用いる場合には接合面に超音波振動を加え、アルミ箔表面の酸化皮膜を導電粒子と
の摩擦によって破壊することも提案されており、この場合アルミの硬く厚い酸化膜を摩擦
によって破壊するため、通常は硬度の高いニッケルの導電粒子が用いられる。
As disclosed in Patent Document 3 as another embodiment, when an aluminum foil is used as the electrode terminal of the substrate, ultrasonic vibration is applied to the joint surface, and the oxide film on the surface of the aluminum foil is caused by friction with the conductive particles. In order to destroy a hard and thick oxide film of aluminum by friction in this case, nickel conductive particles having high hardness are usually used.

特開2003−152023号公報(第4頁、図3)Japanese Patent Laying-Open No. 2003-152023 (page 4, FIG. 3) 特開平10−189657号公報(第3頁5頁、図2図3)JP-A-10-189657 (page 3, page 5, FIG. 2 and FIG. 3) 特開平10−215055号公報(第2頁、図3)Japanese Patent Laid-Open No. 10-215055 (second page, FIG. 3)

しかしながら導電粒子として硬いニッケル、銅あるいは銀等を用いる場合には電気部品
の電極端子や基材が、導電粒子としてめっきされた樹脂ボールを用いる場合には樹脂ボー
ル自体が大きな弾性復元力を持つことになり、接合時の加重を取り除いたあとはその復元
力によって接合が離れ電気的な接続が不完全になるという問題があった。すなわち、この
復元力が残留ストレスとなり接合の原理を成す反面、接合時の加重を取り除く前にバイン
ダーである接着剤を硬化させる必要があった。
However, when using hard nickel, copper, silver, or the like as the conductive particles, the electrode terminal or base material of the electrical component has a large elastic restoring force when using the resin balls plated as the conductive particles. Then, after removing the weight at the time of joining, there was a problem that the joining was separated by the restoring force and electrical connection was incomplete. In other words, this restoring force becomes residual stress and forms the principle of bonding, but it is necessary to cure the adhesive as a binder before removing the load at the time of bonding.

したがってこのように押圧と同時に接着剤を硬化させるためには、必然的に目標時間内
に硬化させるのに必要な温度で接合ツールを加熱する必要があり、通常は接着剤温度とし
て200℃から250℃に設定していた。
Therefore, in order to cure the adhesive simultaneously with pressing in this way, it is necessary to heat the joining tool at a temperature necessary for curing within a target time, and usually the adhesive temperature is 200 ° C. to 250 ° C. It was set to ° C.

そのため加圧と同時に加熱する時間は一回の接合あたり10秒から20秒必要となり、
作業時間の問題の他にも各部品の熱膨張の違いによる位置ズレの問題や、この熱膨張の違
いによる接合後の残留応力の問題が無視できないものとなる。特に位置ズレの問題では、
電極端子のデザイン(寸法設定)の段階でこの熱膨張を考慮する必要が生じていた。
Therefore, it takes 10 to 20 seconds to heat at the same time as pressurization,
Besides the problem of working time, the problem of misalignment due to the difference in thermal expansion of each part and the problem of residual stress after joining due to the difference in thermal expansion cannot be ignored. Especially in the problem of misalignment,
It has been necessary to consider this thermal expansion at the stage of electrode terminal design (dimension setting).

また、弾性変形に依存したこれらの接続方法では、弾性変形による接触面積が小さく、
電気的な接続においては電流経路が狭いなどの回路機能上の問題もあった。さらにスズめ
っきを用いた共晶接合の場合には、スズと金との共晶温度が280℃と高いため、やはり
前述したような熱的な問題が避けられなかった。
In addition, in these connection methods that depend on elastic deformation, the contact area due to elastic deformation is small,
In electrical connection, there was a problem in circuit functions such as a narrow current path. Furthermore, in the case of eutectic bonding using tin plating, the eutectic temperature of tin and gold is as high as 280 ° C., and thus the above-described thermal problem cannot be avoided.

加えて、超音波による局部的な摩擦熱に期待する提案もあるが、樹脂が摩擦による発熱
で硬化温度に達するためには樹脂粘度が高くなければ摩擦が生じないため、大きな荷重と
超音波振動振幅を必要とし、実用的でなかった。
In addition, there is a proposal that expects local frictional heat due to ultrasonic waves, but in order for the resin to reach the curing temperature due to heat generation due to friction, friction does not occur unless the resin viscosity is high, so a large load and ultrasonic vibration It required amplitude and was not practical.

本発明は以上述べたような課題を解決すべく創出されたもので、低温且つ短時間で、強
固且つ電気的に良好な接続を行うことを目的としたものである。
The present invention has been created to solve the above-described problems, and aims to provide a strong and electrically good connection at a low temperature and in a short time.

本発明は第1の態様として、電極端子の少なくとも接続面を金で構成し、接着剤中に複
数の金粒子を分散させた異方性導電材を前記接続すべき電極端子間に介在させ、この電極
端子どうしを近接させる方向に荷重を加えると共に接続面に略平行方向の超音波振動を加
え、前記金粒子が前記接続すべき電極端子の両方に接触し更にこれら電極端子からの押圧
を受けて塑性変形し、前記金粒子と前記電極端子との接触面の径が、前記金粒子の粒子径
以上になって金属間接合することを特徴とする電気部品の接続方法を提供する。
As a first aspect of the present invention, at least the connection surface of the electrode terminal is made of gold, and an anisotropic conductive material in which a plurality of gold particles are dispersed in an adhesive is interposed between the electrode terminals to be connected, A load is applied in the direction in which the electrode terminals are brought close to each other and ultrasonic vibrations in a substantially parallel direction are applied to the connection surface, so that the gold particles come into contact with both of the electrode terminals to be connected and further receive a pressure from these electrode terminals. There is provided a method for connecting electrical parts, wherein the metal parts are plastically deformed and the diameter of the contact surface between the gold particle and the electrode terminal is equal to or larger than the particle diameter of the gold particle and metal-to-metal bonding is performed.

また本発明は第2の態様として、前記異方性導電材の接着剤として熱硬化性樹脂を用い、
前記金属間接合が終了したのち引き続き前記接着剤を加熱硬化させることなく、前記金属
間接合の工程とは別の工程において前記接着剤を硬化させることを特徴とする第1の態様
として記載の電気部品の接続方法を提供する。
Moreover, this invention uses a thermosetting resin as an adhesive agent of the said anisotropic conductive material as a 2nd aspect,
The electricity according to the first aspect, wherein the adhesive is cured in a step different from the step of intermetallic joining without heating and curing the adhesive continuously after the intermetallic joining is completed. A method for connecting parts is provided.

本発明によれば、導電粒子の塑性変形を容易に実現するために荷重と超音波振動とを併
用し、導電粒子を金粒子としているので、導電粒子や電気部品の構造体の弾性復元力を極
力抑制して残留応力の働かない状態で金属間接合を実現する。この結果、導電粒子1個あ
たりの接触面積の拡大により導電路断面積を大きく確保できたり機械的な強度を得られる
だけでなく、超音波振動による接合界面の酸化膜の破壊により微視的な面でも電流経路が
太くなり、電気的に良好な接続が得られる。
According to the present invention, in order to easily realize plastic deformation of the conductive particles, the load and ultrasonic vibration are used in combination, and the conductive particles are gold particles. Realize metal-to-metal bonding without any residual stress by suppressing it as much as possible. As a result, it is possible not only to secure a large cross-sectional area of the conductive path by increasing the contact area per conductive particle and to obtain mechanical strength, but also to microscopically destroy the oxide film at the bonding interface by ultrasonic vibration. Even on the surface, the current path becomes thicker, and a good electrical connection can be obtained.

またさらに低温且つ短時間の作業で電気部品どうしの接続が行えるので、比較的耐熱温
度の低い材料を使用した電気部品に対してもこの接続方法が適用でき、加えて金粒子によ
る金属間接合の工程と接着剤硬化の工程とを分けることが可能となるので、接着剤の硬化
工程は多数の製品を一括して処理できるようになる。つまり接合装置上での個々の接合で
時間をかける必要がなくなり、生産性の向上に併せて省エネルギーが図れる。
In addition, since electrical components can be connected to each other at a lower temperature and in a shorter time, this connection method can also be applied to electrical components that use materials with a relatively low heat-resistant temperature. Since the process and the adhesive curing process can be separated, the adhesive curing process can process a large number of products at once. That is, it is not necessary to spend time for individual joining on the joining apparatus, and energy saving can be achieved along with improvement in productivity.

発明者によれば、異方性導電材の導電粒子として軟らかく塑性変形しやすい金を使用し
た場合、押圧力に併せて超音波振動を加えることで金粒子の塑性変形が加速することが確
認された。
According to the inventors, when using gold that is soft and easily plastically deformed as conductive particles of the anisotropic conductive material, it was confirmed that plastic deformation of the gold particles is accelerated by applying ultrasonic vibration in combination with the pressing force. It was.

この現象は超音波接合特有のもので、通常99.5%程度の金の場合、常温における降
伏圧力(塑性変形開始圧力)が500MPa程度であるのに対し、一定の振幅条件の超音
波振動の印加によってその降伏圧力は200MPaから300MPaに低下し、さらに1
00℃から150℃の比較的低い過熱を行うことによって降伏圧力は100MPaから1
50MPaとさらに低下することがわかった。
This phenomenon is peculiar to ultrasonic bonding. Usually, in the case of gold of about 99.5%, the yield pressure (plastic deformation starting pressure) at room temperature is about 500 MPa, whereas ultrasonic vibration of a constant amplitude condition is observed. When applied, the yield pressure decreases from 200 MPa to 300 MPa.
By performing relatively low heating from 00 ° C. to 150 ° C., the yield pressure is from 100 MPa to 1
It was found that the pressure further decreased to 50 MPa.

つまり比較的低温の加熱と超音波振動を荷重と併用することで金粒子は大きく変形し、
この変形は導電粒子である金粒子のみの変形であるため、前述したような電気部品の電極
端子や基材の弾性復元力が極めて小さくなり、接合時の荷重を取り除いたあとも安定して
接合が維持される。
In other words, by using relatively low temperature heating and ultrasonic vibration in combination with the load, the gold particles are greatly deformed,
Since this deformation is a deformation of only gold particles that are conductive particles, the elastic restoring force of the electrode terminals and base material of the electrical parts as described above becomes extremely small, and stable bonding is possible even after the load at the time of bonding is removed. Is maintained.

次に図1に基づいて実施の形態を詳しく説明する。図1は本発明に係る接続方法の断面
模式図である。図1において、1はリジッド基板、2はリジッド基板1に形成された電極
端子で表面には金めっきが施されている。また3はフレキシブル基板、4はフレキシブル
基板3に形成された電極端子で、これも表面に金めっきが施されている。5は熱硬化性樹
脂からなる接着剤であり、6は接着剤5中に略均一に分散させた金粒子である。また、こ
の接着剤5と金粒子6で構成されるのが異方性導電材7である。
Next, the embodiment will be described in detail with reference to FIG. FIG. 1 is a schematic cross-sectional view of a connection method according to the present invention. In FIG. 1, 1 is a rigid substrate, 2 is an electrode terminal formed on the rigid substrate 1, and the surface is plated with gold. 3 is a flexible substrate, and 4 is an electrode terminal formed on the flexible substrate 3, which is also plated with gold. Reference numeral 5 denotes an adhesive made of a thermosetting resin, and reference numeral 6 denotes gold particles dispersed in the adhesive 5 substantially uniformly. An anisotropic conductive material 7 is composed of the adhesive 5 and the gold particles 6.

ここで金粒子6の大きさは、大きすぎると隣接電極端子間の短絡を引き起こし、小さす
ぎると複数の電極端子高さのコプラナリティの影響に対応できなくなることや、電極端子
の表面粗さの谷間に入り込んでしまうことから、表面粗さがRz1.0μm前後の一般的
な電極端子に対して、実用的には粒径2μmから5μmとなるような粒径分布の幅の狭い
ものが好適である。
Here, if the size of the gold particle 6 is too large, it causes a short circuit between adjacent electrode terminals, and if it is too small, the gold particle 6 cannot cope with the influence of the coplanarity of a plurality of electrode terminal heights, or the surface roughness of the electrode terminals. Therefore, it is practically preferable to have a narrow particle size distribution such that the particle size is 2 μm to 5 μm with respect to a general electrode terminal having a surface roughness of about Rz 1.0 μm. .

まず、リジッド基板1の電極端子2を含む領域に異方性導電材7を載置する。本実施の
形態では異方性導電材7は金粒子6を略均一に拡散させた接着剤5をシート状に形成した
もの(所謂ACF)を使用するが、ペースト状のもの(所謂ACP)を塗布するように供
給してもよい。
First, the anisotropic conductive material 7 is placed in a region including the electrode terminal 2 of the rigid substrate 1. In this embodiment, the anisotropic conductive material 7 uses a sheet of adhesive 5 in which gold particles 6 are diffused substantially uniformly (so-called ACF), but a paste (so-called ACP) is used. You may supply so that it may apply | coat.

次に、さらに上方からフレキシブル基板3を、接続すべき電極端子どうしを位置合わせ
して載置し、上方から荷重Fを加える。この荷重により接続すべき電極端子2と4とのあ
いだに位置した金粒子6は前記両電極端子に接触する。またこのとき併せて加熱を行う。
金粒子6と電極端子2、4との接合自体は常温でも可能であるが、樹脂からなる接着剤5
の粘度を所定の粘度まで低下させるために温度を上昇させておくのが望ましい。この加熱
は接着剤5を硬化させるためのものではなく超音波振動に対する影響を低減させるための
ものであるから、比較的低温(樹脂温100℃から150℃)の温度設定とする。
Next, the flexible substrate 3 is placed with the electrode terminals to be connected positioned from above, and a load F is applied from above. The gold particles 6 positioned between the electrode terminals 2 and 4 to be connected by this load come into contact with the electrode terminals. At this time, heating is also performed.
Bonding itself between the gold particles 6 and the electrode terminals 2 and 4 can be performed at room temperature, but the adhesive 5 made of resin.
It is desirable to raise the temperature in order to reduce the viscosity of the resin to a predetermined viscosity. Since this heating is not for curing the adhesive 5 but for reducing the influence on the ultrasonic vibration, the temperature is set to a relatively low temperature (resin temperature 100 ° C. to 150 ° C.).

次に、荷重に加えて荷重の方向と略垂直方向の超音波振動Vを付与する。この超音波振
動Vの制御方式は振幅一定方式が望ましい。単なる出力一定方式の制御である場合は、接
合の過程で生じる機械的負荷抵抗の変動により振幅も変動するため接合品質の安定化が困
難となる。
Next, in addition to the load, an ultrasonic vibration V in a direction substantially perpendicular to the direction of the load is applied. The method for controlling the ultrasonic vibration V is preferably a constant amplitude method. In the case of simple output constant control, the amplitude also varies due to the variation in mechanical load resistance that occurs during the joining process, making it difficult to stabilize the joining quality.

このように荷重Fと共に超音波振動Vが加わると、金粒子6が塑性変形してつぶれ、電
極端子2,4との接触面積が拡大するのと同時に、この接触面では超音波振動による微視
的な酸化膜の分断が行われて新生面が露出し、この界面は拡散現象ではなく凝着現象のも
とに金属間接合する。
When the ultrasonic vibration V is applied together with the load F in this way, the gold particles 6 are plastically deformed and crushed, and the contact area with the electrode terminals 2 and 4 is increased. At the same time, the contact surface is microscopically caused by ultrasonic vibration. The oxide film is divided and the new surface is exposed, and this interface is bonded between metals not by diffusion but by adhesion.

またこのときの荷重Fに関しては、金粒子6の分散密度から電極端子上に位置する粒子
数を計算し、超音波振動印加時の降伏圧力と目標とする金粒子6の接触面積より計算した
値を荷重Fとする。
Further, regarding the load F at this time, the number of particles located on the electrode terminal is calculated from the dispersion density of the gold particles 6 and is calculated from the yield pressure when applying ultrasonic vibration and the target contact area of the gold particles 6. Is a load F.

これまでに述べたことからわかるように、本発明に係る金属間接合では、金粒子6のダ
イナミックな塑性変形が重要な要素を占めるため、接合時のあらゆるエネルギー付与の設
定は金粒子6の形状寸法を基準として決定することが望ましい。したがって、金粒子の確
実な塑性変形を得るための指標として、金粒子6と電極端子2、4との接触面の径(図1
で示すB寸法)が、変形前の金粒子6の粒径(図1で示すA寸法)以上になるようにする
ことで安定した接合品質が得られる。
As can be seen from the above description, in the metal-to-metal joining according to the present invention, the dynamic plastic deformation of the gold particles 6 occupies an important factor. It is desirable to determine on the basis of dimensions. Therefore, as an index for obtaining reliable plastic deformation of the gold particles, the diameter of the contact surface between the gold particles 6 and the electrode terminals 2 and 4 (FIG. 1).
Stable joint quality can be obtained by making the B dimension indicated by (2) equal to or larger than the particle size of the gold particles 6 before deformation (A dimension shown in FIG. 1).

このようにして接続作業が行われるが、荷重Fと超音波振動Vによる塑性変形を伴う接
合自体は、一般的には0.5秒前後という短時間で完了する。したがって、このあと引き
続き更に高温で加熱し、接着剤5の硬化を行ってもよいが、この接続方法によれば前述し
たような残留応力が極めて少ないので、別途設けた硬化用の炉などで複数の製品をまとめ
て処理すればよい。
In this way, the connection work is performed, but the joining itself involving plastic deformation by the load F and the ultrasonic vibration V is generally completed in a short time of about 0.5 seconds. Therefore, the adhesive 5 may be cured by further heating at a higher temperature after this, but according to this connection method, since the residual stress as described above is extremely small, a plurality of curing agents may be used in a separate curing furnace. All of the products can be processed together.

以上実施の形態を、リジッド基板1とフレキシブル基板3との接続を例にとって説明し
たが、これがフレキシブル基板どうし、あるいは基板類と電子部品のように接続する対象
が変わっても、本発明による接続が特段の工夫なく実現可能であることは言うまでもない
Although the embodiment has been described by taking the connection between the rigid substrate 1 and the flexible substrate 3 as an example, the connection according to the present invention can be performed even if the object to be connected is changed between the flexible substrates or between the substrates and the electronic components. Needless to say, this can be realized without any particular ingenuity.

本発明の1実施形態の接続方法を示す断面模式図1 is a schematic cross-sectional view showing a connection method according to an embodiment of the present invention. 従来の接続方法を示す断面模式図Cross-sectional schematic diagram showing conventional connection method

符号の説明Explanation of symbols

1 リジッド基板
2、4、12、14 電極端子
3 フレキシブル基板
5、15 接着剤
6、16、17 導電粒子
7 異方性導電材
11 一方の電気部品
13 他方の電気部品
DESCRIPTION OF SYMBOLS 1 Rigid board | substrate 2, 4, 12, 14 Electrode terminal 3 Flexible board 5, 15 Adhesive 6, 16, 17 Conductive particle 7 Anisotropic conductive material 11 One electrical component 13 The other electrical component

Claims (2)

互いに接続すべき電極端子をそれぞれ有する電気部品どうしを接続する方
法であって、前記電極端子の少なくとも接続面を金で構成し、接着剤中に複数の金粒子を
分散させた異方性導電材を前記接続すべき電極端子間に介在させ、この電極端子どうしを
近接させる方向に荷重を加えると共に接続面に略平行方向の超音波振動を加え、前記金粒
子が前記接続すべき電極端子の両方に接触し更にこれら電極端子からの押圧を受けて塑性
変形し、前記金粒子と前記電極端子との接触面の径が、前記金粒子の粒子径以上になって
金属間接合することを特徴とする電気部品の接続方法。
An anisotropic conductive material for connecting electrical components each having an electrode terminal to be connected to each other, wherein at least a connection surface of the electrode terminal is made of gold, and a plurality of gold particles are dispersed in an adhesive Between the electrode terminals to be connected, a load is applied in a direction in which the electrode terminals are brought close to each other, and ultrasonic vibration in a substantially parallel direction is applied to the connection surface, so that the gold particles are both connected to the electrode terminals. In contact with the electrode terminals and plastically deformed by receiving pressure from these electrode terminals, and the diameter of the contact surface between the gold particles and the electrode terminals is equal to or greater than the particle diameter of the gold particles, and metal-to-metal bonding is performed. To connect electrical components.
前記異方性導電材の接着剤として熱硬化性樹脂を用い、前記金属間接合が
終了したのち引き続き前記接着剤を加熱硬化させることなく、前記金属間接合の工程とは
別の工程において前記接着剤を硬化させることを特徴とする請求項1に記載の電気部品の
接続方法。


A thermosetting resin is used as an adhesive for the anisotropic conductive material, and the bonding is performed in a step separate from the step of intermetallic bonding without heating and curing the adhesive after the intermetallic bonding is completed. The method for connecting electrical components according to claim 1, wherein the agent is cured.


JP2004154225A 2004-05-25 2004-05-25 Electrical component connection method Expired - Fee Related JP3828122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154225A JP3828122B2 (en) 2004-05-25 2004-05-25 Electrical component connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154225A JP3828122B2 (en) 2004-05-25 2004-05-25 Electrical component connection method

Publications (2)

Publication Number Publication Date
JP2005340326A JP2005340326A (en) 2005-12-08
JP3828122B2 true JP3828122B2 (en) 2006-10-04

Family

ID=35493576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154225A Expired - Fee Related JP3828122B2 (en) 2004-05-25 2004-05-25 Electrical component connection method

Country Status (1)

Country Link
JP (1) JP3828122B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4750741B2 (en) * 2007-03-20 2011-08-17 日本電信電話株式会社 Connection structure of electrode terminals in planar optical circuits
JP5622137B2 (en) * 2007-10-29 2014-11-12 デクセリアルズ株式会社 Electrical connection body and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005340326A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP3921459B2 (en) Mounting method and mounting apparatus for electrical parts
JP2008072038A (en) Method of connecting electrical components
JP2009141269A (en) Packaging method and apparatus of electrical component
JPH11191569A (en) Flip chip-mounting method and semiconductor device
WO2011089862A1 (en) Mounted body production method and mounting device
US20030178132A1 (en) Method for manufacturing connection structure
US6674178B1 (en) Semiconductor device having dispersed filler between electrodes
KR101141990B1 (en) Method and apparatus for mounting electric component
JP4191567B2 (en) Connection structure using conductive adhesive and method for manufacturing the same
JP5654289B2 (en) Manufacturing method of mounting body, mounting body, and anisotropic conductive film
JP3828122B2 (en) Electrical component connection method
JP5164499B2 (en) Electronic component mounting method and electronic component mounting substrate
JP5812123B2 (en) Manufacturing method of electronic equipment
JP2003204142A (en) Electronic component-mounting method and apparatus thereof
JP4934831B2 (en) Manufacturing method of semiconductor package
WO2023153163A1 (en) Flip-chip mounting structure and flip-chip mounting method
KR102520768B1 (en) Method for ultrasonic bonding for circuit device using anisotropic conductive film
JP2010147033A (en) Flip-chip mounting method and flip-chip mounting device
JP2007266268A (en) Thermocompression bonding jig, thermocompression bonding device, and board connecting method
JP5858600B2 (en) Chip mounting method
JPH11135561A (en) Anisotropic conductive adhesive film, its manufacture, flip-chip mounting method, and flip-chip packaging board
JP4043391B2 (en) Electronic component mounting method and mounting apparatus therefor
JP2004153055A (en) Method for flip chip mounting
JPH0714966A (en) Multi-terminal composite lead frame and manufacture thereof
JP2004128259A (en) Joint structure and electronic equipment equipped with the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

R150 Certificate of patent or registration of utility model

Ref document number: 3828122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees