JP4750741B2 - Connection structure of electrode terminals in planar optical circuits - Google Patents

Connection structure of electrode terminals in planar optical circuits Download PDF

Info

Publication number
JP4750741B2
JP4750741B2 JP2007072080A JP2007072080A JP4750741B2 JP 4750741 B2 JP4750741 B2 JP 4750741B2 JP 2007072080 A JP2007072080 A JP 2007072080A JP 2007072080 A JP2007072080 A JP 2007072080A JP 4750741 B2 JP4750741 B2 JP 4750741B2
Authority
JP
Japan
Prior art keywords
electrode
electrode terminal
optical circuit
planar optical
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007072080A
Other languages
Japanese (ja)
Other versions
JP2008233471A (en
Inventor
隆之 水野
直樹 大庭
淳 阿部
亨 小宮山
将之 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Electronics Corp
Priority to JP2007072080A priority Critical patent/JP4750741B2/en
Publication of JP2008233471A publication Critical patent/JP2008233471A/en
Application granted granted Critical
Publication of JP4750741B2 publication Critical patent/JP4750741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Description

本発明は、平面型光回路における電極端子の接続構造に関する。   The present invention relates to an electrode terminal connection structure in a planar optical circuit.

〔従来技術の第一例〕
近年、平面基板上に形成された光導波路と、その上面に形成された電気配線からなる平面型光回路が数多く開発されている。特に、石英系光導波路は伝搬損失が低く、安定性が高く、長期信頼性に優れており、石英系平面型光回路は実用的な光部品として数多くの光モジュールに使用されている。このような電気配線を有する平面型光回路の例としては、熱光学効果を利用した光スイッチや可変光減衰器などがあげられる。
[First example of prior art]
In recent years, many planar optical circuits comprising an optical waveguide formed on a planar substrate and electrical wiring formed on the upper surface thereof have been developed. In particular, quartz optical waveguides have low propagation loss, high stability, and excellent long-term reliability. Silica-based planar optical circuits are used in many optical modules as practical optical components. Examples of the planar optical circuit having such an electrical wiring include an optical switch using a thermo-optic effect and a variable optical attenuator.

図15(a)は、平面基板上に形成された従来の導波路型光スイッチの一例の概略図である。導波路型光スイッチは、入力導波路901、902と、2個の光カプラ911、921と、2個の光カプラ911、921を結ぶ光遅延導波路931、932と、出力導波路903、904とからなるマッハツェンダ干渉計の構成を有し、少なくとも一つの光遅延導波路に、屈折率調整手段941を備えている。   FIG. 15A is a schematic view of an example of a conventional waveguide type optical switch formed on a flat substrate. The waveguide type optical switch includes input waveguides 901 and 902, two optical couplers 911 and 921, optical delay waveguides 931 and 932 connecting the two optical couplers 911 and 921, and output waveguides 903 and 904. The refractive index adjusting means 941 is provided in at least one optical delay waveguide.

屈折率調整手段941としては、例えばクロムや窒化タンタルの比較的高抵抗の薄膜ヒータ等が用いられ、熱光学効果を利用することにより屈折率を調整することができる。屈折率を変化させると、2本の光遅延導波路931、932の実効的な光路長差が変化するため、光の干渉状態が変化し、光路の切り替えを行うことができる。   As the refractive index adjusting means 941, for example, a relatively high resistance thin film heater such as chromium or tantalum nitride is used, and the refractive index can be adjusted by utilizing the thermo-optic effect. When the refractive index is changed, the effective optical path length difference between the two optical delay waveguides 931 and 932 is changed, so that the light interference state is changed and the optical path can be switched.

なお、図示しないが、光遅延導波路931、932に装荷した薄膜ヒータへ電力を供給するための、低抵抗の金薄膜等を用いた電気配線が平面型光回路上に形成されている。さらに、薄膜ヒータと電気配線は石英等の絶縁膜で覆われており、この絶縁膜に保護されることにより、薄膜ヒータの長期信頼性を確保している(下記特許文献1を参照)。   Although not shown, electrical wiring using a low-resistance gold thin film or the like for supplying electric power to the thin film heater loaded in the optical delay waveguides 931 and 932 is formed on the planar optical circuit. Furthermore, the thin film heater and the electrical wiring are covered with an insulating film such as quartz, and the long-term reliability of the thin film heater is ensured by being protected by this insulating film (see Patent Document 1 below).

この導波路型光スイッチは単独で用いられる場合もあるが、複数の導波路型光スイッチを一定間隔に並べた多連の導波路型光スイッチも用いられ、例えば、光スイッチ・可変光減衰器アレイ、光アドドロップ多重回路、N×Nマトリクス光スイッチ、1×Nタップ型光スイッチ、1×Nツリー型光スイッチなどが開発されている(下記非特許文献1、2を参照)。   Although this waveguide type optical switch may be used independently, a multiple waveguide type optical switch in which a plurality of waveguide type optical switches are arranged at a constant interval is also used. For example, an optical switch or a variable optical attenuator Arrays, optical add / drop multiplexing circuits, N × N matrix optical switches, 1 × N tap optical switches, 1 × N tree optical switches, and the like have been developed (see Non-Patent Documents 1 and 2 below).

図15(b)は、導波路型光スイッチを用いた従来の平面型光回路モジュールの一例の概略図である。平面型光回路951には導波路型光スイッチ等の、電気配線を備えた光回路が多数形成されている。これら電気配線を備えた光回路の入力導波路(図示せず)と出力導波路(図示せず)は、平面型光回路951の基板端面に位置する光ファイバアレイ957に接続されている。   FIG. 15B is a schematic diagram of an example of a conventional planar optical circuit module using a waveguide type optical switch. In the planar optical circuit 951, a large number of optical circuits having electrical wiring such as a waveguide optical switch are formed. An input waveguide (not shown) and an output waveguide (not shown) of the optical circuit provided with these electric wirings are connected to an optical fiber array 957 located on the substrate end face of the planar optical circuit 951.

平面基板上には、図示しないが、光導波路上に装荷された薄膜ヒータと、平面型光回路951の基板端面に並べられた電極端子959を結ぶ電気配線が形成されている。電極端子959に給電することにより、それぞれの光回路の光導波路上に装荷された薄膜ヒータを駆動することができる。   On the flat substrate, although not shown, an electrical wiring is formed to connect the thin film heater loaded on the optical waveguide and the electrode terminals 959 arranged on the end surface of the flat optical circuit 951. By supplying power to the electrode terminal 959, the thin film heater loaded on the optical waveguide of each optical circuit can be driven.

パッケージ956の中には、平面型光回路951の他に、電気コネクタ958と、電極953と、電気コネクタ958と、電極953を結ぶ配線954からなる電気配線基板952が収容されている。そして、平面型光回路951上の電極端子959と、電気配線基板952の電極953はボンディングワイヤ955で電気的に接続されている。   In the package 956, in addition to the planar optical circuit 951, an electrical wiring substrate 952 including an electrical connector 958, an electrode 953, an electrical connector 958, and a wiring 954 connecting the electrode 953 is accommodated. The electrode terminal 959 on the planar optical circuit 951 and the electrode 953 of the electric wiring board 952 are electrically connected by a bonding wire 955.

電気コネクタ958には、平面型光回路モジュールの内部もしくは外部より電源を接続することができる。このような構成にすることで、電気配線基板952を中継し、平面型光回路951の電極端子959に容易に電力を供給することができる(下記特許文献2を参照)。   A power source can be connected to the electrical connector 958 from the inside or the outside of the planar optical circuit module. With such a configuration, it is possible to easily supply power to the electrode terminal 959 of the planar optical circuit 951 by relaying the electric wiring board 952 (see Patent Document 2 below).

〔従来技術の第二例〕
近年、液晶表示装置の分野では、回路素子と電極端子が形成された液晶回路基板と、この液晶回路基板の電極端子に接続するための電極が形成された樹脂フィルムをベースとする配線基板を接続する方法として、異方性導電膜を用いる方法が採用されている。図16(a)に、その接続方法を示す。液晶回路基板971の上面に電極端子972が形成され、配線基板962の基板961上面に電極963が形成され、両者は導電粒子967と接着剤968を含む異方性導電膜966を介して接続されている(下記特許文献3を参照)。
[Second example of prior art]
In recent years, in the field of liquid crystal display devices, a liquid crystal circuit board on which circuit elements and electrode terminals are formed is connected to a wiring board based on a resin film on which electrodes for connecting to the electrode terminals of the liquid crystal circuit board are formed. As a method for this, a method using an anisotropic conductive film is employed. FIG. 16A shows the connection method. An electrode terminal 972 is formed on the upper surface of the liquid crystal circuit substrate 971, and an electrode 963 is formed on the upper surface of the substrate 961 of the wiring substrate 962, both of which are connected via an anisotropic conductive film 966 including conductive particles 967 and an adhesive 968. (See Patent Document 3 below).

異方性導電膜966は、熱硬化性の接着剤樹脂内に導電粒子967を含有させたもので、接着時の加熱・加圧により接着剤樹脂が流動し、垂直方向のみに導電性を示す性質を持つ。図16(b)には配線基板962の一例の概略図を、図16(c)には図16(b)において破線で示された部分の断面構造の概略図を示す。基板961上面に配線964と、配線964につながる電極963が形成され、配線964と、電極963の一部はカバー965で覆われている(下記特許文献3を参照)。   The anisotropic conductive film 966 contains conductive particles 967 in a thermosetting adhesive resin, and the adhesive resin flows by heating and pressurizing during bonding, and exhibits conductivity only in the vertical direction. Has properties. FIG. 16B shows a schematic diagram of an example of the wiring board 962, and FIG. 16C shows a schematic diagram of a cross-sectional structure of a portion indicated by a broken line in FIG. A wiring 964 and an electrode 963 connected to the wiring 964 are formed on the top surface of the substrate 961, and the wiring 964 and a part of the electrode 963 are covered with a cover 965 (see Patent Document 3 below).

この異方性導電膜966を用いて電極端子972を接続する方法は液晶表示装置の分野では広く用いられており、様々な技術が開発されている。例えば、所定の間隔を隔てて形成された複数の電極963を有する配線基板962の電極963と、液晶回路基板971の電極端子972において、熱変位の大きい電極963のピッチを、熱変位の小さい電極端子972のピッチよりも小さくしておくと共に、位置合わせの基準とするための電極963と電極端子972のピッチを同一にした部分を形成することにより、熱変位の小さい電極端子972と熱変位の大きい電極963とを精度良く位置合わせる接続方法が開発されている(下記特許文献4を参照)。   A method of connecting the electrode terminals 972 using the anisotropic conductive film 966 is widely used in the field of liquid crystal display devices, and various techniques have been developed. For example, in the electrode 963 of the wiring board 962 having a plurality of electrodes 963 formed at a predetermined interval and the electrode terminal 972 of the liquid crystal circuit board 971, the pitch of the electrodes 963 having a large thermal displacement is changed to an electrode having a small thermal displacement. By forming a portion where the pitch of the electrode 963 and the electrode terminal 972 used as a reference for alignment is the same as that of the terminal 972, the pitch of the electrode terminal 972 is reduced. A connection method for accurately aligning the large electrode 963 has been developed (see Patent Document 4 below).

また、例えば、短冊状に形成された液晶回路基板971の電極端子972もしくは配線基板962の電極963のいずれか一方の端子間ピッチを一定とし、いずれか他方の端子間ピッチについては、端子の中央部では小さく設定し、端部側に行くに従って大きく設定することにより、配線基板962の熱膨張に起因する伸びによる接続不良を減少させる接続方法が開発されている。   Further, for example, the pitch between the terminals of either the electrode terminal 972 of the liquid crystal circuit board 971 or the electrode 963 of the wiring board 962 formed in a strip shape is constant, and the pitch between the other terminals is the center of the terminal. A connection method has been developed that reduces the connection failure due to the elongation caused by the thermal expansion of the wiring board 962 by setting it smaller in the portion and larger in the direction toward the end.

また、例えば、液晶回路基板971の電極端子972もしくは配線基板962の電極963のいずれか一方の縁部を中心とする所定範囲に位置ずれ防止用絶縁膜を形成した接続方法が開発されている(下記特許文献5を参照)。
また、例えば、電極端子972と電極963の間に導電粒子を挟むための突起電極を用いた接続方法が開発されている(下記特許文献6を参照)。
In addition, for example, a connection method has been developed in which a displacement-preventing insulating film is formed in a predetermined range centered on one edge of either the electrode terminal 972 of the liquid crystal circuit board 971 or the electrode 963 of the wiring board 962 ( (See Patent Document 5 below).
For example, a connection method using a protruding electrode for sandwiching conductive particles between the electrode terminal 972 and the electrode 963 has been developed (see Patent Document 6 below).

特開2004−233737号公報JP 2004-233737 A 特開2005−4014号公報JP 2005-4014 A 特開平11−95245号公報Japanese Patent Laid-Open No. 11-95245 特開平9−61840号公報Japanese Patent Laid-Open No. 9-61840 特開2000−133396号公報JP 2000-133396 A 特開平10−98069号公報JP-A-10-98069 T.Goh,“Recent Progress on Silica−based Thermooptic Switches for ADMs/XCs,”IEEE Lasers and Electro−Optics Society(LEOS)1999 12th Annual Meeting,Vol.2,pp.485−486,Nov.8−11,1999.T.A. Goh, “Recent Progress on Silica-based Thermologic Switches for ADMs / XCs,” IEEE Lasers and Electro-Optics Society (LEOS) 1999 12th Anne. 2, pp. 485-486, Nov. 8-11, 1999. Y.Hashizume,Y.Inoue,T.Kominato,T.Shibata,and M.Okuno,“Low−PDL16−channel variable Optical Attenuator Array using Silica−based PLC,”Optical Fiber Communication Conference(OFC)2004,Vol.1,WC4,Feb.23−27,2004.Y. Hashizumi, Y. et al. Inoue, T .; Kominato, T .; Shibata, and M.M. Okuno, “Low-PDL16-channel variable Optical Attenuator Array using Silica-based PLC,“ Optical Fiber Communication Conference (OFC) 2004, Vol. 1, WC4, Feb. 23-27, 2004.

しかし、図15(b)に示す従来技術の第一例の平面型光回路モジュールは、パッケージ956の中に、平面型光回路951の他に、電気配線基板952を収容する必要があり、モジュールのサイズが大きくなるという問題があった。一方、図16に示す従来技術の第二例で説明した、異方性導電膜966を用いる接続方法は、液晶表示装置の分野で広く用いられている技術である。もし、図15(b)に示す平面型光回路951に同様の接続方法を適用することができれば、電気配線基板952を省き、電気配線基板952を平面型光回路の電極端子959に直接接続できるため、平面型光回路モジュールを大幅に小型化できることが期待される。   However, the planar optical circuit module of the first example of the prior art shown in FIG. 15B needs to accommodate an electrical wiring board 952 in addition to the planar optical circuit 951 in the package 956. There was a problem that the size of the. On the other hand, the connection method using the anisotropic conductive film 966 described in the second example of the prior art shown in FIG. 16 is a technique widely used in the field of liquid crystal display devices. If the same connection method can be applied to the planar optical circuit 951 shown in FIG. 15B, the electrical wiring board 952 can be omitted and the electrical wiring board 952 can be directly connected to the electrode terminal 959 of the planar optical circuit. Therefore, it is expected that the planar optical circuit module can be greatly reduced in size.

しかしながら、異方性導電膜966を用いた電極端子972の接続技術は、平面型光回路951の分野では確立されておらず、下記に示すような問題がある。
第1に、図16に示す異方性導電膜966を用いて電極端子972と配線基板962の電極963を接続する接続構造では、電極端子972と配線基板962の電極963を、液晶回路基板971に対して突出させるのが一般的である(上記特許文献3を参照)。
However, the connection technique of the electrode terminal 972 using the anisotropic conductive film 966 has not been established in the field of the planar optical circuit 951, and has the following problems.
First, in the connection structure in which the electrode terminal 972 and the electrode 963 of the wiring board 962 are connected using the anisotropic conductive film 966 shown in FIG. 16, the electrode terminal 972 and the electrode 963 of the wiring board 962 are connected to the liquid crystal circuit board 971. It is common to make it protrude with respect to (refer the said patent document 3).

しかし、図15(b)に示す平面型光回路951では、電極端子959を除いて、クラッド上面は薄膜ヒータを保護するための絶縁膜で覆われているため、電極端子959が窪んでいる。図16に示す異方性導電膜966は突出した電極963と同じく突出した電極端子972とを接続するよう設計されているため、図15(b)に示す窪んだ電極端子959と突出した電極953を接続する構造では、接触抵抗が生じやすい。   However, in the planar optical circuit 951 shown in FIG. 15B, since the upper surface of the clad is covered with an insulating film for protecting the thin film heater except for the electrode terminal 959, the electrode terminal 959 is depressed. Since the anisotropic conductive film 966 shown in FIG. 16 is designed to connect the protruding electrode terminal 963 to the protruding electrode terminal 972, the recessed electrode terminal 959 and the protruding electrode 953 shown in FIG. In the structure connecting the two, contact resistance is likely to occur.

第2に、図15(b)に示す一定のピッチを隔てて複数形成されている平面型光回路951の電極端子959に電気配線基板952の電極953を接続する場合において、樹脂フィルムをベースとする電気配線基板952は、温度変化により収縮・膨張しやすいため、電極953の位置がずれるという問題がある。もし、図16に示す突出した電極963と同じく突出した電極端子972との接続なら、図15(b)に示す電極端子959と電気配線基板952の電極953の位置が多少ずれても電気的に接続できるが、電極端子959が窪んでいる構造の場合は、位置ずれが生じると接続不良につながる。   Second, in the case where the electrode 953 of the electric wiring board 952 is connected to the electrode terminal 959 of the planar optical circuit 951 formed at a certain pitch as shown in FIG. Since the electric wiring board 952 that is easily contracted and expanded due to a temperature change, there is a problem that the position of the electrode 953 is shifted. If the protruding electrode 963 shown in FIG. 16 is connected to the protruding electrode terminal 972, the electrode terminal 959 shown in FIG. 15B and the electrode 953 of the electric wiring board 952 may be electrically shifted even if they are slightly displaced. In the case of a structure in which the electrode terminal 959 is recessed, a connection error occurs when a positional shift occurs.

第3に、図15(b)に示す平面型光回路951では、平面基板や光導波路層に用いる材料の組み合わせによっては平面基板に反りが生じる場合があり、電気配線基板952の温度変化による収縮・膨張が無かったとしても、電極端子959の位置と電気配線基板952の電極953の位置とがずれるという問題がある。   Third, in the planar optical circuit 951 shown in FIG. 15B, the planar substrate may be warped depending on the combination of materials used for the planar substrate and the optical waveguide layer, and the electrical wiring substrate 952 contracts due to temperature changes. Even if there is no expansion, there is a problem that the position of the electrode terminal 959 and the position of the electrode 953 of the electric wiring board 952 are shifted.

以上のことから、本発明は、電極端子が絶縁膜の中に窪んだ平面型光回路で、異方性導電膜を介して配線基板の電極を低抵抗で接続でき、かつ配線不良を抑制できる平面型光回路における電極端子の接続構造を提供することを目的とする。   From the above, the present invention is a planar optical circuit in which the electrode terminal is recessed in the insulating film, and can connect the electrodes of the wiring board with a low resistance through the anisotropic conductive film, and can suppress wiring defects. An object of the present invention is to provide a connection structure for electrode terminals in a planar optical circuit.

上記の課題を解決するための第1の発明(請求項1に対応)に係る平面型光回路における電極端子の接続構造は、
平面基板上に形成されたクラッドと、該クラッドの中に形成され、該クラッドよりも屈折率が高いコアとから成る平面型光回路であって、前記クラッドの上面に電気配線と、該電気配線につながる電極端子とが形成され、該電極端子の全部もしくは一部の領域を開口部とし、前記電極端子の開口部を除く領域が絶縁膜で覆われた平面型光回路において、
前記平面型光回路の電極端子の開口部に、基板上に形成された配線と、該配線につながる電極とから成る配線基板であって、前記基板の上面から前記電極の上面までの高さがtである配線基板の電極が、粒子径φの導電粒子を有する導電膜を介して電気的に接続され、
前記電極端子の開口幅が前記配線基板の電極の幅よりも広く、かつ、前記絶縁膜の上面から前記電極端子の開口部の上面までの深さdが、0d≦t−φとなるよう電極端子が形成されている
ことを特徴とする。
The electrode terminal connection structure in the planar optical circuit according to the first invention (corresponding to claim 1) for solving the above-described problem is
A planar optical circuit comprising a clad formed on a flat substrate and a core formed in the clad and having a refractive index higher than that of the clad, comprising: an electric wiring on the upper surface of the clad; and the electric wiring In the planar optical circuit in which the electrode terminal connected to the electrode terminal is formed, the entire or part of the electrode terminal is an opening, and the region excluding the opening of the electrode terminal is covered with an insulating film.
A wiring board comprising wiring formed on a substrate in an opening of an electrode terminal of the planar optical circuit and an electrode connected to the wiring, the height from the upper surface of the substrate to the upper surface of the electrode The electrode of the wiring board which is t is electrically connected through a conductive film having conductive particles having a particle diameter φ,
The opening width of the electrode terminal is wider than the width of the electrode of the wiring board, and the depth d from the upper surface of the insulating film to the upper surface of the opening portion of the electrode terminal satisfies 0 < d ≦ t−φ. An electrode terminal is formed.

上記の課題を解決するための第2の発明(請求項2に対応)に係る平面型光回路における電極端子の接続構造は、第1の発明に係る平面型光回路における電極端子の接続構造において、
前記平面型光回路の電極端子の開口幅をw、前記配線基板の電極の幅をLとした時、w≧L+2φとなるよう電極端子が形成されている
ことを特徴とする。
The electrode terminal connection structure in the planar optical circuit according to the second invention (corresponding to claim 2) for solving the above problems is the electrode terminal connection structure in the planar optical circuit according to the first invention. ,
The electrode terminal is formed so that w ≧ L + 2φ, where w is the opening width of the electrode terminal of the planar optical circuit and L is the width of the electrode of the wiring board.

上記の課題を解決するための第3の発明(請求項3に対応)に係る平面型光回路における電極端子の接続構造は、第1の発明又は第2の発明に係る平面型光回路における電極端子の接続構造において、
前記平面型光回路の電極端子の硬度及び前記配線基板の電極の硬度が前記導電粒子の硬度よりも高く、かつ、前記電極端子の開口部の上面と、前記配線基板の電極の上面との間隔が、前記導電粒子の粒子径より小さい
ことを特徴とする。
An electrode terminal connection structure in a planar optical circuit according to a third invention (corresponding to claim 3) for solving the above problems is an electrode in the planar optical circuit according to the first invention or the second invention. In the terminal connection structure,
The hardness of the electrode terminal of the planar optical circuit and the hardness of the electrode of the wiring board are higher than the hardness of the conductive particles, and the distance between the upper surface of the opening of the electrode terminal and the upper surface of the electrode of the wiring board Is smaller than the particle diameter of the conductive particles.

上記の課題を解決するための第4の発明(請求項4に対応)に係る平面型光回路における電極端子の接続構造は、第1の発明又は第2の発明に係る平面型光回路における電極端子の接続構造において、
前記平面型光回路の電極端子の硬度又は前記配線基板の電極の硬度が、前記導電粒子の硬度よりも低く、かつ、前記電極端子の開口部の上面と、前記配線基板の電極の上面との間隔が、前記導電粒子の粒子径より小さい
ことを特徴とする。
An electrode terminal connection structure in a planar optical circuit according to a fourth invention (corresponding to claim 4) for solving the above problems is an electrode in the planar optical circuit according to the first invention or the second invention. In the terminal connection structure,
The hardness of the electrode terminal of the planar optical circuit or the hardness of the electrode of the wiring board is lower than the hardness of the conductive particles, and the upper surface of the opening of the electrode terminal and the upper surface of the electrode of the wiring board The interval is smaller than the particle diameter of the conductive particles.

上記の課題を解決するための第5の発明(請求項5に対応)に係る平面型光回路における電極端子の接続構造は、第1の発明乃至第4の発明のいずれかに係る平面型光回路における電極端子の接続構造において、
前記平面型光回路の電極端子が所定の間隔を隔てて複数形成された
ことを特徴とする。
The electrode terminal connection structure in the planar optical circuit according to the fifth invention (corresponding to claim 5) for solving the above problems is the planar light according to any one of the first to fourth inventions. In the electrode terminal connection structure in the circuit,
A plurality of electrode terminals of the planar optical circuit are formed at a predetermined interval.

上記の課題を解決するための第6の発明(請求項6に対応)に係る平面型光回路における電極端子の接続構造は、第5の発明に係る平面型光回路における電極端子の接続構造において、
前記配線基板の電極と、前記平面型光回路の電極端子とが、第1から第N(Nは3以上の整数)まで所定の間隔を隔てて複数配置され、
前記配線基板の第n(1≦n≦N)の電極に接続される前記平面型光回路の第nの電極端子の開口幅をw(n)とした時、前記平面型光回路の第m(1≦m≦N−1)の電極端子の中心位置と第m+1の電極端子の中心位置の間隔が、前記配線基板の電極を前記平面型光回路の電極端子に接続する前の、前記配線基板の第mの電極の中心位置と第m+1の電極の中心位置の間隔と等しく、かつ、前記平面型光回路の第mの電極端子の開口幅w(m)と第m+1の電極端子の開口幅w(m+1)のいずれか一方が、他方よりも広い
ことを特徴とする。
An electrode terminal connection structure in a planar optical circuit according to a sixth invention (corresponding to claim 6) for solving the above-described problem is an electrode terminal connection structure in a planar optical circuit according to the fifth invention. ,
A plurality of electrodes of the wiring board and electrode terminals of the planar optical circuit are arranged at a predetermined interval from first to Nth (N is an integer of 3 or more),
When the opening width of the nth electrode terminal of the planar optical circuit connected to the nth (1 ≦ n ≦ N) electrode of the wiring board is w (n), the mth of the planar optical circuit. The distance between the center position of the electrode terminal (1 ≦ m ≦ N−1) and the center position of the (m + 1) th electrode terminal is the wiring before the electrode of the wiring board is connected to the electrode terminal of the planar optical circuit. The distance between the center position of the mth electrode and the center position of the (m + 1) th electrode of the substrate is equal to the opening width w (m) of the mth electrode terminal and the opening of the (m + 1) th electrode terminal of the planar optical circuit. One of the widths w (m + 1) is wider than the other.

上記の課題を解決するための第7の発明(請求項7に対応)に係る平面型光回路における電極端子の接続構造は、第5の発明に係る平面型光回路における電極端子の接続構造において、
前記配線基板の電極の幅をL、電極間の隙間の幅をSとしたとき、前記配線基板の電極が、第1の電極から第N(Nは3以上の整数)の電極まで一定間隔L+Sを隔てて複数配置され、
前記配線基板の第n(1≦n≦N)の電極に接続される前記平面型光回路の第nの電極端子の開口幅をw(n)とした時、第1から第Nの電極端子のうち、最も真ん中に近い第mの電極端子の開口幅がw(n)の中で最小であり、かつ、w(m)≧L+2φを満たし、第mから第1の電極端子に向かうにつれ電極端子の開口幅が次第に広くなり、第mから第Nの電極端子に向かうにつれ電極端子の開口幅が次第に広くなる
ことを特徴とする。
An electrode terminal connection structure in a planar optical circuit according to a seventh invention (corresponding to claim 7) for solving the above-described problem is an electrode terminal connection structure in a planar optical circuit according to the fifth invention. ,
When the width of the electrode of the wiring board is L and the width of the gap between the electrodes is S, the electrode of the wiring board is a constant distance L + S from the first electrode to the Nth electrode (N is an integer of 3 or more). Are arranged across
When the opening width of the nth electrode terminal of the planar optical circuit connected to the nth (1 ≦ n ≦ N) electrode of the wiring board is w (n), the first to Nth electrode terminals Among them, the opening width of the m-th electrode terminal closest to the center is the smallest among w (n), and satisfies w (m) ≧ L + 2φ, and the electrode moves from the m-th to the first electrode terminal. The opening width of the terminal is gradually increased, and the opening width of the electrode terminal is gradually increased from the mth to the Nth electrode terminal.

上記の課題を解決するための第8の発明(請求項8に対応)に係る平面型光回路における電極端子の接続構造は、第5の発明に係る平面型光回路における電極端子の接続構造において、
前記平面型光回路の電極端子が、第1から第N(Nは3以上の整数)まで所定の間隔を隔てて複数配置され、
前記配線基板の電極の幅をL、電極間の隙間の幅をSとしたとき、前記配線基板の電極が、第1の電極から第Nの電極まで一定間隔L+Sを隔てて複数配置され、
前記平面基板の反りの曲率をRとすると、前記平面型光回路の第1から第Nの電極端子のうち、第mの電極端子の中心位置を基準として、前記平面型光回路の第n(1≦n≦N)の電極端子の中心位置が、x(n)=R・arcsin((L+S)・(n−m)/R)に配置されている
ことを特徴とする。
The electrode terminal connection structure in the planar optical circuit according to the eighth invention (corresponding to claim 8) for solving the above problem is the electrode terminal connection structure in the planar optical circuit according to the fifth invention. ,
A plurality of electrode terminals of the planar optical circuit are arranged at a predetermined interval from the first to the Nth (N is an integer of 3 or more),
When the width of the electrode of the wiring board is L and the width of the gap between the electrodes is S, a plurality of electrodes of the wiring board are arranged with a constant interval L + S from the first electrode to the Nth electrode,
When the curvature of warpage of the planar substrate is R, the nth ((n) th) of the planar optical circuit is based on the center position of the mth electrode terminal among the first to Nth electrode terminals of the planar optical circuit. The center position of the electrode terminal of 1 ≦ n ≦ N) is arranged as x (n) = R · arcsin ((L + S) · (nm) / R).

上記の課題を解決するための第9の発明(請求項9に対応)に係る平面型光回路における電極端子の接続構造は、第1の発明乃至第8の発明のいずれかに係る平面型光回路における電極端子の接続構造において、
前記コアとクラッドからなる光導波路は、石英系光導波路である
ことを特徴とする。
An electrode terminal connection structure in a planar optical circuit according to a ninth invention (corresponding to claim 9) for solving the above problems is a planar light according to any of the first to eighth inventions. In the electrode terminal connection structure in the circuit,
The optical waveguide composed of the core and the clad is a silica-based optical waveguide.

第1の発明によれば、電極端子が窪んだ平面型光回路であっても、異方性導電膜を介して配線基板の電極を低抵抗で接続できる。配線基板を直接平面型光回路に接続するので、電気配線基板とボンディングワイヤを用いなくても、平面型光回路の電極端子に電力を供給でき、平面型光回路モジュールを大幅に小型化できる。   According to the first invention, even in the planar optical circuit in which the electrode terminals are recessed, the electrodes of the wiring board can be connected with low resistance via the anisotropic conductive film. Since the wiring board is directly connected to the planar optical circuit, electric power can be supplied to the electrode terminals of the planar optical circuit without using an electrical wiring board and bonding wires, and the planar optical circuit module can be greatly reduced in size.

第2の発明によれば、第1の発明の効果に加え、配線基板の突出した電極端と平面型光回路の窪んだ電極端子端の間に導電粒子が挟まるのを回避し、接触不良の抑制をさらに確実なものとすることができる。
第3の発明及び第4の発明によれば、第1の発明又は第2の発明の効果に加え、平面型光回路の電極端子と配線基板の電極との導通をさらに良くすることができる。
According to the second invention, in addition to the effects of the first invention, the conductive particles are prevented from being sandwiched between the protruding electrode end of the wiring board and the recessed electrode terminal end of the planar optical circuit, thereby preventing poor contact. Suppression can be further ensured.
According to the third invention and the fourth invention, in addition to the effects of the first invention or the second invention, conduction between the electrode terminal of the planar optical circuit and the electrode of the wiring board can be further improved.

第5の発明によれば、第1の発明乃至第4の発明のいずれかの効果に加え、導波路型光スイッチや可変光減衰器などの光回路を集積した、小型で高機能な平面型光回路を実現できる。
第6の発明によれば、第5の発明の効果に加え、平面型光回路の電極端子を一定ピッチに配置したまま、配線基板の膨張・収縮による電極の位置ずれが生じたとしても、電極端子と配線基板の電極を電気的に接続することができる。
According to the fifth invention, in addition to the effects of any one of the first to fourth inventions, a compact and highly functional planar type in which optical circuits such as a waveguide type optical switch and a variable optical attenuator are integrated. An optical circuit can be realized.
According to the sixth invention, in addition to the effects of the fifth invention, the electrode terminals of the planar optical circuit are arranged at a constant pitch, and even if the electrode is displaced due to expansion / contraction of the wiring board, the electrode The terminal and the electrode of the wiring board can be electrically connected.

第7の発明によれば、第5の発明の効果に加え、配線基板の突出した電極端と平面型光回路の窪んだ電極端子端の間に導電粒子が挟まるのを回避しつつ、配線基板の膨張・収縮による電極の位置ずれを補償できる。
第8の発明によれば、第5の発明の効果に加え、平面基板に反りが生じたとしても、電極端子の位置と配線基板の電極の位置を合わせることができる。
According to the seventh invention, in addition to the effects of the fifth invention, the wiring board avoids the conductive particles from being sandwiched between the protruding electrode end of the wiring board and the recessed electrode terminal end of the planar optical circuit. It is possible to compensate for the displacement of the electrode due to the expansion and contraction of the electrode.
According to the eighth invention, in addition to the effect of the fifth invention, the position of the electrode terminal and the position of the electrode of the wiring board can be matched even if the flat substrate is warped.

第9の発明によれば、第1の発明乃至第8の発明のいずれかの効果に加え、伝搬損失が低く、安定性が高く、長期信頼性に優れた光部品を実現できる。
以上のことから、本発明により、配線基板を平面型光回路の電極端子に低抵抗で高信頼に接続できる技術が確立され、従来の平面型光回路モジュールの大きさを大幅に小型化することができる。
According to the ninth aspect, in addition to the effects of any one of the first to eighth aspects, an optical component having low propagation loss, high stability, and excellent long-term reliability can be realized.
From the above, according to the present invention, a technology capable of connecting a wiring board to an electrode terminal of a planar optical circuit with low resistance and high reliability is established, and the size of a conventional planar optical circuit module is greatly reduced. Can do.

以下、本発明に係る平面型光回路における電極端子の接続構造の種々の実施形態について、図1から図14を用いて説明する。ここで、図1は本発明の第1実施形態における平面型光回路の電極端子の接続構造であって、(a)は平面図、(b)は切断面A−A´における断面図、(c)は配線基板の断面構造の概略図、図2は本発明の第1実施形態における平面型光回路の電極端子の接続構造の概略図、図3は本発明の第2実施形態における平面型光回路の電極端子の接続構造の概略図、図4は本発明の第3実施形態における平面型光回路の電極端子の接続構造で、電極端子近傍の絶縁膜が、周辺の絶縁膜に対し盛り上がっている様子を示した図、図5は本発明の第4実施形態における平面型光回路の電極端子の接続構造の概略図、図6は本発明の第5実施形態における平面型光回路の電極端子の接続構造の概略図、図7は本発明の第6実施形態における平面型光回路の電極端子の接続構造の概略図、図8は本発明の第7実施形態における平面型光回路の電極端子の接続構造であって、(a)は配線基板の断面図、(b)は導電膜を挟んで配線基板の電極と平面型光回路の上面の電極端子を加熱・圧着した後の接続構造の断面図、図9は本発明の第8実施形態における平面型光回路の電極端子の接続構造の概略図、図10は本発明の第9実施形態における平面型光回路の電極端子の接続構造の概略図、図11は本発明の第10実施形態における平面型光回路の電極端子の接続構造の概略図、図12は本発明の各実施形態で説明した平面型光回路における電極端子の接続構造を適用した光回路の一例であって、(a)は平面図、(b)は切断面B−B´における断面図、(c)は切断面C−C´における断面図、図13は本発明の各実施形態で説明した平面型光回路における電極端子の接続構造を適用した多連の光回路の一例を示した図、図14は本発明の平面型光回路の製作工程を説明する模式図である。   Hereinafter, various embodiments of electrode terminal connection structures in a planar optical circuit according to the present invention will be described with reference to FIGS. Here, FIG. 1 is a connection structure of electrode terminals of the planar optical circuit in the first embodiment of the present invention, where (a) is a plan view, (b) is a cross-sectional view taken along the section AA ′, c) is a schematic diagram of a cross-sectional structure of a wiring board, FIG. 2 is a schematic diagram of a connection structure of electrode terminals of a planar optical circuit in the first embodiment of the present invention, and FIG. 3 is a planar model in the second embodiment of the present invention. FIG. 4 is a schematic diagram of an electrode terminal connection structure of an optical circuit, and FIG. 4 is a connection structure of an electrode terminal of a planar optical circuit in a third embodiment of the present invention. FIG. 5 is a schematic diagram of a connection structure of electrode terminals of a planar optical circuit according to the fourth embodiment of the present invention, and FIG. 6 is an electrode of the planar optical circuit according to the fifth embodiment of the present invention. FIG. 7 is a schematic diagram of a terminal connection structure, and FIG. FIG. 8 is a schematic view of the electrode terminal connection structure of FIG. 8, FIG. 8 is a connection structure of the electrode terminal of the planar optical circuit in the seventh embodiment of the present invention, FIG. FIG. 9 is a cross-sectional view of the connection structure after heating and pressure bonding the electrode of the wiring board and the electrode terminal on the upper surface of the planar optical circuit across the film, and FIG. 9 shows the electrode terminal of the planar optical circuit in the eighth embodiment of the present invention. 10 is a schematic diagram of a connection structure, FIG. 10 is a schematic diagram of a connection structure of electrode terminals of a planar optical circuit in a ninth embodiment of the present invention, and FIG. 11 is an electrode terminal of a planar optical circuit in a tenth embodiment of the present invention. FIG. 12 is a schematic diagram of a connection structure, and FIG. 12 is an example of an optical circuit to which the electrode terminal connection structure in the planar optical circuit described in each embodiment of the present invention is applied, where (a) is a plan view and (b) is a plan view. Sectional view at section plane BB ', (c) is sectional view at section plane CC' FIG. 13 is a diagram showing an example of a multiple optical circuit to which the electrode terminal connection structure in the planar optical circuit described in each embodiment of the present invention is applied, and FIG. 14 is a process for manufacturing the planar optical circuit of the present invention. FIG.

〔第1の実施形態〕
図1に、本発明の第1実施形態における平面型光回路の電極端子の接続構造を示す。平面基板161上に、コア(図示せず)が埋め込まれたクラッド401と、クラッド401の上面に電気配線171と、電気配線171につながれた電極端子191が形成され、電極端子191の一部の領域を開口部181とし、開口部181を除く電極端子191の残りの領域と、その周辺のクラッド401及び電気配線171が絶縁膜168で覆われている。ここでは、電極端子191と開口部181は四角形に形成したが、形状は任意である。
[First Embodiment]
FIG. 1 shows a connection structure of electrode terminals of a planar optical circuit in the first embodiment of the present invention. A clad 401 having a core (not shown) embedded therein, an electric wiring 171, and an electrode terminal 191 connected to the electric wiring 171 are formed on the planar substrate 161, and a part of the electrode terminal 191 is formed. The region is an opening 181, and the remaining region of the electrode terminal 191 excluding the opening 181, the surrounding clad 401 and the electric wiring 171 are covered with an insulating film 168. Here, the electrode terminal 191 and the opening 181 are formed in a square shape, but the shape is arbitrary.

そして、電極端子191の開口部181に、配線基板311の電極321を、粒子径φの導電粒子211を有する導電膜201を介して電気的に接続している。配線基板311は、基板301上に形成され、カバー341に覆われた配線331と、配線331につながる電極321から成り、基板301の上面から電極321の上面までの高さはtである。   The electrode 321 of the wiring board 311 is electrically connected to the opening 181 of the electrode terminal 191 through the conductive film 201 having conductive particles 211 having a particle diameter φ. The wiring substrate 311 includes a wiring 331 formed on the substrate 301 and covered with a cover 341, and an electrode 321 connected to the wiring 331. The height from the upper surface of the substrate 301 to the upper surface of the electrode 321 is t.

本実施形態では、電極端子191の開口部181の幅が、配線基板311の電極321の幅よりも広くなるよう電極端子191を形成した。それにより、電極端子191を絶縁膜168で覆った電極構造であっても、導電膜210を通し、配線基板311の電極321と電極端子191を電気的に接続できた。   In the present embodiment, the electrode terminal 191 is formed such that the width of the opening 181 of the electrode terminal 191 is wider than the width of the electrode 321 of the wiring board 311. Thereby, even in the electrode structure in which the electrode terminal 191 is covered with the insulating film 168, the electrode 321 of the wiring substrate 311 and the electrode terminal 191 can be electrically connected through the conductive film 210.

さらに、絶縁膜168の上面から電極端子191の開口部181の上面までの深さdが、d≦t−φとなるよう電極端子191を形成した。ここで、φは粒子径である。なお、絶縁膜168の上面よりも電極端子191の開口部181の上面の方が低い位置にあるため、深さd0である。この条件式は次のように導出した。 Further, the electrode terminal 191 was formed so that the depth d from the upper surface of the insulating film 168 to the upper surface of the opening 181 of the electrode terminal 191 was d ≦ t−φ. Here, φ is the particle diameter. Note that since the upper surface of the opening 181 of the electrode terminal 191 is lower than the upper surface of the insulating film 168, the depth d > 0. This conditional expression was derived as follows.

図1(b)に示す導電膜210を挟んで配線基板311の電極321と平面型光回路の上面の電極端子191を加熱・圧着した後の接続構造において、絶縁膜168の上面と配線基板311の基板301上面との距離をgとすると、t+φ=g+dが成立する。この式を整理すると、d=t+φ−gを得る。ここで、絶縁膜168の上面と配線基板311の基板301上面との間に2φ以上の隙間をあけるとすれば、導電粒子211が挟まることがなく、充分な導通が取れる。   In the connection structure after the electrode 321 of the wiring substrate 311 and the electrode terminal 191 on the upper surface of the planar optical circuit are heated and pressure-bonded with the conductive film 210 shown in FIG. 1B, the upper surface of the insulating film 168 and the wiring substrate 311 are connected. If the distance from the upper surface of the substrate 301 is g, t + φ = g + d is established. By arranging this equation, d = t + φ−g is obtained. Here, if a gap of 2φ or more is formed between the upper surface of the insulating film 168 and the upper surface of the substrate 301 of the wiring substrate 311, the conductive particles 211 are not sandwiched and sufficient conduction can be obtained.

この時、g≧2φであるので、d≦t−φの条件式を得る。もちろん、g≧2φでなくともg≧φであれば、少なくとも絶縁膜168の上面と配線基板311の基板301上面との間にはφの隙間ができるため、導通は取れる。しかし、使用する材料や接続条件等により、加熱・圧着後に粒子が圧縮され、粒子径がφより小さくなる場合もあるので、少なくともg≧2φ、すなわち、d≦t−φとなるよう電極端子191を形成すれば、接触不良は避けることができる。   At this time, since g ≧ 2φ, a conditional expression of d ≦ t−φ is obtained. Of course, if g ≧ φ but not g ≧ 2φ, a gap of φ is formed at least between the upper surface of the insulating film 168 and the upper surface of the substrate 301 of the wiring substrate 311, so that conduction can be obtained. However, depending on the material used, connection conditions, etc., the particles may be compressed after heating and pressure bonding, and the particle diameter may be smaller than φ. Therefore, at least g ≧ 2φ, that is, d ≦ t−φ so that the electrode terminal 191 is satisfied. If this is formed, poor contact can be avoided.

以上、説明したように、電極端子191の開口部181の幅が、配線基板311の電極321の幅よりも広くなるよう電極端子191を形成し、かつ、絶縁膜168上面と配線基板311の基板301上面に充分な隙間を開けることにより、絶縁膜168上面と配線基板311の基板301上面の間に導電粒子211が挟まるのを防ぎ、安定した電気的接続を得た。   As described above, the electrode terminal 191 is formed so that the width of the opening 181 of the electrode terminal 191 is wider than the width of the electrode 321 of the wiring substrate 311, and the upper surface of the insulating film 168 and the substrate of the wiring substrate 311 are formed. By providing a sufficient gap on the upper surface of 301, the conductive particles 211 are prevented from being sandwiched between the upper surface of the insulating film 168 and the upper surface of the substrate 301 of the wiring substrate 311 to obtain a stable electrical connection.

図2(a)に、導電膜201を通し、配線基板311の電極321と電極端子191とを接続する前の様子を示す。配線基板311として、フレキシブル配線板を用い、基板301とカバー341(図1参照)は厚さ25μmの薄膜を、電極321は厚さt=9μmの薄膜で形成した。   FIG. 2A shows a state before the electrode 321 and the electrode terminal 191 of the wiring substrate 311 are connected through the conductive film 201. A flexible wiring board was used as the wiring substrate 311, and the substrate 301 and the cover 341 (see FIG. 1) were formed of a thin film with a thickness of 25 μm, and the electrode 321 was formed with a thin film with a thickness of t = 9 μm.

導電膜201として、熱硬化性接着剤樹脂である接着剤241に平均粒子径φ=3μmの金属粒子を導電粒子211として含有させた異方性導電膜を用いた。平面型光回路はシリコン基板上に形成した石英系光導波路で形成し、電気配線171(図1参照)の厚さを3μm、電極端子191の厚さを3μm、電極端子191の開口部181の上面までの深さd=3μmとなるよう、石英系の絶縁膜168を装荷した。平面型光回路と配線基板311の間に導電粒子211と熱硬化性接着剤樹脂である接着剤241からなる導電膜201である異方性導電膜を挟み、加熱・圧着することにより配線基板311を平面型光回路に接続した。   As the conductive film 201, an anisotropic conductive film was used in which metal particles having an average particle diameter φ = 3 μm were contained as the conductive particles 211 in the adhesive 241 that is a thermosetting adhesive resin. The planar optical circuit is formed of a silica-based optical waveguide formed on a silicon substrate. The thickness of the electric wiring 171 (see FIG. 1) is 3 μm, the thickness of the electrode terminal 191 is 3 μm, and the opening 181 of the electrode terminal 191 is formed. A quartz insulating film 168 was loaded so that the depth d to the upper surface was d = 3 μm. By sandwiching an anisotropic conductive film, which is a conductive film 201 made of conductive particles 211 and an adhesive 241 that is a thermosetting adhesive resin, between the planar optical circuit and the wiring board 311, the wiring board 311 is heated and pressed. Was connected to a planar optical circuit.

接続後の様子を図2(b)に示す。平面型光回路の電極端子191の開口部181と配線基板311の電極321が、導電膜201である異方性導電膜の導電粒子211を介して物理的に、電気的に接続され、接着剤241により固定された様子が示されている。さらに詳しくは、平面型光回路の電極端子191の開口部181に、配線基板311の電極321が挿入され、異方性導電膜である導電膜201が圧縮され、接続されている。   The state after connection is shown in FIG. The opening 181 of the electrode terminal 191 of the planar optical circuit and the electrode 321 of the wiring board 311 are physically and electrically connected via the conductive particles 211 of the anisotropic conductive film which is the conductive film 201, and the adhesive The state fixed by 241 is shown. More specifically, the electrode 321 of the wiring board 311 is inserted into the opening 181 of the electrode terminal 191 of the planar optical circuit, and the conductive film 201 which is an anisotropic conductive film is compressed and connected.

ここでもし電極端子191の開口部181の幅が、配線基板311の電極321の幅よりも狭いか、または電極端子191の開口部181の上面までの深さdが、d>t−φであったとすれば、配線基板311の電極321と電極端子191を電気的に接続しにくくなり、接触抵抗の発生につながっていた。   If the width of the opening 181 of the electrode terminal 191 is smaller than the width of the electrode 321 of the wiring board 311 or the depth d to the upper surface of the opening 181 of the electrode terminal 191 is d> t−φ. If so, the electrode 321 and the electrode terminal 191 of the wiring board 311 are difficult to be electrically connected, leading to the generation of contact resistance.

それに対し、本実施形態では、電極端子191の開口幅を配線基板311の電極321の幅よりも広く、かつ、絶縁膜168の上面から電極端子191の開口部181の上面までの深さdが0d≦t−φとなるよう電極端子191を形成したことにより、配線基板311の電極321を平面型光回路の電極端子191に高い信頼性で物理的にかつ電気的に接続できた。 On the other hand, in the present embodiment, the opening width of the electrode terminal 191 is wider than the width of the electrode 321 of the wiring board 311, and the depth d from the upper surface of the insulating film 168 to the upper surface of the opening 181 of the electrode terminal 191 is By forming the electrode terminal 191 so that 0 < d ≦ t−φ, the electrode 321 of the wiring board 311 could be physically and electrically connected to the electrode terminal 191 of the planar optical circuit with high reliability.

このように、本実施形態によれば、絶縁膜168で覆われ、電極端子191が窪んだ平面型光回路であっても、接続不良を起こすことなく、異方性導電膜である導電膜201を介して配線基板311の電極321を低抵抗で、かつ、高い信頼性で接続することができた。   As described above, according to the present embodiment, the conductive film 201 that is an anisotropic conductive film is formed without causing poor connection even in a planar optical circuit that is covered with the insulating film 168 and in which the electrode terminal 191 is recessed. Thus, the electrode 321 of the wiring board 311 could be connected with low resistance and high reliability.

〔第2の実施形態〕
図3に、本発明の第2実施形態における平面型光回路の電極端子の接続構造を示す。平面基板161上に、コア(図示せず)が埋め込まれたクラッド401と、クラッド401の上面に、電気配線171(図1参照)につながれた電極端子191が形成され、電極端子191の一部の領域を開口部181とし、開口部181を除く電極端子191の残りの領域と、その周辺のクラッド401及び電気配線171(図1参照)が絶縁膜168で覆われている。
[Second Embodiment]
FIG. 3 shows a connection structure of electrode terminals of a planar optical circuit in the second embodiment of the present invention. A clad 401 in which a core (not shown) is embedded is formed on a flat substrate 161, and an electrode terminal 191 connected to an electric wiring 171 (see FIG. 1) is formed on the upper surface of the clad 401, and part of the electrode terminal 191 This region is the opening 181, and the remaining region of the electrode terminal 191 excluding the opening 181, the surrounding clad 401 and the electric wiring 171 (see FIG. 1) are covered with an insulating film 168.

そして、電極端子191の開口部181に、配線基板311の電極321を、粒子径φの導電粒子211を有する導電膜201を介して電気的に接続している。配線基板311の基板301の上面から電極321の上面までの高さはtである。ここで、本実施形態の導電粒子211は、核221と、核221を覆う膜231により構成されており、核221は比較的柔らかい材料、膜231は導電性の良い材料で形成した。   The electrode 321 of the wiring board 311 is electrically connected to the opening 181 of the electrode terminal 191 through the conductive film 201 having conductive particles 211 having a particle diameter φ. The height from the upper surface of the substrate 301 of the wiring substrate 311 to the upper surface of the electrode 321 is t. Here, the conductive particles 211 of the present embodiment are constituted by a core 221 and a film 231 covering the core 221, and the core 221 is formed of a relatively soft material and the film 231 is formed of a material having good conductivity.

本実施形態では、電極端子191の開口部181の幅が、配線基板311の電極321の幅よりも広くなるよう電極端子191を形成し、かつ、絶縁膜168の上面から電極端子191の開口部181の上面までの深さdが、d≦t−φとなるよう電極端子191を形成した。なお、絶縁膜168の上面よりも電極端子191の開口部181の上面の方が低い位置にあるため、深さd0である。 In the present embodiment, the electrode terminal 191 is formed so that the width of the opening 181 of the electrode terminal 191 is wider than the width of the electrode 321 of the wiring board 311, and the opening of the electrode terminal 191 is formed from the upper surface of the insulating film 168. The electrode terminal 191 was formed so that the depth d to the upper surface of 181 was d ≦ t−φ. Note that since the upper surface of the opening 181 of the electrode terminal 191 is lower than the upper surface of the insulating film 168, the depth d > 0.

さらに、本実施形態では、電極端子191の硬度と配線基板311の電極321の硬度が、導電粒子211の硬度よりも高くなるようにし、加熱・圧着により、電極端子191と配線基板311の電極321で導電粒子211を圧縮する接続構造とした。この時、電極端子191の開口部181の上面と、配線基板311の電極321の上面との間隔が、導電粒子211の粒子径より小さく、電極端子191と配線基板311の電極321で導電粒子211を押しつぶした構造とすることにより、導通をさらに良くした。   Furthermore, in the present embodiment, the hardness of the electrode terminal 191 and the hardness of the electrode 321 of the wiring board 311 are made higher than the hardness of the conductive particles 211, and the electrode terminal 191 and the electrode 321 of the wiring board 311 are heated and pressed. Thus, a connection structure for compressing the conductive particles 211 was obtained. At this time, the distance between the upper surface of the opening 181 of the electrode terminal 191 and the upper surface of the electrode 321 of the wiring substrate 311 is smaller than the particle diameter of the conductive particle 211, and the conductive particle 211 is formed by the electrode terminal 191 and the electrode 321 of the wiring substrate 311. By making the structure crushed, conduction was further improved.

先の条件式d≦t−φは次のように導出した。絶縁膜168の上面と配線基板311の基板301上面との距離をgとすると、t+φ=g+dが成立するが、加熱・圧着後は、電極端子191と配線基板311の電極321に挟まれた導電粒子211の粒子径はφより小さくなるため、t+φ>g+dとなる。なお、φは電極端子191と配線基板311の電極321に押しつぶされていない導電粒子211の直径である。   The previous conditional expression d ≦ t−φ was derived as follows. If the distance between the upper surface of the insulating film 168 and the upper surface of the substrate 301 of the wiring substrate 311 is g, t + φ = g + d is established. However, after heating and pressure bonding, the conductive material sandwiched between the electrode terminal 191 and the electrode 321 of the wiring substrate 311 is satisfied. Since the particle diameter of the particle 211 is smaller than φ, t + φ> g + d. Here, φ is the diameter of the conductive particles 211 that are not crushed by the electrode terminal 191 and the electrode 321 of the wiring board 311.

一方、導電粒子211はφμmから最大で0μmまで圧縮されるので、g+d≧tが成立する。g+d=tとなるのは、導電粒子211が完全に押しつぶされた状態である。ここで、絶縁膜168の上面と配線基板311の基板301上面との間に少なくともφの隙間をあければ、導電粒子211が挟まることがなく、導通が取れる。この時、g≧φであるので、d≦t−φの条件式を得る。   On the other hand, since the conductive particles 211 are compressed from φ μm to a maximum of 0 μm, g + d ≧ t is established. g + d = t is a state in which the conductive particles 211 are completely crushed. Here, if at least a gap of φ is formed between the upper surface of the insulating film 168 and the upper surface of the substrate 301 of the wiring substrate 311, the conductive particles 211 are not sandwiched and conduction can be obtained. At this time, since g ≧ φ, a conditional expression of d ≦ t−φ is obtained.

以上、説明したように、電極端子191の開口部181の幅が、配線基板311の電極321の幅よりも広くなるよう電極端子191を形成し、かつ、絶縁膜168上面と配線基板311の基板301上面に充分な隙間を開けることにより、絶縁膜168上面と配線基板311の基板301上面の間に導電粒子211が挟まるのを防ぎ、安定した電気的接続を得た。さらに、電極端子191の開口部181の上面と、配線基板311の電極321の上面との間隔が、導電粒子211の粒子径より小さくなるようにし、導電粒子211を押しつぶした構造とすることにより、導通をさらに良くした。   As described above, the electrode terminal 191 is formed so that the width of the opening 181 of the electrode terminal 191 is wider than the width of the electrode 321 of the wiring substrate 311, and the upper surface of the insulating film 168 and the substrate of the wiring substrate 311 are formed. By providing a sufficient gap on the upper surface of 301, the conductive particles 211 are prevented from being sandwiched between the upper surface of the insulating film 168 and the upper surface of the substrate 301 of the wiring substrate 311 to obtain a stable electrical connection. Furthermore, the gap between the upper surface of the opening 181 of the electrode terminal 191 and the upper surface of the electrode 321 of the wiring board 311 is made smaller than the particle diameter of the conductive particles 211, and the conductive particles 211 are crushed, Improved continuity.

本実施形態では、配線基板311として、フレキシブル配線板を用い、基板301とカバー341(図1参照)は厚さ25μmのポリイミド薄膜を、電極321は厚さt=9μmの銅箔で形成した。導電膜201として、粒子径φ=5μmの導電粒子211を含む異方性導電膜を用い、導電粒子211は表面を金メッキしたプラスチック粒子を使用した。平面型光回路はシリコン基板上に形成した石英系光導波路で形成し、電気配線171(図1参照)の厚さを3μm、電極端子191の厚さを3μm、電極端子191の開口部181の上面までの深さd=3μmとなるよう、石英系の絶縁膜168を装荷した。   In this embodiment, a flexible wiring board is used as the wiring substrate 311, the substrate 301 and the cover 341 (see FIG. 1) are formed of a polyimide thin film with a thickness of 25 μm, and the electrode 321 is formed of a copper foil with a thickness t = 9 μm. As the conductive film 201, an anisotropic conductive film including conductive particles 211 having a particle diameter φ = 5 μm was used, and the conductive particles 211 were plastic particles whose surfaces were plated with gold. The planar optical circuit is formed of a silica-based optical waveguide formed on a silicon substrate. The thickness of the electric wiring 171 (see FIG. 1) is 3 μm, the thickness of the electrode terminal 191 is 3 μm, and the opening 181 of the electrode terminal 191 is formed. A quartz insulating film 168 was loaded so that the depth d to the upper surface was d = 3 μm.

なお、第1実施形態では、電極端子191の長手方向の両端を除く領域を開口部181としたのに対し、本実施形態では、電極端子191の長手方向の両端だけでなく短手方向の両端にも僅かに絶縁膜168を被せ、開口部181の幅が電極端子191の幅よりも僅かに狭くなるよう作製した。電極端子191の全周囲を絶縁膜168で覆うことで、電極端子191の剥離を防ぐことができる。   In the first embodiment, the region excluding both ends in the longitudinal direction of the electrode terminal 191 is the opening 181, whereas in this embodiment, not only both ends in the longitudinal direction of the electrode terminal 191 but also both ends in the short direction. In addition, the insulating film 168 was slightly covered so that the width of the opening 181 was slightly narrower than the width of the electrode terminal 191. By covering the entire periphery of the electrode terminal 191 with the insulating film 168, peeling of the electrode terminal 191 can be prevented.

平面型光回路と配線基板311の間に導電粒子211と熱硬化性接着剤樹脂である接着剤241からなる異方性導電膜である導電膜201を挟み、加熱・圧着することにより、平面型光回路の電極端子191の開口部181と配線基板311の電極321が、異方性導電膜である導電膜201の導電粒子211を介して物理的に、電気的に接続され、接着剤241により固定された。   By sandwiching a conductive film 201, which is an anisotropic conductive film composed of conductive particles 211 and an adhesive 241 that is a thermosetting adhesive resin, between the flat optical circuit and the wiring substrate 311, heating and press-bonding are performed, thereby The opening 181 of the electrode terminal 191 of the optical circuit and the electrode 321 of the wiring substrate 311 are physically and electrically connected via the conductive particles 211 of the conductive film 201 which is an anisotropic conductive film, and the adhesive 241 fixed.

以上、本実施形態では、導電粒子211を、柔らかい材質の粒子核221と、粒子核221を覆う導電性の良いメッキの膜231で形成し、平面型光回路の電極端子191上面と配線基板311の電極321上面の間隔を導電粒子211の粒子径より小さくし、導電粒子211を押し潰すことにより、良好な導通特性を得た。本実施形態では、2種類の異なる材質で導電粒子211を形成したが、もちろん、3種類以上の異なる材料で導電粒子211を形成しても良いし、形状も任意である。   As described above, in the present embodiment, the conductive particles 211 are formed of the soft material particle nuclei 221 and the electroconductive plating film 231 that covers the particle nuclei 221, and the upper surface of the electrode terminal 191 of the planar optical circuit and the wiring substrate 311. By making the interval between the upper surfaces of the electrodes 321 smaller than the particle diameter of the conductive particles 211 and crushing the conductive particles 211, good conduction characteristics were obtained. In the present embodiment, the conductive particles 211 are formed of two different materials, but of course, the conductive particles 211 may be formed of three or more different materials, and the shape is also arbitrary.

このように、本実施形態によれば、絶縁膜168で覆われ、電極端子191が窪んだ平面型光回路であっても、接続不良を起こすことなく、異方性導電膜である導電膜201を介して配線基板311の電極321を低抵抗で、かつ、高い信頼性で接続することができた。   As described above, according to the present embodiment, the conductive film 201 that is an anisotropic conductive film is formed without causing poor connection even in a planar optical circuit that is covered with the insulating film 168 and in which the electrode terminal 191 is recessed. Thus, the electrode 321 of the wiring board 311 could be connected with low resistance and high reliability.

〔第3の実施形態〕
図4に、本発明の第3実施形態における平面型光回路の電極端子の接続構造を示す。平面基板161上に、コア(図示せず)が埋め込まれたクラッド401と、クラッド401の上面に、電気配線171(図1参照)につながれた電極端子191が形成され、電極端子191の一部の領域を開口部181とし、開口部181を除く電極端子191の残りの領域と、その周辺のクラッド401及び電気配線171(図1参照)が絶縁膜168で覆われている。
[Third Embodiment]
FIG. 4 shows a connection structure of electrode terminals of a planar optical circuit in the third embodiment of the present invention. A clad 401 in which a core (not shown) is embedded is formed on a flat substrate 161, and an electrode terminal 191 connected to an electric wiring 171 (see FIG. 1) is formed on the upper surface of the clad 401, and part of the electrode terminal 191 This region is the opening 181, and the remaining region of the electrode terminal 191 excluding the opening 181, the surrounding clad 401 and the electric wiring 171 (see FIG. 1) are covered with an insulating film 168.

そして、電極端子191の開口部181に、配線基板311の電極321を、粒子径φの導電粒子211を有する導電膜201を介して電気的に接続している。配線基板311の基板301の上面から電極321の上面までの高さはtである。ここで、本実施形態の導電粒子211は、核221と、核221を覆う膜231により構成されており、核221は導電性の良い材料、膜231は絶縁性の薄膜で形成した。導電粒子211の粒子径はφであり、電極端子191と配線基板311の電極321に押しつぶされていない導電粒子211の直径である。   The electrode 321 of the wiring board 311 is electrically connected to the opening 181 of the electrode terminal 191 through the conductive film 201 having conductive particles 211 having a particle diameter φ. The height from the upper surface of the substrate 301 of the wiring substrate 311 to the upper surface of the electrode 321 is t. Here, the conductive particles 211 of this embodiment are constituted by a nucleus 221 and a film 231 covering the nucleus 221, the nucleus 221 being formed of a material having good conductivity, and the film 231 being formed of an insulating thin film. The particle diameter of the conductive particles 211 is φ, and is the diameter of the conductive particles 211 that are not crushed by the electrode terminal 191 and the electrode 321 of the wiring board 311.

本実施形態では、電極端子191の開口部181の幅が、配線基板311の電極321の幅よりも広くなるよう電極端子191を形成し、かつ、絶縁膜168の上面から電極端子191の開口部181の上面までの深さdが、d≦t−φとなるよう電極端子191を形成した。なお、絶縁膜168の上面よりも電極端子191の開口部181の上面の方が低い位置にあるため、深さd0である。 In the present embodiment, the electrode terminal 191 is formed so that the width of the opening 181 of the electrode terminal 191 is wider than the width of the electrode 321 of the wiring board 311, and the opening of the electrode terminal 191 is formed from the upper surface of the insulating film 168. The electrode terminal 191 was formed so that the depth d to the upper surface of 181 was d ≦ t−φ. Note that since the upper surface of the opening 181 of the electrode terminal 191 is lower than the upper surface of the insulating film 168, the depth d > 0.

本実施形態では電極端子191の短手方向の両端のかどを僅かに覆うように絶縁膜168を形成しているが、電極端子191を覆う部分の近傍の絶縁膜168が、電極端子191の厚さだけ突出している。この場合、深さdは、電極端子191の厚さだけ突出した部分の絶縁膜168上面から電極端子191の上面までの距離を表す。もし絶縁膜168上面が滑らかでない場合は、導電粒子211をその絶縁膜168上面に置いたと仮定した時の導電粒子211の底の位置を実質的な絶縁膜168上面の位置とすれば良い。   In this embodiment, the insulating film 168 is formed so as to slightly cover the corners at both ends in the short direction of the electrode terminal 191, but the insulating film 168 in the vicinity of the portion covering the electrode terminal 191 has a thickness of the electrode terminal 191. It just protrudes. In this case, the depth d represents the distance from the upper surface of the insulating film 168 that protrudes by the thickness of the electrode terminal 191 to the upper surface of the electrode terminal 191. If the upper surface of the insulating film 168 is not smooth, the bottom position of the conductive particles 211 when the conductive particles 211 are placed on the upper surface of the insulating film 168 may be set as the substantial upper surface of the insulating film 168.

さらに、本実施形態では、電極端子191の硬度と配線基板311の電極321の硬度が、導電粒子211の硬度よりも高くなるようにし、加熱・圧着により、電極端子191と配線基板311の電極321で導電粒子211を圧縮する接続構造とした。本実施形態の導電粒子211は、導電性の粒子が絶縁皮膜で覆われた構造のため、電極端子191の開口部181の上面と、配線基板311の電極321の上面との間隔が、導電粒子211の粒子径より小さくなるようにし、電極端子191と配線基板311の電極321により押し潰された導電粒子211のみが導通する。一方、電極端子191と配線基板311の電極321に押し潰されていない導電粒子211の絶縁性は保持されたままなので、絶縁特性が良いながら、電気的に接続したい部分では良好な導通が得られた。   Furthermore, in the present embodiment, the hardness of the electrode terminal 191 and the hardness of the electrode 321 of the wiring board 311 are made higher than the hardness of the conductive particles 211, and the electrode terminal 191 and the electrode 321 of the wiring board 311 are heated and pressed. Thus, a connection structure for compressing the conductive particles 211 was obtained. Since the conductive particles 211 of the present embodiment have a structure in which conductive particles are covered with an insulating film, the distance between the upper surface of the opening 181 of the electrode terminal 191 and the upper surface of the electrode 321 of the wiring substrate 311 is Only the conductive particles 211 that are crushed by the electrode terminal 191 and the electrode 321 of the wiring board 311 are made to be smaller than the particle diameter of 211. On the other hand, since the insulating property of the conductive particles 211 that are not crushed by the electrode terminal 191 and the electrode 321 of the wiring board 311 is maintained, good conduction can be obtained at a portion where electrical connection is desired while having good insulating characteristics. It was.

以上、説明したように、電極端子191の開口部181の幅が、配線基板311の電極321の幅よりも広くなるよう電極端子191を形成し、かつ、0d≦t−φとなるよう電極端子191を形成したことにより、絶縁膜168上面と配線基板311の基板301上面の間に導電粒子211が挟まるのを防ぎ、電極端子191と配線基板311の電極321で導電粒子211を充分圧縮できた。さらに、電極端子191の開口部181の上面と、配線基板311の電極321の上面との間隔が、導電粒子211の粒子径より小さくなるようにし、導電粒子211を押しつぶした構造とすることにより、絶縁被覆を破り、導通を取った。 As described above, the electrode terminal 191 is formed so that the width of the opening 181 of the electrode terminal 191 is wider than the width of the electrode 321 of the wiring board 311, and 0 < d ≦ t−φ. By forming the electrode terminal 191, the conductive particles 211 are prevented from being sandwiched between the upper surface of the insulating film 168 and the upper surface of the substrate 301 of the wiring substrate 311, and the conductive particles 211 are sufficiently compressed by the electrode 321 of the electrode terminal 191 and the wiring substrate 311. did it. Furthermore, the gap between the upper surface of the opening 181 of the electrode terminal 191 and the upper surface of the electrode 321 of the wiring board 311 is made smaller than the particle diameter of the conductive particles 211, and the conductive particles 211 are crushed, The insulation coating was broken and conduction was obtained.

本実施形態では、配線基板311として、フレキシブル配線板を用い、基板301とカバー341(図1参照)は厚さ12.5μmのポリイミド薄膜を、電極321は厚さt=9μmの銅箔で形成した。導電膜201として、粒子径φ=6μmの導電粒子を含む異方性導電膜を用い、導電粒子211は表面を絶縁被覆で覆ったニッケル粒子を使用した。   In this embodiment, a flexible wiring board is used as the wiring substrate 311, the substrate 301 and the cover 341 (see FIG. 1) are formed of a polyimide thin film with a thickness of 12.5 μm, and the electrode 321 is formed with a copper foil with a thickness of t = 9 μm. did. As the conductive film 201, an anisotropic conductive film containing conductive particles having a particle diameter φ = 6 μm was used, and the conductive particles 211 were nickel particles whose surfaces were covered with an insulating coating.

平面型光回路はシリコン基板上に形成した石英系光導波路で形成し、電気配線171(図1参照)の厚さを2μm、電極端子191の厚さを2μm、電極端子191の開口部181の上面までの深さd=3μmとなるよう、石英系の絶縁膜168を装荷した。平面型光回路と配線基板311の間に導電粒子211と熱硬化性接着剤樹脂である接着剤241からなる異方性導電膜である導電膜201を挟み、加熱・圧着することにより、平面型光回路の電極端子191と配線基板311の電極321を導通させた。   The planar optical circuit is formed of a silica-based optical waveguide formed on a silicon substrate. The thickness of the electric wiring 171 (see FIG. 1) is 2 μm, the thickness of the electrode terminal 191 is 2 μm, and the opening 181 of the electrode terminal 191 is formed. A quartz insulating film 168 was loaded so that the depth d to the upper surface was d = 3 μm. By sandwiching a conductive film 201, which is an anisotropic conductive film composed of conductive particles 211 and an adhesive 241 that is a thermosetting adhesive resin, between the flat optical circuit and the wiring substrate 311, heating and press-bonding are performed, thereby The electrode terminal 191 of the optical circuit and the electrode 321 of the wiring board 311 were made conductive.

以上、本実施形態では、導電粒子211を、導電性の核221と、核221を覆う絶縁被覆の膜231で形成し、平面型光回路の電極端子191上面と配線基板311の電極321上面の間隔を導電粒子211の粒子径より小さくし、導電粒子211を押し潰すことにより、絶縁性を保ったまま、導通を取りたい端子間で良好な導通特性を得た。   As described above, in this embodiment, the conductive particles 211 are formed of the conductive core 221 and the insulating coating film 231 that covers the core 221, and the upper surface of the electrode terminal 191 of the planar optical circuit and the upper surface of the electrode 321 of the wiring substrate 311. By making the interval smaller than the particle diameter of the conductive particles 211 and crushing the conductive particles 211, good conduction characteristics were obtained between terminals where conduction was desired while maintaining insulation.

このように、本実施形態によれば、絶縁膜168で覆われ、電極端子191が窪んだ平面型光回路であっても、接続不良を起こすことなく、異方性導電膜である導電膜201を介して配線基板301の電極321を低抵抗で、かつ、高い信頼性で接続することができた。   As described above, according to the present embodiment, the conductive film 201 that is an anisotropic conductive film is formed without causing poor connection even in a planar optical circuit that is covered with the insulating film 168 and in which the electrode terminal 191 is recessed. Thus, the electrode 321 of the wiring board 301 can be connected with low resistance and high reliability.

〔第4の実施形態〕
図5に、本発明の第4実施形態における平面型光回路の電極端子の接続構造を示す。平面基板161上に、コア(図示せず)が埋め込まれたクラッド401と、クラッド401の上面に、電気配線171(図1参照)につながれた電極端子191が形成され、電極端子191の一部の領域を開口部181とし、開口部181を除く電極端子191の残りの領域と、その周辺のクラッド401及び電気配線171(図1参照)が絶縁膜168で覆われている。そして、電極端子191の開口部181に、配線基板311の電極321を、粒子径φの導電粒子211を含有する導電膜201を介して電気的に接続している。配線基板311の基板301の上面から電極321の上面までの高さはtである。
[Fourth Embodiment]
FIG. 5 shows a connection structure of electrode terminals of a planar optical circuit in the fourth embodiment of the present invention. A clad 401 in which a core (not shown) is embedded is formed on a flat substrate 161, and an electrode terminal 191 connected to an electric wiring 171 (see FIG. 1) is formed on the upper surface of the clad 401, and part of the electrode terminal 191 This region is the opening 181, and the remaining region of the electrode terminal 191 excluding the opening 181, the surrounding clad 401 and the electric wiring 171 (see FIG. 1) are covered with an insulating film 168. The electrode 321 of the wiring board 311 is electrically connected to the opening 181 of the electrode terminal 191 through the conductive film 201 containing the conductive particles 211 having a particle diameter φ. The height from the upper surface of the substrate 301 of the wiring substrate 311 to the upper surface of the electrode 321 is t.

本実施形態では、電極端子191の開口部181の幅が、配線基板311の電極321の幅よりも広くなるよう電極端子191を形成し、かつ、絶縁膜168の上面から電極端子191の開口部181の上面までの深さdが、d≦t−φとなるよう電極端子191を形成した。なお、絶縁膜168の上面よりも電極端子191の開口部181の上面の方が低い位置にあるため、深さd0である。 In the present embodiment, the electrode terminal 191 is formed so that the width of the opening 181 of the electrode terminal 191 is wider than the width of the electrode 321 of the wiring board 311, and the opening of the electrode terminal 191 is formed from the upper surface of the insulating film 168. The electrode terminal 191 was formed so that the depth d to the upper surface of 181 was d ≦ t−φ. Note that since the upper surface of the opening 181 of the electrode terminal 191 is lower than the upper surface of the insulating film 168, the depth d > 0.

さらに、本実施形態では、電極端子191の硬度と配線基板311の電極321の硬度が、導電粒子211の硬度よりも低くなるようにし、加熱・圧着により、電極端子191と配線基板311の電極321で導電粒子211を圧縮する接続構造とした。この時、電極端子191の開口部321の上面と、配線基板311の電極321の上面との間隔が、導電粒子211の粒子径より小さく、導電粒子211が電極端子191と配線基板311の電極321にめり込む構造とすることにより、導通をさらに良くした。   Furthermore, in this embodiment, the hardness of the electrode terminal 191 and the hardness of the electrode 321 of the wiring board 311 are made lower than the hardness of the conductive particles 211, and the electrode terminal 191 and the electrode 321 of the wiring board 311 are heated and pressed. Thus, a connection structure for compressing the conductive particles 211 was obtained. At this time, the distance between the upper surface of the opening 321 of the electrode terminal 191 and the upper surface of the electrode 321 of the wiring substrate 311 is smaller than the particle diameter of the conductive particle 211, and the conductive particle 211 is the electrode terminal 191 and the electrode 321 of the wiring substrate 311. By adopting a structure that is embedded, conduction is further improved.

先の条件式d≦t−φは次のように導出した。絶縁膜168の上面と配線基板311の基板301上面との距離をgとすると、t+φ=g+dが成立するが、加熱・圧着後は、電極端子191と配線基板311の電極321の間の距離は、導電粒子211の粒子径はφより小さくなるため、t+φ>g+dとなる。   The previous conditional expression d ≦ t−φ was derived as follows. If the distance between the upper surface of the insulating film 168 and the upper surface of the substrate 301 of the wiring substrate 311 is g, t + φ = g + d is established, but after heating and pressure bonding, the distance between the electrode terminal 191 and the electrode 321 of the wiring substrate 311 is Since the particle diameter of the conductive particles 211 is smaller than φ, t + φ> g + d.

一方、電極端子191と配線基板311の電極321の間の距離は、最大で0μmであるので、g+d≧tが成立する。g+d=tとなるのは、導電粒子211が電極端子191と配線基板311の電極321の中に完全に埋没した状態である。ここで、絶縁膜168の上面と配線基板311の基板301上面との間に少なくともφの隙間をあければ、導電粒子211が挟まることがなく、導通が取れる。この時、g≧φであるので、d≦t−φの条件式を得る。   On the other hand, since the distance between the electrode terminal 191 and the electrode 321 of the wiring board 311 is 0 μm at the maximum, g + d ≧ t is established. g + d = t is a state in which the conductive particles 211 are completely buried in the electrode terminal 191 and the electrode 321 of the wiring board 311. Here, if at least a gap of φ is formed between the upper surface of the insulating film 168 and the upper surface of the substrate 301 of the wiring substrate 311, the conductive particles 211 are not sandwiched and conduction can be obtained. At this time, since g ≧ φ, a conditional expression of d ≦ t−φ is obtained.

以上、説明したように、電極端子191の開口部181の幅が、配線基板311の電極321の幅よりも広くなるよう電極端子191を形成し、かつ、絶縁膜168上面と配線基板311の基板301上面に充分な隙間を開けることにより、絶縁膜168上面と配線基板311の基板301上面の間に導電粒子211が挟まるのを防ぎ、安定した電気的接続を得た。さらに、電極端子191の開口部181の上面と、配線基板311の電極321の上面との間隔が、導電粒子211の粒子径より小さくなるようにし、導電粒子211を押しつぶした構造とすることにより、導通をさらに良くした。   As described above, the electrode terminal 191 is formed so that the width of the opening 181 of the electrode terminal 191 is wider than the width of the electrode 321 of the wiring substrate 311, and the upper surface of the insulating film 168 and the substrate of the wiring substrate 311 are formed. By providing a sufficient gap on the upper surface of 301, the conductive particles 211 are prevented from being sandwiched between the upper surface of the insulating film 168 and the upper surface of the substrate 301 of the wiring substrate 311 to obtain a stable electrical connection. Furthermore, the gap between the upper surface of the opening 181 of the electrode terminal 191 and the upper surface of the electrode 321 of the wiring board 311 is made smaller than the particle diameter of the conductive particles 211, and the conductive particles 211 are crushed, Improved continuity.

本実施形態では、配線基板311として、フレキシブル配線板を用い、基板301とカバー341(図1参照)は厚さ25μmのポリイミド薄膜を、電極321は厚さt=18μmの銅箔で形成した。導電膜201として、粒子径φ=10μmの導電粒子211を含む異方性導電膜を用い、導電粒子211は金メッキニッケル粒子を使用した。   In this embodiment, a flexible wiring board is used as the wiring substrate 311, the substrate 301 and the cover 341 (see FIG. 1) are formed of a polyimide thin film with a thickness of 25 μm, and the electrode 321 is formed of a copper foil with a thickness of t = 18 μm. As the conductive film 201, an anisotropic conductive film including conductive particles 211 having a particle diameter φ = 10 μm was used, and the conductive particles 211 were gold-plated nickel particles.

平面型光回路はシリコン基板上に形成した石英系光導波路で形成し、電気配線171(図1参照)の厚さを5μm、電極端子191の厚さを5μm、電極端子191の開口部181の上面までの深さd=5μmとなるよう、石英系の絶縁膜168を装荷した。平面型光回路と配線基板311の間に導電粒子211と熱硬化性接着剤樹脂である接着剤241からなる異方性導電膜である導電膜201を挟み、加熱・圧着することにより、平面型光回路の電極端子191と配線基板311の電極321を導通させた。   The planar optical circuit is formed by a silica-based optical waveguide formed on a silicon substrate. The thickness of the electric wiring 171 (see FIG. 1) is 5 μm, the thickness of the electrode terminal 191 is 5 μm, and the opening 181 of the electrode terminal 191 is formed. A quartz insulating film 168 was loaded so that the depth d up to the upper surface was d = 5 μm. By sandwiching a conductive film 201, which is an anisotropic conductive film composed of conductive particles 211 and an adhesive 241 that is a thermosetting adhesive resin, between the flat optical circuit and the wiring substrate 311, heating and press-bonding are performed, thereby The electrode terminal 191 of the optical circuit and the electrode 321 of the wiring board 311 were made conductive.

以上、本実施形態では、平面型光回路の電極端子191上面と配線基板311の電極321上面の間隔を導電粒子211の粒子径より小さくし、導電粒子211を電極端子191と配線基板311の電極321にめり込ませることにより、良好な導通特性を得た。   As described above, in the present embodiment, the distance between the upper surface of the electrode terminal 191 of the planar optical circuit and the upper surface of the electrode 321 of the wiring substrate 311 is made smaller than the particle diameter of the conductive particles 211, and the conductive particles 211 are formed on the electrode terminals 191 and the wiring substrate 311. By squeezing into 321, good conduction characteristics were obtained.

このように、本実施形態によれば、絶縁膜168で覆われ、電極端子191が窪んだ平面型光回路であっても、接続不良を起こすことなく、異方性導電膜である導電膜201を介して配線基板311の電極321を低抵抗で、かつ、高い信頼性で接続することができた。   As described above, according to the present embodiment, the conductive film 201 that is an anisotropic conductive film is formed without causing poor connection even in a planar optical circuit that is covered with the insulating film 168 and in which the electrode terminal 191 is recessed. Thus, the electrode 321 of the wiring board 311 could be connected with low resistance and high reliability.

〔第5の実施形態〕
図6に、本発明の第5実施形態における平面型光回路の電極端子の接続構造を示す。平面基板161上に、コア(図示せず)が埋め込まれたクラッド401と、クラッド401の上面に、電気配線171(図1参照)につながれた電極端子191が形成され、電極端子191の一部の領域を開口部181とし、開口部181を除く電極端子191の残りの領域と、その周辺のクラッド401及び電気配線171(図1参照)が絶縁膜168で覆われている。そして、電極端子191の開口部181に、配線基板311の電極321を、粒子径φの導電粒子211を含有する導電膜201を介して電気的に接続している。配線基板311の基板301の上面から電極321の上面までの高さはtである。
[Fifth Embodiment]
FIG. 6 shows a connection structure of electrode terminals of a planar optical circuit in the fifth embodiment of the present invention. A clad 401 in which a core (not shown) is embedded is formed on a flat substrate 161, and an electrode terminal 191 connected to an electric wiring 171 (see FIG. 1) is formed on the upper surface of the clad 401, and part of the electrode terminal 191 This region is the opening 181, and the remaining region of the electrode terminal 191 excluding the opening 181, the surrounding clad 401 and the electric wiring 171 (see FIG. 1) are covered with an insulating film 168. The electrode 321 of the wiring board 311 is electrically connected to the opening 181 of the electrode terminal 191 through the conductive film 201 containing the conductive particles 211 having a particle diameter φ. The height from the upper surface of the substrate 301 of the wiring substrate 311 to the upper surface of the electrode 321 is t.

本実施形態では、絶縁膜168の上面から電極端子191の開口部181の上面までの深さdが、d≦t−φとなるよう電極端子191を形成した。なお、絶縁膜168の上面よりも電極端子の開口部の上面の方が低い位置にあるため、深さd0である。さらに、配線基板311の電極321の幅をL、電極端子191の開口部181の開口幅をwとしたとき、w≧L+2φとなるよう電極端子191を形成した。 In this embodiment, the electrode terminal 191 is formed so that the depth d from the upper surface of the insulating film 168 to the upper surface of the opening 181 of the electrode terminal 191 satisfies d ≦ t−φ. Note that since the upper surface of the opening of the electrode terminal is lower than the upper surface of the insulating film 168, the depth d > 0. Further, the electrode terminal 191 was formed so that w ≧ L + 2φ where L is the width of the electrode 321 of the wiring substrate 311 and w is the opening width of the opening 181 of the electrode terminal 191.

電極端子191の開口幅wがL+2φの時、配線基板311の電極321の中心と電極端子191の開口部181の中心が一致するよう位置を合わせると、配線基板311の電極321の両端で、配線基板311の突出した電極321端部と開口部181の窪んだ電極端子191端部の間にφずつの隙間ができる。   When the opening width w of the electrode terminal 191 is L + 2φ, when the positions are aligned so that the center of the electrode 321 of the wiring board 311 and the center of the opening 181 of the electrode terminal 191 are aligned, wiring is performed at both ends of the electrode 321 of the wiring board 311. A gap of φ is formed between the projecting end of the electrode 321 of the substrate 311 and the end of the electrode terminal 191 where the opening 181 is recessed.

もちろん、第1実施形態で説明したように、電極端子191の開口幅が配線基板311の電極321の幅よりも広く(すなわちw>Lとなるよう)設定すれば良いが、w≧L+2φにし、導通に寄与しない余分な導電粒子211をこの隙間に回避させることで、配線基板311の突出した電極321端部と平面型光回路の窪んだ電極端子191端部の間に導電粒子211が挟まるのを防ぎ、接触不良の抑制をさらに確実なものとすることができる。   Of course, as described in the first embodiment, the opening width of the electrode terminal 191 may be set wider than the width of the electrode 321 of the wiring board 311 (that is, w> L), but w ≧ L + 2φ, By avoiding unnecessary conductive particles 211 that do not contribute to conduction in this gap, the conductive particles 211 are sandwiched between the protruding end of the electrode 321 of the wiring board 311 and the end of the electrode terminal 191 where the planar optical circuit is recessed. And the contact failure can be further reliably suppressed.

本実施形態では、配線基板311として、フレキシブル配線板を用い、基板301とカバー341(図1参照)は厚さ25μmのポリイミド薄膜を、電極321は厚さt=35μmの銅箔で形成した。導電膜201として、粒子径φ=3μmの導電粒子211を含む異方性導電膜を用い、導電粒子211はニッケル粒子を使用した。   In this embodiment, a flexible wiring board is used as the wiring substrate 311, the substrate 301 and the cover 341 (see FIG. 1) are formed of a polyimide thin film with a thickness of 25 μm, and the electrode 321 is formed of a copper foil with a thickness of t = 35 μm. As the conductive film 201, an anisotropic conductive film including conductive particles 211 having a particle diameter φ = 3 μm was used, and the conductive particles 211 were nickel particles.

平面型光回路はシリコン基板上に形成した石英系光導波路で形成し、電気配線171(図1参照)の厚さを1μm、電極端子191の厚さを1μm、電極端子191の開口部181の上面までの深さd=2μmとなるよう、石英系の絶縁膜168を装荷した。配線基板311の電極321の幅Lは50μm、電極端子191の開口幅wは60μmに設定した。   The planar optical circuit is formed of a silica-based optical waveguide formed on a silicon substrate. The thickness of the electric wiring 171 (see FIG. 1) is 1 μm, the thickness of the electrode terminal 191 is 1 μm, and the opening 181 of the electrode terminal 191 is formed. A quartz insulating film 168 was loaded so that the depth d to the upper surface was d = 2 μm. The width L of the electrode 321 of the wiring board 311 was set to 50 μm, and the opening width w of the electrode terminal 191 was set to 60 μm.

以上、本実施形態では、電極端子191の開口幅wがw≧L+2φを満たすよう、電極端子191を形成することにより、配線基板311の突出した電極321端部と平面型光回路の窪んだ電極端子191端部の間に導電粒子211が挟まるのを回避し、接触不良を抑えた。   As described above, in the present embodiment, by forming the electrode terminal 191 so that the opening width w of the electrode terminal 191 satisfies w ≧ L + 2φ, the protruding end of the electrode 321 of the wiring substrate 311 and the recessed electrode of the planar optical circuit The conductive particles 211 were avoided from being sandwiched between the end portions of the terminals 191 and contact failure was suppressed.

このように、本実施形態によれば、絶縁膜168で覆われ、電極端子191が窪んだ平面型光回路であっても、接続不良を起こすことなく、異方性導電膜である導電膜201を介して配線基板311の電極321を低抵抗で、かつ、高い信頼性で接続することができた。   As described above, according to the present embodiment, the conductive film 201 that is an anisotropic conductive film is formed without causing poor connection even in a planar optical circuit that is covered with the insulating film 168 and in which the electrode terminal 191 is recessed. Thus, the electrode 321 of the wiring board 311 could be connected with low resistance and high reliability.

〔第6の実施形態〕
図7に、本発明の第6実施形態における平面型光回路の電極端子の接続構造を示す。平面基板161上に、コア(図示せず)が埋め込まれたクラッド401と、クラッド401の上面に、電気配線171(図1参照)につながれた複数の電極端子191,192が形成され、電極端子191,192の一部の領域を開口部181,182とし、開口部181,182を除く電極端子191,192の残りの領域と、その周辺のクラッド401及び電気配線171(図1参照)が絶縁膜168で覆われている。
[Sixth Embodiment]
FIG. 7 shows a connection structure of electrode terminals of a planar optical circuit in the sixth embodiment of the present invention. A clad 401 in which a core (not shown) is embedded on a flat substrate 161, and a plurality of electrode terminals 191 and 192 connected to an electric wiring 171 (see FIG. 1) are formed on the upper surface of the clad 401. A part of the regions 191 and 192 is defined as openings 181 and 182, and the remaining regions of the electrode terminals 191 and 192 excluding the openings 181 and 182 are insulated from the surrounding clad 401 and the electric wiring 171 (see FIG. 1). Covered with a film 168.

そして、電極端子191,192の開口部181,182に、配線基板311の電極321,322を、粒子径φの導電粒子211を有する導電膜201を介して電気的に接続している。配線基板311の基板301の上面から電極321,322の上面までの高さはtである。ここで、本実施形態の導電粒子211は、核221と、核221を覆う膜231により構成されており、核221は比較的柔らかい材料、膜231は導電性の良い材料で形成した。   The electrodes 321 and 322 of the wiring board 311 are electrically connected to the openings 181 and 182 of the electrode terminals 191 and 192 through the conductive film 201 having the conductive particles 211 having the particle diameter φ. The height from the upper surface of the substrate 301 of the wiring substrate 311 to the upper surfaces of the electrodes 321 and 322 is t. Here, the conductive particles 211 of the present embodiment are constituted by a core 221 and a film 231 covering the core 221, and the core 221 is formed of a relatively soft material and the film 231 is formed of a material having good conductivity.

本実施形態では、配線基板311として、フレキシブル配線板を用い、基板301とカバー341(図1参照)は厚さ25μmのポリイミド薄膜を、電極321,322は厚さt=12μmの銅箔で形成した。電極321,322の間隔Dは500μmとし、電極321,322の幅Lは共に90μmに設定した。導電膜201として、粒子径φ=6μmの導電粒子211を含む異方性導電膜を用い、導電粒子211は表面をニッケルで金メッキしたプラスチック粒子を使用した。   In this embodiment, a flexible wiring board is used as the wiring substrate 311, the substrate 301 and the cover 341 (see FIG. 1) are formed of a polyimide thin film with a thickness of 25 μm, and the electrodes 321 and 322 are formed of a copper foil with a thickness of t = 12 μm. did. The distance D between the electrodes 321 and 322 was set to 500 μm, and the width L of the electrodes 321 and 322 was set to 90 μm. As the conductive film 201, an anisotropic conductive film including conductive particles 211 having a particle diameter φ = 6 μm was used, and the conductive particles 211 were plastic particles whose surfaces were gold-plated with nickel.

平面型光回路はシリコン基板上に形成した石英系光導波路で形成し、電気配線311の厚さを1μm、電極端子191,192の厚さを2μm、電極端子191,192の開口部181,182の上面までの深さd=4μmとなるよう、石英系の絶縁膜168を装荷した。電極端子191,192の間隔Dは500μmとし、開口幅wは共に100μmに設定した。   The planar optical circuit is formed by a silica-based optical waveguide formed on a silicon substrate, the electrical wiring 311 has a thickness of 1 μm, the electrode terminals 191 and 192 have a thickness of 2 μm, and the openings 181 and 182 of the electrode terminals 191 and 192. A quartz-based insulating film 168 was loaded so that the depth d to the upper surface of the substrate was d = 4 μm. The distance D between the electrode terminals 191 and 192 was set to 500 μm, and the opening width w was set to 100 μm.

平面型光回路と配線基板311の間に導電粒子211と熱硬化性接着剤樹脂である接着剤241からなる導電膜201である異方性導電膜を挟み、加熱・圧着することにより、平面型光回路の電極端子191,192の開口部181,182と配線基板311の電極321,322が、異方性導電膜の導電粒子211を介して物理的に、電気的に接続され、接着剤241により固定された。   By sandwiching an anisotropic conductive film, which is a conductive film 201 composed of conductive particles 211 and an adhesive 241 that is a thermosetting adhesive resin, between a planar optical circuit and a wiring board 311, the planar type is obtained by heating and pressure bonding. The openings 181 and 182 of the electrode terminals 191 and 192 of the optical circuit and the electrodes 321 and 322 of the wiring substrate 311 are physically and electrically connected via the conductive particles 211 of the anisotropic conductive film, and the adhesive 241. Fixed by.

以上、本実施形態では、電極端子191,192の開口幅を配線基板311の電極321,322の幅よりも広く、かつ、絶縁膜168の上面から電極端子191,192の開口部181の上面までの深さdが0d≦t−φを満たすよう形成したことにより、所定の間隔Dを隔てて配置した複数の電極端子191,192に、導電粒子211を介して、配線基板311の電極321、322を高信頼で接続することができた。 As described above, in the present embodiment, the opening width of the electrode terminals 191 and 192 is wider than the width of the electrodes 321 and 322 of the wiring board 311 and from the upper surface of the insulating film 168 to the upper surface of the opening 181 of the electrode terminals 191 and 192. Is formed so that the depth d satisfies 0 < d ≦ t−φ, so that the electrodes of the wiring substrate 311 are connected to the plurality of electrode terminals 191 and 192 arranged at a predetermined interval D through the conductive particles 211. 321 and 322 could be connected with high reliability.

このように、本実施形態によれば、絶縁膜168で覆われ、電極端子191,192が窪んだ平面型光回路であっても、接続不良を起こすことなく、異方性導電膜である導電膜201を介して配線基板311の電極321,322を低抵抗で、かつ、高い信頼性で接続することができた。   As described above, according to the present embodiment, even in a planar optical circuit covered with the insulating film 168 and having the electrode terminals 191 and 192 depressed, the conductive conductive material that is an anisotropic conductive film does not cause connection failure. Through the film 201, the electrodes 321 and 322 of the wiring substrate 311 could be connected with low resistance and high reliability.

〔第7の実施形態〕
図8に、本発明の第7実施形態における平面型光回路の電極端子の接続構造を示す。平面基板161上に、コア(図示せず)が埋め込まれたクラッド401と、クラッド401の上面に、電気配線171(図1参照)につながれた第1〜第3(N=3)の電極端子191〜193が形成され、第1〜第3の電極端子191〜193の一部の領域を開口部181〜183とし、開口部181〜183を除く第1〜第3の電極端子191〜193の残りの領域と、その周辺のクラッド401及び電気配線171(図1参照)が絶縁膜168で覆われている。
[Seventh Embodiment]
FIG. 8 shows the electrode terminal connection structure of the planar optical circuit in the seventh embodiment of the present invention. A clad 401 having a core (not shown) embedded on a flat substrate 161, and first to third (N = 3) electrode terminals connected to an electrical wiring 171 (see FIG. 1) on the upper surface of the clad 401 191 to 193 are formed, and part of the first to third electrode terminals 191 to 193 is defined as openings 181 to 183, and the first to third electrode terminals 191 to 193 excluding the openings 181 to 183 are formed. The remaining region, the surrounding clad 401 and electric wiring 171 (see FIG. 1) are covered with an insulating film 168.

そして、第1〜第3の電極端子191〜193の開口部181〜183に、配線基板311の第1〜第3の電極321〜323を、粒子径φの導電粒子211を有する導電膜201を介して電気的に接続している。配線基板311の基板301の上面から第1〜第3の電極321〜323の上面までの高さはtである。   Then, the first to third electrodes 321 to 323 of the wiring substrate 311 are formed in the openings 181 to 183 of the first to third electrode terminals 191 to 193, and the conductive film 201 having the conductive particles 211 having the particle diameter φ is provided. Is electrically connected. The height from the upper surface of the substrate 301 of the wiring substrate 311 to the upper surfaces of the first to third electrodes 321 to 323 is t.

配線基板311の電極321〜323は、第1の電極321から第N(ここではN=3とする)の電極323まで所定の間隔を隔ててN個配置されている。本実施形態では、第1の電極321から第Nの電極323までを、一定間隔L+Sを隔てて配置した。ここで、Lは電極321〜323の幅、Sは電極321〜323間の隙間の幅で、L=Sに設定される場合が多いが、第6実施形態のように、LとSをそれぞれ異なる値にしても良い。また、本実施形態では、電極321と電極322の間隔と、電極322と電極323の間隔が等しい場合を示すが、異なっていても良い。   N electrodes 321 to 323 of the wiring substrate 311 are arranged at a predetermined interval from the first electrode 321 to the N-th (N = 3 here) electrode 323. In the present embodiment, the first electrode 321 to the Nth electrode 323 are arranged at a constant interval L + S. Here, L is the width of the electrodes 321 to 323, S is the width of the gap between the electrodes 321 to 323, and L = S is often set. However, as in the sixth embodiment, L and S are respectively set. Different values may be used. In this embodiment, the case where the distance between the electrode 321 and the electrode 322 is equal to the distance between the electrode 322 and the electrode 323 is shown, but may be different.

平面型光回路に対し、ポリイミドをベースとする配線基板311は、温度変化により比較的膨張・収縮しやすいため、電極321〜323の位置が変化し、電極端子191〜193との位置ずれが生じやすい。そこで、配線基板311の電極321〜323のピッチ(二つの電極の中心間の距離)のずれ量に合わせ、平面型光回路の電極端子191〜193の位置を予めずらしておくことも考えられる。   In contrast to a planar optical circuit, a polyimide-based wiring board 311 is relatively easily expanded and contracted due to a temperature change. Therefore, the positions of the electrodes 321 to 323 are changed, and the position of the electrodes 191 to 193 is shifted. Cheap. Therefore, it is conceivable that the positions of the electrode terminals 191 to 193 of the planar optical circuit are shifted in advance in accordance with the shift amount of the pitch (distance between the centers of the two electrodes) of the electrodes 321 to 323 of the wiring board 311.

しかし、配線基板311の電極321〜323のピッチの変化量は、外部温度に依存し、必ずしも毎回同じずれ量が再現するとは限らない。そこで、本実施形態では、平面型光回路の電極端子191〜193のピッチは、配線基板311の電極321〜323を平面型光回路の電極端子191〜193に接続する前の、配線基板311の初期の電極321〜323のピッチと等しく設定するが、配線基板311の熱膨張・収縮による電極321〜323の位置ずれを補償するため、電極端子191〜193の開口幅を、電極端子191〜193ごとに変化させている。   However, the amount of change in the pitch of the electrodes 321 to 323 of the wiring board 311 depends on the external temperature, and the same deviation amount is not always reproduced every time. Therefore, in the present embodiment, the pitch of the electrode terminals 191 to 193 of the planar optical circuit is such that the electrodes 321 to 323 of the wiring substrate 311 are connected to the electrode terminals 191 to 193 of the planar optical circuit before the wiring substrate 311 is connected. Although the pitch is set equal to the initial pitch of the electrodes 321 to 323, the opening width of the electrode terminals 191 to 193 is set to the electrode terminals 191 to 193 in order to compensate for the positional shift of the electrodes 321 to 323 due to thermal expansion / contraction of the wiring board 311. It is changed every time.

より詳しく説明すると、配線基板311の第n(1≦n≦N)の電極321〜323に接続される平面型光回路の第nの電極端子191〜193の開口幅をw(n)とした時、平面型光回路の第1の電極端子191の中心位置と第2の電極端子192の中心位置の間隔が、配線基板311の第1の電極321の中心位置と第2の電極322の中心位置の間隔と同じL+Sであり、かつ、第1の電極端子191の幅w(1)が、第2の電極端子192の幅w(2)よりも広くなるよう電極端子191,192を形成する。   More specifically, the opening width of the n-th electrode terminals 191 to 193 of the planar optical circuit connected to the n-th (1 ≦ n ≦ N) electrodes 321 to 323 of the wiring board 311 is defined as w (n). When the distance between the center position of the first electrode terminal 191 and the center position of the second electrode terminal 192 of the planar optical circuit is the center position of the first electrode 321 and the center of the second electrode 322 of the wiring board 311 The electrode terminals 191 and 192 are formed to have the same L + S as the position interval and the width w (1) of the first electrode terminal 191 is wider than the width w (2) of the second electrode terminal 192. .

そして、配線基板311の電極321〜323を電極端子191〜193に圧着接続する際の熱膨張により、配線基板311の電極321,323がδxだけ外側にずれたとしても、熱膨張を補償するよう、第1の電極端子191の幅w(1)を広くしてあるので、接続不良は生じない。熱収縮が起きる場合はδxだけ内側にずれるが、電極端子191の中心位置に対し、両側均等にw(1)の幅を持たせているので、熱膨張が生じる場合と熱収縮が生じる場合、共に対応できる。   Then, even if the electrodes 321 to 323 of the wiring board 311 are crimped and connected to the electrode terminals 191 to 193, even if the electrodes 321 and 323 of the wiring board 311 are shifted outward by δx, the thermal expansion is compensated. Since the width w (1) of the first electrode terminal 191 is widened, no connection failure occurs. When heat shrinkage occurs, it shifts inward by δx. However, since the width of w (1) is given equally to both sides with respect to the center position of the electrode terminal 191, when thermal expansion occurs and when heat shrinkage occurs, Both can be supported.

本実施形態では、配線基板311として、フレキシブル配線板を用い、基板301とカバー341(図1参照)は厚さ25μmのポリイミド薄膜を、電極321〜323は厚さt=18μmの銅箔で形成した。LとSは125μmに設定し、L+S=250μmとした。導電膜201として、粒子径φ=3μmの導電粒子211を含む異方性導電膜を用い、導電粒子211としてはニッケル粒子を使用した。   In this embodiment, a flexible wiring board is used as the wiring substrate 311, the substrate 301 and the cover 341 (see FIG. 1) are formed of a polyimide thin film with a thickness of 25 μm, and the electrodes 321 to 323 are formed of a copper foil with a thickness of t = 18 μm. did. L and S were set to 125 μm, and L + S = 250 μm. An anisotropic conductive film including conductive particles 211 having a particle diameter φ = 3 μm was used as the conductive film 201, and nickel particles were used as the conductive particles 211.

平面型光回路はシリコン基板上に形成した石英系光導波路で形成し、電気配線171(図1参照)の厚さを2μm、電極端子191〜193の厚さを2μm、電極端子191〜193の開口部181〜183の上面までの深さd=3μmとなるよう、石英系の絶縁膜168を装荷した。第1〜第3の電極端子191〜193の開口幅w(n)はそれぞれ、w(1)=140μm、w(2)=130μm、w(3)=140μmに設定した。   The planar optical circuit is formed by a silica-based optical waveguide formed on a silicon substrate. The thickness of the electric wiring 171 (see FIG. 1) is 2 μm, the thickness of the electrode terminals 191 to 193 is 2 μm, and the electrode terminals 191 to 193 are formed. A quartz insulating film 168 was loaded so that the depth d to the upper surface of the openings 181 to 183 was 3 μm. The opening widths w (n) of the first to third electrode terminals 191 to 193 were set to w (1) = 140 μm, w (2) = 130 μm, and w (3) = 140 μm, respectively.

配線基板311の電極321〜323を電極端子191〜193に圧着する前は、配線基板311の電極321〜323は一定のピッチL+Sであったが、加熱・圧着を行う過程で配線基板311が膨張し、第2の電極322に対し、第1の電極321と第3の電極323の中心位置がそれぞれ外側にδx=5μmずれ、接着剤241により固定された。しかし、本実施形態の電極構造を用いることにより、熱膨張後でも配線基板311の電極321〜323は電極端子191〜193の開口部181〜183内に位置したため、接続不良は生じなかった。   Before the electrodes 321 to 323 of the wiring board 311 were crimped to the electrode terminals 191 to 193, the electrodes 321 to 323 of the wiring board 311 had a constant pitch L + S, but the wiring board 311 expanded in the process of heating and crimping. Then, the center positions of the first electrode 321 and the third electrode 323 are shifted outward by δx = 5 μm with respect to the second electrode 322, and fixed by the adhesive 241. However, by using the electrode structure of this embodiment, the electrodes 321 to 323 of the wiring board 311 were located in the openings 181 to 183 of the electrode terminals 191 to 193 even after thermal expansion, and thus no connection failure occurred.

このように、本実施形態によれば、所定の間隔を隔てて複数配置された電極端子191〜193であっても、平面型光回路の電極端子191〜193を配置する間隔を変えることなく、配線基板311の膨張・収縮による電極321〜323の位置ずれを補償でき、接触不良を抑えながら良好な光学特性を得た。   As described above, according to the present embodiment, even if the electrode terminals 191 to 193 are arranged at a predetermined interval, without changing the interval at which the electrode terminals 191 to 193 of the planar optical circuit are arranged. The positional shift of the electrodes 321 to 323 due to the expansion / contraction of the wiring board 311 can be compensated, and good optical characteristics were obtained while suppressing poor contact.

〔第8の実施形態〕
図9に、本発明の第8実施形態における平面型光回路の電極端子を示す。この電極端子191〜198は、第1から第N(Nは3以上の整数)まで一定間隔L+Sを隔てて電極(図示せず)が複数配置された配線基板(図示せず)と接続するよう設計してある。ここで、Lは配線基板の電極の幅、Sは電極間の隙間の幅であり、N=8とする。
[Eighth Embodiment]
FIG. 9 shows electrode terminals of a planar optical circuit in the eighth embodiment of the present invention. The electrode terminals 191 to 198 are connected to a wiring board (not shown) in which a plurality of electrodes (not shown) are arranged at a constant interval L + S from the first to the Nth (N is an integer of 3 or more). Designed. Here, L is the width of the electrode of the wiring board, S is the width of the gap between the electrodes, and N = 8.

平面基板(図示せず)上に、コア(図示せず)が埋め込まれたクラッド401と、クラッド401の上面に、圧着接続する前の初期の配線基板の電極と同じL+Sのピッチを隔てて第1〜第8の電気配線171〜178が形成され、これら第1〜第8の電気配線171〜178につながれた第1〜第8の電極端子191〜198が形成されている。   A clad 401 in which a core (not shown) is embedded on a flat substrate (not shown), and an upper surface of the clad 401 are spaced apart by the same L + S pitch as the electrodes of the initial wiring board before the crimp connection. First to eighth electric wirings 171 to 178 are formed, and first to eighth electrode terminals 191 to 198 connected to the first to eighth electric wirings 171 to 178 are formed.

図9に示すように、電極端子191〜198の中心位置は、それぞれ、電気配線171〜178の中心位置と一致している。第1〜第8の電極端子191〜198の全部の領域を開口部181〜188とし、開口部181〜188を除く領域、すなわちクラッド401及び電気配線171〜178の上面が絶縁膜168で覆われている。   As shown in FIG. 9, the center positions of the electrode terminals 191 to 198 coincide with the center positions of the electric wirings 171 to 178, respectively. The entire region of the first to eighth electrode terminals 191 to 198 is the openings 181 to 188, and the region excluding the openings 181 to 188, that is, the upper surface of the clad 401 and the electric wirings 171 to 178 is covered with the insulating film 168. ing.

第n(1≦n≦N)の電極端子191〜198の開口幅をw(n)とした時、第1から第8(N=8)の電極端子191〜198のうち、最も真ん中に近い第mの電極端子184,185の開口幅w(m)がw(n)の中で最小であり、w(m)≧L+2φを満たすよう形成した。   When the opening width of the n-th (1 ≦ n ≦ N) electrode terminals 191 to 198 is w (n), the first to eighth (N = 8) electrode terminals 191 to 198 are closest to the center. The m-th electrode terminals 184 and 185 were formed so that the opening width w (m) was the smallest among w (n) and w (m) ≧ L + 2φ was satisfied.

なお、本実施形態では、電極端子191〜198の数が偶数であり、左右が鏡像対称になるよう作製したため、最も真ん中に近いのは第4、もしくは第5の電極端子184,185である(m=4、もしくは5)。そして、第4(m=4)の電極端子194から第1の電極端子191に向かうにつれ電極端子191〜194の開口幅が次第に広くなり、第5(m=5)の電極端子195から第8(N=8)の電極端子198に向かうにつれ電極端子195〜198の開口幅が次第に広くなるよう電極端子191〜198を形成した。   In the present embodiment, the number of electrode terminals 191 to 198 is an even number, and the left and right are mirror-image symmetric. Therefore, the fourth or fifth electrode terminals 184 and 185 are closest to the center ( m = 4 or 5). The opening widths of the electrode terminals 191 to 194 gradually increase from the fourth (m = 4) electrode terminal 194 toward the first electrode terminal 191, and the fifth (m = 5) electrode terminal 195 to the eighth electrode terminal 191 gradually increase. The electrode terminals 191 to 198 were formed so that the opening widths of the electrode terminals 195 to 198 were gradually increased toward the electrode terminal 198 (N = 8).

本実施形態では、配線基板として、ポリイミドをベースとするフレキシブル配線板を用い、LとSは75μmに設定し、L+S=150μmとした。導電膜(図示せず)として、粒子径φ=2μmのニッケル導電粒子を含む異方性導電膜を用いた。電気配線171〜178の幅は50μm、第1〜第8の電極端子191〜198の長手方向の長さは1mm、開口幅w(n)はそれぞれ、w(m)=w(4)=w(5)=80μm、w(3)=w(6)=85μm、w(2)=w(7)=90μm、w(1)=w(8)=95μmに設定した。   In this embodiment, a flexible wiring board based on polyimide is used as the wiring board, L and S are set to 75 μm, and L + S = 150 μm. As the conductive film (not shown), an anisotropic conductive film containing nickel conductive particles having a particle diameter φ = 2 μm was used. The electrical wirings 171 to 178 have a width of 50 μm, the first to eighth electrode terminals 191 to 198 have a length in the longitudinal direction of 1 mm, and the opening width w (n) is w (m) = w (4) = w. (5) = 80 μm, w (3) = w (6) = 85 μm, w (2) = w (7) = 90 μm, w (1) = w (8) = 95 μm.

そして、配線基板の最も真ん中に近い、第m(=4、5)の電極の中心位置を、平面型光回路の第m(=4、5)の電極端子194,195の中心位置に合わせて圧着した。圧着後、配線基板の第m(=4、5)の電極の中心位置は、平面型光回路の第m(=4、5)の電極端子194,195の中心位置と一致していた。   Then, the center position of the mth (= 4, 5) electrode closest to the center of the wiring board is matched with the center position of the mth (= 4, 5) electrode terminals 194, 195 of the planar optical circuit. Crimped. After the crimping, the center positions of the mth (= 4, 5) electrodes of the wiring board coincided with the center positions of the mth (= 4, 5) electrode terminals 194, 195 of the planar optical circuit.

一方、圧着時の配線基板の熱膨張により、第4から第1に、そして、第5から第8の電極に向かうにつれ、電極の中心位置は電極端子191〜198の中心位置より外側にずれた位置でそれぞれ接続されていたが、全電極とも電極端子191〜198の開口部181〜188の領域内に収まっていた。   On the other hand, due to the thermal expansion of the wiring board during crimping, the center position of the electrode is shifted outward from the center position of the electrode terminals 191 to 198 as it goes from the fourth to the first and from the fifth to the eighth electrode. The electrodes were respectively connected at the positions, but all the electrodes were within the region of the openings 181 to 188 of the electrode terminals 191 to 198.

このように、一定間隔を隔てて形成された複数の電極端子191〜198に配線基板の電極を接続する場合、電極端子191〜198のピッチを変えることなく、真ん中から端に向かうにつれ、開口幅が次第に広くなるよう電極端子191〜198を形成するだけで、接続時に配線基板の電極位置が左右にずれても配線基板の電極は電極端子191〜198の開口幅の範囲内に位置するので、良好な電気的接続が得られる。   Thus, when connecting the electrodes of the wiring board to the plurality of electrode terminals 191 to 198 formed at regular intervals, the opening width increases from the center toward the end without changing the pitch of the electrode terminals 191 to 198. Since the electrode terminals 191 to 198 are formed so as to gradually widen, even if the electrode position of the wiring board is shifted left and right during connection, the electrodes of the wiring board are located within the range of the opening width of the electrode terminals 191 to 198. Good electrical connection is obtained.

また、光回路素子を一定のピッチで並べた多連の光回路に本発明を適用する場合でも、電極端子191〜198のピッチを一定にでき、光回路素子を配置する間隔を変える必要が無いので、光導波路や電気配線171〜178の密度が均一になり、良好な光学特性が得られる。   Even when the present invention is applied to a multiple optical circuit in which optical circuit elements are arranged at a constant pitch, the pitch of the electrode terminals 191 to 198 can be made constant, and there is no need to change the interval at which the optical circuit elements are arranged. Therefore, the density of the optical waveguides and the electric wirings 171 to 178 becomes uniform, and good optical characteristics can be obtained.

さらに、第1〜第Nの電極端子191〜198の中で、開口幅が最も狭い第mの電極端子194,195の開口幅が少なくともL+2φ以上になるようにすれば、第4の実施形態でも説明したように、配線基板の突出した電極端と平面型光回路の窪んだ電極端子191〜198の端部の間に導電粒子211(図1参照)が挟まるのを回避でき、接触不良を抑えた。   Furthermore, if the opening width of the m-th electrode terminals 194 and 195 having the narrowest opening width among the first to N-th electrode terminals 191 to 198 is at least L + 2φ or more, the fourth embodiment can be used. As described above, it is possible to avoid the conductive particles 211 (see FIG. 1) between the protruding electrode end of the wiring board and the end portions of the recessed electrode terminals 191 to 198 of the planar optical circuit, thereby suppressing contact failure. It was.

このように、本実施形態によれば、所定の間隔を隔てて複数配置された電極端子191〜198であっても、平面型光回路の電極端子191〜198を配置する間隔を変えることなく、配線基板の膨張・収縮による電極の位置ずれを補償でき、接触不良を抑えながら良好な光学特性を得た。   Thus, according to this embodiment, even if it is a plurality of electrode terminals 191 to 198 arranged at a predetermined interval, without changing the interval at which the electrode terminals 191 to 198 of the planar optical circuit are arranged, The displacement of the electrode due to the expansion and contraction of the wiring board could be compensated, and good optical characteristics were obtained while suppressing poor contact.

〔第9の実施形態〕
図10に、本発明の第9実施形態における平面型光回路の電極端子を示す。第8の実施形態では、一定の間隔L+Sを隔てて配置された第1〜第8の電極端子191〜198の幅を、電極端子191〜198ごとに変化させたが、本実施形態では、電極端子191〜198の幅は一定にし、開口幅のみを変化させた。
[Ninth Embodiment]
FIG. 10 shows electrode terminals of a planar optical circuit according to the ninth embodiment of the present invention. In the eighth embodiment, the widths of the first to eighth electrode terminals 191 to 198 arranged with a constant interval L + S are changed for each of the electrode terminals 191 to 198. However, in the present embodiment, the electrodes The widths of the terminals 191 to 198 were kept constant, and only the opening width was changed.

具体的には、LとSは75μmに設定し、L+S=150μmとした。導電膜(図示せず)として、粒子径φ=3μmのニッケル導電粒子を含む異方性導電膜を用いた。電気配線171〜178の幅は100μm、第1〜第8の電極端子191〜198の幅も100μmに設定し、開口幅w(n)をそれぞれ、w(m)=w(4)=w(5)=82μm、w(3)=w(6)=86μm、w(2)=w(7)=92μm、w(1)=w(8)=100μmに設定した。   Specifically, L and S were set to 75 μm, and L + S = 150 μm. As the conductive film (not shown), an anisotropic conductive film containing nickel conductive particles having a particle diameter φ = 3 μm was used. The width of the electric wirings 171 to 178 is set to 100 μm, the width of the first to eighth electrode terminals 191 to 198 is also set to 100 μm, and the opening width w (n) is w (m) = w (4) = w ( 5) = 82 μm, w (3) = w (6) = 86 μm, w (2) = w (7) = 92 μm, w (1) = w (8) = 100 μm.

なお、本実施形態では、遠くの電極(図示せず)ほど位置ずれ量が大きくなることを考慮して、w(n)を設定した。例えば、第4の電極端子194に対し第3の電極端子193の開口幅をw(3)−w(4)=4μm広くしているのに対し、第3の電極端子193に対し第2の電極端子192の開口幅はw(2)−w(3)=6μm、第2の電極端子192に対し第1の電極端子191の開口幅はw(1)−w(2)=8μm広くしている。このように、電極端子191〜198の開口幅は、予想される電極の位置ずれ量に応じて設定すれば良い。   In the present embodiment, w (n) is set in consideration of the fact that the amount of positional deviation increases as the distance of the electrode (not shown) increases. For example, the opening width of the third electrode terminal 193 is wider than the fourth electrode terminal 194 by w (3) −w (4) = 4 μm, whereas the second electrode terminal 193 has a second opening width larger than that of the third electrode terminal 193. The opening width of the electrode terminal 192 is w (2) −w (3) = 6 μm, and the opening width of the first electrode terminal 191 is wider than the second electrode terminal 192 by w (1) −w (2) = 8 μm. ing. As described above, the opening widths of the electrode terminals 191 to 198 may be set according to the expected amount of positional deviation of the electrodes.

もちろん、第8の実施形態で説明したように、電極端子191〜198の全領域を開口部181〜188としても良いが、本実施形態のように、電極端子191〜198の必要最小限の領域だけを開口部181〜188とすることにより、絶縁膜168で覆った部分は特に高い信頼性が得られることや、突出した絶縁膜168と窪んだ配線基板の電極間の隙間がかみ合うことにより接着力が強化できることや、あるいは、隣接する電極端子191〜198間でショートが生じる確率を減らせることなど、多くの利点が得られる。   Of course, as described in the eighth embodiment, the entire region of the electrode terminals 191 to 198 may be the openings 181 to 188. However, as in this embodiment, the minimum necessary region of the electrode terminals 191 to 198 is used. By using only the openings 181 to 188 as the openings, the portion covered with the insulating film 168 can obtain particularly high reliability, or the gap between the protruding insulating film 168 and the electrode of the recessed wiring substrate is engaged. Many advantages can be obtained, for example, the force can be strengthened, or the probability of occurrence of a short circuit between adjacent electrode terminals 191 to 198 can be reduced.

このように、本実施形態によれば、所定の間隔を隔てて複数配置された電極端子191〜198であっても、平面型光回路の電極端子191〜198を配置する間隔を変えることなく、配線基板の膨張・収縮による電極の位置ずれを補償でき、接触不良を抑えながら良好な光学特性を得た。   Thus, according to this embodiment, even if it is a plurality of electrode terminals 191 to 198 arranged at a predetermined interval, without changing the interval at which the electrode terminals 191 to 198 of the planar optical circuit are arranged, The displacement of the electrode due to the expansion and contraction of the wiring board could be compensated, and good optical characteristics were obtained while suppressing poor contact.

〔第10の実施形態〕
図11に、本発明の第10実施形態における平面型光回路の電極端子を示す。この電極端子191〜195は、第1から第5(N=5)まで所定の間隔を隔てて複数配置されている。また、配線基板311の電極321〜325の幅をL、電極321〜325間の隙間の幅をSとしたとき、配線基板311の電極321〜325が、第1の電極321から第5(N=5)の電極325まで一定間隔L+Sを隔てて複数配置されている。
[Tenth embodiment]
FIG. 11 shows electrode terminals of the planar optical circuit in the tenth embodiment of the present invention. A plurality of electrode terminals 191 to 195 are arranged at a predetermined interval from first to fifth (N = 5). Further, when the width of the electrodes 321 to 325 of the wiring board 311 is L and the width of the gap between the electrodes 321 to 325 is S, the electrodes 321 to 325 of the wiring board 311 are changed from the first electrode 321 to the fifth (N = 5), a plurality of electrodes 325 are arranged at a constant interval L + S.

平面基板401と配線基板311のうち、いずれか一方に反りがあれば、電極端子191〜195と電極321〜325との間に位置ずれが生じる。例えば、図11では、配線基板311は平坦であるが、平面基板401は曲率Rの反りが生じている様子が示されている。   If either one of the flat substrate 401 and the wiring substrate 311 is warped, a displacement occurs between the electrode terminals 191 to 195 and the electrodes 321 to 325. For example, FIG. 11 shows that the wiring substrate 311 is flat, but the flat substrate 401 is warped with a curvature R.

そこで、本実施形態では、平面基板401の反りに応じて、電極端子191〜195のピッチを設定した。第1の電極端子191から第5(N=5)の電極端子195のうち、最も真ん中に近い第3の電極端子193を第mの電極端子とし、第mの電極端子の中心位置を基準位置とすると、第n(1≦n≦N)の電極端子の中心位置は、基準位置に対し、(L+S)・(n−m)の位置にあるのが望ましい。   Therefore, in the present embodiment, the pitch of the electrode terminals 191 to 195 is set according to the warp of the flat substrate 401. Of the first to fifth (N = 5) electrode terminals 191 to 195, the third electrode terminal 193 closest to the center is the mth electrode terminal, and the center position of the mth electrode terminal is the reference position. Then, the center position of the nth (1 ≦ n ≦ N) electrode terminal is preferably (L + S) · (nm) with respect to the reference position.

しかし、平面基板401の反りにより、それぞれの電極端子191〜195の中心位置は、当初の設定より基準位置に近い方向にずれる。このずれを補償するには、R・sinθ=(L+S)・(n−m)と、x(n)=R・θの関係より、第nの電極端子の中心位置を、基準位置に対し、x(n)=R・arcsin((L+S)・(n−m)/R)の位置に配置すれば良い。   However, due to the warp of the flat substrate 401, the center positions of the respective electrode terminals 191 to 195 are shifted in the direction closer to the reference position than the initial setting. In order to compensate for this deviation, the center position of the nth electrode terminal is set to the reference position from the relationship of R · sin θ = (L + S) · (nm) and x (n) = R · θ. What is necessary is just to arrange | position in the position of x (n) = R * arcsin ((L + S) * (nm) / R).

本実施形態では、シリコン基板で平面型光回路を作製し、平面型光回路の反りは50mm、配線基板311には反りが無く、LとSはそれぞれ0.5mmに設定し、L+S=1mmとした。第3(m=3)の電極端子193の中心位置を基準として、第1〜第5(N=5)の電極端子191〜195の中心位置を、それぞれ、x(1)=−(2mm+0.534μm)、x(2)=−(1mm十0.067μm)、x(3)=0mm、x(4)=1mm十0.067μm、x(5)=2mm十0.534μmに設定した。   In the present embodiment, a planar optical circuit is fabricated with a silicon substrate, the planar optical circuit has a warp of 50 mm, the wiring substrate 311 has no warp, L and S are set to 0.5 mm, and L + S = 1 mm. did. Using the center position of the third (m = 3) electrode terminal 193 as a reference, the center positions of the first to fifth (N = 5) electrode terminals 191 to 195 are respectively x (1) = − (2 mm + 0. 534 μm), x (2) = − (1 mm plus 0.067 μm), x (3) = 0 mm, x (4) = 1 mm plus 0.067 μm, and x (5) = 2 mm plus 0.534 μm.

これらx(n)の第1項は、平面基板401の反りが無い場合の中心位置、すなわち、(L+S)・(n−m)であり、第2項が平面基板401の反りに対応した補正量である。このように、基準位置から離れるほど、補正量は大きくなる。本実施形態では、電極端子191〜195の中心位置を補正しているが、それに加えて、第7実施形態で説明したような、配線基板311の熱膨張・熱収縮に対応した電極端子191〜195の開口部181〜185を用いた。   The first term of x (n) is the center position when there is no warp of the flat substrate 401, that is, (L + S) · (nm), and the second term is a correction corresponding to the warp of the flat substrate 401. Amount. Thus, the further the distance from the reference position, the larger the correction amount. In the present embodiment, the center positions of the electrode terminals 191 to 195 are corrected. In addition, the electrode terminals 191 to 191 corresponding to the thermal expansion and thermal contraction of the wiring board 311 as described in the seventh embodiment are added. 195 openings 181 to 185 were used.

以上、本実施形態では、平面基板401の真ん中が突出した反りが生じる場合を説明したが、反対に、平面基板401の真ん中が窪んだ反りが生じる場合にも、同様の補正を行えばよい。   As described above, in the present embodiment, the case where the warp in which the center of the flat substrate 401 protrudes has been described, but on the contrary, the same correction may be performed when the warp in which the center of the flat substrate 401 is depressed occurs.

このように、本実施形態によれば、平面基板401に反りがある場合でも、電極端子191〜195の中心位置を補正することにより、配線基板311の電極321〜325と接続できた。   As described above, according to the present embodiment, even when the flat substrate 401 is warped, it can be connected to the electrodes 321 to 325 of the wiring substrate 311 by correcting the center positions of the electrode terminals 191 to 195.

〔その他の実施形態〕
以上のような平面型光回路の電極端子の接続構造において、実際の光回路に適用する場合を説明する。
図12(a)は平面基板上に形成された導波路型光スイッチ・アッテネータの構成図である。本回路は、入力導波路101、102と、2個の3dB光カプラ111、121と、2個の光カプラを結ぶ光遅延導波路131、132と、出力導波路103、104とからなるマッハツェンダ干渉計の構成を有し、一方の光遅延導波路132の一部に、屈折率調整手段141を備えている。
[Other Embodiments]
In the above-described electrode terminal connection structure of a planar optical circuit, a case where it is applied to an actual optical circuit will be described.
FIG. 12A is a configuration diagram of a waveguide type optical switch attenuator formed on a flat substrate. This circuit includes Mach-Zehnder interference including input waveguides 101 and 102, two 3 dB optical couplers 111 and 121, optical delay waveguides 131 and 132 connecting the two optical couplers, and output waveguides 103 and 104. A refractive index adjusting means 141 is provided in a part of one optical delay waveguide 132.

屈折率調整手段141としては薄膜ヒータを用い、熱光学効果を利用することにより、二本の光遅延導波路131、132の光路長差を0〜半波長の間で変化させることにより、出力光強度を調整した。薄膜ヒータに給電するため、光ファイバが接続される入力端面と出力端面とは異なる基板端面に電極端子191と192を形成し、薄膜ヒータの一方の端と電極端子191を電気配線171で接続し、薄膜ヒータの他方の端と電極端子192を電気配線172で接続した。   By using a thin film heater as the refractive index adjusting means 141 and utilizing the thermo-optic effect, the optical path length difference between the two optical delay waveguides 131 and 132 is changed between 0 and a half wavelength, so that the output light The strength was adjusted. In order to supply power to the thin film heater, electrode terminals 191 and 192 are formed on the substrate end face different from the input end face and output end face to which the optical fiber is connected, and one end of the thin film heater and the electrode terminal 191 are connected by the electric wiring 171. The other end of the thin film heater and the electrode terminal 192 were connected by an electric wiring 172.

電極端子191、192の一部の領域を開口部181、182とし、開口部181、182を除く平面型光回路の上面を絶縁膜168で覆った。さらに、薄膜ヒータの近傍に、消費電力を低減し、偏波依存性を低減するため、断熱溝151、152を形成した。図12(b)に(a)のB−B´における断面図を示し、図12(c)に(a)のC−C´における断面図を示す。   Partial regions of the electrode terminals 191 and 192 are openings 181 and 182, and the upper surface of the planar optical circuit excluding the openings 181 and 182 is covered with an insulating film 168. Furthermore, heat insulating grooves 151 and 152 were formed in the vicinity of the thin film heater in order to reduce power consumption and reduce polarization dependency. FIG. 12B shows a cross-sectional view taken along the line BB ′ of FIG. 12A, and FIG. 12C shows a cross-sectional view taken along the line CC ′ of FIG.

図12では、平面基板161上に導波路型光スイッチ・アッテネータが一つだけ形成されているが、複数の導波路型光スイッチ・アッテネ一夕を並べ、図9や図10に示したように、基板端面付近に、所定の間隔を隔てて複数の電極端子191,192を形成し、給電しても良い。あるいは、次に示すように、電極端子191,192を平面基板161上に形成しても良いし、電極端子191,192は1列でなく、2列以上に並べても良い。   In FIG. 12, only one waveguide type optical switch / attenuator is formed on the planar substrate 161. However, a plurality of waveguide type optical switch / attenuators are arranged as shown in FIGS. A plurality of electrode terminals 191 and 192 may be formed in the vicinity of the end face of the substrate at a predetermined interval to supply power. Alternatively, as shown below, the electrode terminals 191 and 192 may be formed on the flat substrate 161, and the electrode terminals 191 and 192 may be arranged in two or more rows instead of one row.

図13の平面型回路には、一定間隔500μmを隔てて、導波路型光スイッチ・アッテネータ431〜433が多連に並べられている。そして、導波路型光スイッチ・アッテネータ431〜433の光遅延導波路に形成された屈折率調整手段に給電するため、平面基板161(図12参照)上に、光軸方向に対して平行に電極端子191〜196を2列に並べた。   In the planar circuit of FIG. 13, waveguide type optical switch / attenuators 431 to 433 are arranged in multiple rows at a constant interval of 500 μm. Then, in order to supply power to the refractive index adjusting means formed in the optical delay waveguides of the waveguide type optical switch / attenuators 431 to 433, the electrodes are parallel to the optical axis direction on the flat substrate 161 (see FIG. 12). Terminals 191 to 196 are arranged in two rows.

電極端子191〜196の幅は150μm、電極端子191〜196の開口幅は100μm、電極端子191〜196のピッチは500μmとした。このような多連の光回路の場合、電極端子191〜196を基板端面ではなく、平面基板161(図12参照)上に形成すると、平面型光回路を小型にすることができる。   The electrode terminals 191 to 196 have a width of 150 μm, the electrode terminals 191 to 196 have an opening width of 100 μm, and the electrode terminals 191 to 196 have a pitch of 500 μm. In the case of such a multiple optical circuit, if the electrode terminals 191 to 196 are formed not on the substrate end face but on the flat substrate 161 (see FIG. 12), the planar optical circuit can be reduced in size.

上記で述べた平面型光回路は図14に示すように作製した。すなわち、平面基板161上に火炎堆積法でSiO2を主体にした下部クラッドガラススート162、SiO2にGeO2を添加したコアガラススート163を堆積した(図14の(a))。その後、1000℃以上の高温でガラス透明化を行った。この時に、下部クラッドガラス層164、コアガラス165は設計した厚さとなるように、ガラスの堆積を行った(図14の(b))。 The planar optical circuit described above was fabricated as shown in FIG. That is, the lower clad glass soot 162 mainly composed of SiO 2 and the core glass soot 163 obtained by adding GeO 2 to SiO 2 were deposited on the flat substrate 161 by the flame deposition method (FIG. 14A). Thereafter, the glass was made transparent at a high temperature of 1000 ° C. or higher. At this time, glass was deposited so that the lower clad glass layer 164 and the core glass 165 had the designed thickness (FIG. 14B).

引き続き、フォトリソグラフィ技術を用いてコアガラス165上にエッチングマスク166を形成し(図14の(c))、反応性イオンエッチングによってコアガラス165のパターン化を行った(図14の(d))。エッチングマスク166を除去した後、上部クラッドガラス167を再度火炎堆積法で形成した。上部クラッドガラス167にはB23やP25などのドーパントを添加してガラス転移温度を下げ、それぞれのコアガラス165とコアガラス165の狭い隙間にも上部クラッドガラス167が入り込むようにした(図14の(e))。 Subsequently, an etching mask 166 was formed on the core glass 165 using a photolithography technique (FIG. 14C), and the core glass 165 was patterned by reactive ion etching (FIG. 14D). . After removing the etching mask 166, the upper cladding glass 167 was formed again by the flame deposition method. A dopant such as B 2 O 3 or P 2 O 5 is added to the upper clad glass 167 to lower the glass transition temperature so that the upper clad glass 167 enters the narrow gap between the core glass 165 and the core glass 165. ((E) of FIG. 14).

続いて、上部クラッド167の上面にAuの電気配線(図示せず)と電極端子191、及び窒化タンタルの薄膜ヒータを形成し(図14の(f))、電極端子191の開口部を除く領域を石英の絶縁膜168で覆った(図14の(g))。電気配線と電極端子191はAuで、薄膜ヒータは窒化タンタルで形成したが、その他の材料を用いても良い。また、窒化タンタル上にAuを形成するなど、2種類以上の材料を用いて電気配線や電極端子191を作製しても良い。電気配線層を作製した後、薄膜ヒータ近傍に断熱溝(図示せず)を形成した。   Subsequently, an electric wiring (not shown) of Au, an electrode terminal 191 and a thin film heater of tantalum nitride are formed on the upper surface of the upper clad 167 ((f) of FIG. 14), and the region excluding the opening of the electrode terminal 191 Was covered with a quartz insulating film 168 (FIG. 14G). The electrical wiring and the electrode terminal 191 are made of Au, and the thin film heater is made of tantalum nitride, but other materials may be used. Further, the electrical wiring and the electrode terminal 191 may be manufactured using two or more kinds of materials, such as forming Au on tantalum nitride. After producing the electrical wiring layer, a heat insulating groove (not shown) was formed in the vicinity of the thin film heater.

以上述べた本発明の各実施形態では、主にシリコン基板上の石英系ガラス導波路を用いた例を示したが、その導波路材料がポリイミド、シリコン、半導体、LiNbO3などであってもよい。また、例えばその製造方法が、スピンコート法、ゾルゲル法、スパッタ法、CVD法、イオン拡散法、イオンビーム直接描画法などであっても本発明は適用可能である。 In each of the embodiments of the present invention described above, an example using a silica-based glass waveguide mainly on a silicon substrate has been shown, but the waveguide material may be polyimide, silicon, semiconductor, LiNbO 3 or the like. . For example, the present invention can be applied even if the manufacturing method is a spin coating method, a sol-gel method, a sputtering method, a CVD method, an ion diffusion method, an ion beam direct drawing method, or the like.

また、基板もシリコンに限定するものではなく、石英などその他の材料を用いても良い。
また、屈折率調整手段として、薄膜ヒータを用いた熱光学効果を利用したが、電気光学効果、磁気光学効果など、その他の手段を用いても良い。
Further, the substrate is not limited to silicon, and other materials such as quartz may be used.
Further, although the thermo-optic effect using a thin film heater is used as the refractive index adjusting means, other means such as an electro-optic effect and a magneto-optic effect may be used.

本発明は、例えば電気配線を備えた平面型光回路の小型化、高密度集積化を可能とする平面型光回路における電極端子の接続構造に適用することが可能である。   The present invention can be applied, for example, to a connection structure of electrode terminals in a planar optical circuit that enables downsizing and high-density integration of a planar optical circuit including electrical wiring.

本発明の第1実施形態における平面型光回路の電極端子の接続構造であって、(a)は平面図、(b)は切断面A−A´における断面図、(c)は配線基板の断面構造の概略図。It is the connection structure of the electrode terminal of the planar optical circuit in 1st Embodiment of this invention, Comprising: (a) is a top view, (b) is sectional drawing in cut surface AA ', (c) is a wiring board. Schematic of a cross-sectional structure. 本発明の第1実施形態における平面型光回路の電極端子の接続構造の概略図。The schematic diagram of the connection structure of the electrode terminal of the plane type optical circuit in a 1st embodiment of the present invention. 本発明の第2実施形態における平面型光回路の電極端子の接続構造の概略図。Schematic of the connection structure of the electrode terminal of the planar optical circuit in 2nd Embodiment of this invention. 本発明の第3実施形態における平面型光回路の電極端子の接続構造で、電極端子近傍の絶縁膜が、周辺の絶縁膜に対し盛り上がっている様子を示した図。The figure which showed a mode that the insulating film of the electrode terminal vicinity was rising with respect to the surrounding insulating film with the connection structure of the electrode terminal of the planar optical circuit in 3rd Embodiment of this invention. 本発明の第4実施形態における平面型光回路の電極端子の接続構造の概略図。Schematic of the connection structure of the electrode terminal of the planar optical circuit in 4th Embodiment of this invention. 本発明の第5実施形態における平面型光回路の電極端子の接続構造の概略図。Schematic of the connection structure of the electrode terminal of the planar optical circuit in 5th Embodiment of this invention. 本発明の第6実施形態における平面型光回路の電極端子の接続構造の概略図。Schematic of the connection structure of the electrode terminal of the planar optical circuit in 6th Embodiment of this invention. 本発明の第7実施形態における平面型光回路の電極端子の接続構造であって、(a)は配線基板の断面図、(b)は導電膜を挟んで配線基板の電極と平面型光回路の上面の電極端子を加熱・圧着した後の接続構造の断面図。8A and 7B are electrode terminal connection structures of a planar optical circuit according to a seventh embodiment of the present invention, where FIG. 9A is a cross-sectional view of the wiring board, and FIG. Sectional drawing of the connection structure after heating and crimping | bonding the electrode terminal of the upper surface of. 本発明の第8実施形態における平面型光回路の電極端子の接続構造の概略図。Schematic of the connection structure of the electrode terminal of the planar optical circuit in 8th Embodiment of this invention. 本発明の第9実施形態における平面型光回路の電極端子の接続構造の概略図。Schematic of the connection structure of the electrode terminal of the planar optical circuit in 9th Embodiment of this invention. 本発明の第10実施形態における平面型光回路の電極端子の接続構造の概略図。The schematic of the connection structure of the electrode terminal of the planar optical circuit in 10th Embodiment of this invention. 本発明の各実施形態で説明した平面型光回路における電極端子の接続構造を適用した光回路の一例であって、(a)は平面図、(b)は切断面B−B´における断面図、(c)は切断面C−C´における断面図。It is an example of the optical circuit which applied the connection structure of the electrode terminal in the planar optical circuit demonstrated in each embodiment of this invention, (a) is a top view, (b) is sectional drawing in cut surface BB '. (C) is sectional drawing in cut surface CC '. 本発明の各実施形態で説明した平面型光回路における電極端子の接続構造を適用した多連の光回路の一例を示した図。The figure which showed an example of the multiple optical circuit to which the connection structure of the electrode terminal in the planar optical circuit demonstrated in each embodiment of this invention was applied. 本発明の平面型光回路の製作工程を説明する模式図。The schematic diagram explaining the manufacturing process of the planar optical circuit of this invention. 従来技術であって、(a)は平面基板上に形成された従来の導波路型光スイッチの概略図、(b)は従来の導波路型光スイッチを用いた平面型光回路モジュールの概略図。In the prior art, (a) is a schematic diagram of a conventional waveguide-type optical switch formed on a planar substrate, and (b) is a schematic diagram of a planar-type optical circuit module using the conventional waveguide-type optical switch. . 従来技術であって、(a)は液晶回路基板の電極端子と配線基板の電極の接続方法を示す概略図、(b)は配線基板の一例の概略図、(c)は(b)において破線で示された部分の断面構造の概略図。In the prior art, (a) is a schematic diagram illustrating a method of connecting an electrode terminal of a liquid crystal circuit board and an electrode of a wiring board, (b) is a schematic diagram of an example of a wiring board, and (c) is a broken line in (b). Schematic of the cross-sectional structure of the part shown by.

符号の説明Explanation of symbols

101,102 入力導波路
103,104 出力導波路
111 光カプラ
121 光カプラ
131,132 光遅延導波路
141 ヒータ
151,152 溝
161 平面基板
162 下部クラッドガラススート
163 コアガラススート
164 下部クラッドガラス
165 コアガラス
166 エッチングマスク
167 上部クラッドガラス
168 絶縁膜
171〜178 電気配線
181〜188 電極端子の開口部
191〜198 電極端子
201 導電膜
211 導電粒子
221 導電粒子の核
231 導電粒子の膜
241 接着剤
301 基板
311 配線基板
321〜325 電極
331 配線
341 カバー
401 クラッド
431〜433 光スイッチ・可変光減衰器
901,902 入力導波路
903,904 出力導波路
911 光カプラ
921 光カプラ
931,932 光遅延導波路
941 屈折率調整手段
951 平面型光回路
952 電気配線基板
953 電極
954 配線
955 ボンディングワイヤ
956 パッケージ
957 光ファイバアレイ
958 電気コネクタ
959 電極端子
961 基板
962 配線基板
963 電極
964 配線
965 カバー
966 異方性導電膜
967 導電粒子
968 接着剤
971 液晶回路基板
972 電極端子
101, 102 Input waveguide 103, 104 Output waveguide 111 Optical coupler 121 Optical coupler 131, 132 Optical delay waveguide 141 Heater 151, 152 Groove 161 Planar substrate 162 Lower clad glass soot 163 Core glass soot 164 Lower clad glass 165 Core glass 166 Etching mask 167 Upper clad glass 168 Insulating film 171 to 178 Electrical wiring 181 to 188 Electrode terminal opening 191 to 198 Electrode terminal 201 Conductive film 211 Conductive particle 221 Conductive particle nucleus 231 Conductive particle film 241 Adhesive 301 Substrate 311 Wiring board 321-325 Electrode 331 Wiring 341 Cover 401 Cladding 431-433 Optical switch / variable optical attenuator 901, 902 Input waveguide 903, 904 Output waveguide 911 Optical coupler 9 DESCRIPTION OF SYMBOLS 1 Optical coupler 931,932 Optical delay waveguide 941 Refractive index adjustment means 951 Planar type optical circuit 952 Electrical wiring board 953 Electrode 954 Wiring 955 Bonding wire 956 Package 957 Optical fiber array 958 Electrical connector 959 Electrode terminal 961 Substrate 962 Wiring board 963 Electrode 964 Wiring 965 Cover 966 Anisotropic conductive film 967 Conductive particle 968 Adhesive 971 Liquid crystal circuit board 972 Electrode terminal

Claims (9)

平面基板上に形成されたクラッドと、該クラッドの中に形成され、該クラッドよりも屈折率が高いコアとから成る平面型光回路であって、前記クラッドの上面に電気配線と、該電気配線につながる電極端子とが形成され、該電極端子の全部もしくは一部の領域を開口部とし、前記電極端子の開口部を除く領域が絶縁膜で覆われた平面型光回路において、
前記平面型光回路の電極端子の開口部に、基板上に形成された配線と、該配線につながる電極とから成る配線基板であって、前記基板の上面から前記電極の上面までの高さがtである配線基板の電極が、粒子径φの導電粒子を有する導電膜を介して電気的に接続され、
前記電極端子の開口幅が前記配線基板の電極の幅よりも広く、かつ、前記絶縁膜の上面から前記電極端子の開口部の上面までの深さdが、0d≦t−φとなるよう電極端子が形成されている
ことを特徴とする平面型光回路における電極端子の接続構造。
A planar optical circuit comprising a clad formed on a flat substrate and a core formed in the clad and having a refractive index higher than that of the clad, comprising: an electric wiring on the upper surface of the clad; and the electric wiring In the planar optical circuit in which the electrode terminal connected to the electrode terminal is formed, the entire or part of the electrode terminal is an opening, and the region excluding the opening of the electrode terminal is covered with an insulating film.
A wiring board comprising wiring formed on a substrate in an opening of an electrode terminal of the planar optical circuit and an electrode connected to the wiring, the height from the upper surface of the substrate to the upper surface of the electrode The electrode of the wiring board which is t is electrically connected through a conductive film having conductive particles having a particle diameter φ,
The opening width of the electrode terminal is wider than the width of the electrode of the wiring board, and the depth d from the upper surface of the insulating film to the upper surface of the opening portion of the electrode terminal satisfies 0 < d ≦ t−φ. An electrode terminal connection structure in a planar optical circuit, wherein an electrode terminal is formed.
請求項1に記載の平面型光回路における電極端子の接続構造において、
前記平面型光回路の電極端子の開口幅をw、前記配線基板の電極の幅をLとした時、w≧L+2φとなるよう電極端子が形成されている
ことを特徴とする平面型光回路における電極端子の接続構造。
In the connection structure of the electrode terminal in the planar optical circuit according to claim 1,
In the planar optical circuit, the electrode terminal is formed so that w ≧ L + 2φ, where w is the opening width of the electrode terminal of the planar optical circuit and L is the width of the electrode of the wiring board. Electrode terminal connection structure.
請求項1又は請求項2に記載の平面型光回路における電極端子の接続構造において、
前記平面型光回路の電極端子の硬度及び前記配線基板の電極の硬度が前記導電粒子の硬度よりも高く、かつ、前記電極端子の開口部の上面と、前記配線基板の電極の上面との間隔が、前記導電粒子の粒子径より小さい
ことを特徴とする平面型光回路における電極端子の接続構造。
In the electrode terminal connection structure in the planar optical circuit according to claim 1 or 2,
The hardness of the electrode terminal of the planar optical circuit and the hardness of the electrode of the wiring board are higher than the hardness of the conductive particles, and the distance between the upper surface of the opening of the electrode terminal and the upper surface of the electrode of the wiring board Is smaller than the particle diameter of the conductive particles, the electrode terminal connection structure in the planar optical circuit.
請求項1又は請求項2に記載の平面型光回路における電極端子の接続構造において、
前記平面型光回路の電極端子の硬度又は前記配線基板の電極の硬度が、前記導電粒子の硬度よりも低く、かつ、前記電極端子の開口部の上面と、前記配線基板の電極の上面との間隔が、前記導電粒子の粒子径より小さい
ことを特徴とする平面型光回路における電極端子の接続構造。
In the electrode terminal connection structure in the planar optical circuit according to claim 1 or 2,
The hardness of the electrode terminal of the planar optical circuit or the hardness of the electrode of the wiring board is lower than the hardness of the conductive particles, and the upper surface of the opening of the electrode terminal and the upper surface of the electrode of the wiring board An electrode terminal connection structure in a planar optical circuit, wherein the interval is smaller than the particle diameter of the conductive particles.
請求項1乃至請求項4のいずれかに記載の平面型光回路における電極端子の接続構造において、
前記平面型光回路の電極端子が所定の間隔を隔てて複数形成された
ことを特徴とする平面型光回路における電極端子の接続構造。
In the connection structure of the electrode terminal in the planar optical circuit in any one of Claims 1 thru | or 4,
An electrode terminal connection structure in a planar optical circuit, wherein a plurality of electrode terminals of the planar optical circuit are formed at a predetermined interval.
請求項5に記載の平面型光回路における電極端子の接続構造において、
前記配線基板の電極と、前記平面型光回路の電極端子とが、第1から第N(Nは3以上の整数)まで所定の間隔を隔てて複数配置され、
前記配線基板の第n(1≦n≦N)の電極に接続される前記平面型光回路の第nの電極端子の開口幅をw(n)とした時、前記平面型光回路の第m(1≦m≦N−1)の電極端子の中心位置と第m+1の電極端子の中心位置の間隔が、前記配線基板の電極を前記平面型光回路の電極端子に接続する前の、前記配線基板の第mの電極の中心位置と第m+1の電極の中心位置の間隔と等しく、かつ、前記平面型光回路の第mの電極端子の開口幅w(m)と第m+1の電極端子の開口幅w(m+1)のいずれか一方が、他方よりも広い
ことを特徴とする平面型光回路における電極端子の接続構造。
In the connection structure of the electrode terminal in the planar optical circuit according to claim 5,
A plurality of electrodes of the wiring board and electrode terminals of the planar optical circuit are arranged at a predetermined interval from first to Nth (N is an integer of 3 or more),
When the opening width of the nth electrode terminal of the planar optical circuit connected to the nth (1 ≦ n ≦ N) electrode of the wiring board is w (n), the mth of the planar optical circuit. The distance between the center position of the electrode terminal (1 ≦ m ≦ N−1) and the center position of the (m + 1) th electrode terminal is the wiring before the electrode of the wiring board is connected to the electrode terminal of the planar optical circuit. The distance between the center position of the mth electrode and the center position of the (m + 1) th electrode of the substrate is equal to the opening width w (m) of the mth electrode terminal and the opening of the (m + 1) th electrode terminal of the planar optical circuit. A connection structure of electrode terminals in a planar optical circuit, wherein either one of the widths w (m + 1) is wider than the other.
請求項5に記載の平面型光回路における電極端子の接続構造において、
前記配線基板の電極の幅をL、電極間の隙間の幅をSとしたとき、前記配線基板の電極が、第1の電極から第N(Nは3以上の整数)の電極まで一定間隔L+Sを隔てて複数配置され、
前記配線基板の第n(1≦n≦N)の電極に接続される前記平面型光回路の第nの電極端子の開口幅をw(n)とした時、第1から第Nの電極端子のうち、最も真ん中に近い第mの電極端子の開口幅がw(n)の中で最小であり、かつ、w(m)≧L+2φを満たし、第mから第1の電極端子に向かうにつれ電極端子の開口幅が次第に広くなり、第mから第Nの電極端子に向かうにつれ電極端子の開口幅が次第に広くなる
ことを特徴とする平面型光回路における電極端子の接続構造。
In the connection structure of the electrode terminal in the planar optical circuit according to claim 5,
When the width of the electrode of the wiring board is L and the width of the gap between the electrodes is S, the electrode of the wiring board is a constant distance L + S from the first electrode to the Nth electrode (N is an integer of 3 or more). Are arranged across
When the opening width of the nth electrode terminal of the planar optical circuit connected to the nth (1 ≦ n ≦ N) electrode of the wiring board is w (n), the first to Nth electrode terminals Among them, the opening width of the m-th electrode terminal closest to the center is the smallest among w (n), and satisfies w (m) ≧ L + 2φ, and the electrode moves from the m-th to the first electrode terminal. An electrode terminal connection structure in a planar optical circuit, characterized in that the opening width of the terminal is gradually increased and the opening width of the electrode terminal is gradually increased from the mth to the Nth electrode terminal.
請求項5に記載の平面型光回路における電極端子の接続構造において、
前記平面型光回路の電極端子が、第1から第N(Nは3以上の整数)まで所定の間隔を隔てて複数配置され、
前記配線基板の電極の幅をL、電極間の隙間の幅をSとしたとき、前記配線基板の電極が、第1の電極から第Nの電極まで一定間隔L+Sを隔てて複数配置され、
前記平面基板の反りの曲率をRとすると、前記平面型光回路の第1から第Nの電極端子のうち、第mの電極端子の中心位置を基準として、前記平面型光回路の第n(1≦n≦N)の電極端子の中心位置が、x(n)=R・arcsin((L+S)・(n−m)/R)に配置されている
ことを特徴とする平面型光回路における電極端子の接続構造。
In the connection structure of the electrode terminal in the planar optical circuit according to claim 5,
A plurality of electrode terminals of the planar optical circuit are arranged at a predetermined interval from the first to the Nth (N is an integer of 3 or more),
When the width of the electrode of the wiring board is L and the width of the gap between the electrodes is S, a plurality of electrodes of the wiring board are arranged with a constant interval L + S from the first electrode to the Nth electrode,
When the curvature of warpage of the planar substrate is R, the nth ((n) th) of the planar optical circuit is based on the center position of the mth electrode terminal among the first to Nth electrode terminals of the planar optical circuit. In the planar optical circuit, the center position of the electrode terminal of 1 ≦ n ≦ N) is arranged as x (n) = R · arcsin ((L + S) · (nm) / R) Electrode terminal connection structure.
請求項1乃至請求項8のいずれかに記載の平面型光回路における電極端子の接続構造において、
前記コアとクラッドからなる光導波路は、石英系光導波路である
ことを特徴とする平面型光回路における電極端子の接続構造。
In the electrode terminal connection structure in the planar optical circuit according to any one of claims 1 to 8,
The optical waveguide composed of the core and the clad is a silica-based optical waveguide, and the electrode terminal connection structure in the planar optical circuit.
JP2007072080A 2007-03-20 2007-03-20 Connection structure of electrode terminals in planar optical circuits Active JP4750741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072080A JP4750741B2 (en) 2007-03-20 2007-03-20 Connection structure of electrode terminals in planar optical circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072080A JP4750741B2 (en) 2007-03-20 2007-03-20 Connection structure of electrode terminals in planar optical circuits

Publications (2)

Publication Number Publication Date
JP2008233471A JP2008233471A (en) 2008-10-02
JP4750741B2 true JP4750741B2 (en) 2011-08-17

Family

ID=39906334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072080A Active JP4750741B2 (en) 2007-03-20 2007-03-20 Connection structure of electrode terminals in planar optical circuits

Country Status (1)

Country Link
JP (1) JP4750741B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435465B2 (en) 2009-10-06 2014-03-05 株式会社ジャパンディスプレイ Mounting structure, electro-optical device, and touch panel
JP6037328B2 (en) * 2009-10-30 2016-12-07 リサーチ フロンティアーズ インコーポレイテッド Method of providing a connection between a conductive layer of a suspended particle device and a power bus
JP5960531B2 (en) * 2012-07-25 2016-08-02 京セラ株式会社 Input device, display device, and electronic device
JP2015075588A (en) * 2013-10-08 2015-04-20 古河電気工業株式会社 Planar optical waveguide substrate and optical module
JP6623102B2 (en) 2016-03-31 2019-12-18 古河電気工業株式会社 Optical waveguide circuit device
WO2019035385A1 (en) * 2017-08-16 2019-02-21 富士フイルム株式会社 Conductive film for touch panel, conductive member, and touch panel
JP2019197194A (en) * 2018-05-11 2019-11-14 日本電信電話株式会社 Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233737A (en) * 2003-01-31 2004-08-19 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical switch

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005070723A (en) * 2003-08-04 2005-03-17 Seiko Epson Corp Substrate for electrooptical device, electrooptical device, and electronic equipment
JP2005189650A (en) * 2003-12-26 2005-07-14 Optrex Corp Method for manufacturing liquid crystal display element
JP3828122B2 (en) * 2004-05-25 2006-10-04 日本アビオニクス株式会社 Electrical component connection method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233737A (en) * 2003-01-31 2004-08-19 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical switch

Also Published As

Publication number Publication date
JP2008233471A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4750741B2 (en) Connection structure of electrode terminals in planar optical circuits
US7333682B2 (en) Photoelectric composite interconnection assembly and electronics device using same
USRE46932E1 (en) Optical modulator module
JP3566842B2 (en) Semiconductor light receiving device, method of manufacturing semiconductor light receiving device, bidirectional optical semiconductor device, and optical transmission system
US5659648A (en) Polyimide optical waveguide having electrical conductivity
JP5786883B2 (en) Optical device
US10151959B2 (en) FPC-attached optical modulator and optical transmission device using the same
JP6458603B2 (en) Optical device
JP2007094296A (en) Optical waveguide device and its manufacturing method
US11333909B2 (en) Optical waveguide element, optical modulator, optical modulation module, and optical transmission device
JP4360651B2 (en) Optical module and manufacturing method thereof
JP7013942B2 (en) Optical modulators and optical transmission devices
US7149372B2 (en) Optical device
US9217831B1 (en) Optical system having dynamic waveguide alignment
WO2021261605A1 (en) Optical waveguide device, optical modulator, optical modulation module, and optical transmission apparatus
JP3343837B2 (en) Manufacturing method of electro-optical hybrid module
JP7434843B2 (en) Optical waveguide elements, optical modulators, optical modulation modules, and optical transmitters
JP6459245B2 (en) Light modulator
JP6855323B2 (en) Semiconductor device
JP2002031731A (en) Hybrid optical integrated circuit
JP3952294B2 (en) Waveguide type optical switch
JP5144617B2 (en) Optical circuit assembly
JP2015065255A (en) Photoelectric fusion module
CN211206992U (en) Optical modulator and optical transmission device using the same
JP6927323B2 (en) Planar optical waveguide type optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

R150 Certificate of patent or registration of utility model

Ref document number: 4750741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250