JP3962938B2 - 信号変換装置および方法、並びに学習装置および方法 - Google Patents

信号変換装置および方法、並びに学習装置および方法 Download PDF

Info

Publication number
JP3962938B2
JP3962938B2 JP21502498A JP21502498A JP3962938B2 JP 3962938 B2 JP3962938 B2 JP 3962938B2 JP 21502498 A JP21502498 A JP 21502498A JP 21502498 A JP21502498 A JP 21502498A JP 3962938 B2 JP3962938 B2 JP 3962938B2
Authority
JP
Japan
Prior art keywords
signal
pixel
luminance signal
calculated
target pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21502498A
Other languages
English (en)
Other versions
JPH11243559A (ja
Inventor
哲二郎 近藤
小林  直樹
秀雄 中屋
隆也 星野
丈晴 西片
賢 井上
哲志 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP21502498A priority Critical patent/JP3962938B2/ja
Publication of JPH11243559A publication Critical patent/JPH11243559A/ja
Application granted granted Critical
Publication of JP3962938B2 publication Critical patent/JP3962938B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Color Television Systems (AREA)
  • Processing Of Color Television Signals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、信号変換装置および方法、並びに学習装置および方法に関し、特に、例えば、NTSC(National Television System Committee)方式のテレビジョン信号などのコンポジット信号を、RGB(Red/Green/Blue)信号などのコンポーネント信号に変換する信号変換装置および方法、並びに学習装置および方法に関する。
【0002】
【従来の技術】
例えば、NTSC方式のテレビジョン信号は、輝度信号(Y)に、色信号(C)(I成分およびQ成分)を直交変調して多重化したものとなっており、したがって、テレビジョン信号を受信して画像を表示する場合には、テレビジョン信号から輝度信号と色信号とを分離し(Y/C分離し)、さらに、マトリクス変換して、RGB信号などのコンポーネント信号にする必要がある。
【0003】
【発明が解決しようとする課題】
しかしながら、従来のY/C分離では、例えば、注目画素の輝度信号や色信号を、その注目画素の近傍に位置する画素(注目画素も含む)のコンポジット信号と、固定の係数とを用いた演算を行うことにより求めていた。このため、注目画素にとって、係数が適切でない場合には、ドット妨害やクロスカラーなどが生じ、画質が劣化する課題があった。
【0004】
本発明は、このような状況に鑑みてなされたものであり、ドッド妨害やクロスカラーなどによる画質の劣化を低減した画像を得ることができるようにするものである。
【0005】
【課題を解決するための手段】
請求項1に記載の信号変換装置は、注目フィールドの注目画素のコンポジット信号と、注目画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出する第1の輝度信号算出手段と、注目フィールドと時間的に近接するフィールドの注目画素に対応する画素のコンポジット信号と、画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出する第2の輝度信号算出手段と、第1の輝度信号算出手段が算出した輝度信号と第2の輝度信号算出手段が算出した輝度信号との相関を算出する相関算出手段と、相関算出手段が算出した相関に基づいて、注目画素を所定のクラスに分類するクラス分類手段と、クラスに対応する所定の係数を記憶する記憶手段と、記憶手段が記憶する係数のうちの注目画素のクラスに対応するものを用いて注目画素のコンポーネント信号を演算する演算手段とを備えることを特徴とする。
【0006】
請求項6に記載の信号変換方法は、注目フィールドの注目画素のコンポジット信号と、注目画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出する第1の輝度信号算出ステップと、注目フィールドと時間的に近接するフィールドの注目画素に対応する画素のコンポジット信号と、画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出する第2の輝度信号算出ステップと、第1の輝度信号算出ステップで算出した輝度信号と第2の輝度信号算出ステップで算出した輝度信号との相関を算出する相関算出ステップと、相関算出ステップで算出した相関に基づいて、注目画素を所定のクラスに分類するクラス分類ステップと、クラスに対応する所定の係数を記憶する記憶ステップと、記憶ステップで記憶する係数のうちの注目画素のクラスに対応するものを用いて注目画素のコンポーネント信号を演算する演算ステップとを含むことを特徴とする。
【0007】
請求項7に記載の学習装置は、学習用のコンポーネント信号を、学習用のコンポジット信号に変換する変換手段と、注目フィールドの注目画素のコンポジット信号と、注目画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出する第1の輝度信号算出手段と、注目フィールドと時間的に近接するフィールドの注目画素に対応する画素のコンポジット信号と、画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出する第2の輝度信号算出手段と、第1の輝度信号算出手段が算出した輝度信号と第2の輝度信号算出手段が算出した輝度信号との相関を算出する相関算出手段と、相関算出手段が算出した相関に基づいて、注目画素を所定のクラスに分類するクラス分類手段と、学習用のコンポジット信号と係数とを用いて演算されたコンポーネント信号と、学習用のコンポーネント信号との誤差を小さくする係数を、クラス毎に求めるための演算を行う演算手段とを備えることを特徴とする。
【0008】
請求項12に記載の学習方法は、学習用のコンポーネント信号を、学習用のコンポジット信号に変換する変換ステップと、注目フィールドの注目画素のコンポジット信号と、注目画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出する第1の輝度信号算出ステップと、注目フィールドと時間的に近接するフィールドの注目画素に対応する画素のコンポジット信号と、画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出する第2の輝度信号算出ステップと、第1の輝度信号算出ステップで算出した輝度信号と第2の輝度信号算出ステップで算出した輝度信号との相関を算出する相関算出ステップと、相関算出ステップで算出した相関に基づいて、注目画素を所定のクラスに分類するクラス分類ステップと、学習用のコンポジット信号と係数とを用いて演算されたコンポーネント信号と、学習用のコンポーネント信号との誤差を小さくする係数を、クラス毎に求めるための演算を行う演算ステップとを含むことを特徴とする。
【0009】
請求項1に記載の信号変換装置においては、第1の輝度信号算出手段が、注目フィールドの注目画素のコンポジット信号と、注目画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出し、第2の輝度信号算出手段が、注目フィールドと時間的に近接するフィールドの注目画素に対応する画素のコンポジット信号と、画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出し、相関算出手段が、第1の輝度信号算出手段が算出した輝度信号と第2の輝度信号算出手段が算出した輝度信号との相関を算出し、クラス分類手段が、相関算出手段が算出した相関に基づいて、注目画素を所定のクラスに分類し、記憶手段が、クラスに対応する所定の係数を記憶し、演算手段が、記憶手段が記憶する係数のうちの注目画素のクラスに対応するものを用いて注目画素のコンポーネント信号を演算する。
【0010】
請求項6に記載の信号変換方法においては、第1の輝度算出ステップで、注目フィールドの注目画素のコンポジット信号と、注目画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出し、第2の輝度算出ステップで、注目フィールドと時間的に近接するフィールドの注目画素に対応する画素のコンポジット信号と、画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出し、相関算出ステップで、第1の輝度信号算出ステップで算出した輝度信号と第2の輝度信号算出ステップで算出した輝度信号との相関を求め、クラス分類ステップで、相関算出ステップで算出した相関に基づいて、注目画素を所定のクラスに分類し、記憶ステップで、クラスに対応する所定の係数を記憶し、演算ステップで、記憶ステップで記憶する係数のうちの注目画素のクラスに対応するものを用いて注目画素のコンポーネント信号を演算する。
【0011】
請求項7に記載の学習装置においては、変換手段が、学習用のコンポーネント信号を、学習用のコンポジット信号に変換し、第1の輝度信号算出手段が、注目フィールドの注目画素のコンポジット信号と、注目画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出し、第2の輝度信号算出手段が、注目フィールドと時間的に近接するフィールドの注目画素に対応する画素のコンポジット信号と、画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出し、相関算出手段が、第1の輝度信号算出手段が算出した輝度信号と第2の輝度信号算出手段が算出した輝度信号との相関を算出し、クラス分類手段が、相関算出手段が算出した相関に基づいて、注目画素を所定のクラスに分類し、演算手段が、学習用のコンポジット信号と係数とを用いて演算されたコンポーネント信号と、学習用のコンポーネント信号との誤差を小さくする係数を、クラス毎に求めるための演算を行う。
【0012】
請求項12に記載の学習方法においては、変換ステップで、学習用のコンポーネント信号を、学習用のコンポジット信号に変換し、第1の輝度信号算出ステップで、注目フィールドの注目画素のコンポジット信号と、注目画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出し、第2の輝度信号算出ステップで、注目フィールドと時間的に近接するフィールドの注目画素に対応する画素のコンポジット信号と、画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出し、相関算出ステップで、第1の輝度信号算出ステップで算出した輝度信号と第2の輝度信号算出ステップで算出した輝度信号との相関を算出し、クラス分類ステップで、相関算出ステップで算出した相関に基づいて、注目画素を所定のクラスに分類し、演算ステップで、学習用のコンポジット信号と係数とを用いて演算されたコンポーネント信号と、学習用のコンポーネント信号との誤差を小さくする係数を、クラス毎に求めるための演算を行う。
【0013】
【発明の実施の形態】
以下に、本発明の実施の形態を説明するが、その前に、特許請求の範囲に記載の発明の各手段と以下の実施の形態との対応関係を明らかにするために、各手段の後の括弧内に、対応する実施の形態(但し、一例)を付加して、本発明の特徴を記述すると、次のようになる。
【0014】
すなわち、請求項1に記載の信号変換装置は、注目フィールドの注目画素のコンポジット信号と、注目画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出する第1の輝度信号算出手段(例えば、図2の簡易Y/C分離回路12)と、注目フィールドと時間的に近接するフィールドの注目画素に対応する画素のコンポジット信号と、画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出する第2の輝度信号算出手段(例えば、図2の簡易Y/C分離回路12)と、第1の輝度信号算出手段が算出した輝度信号と第2の輝度信号算出手段が算出した輝度信号との相関を算出する相関算出手段(例えば、図2の差分回路13)と、相関算出手段が算出した相関に基づいて、注目画素を所定のクラスに分類するクラス分類手段(例えば、図2のクラス分類回路15)と、クラスに対応する所定の係数を記憶する記憶手段(例えば、図2の予測係数メモリ部16)と、記憶手段が記憶する係数のうちの注目画素のクラスに対応するものを用いて注目画素のコンポーネント信号を演算する演算手段(例えば、図2の演算回路19)とを備えることを特徴とする。
【0015】
また、請求項7に記載の学習装置は、学習用のコンポーネント信号を、学習用のコンポジット信号に変換する変換手段(例えば、図8のRGB/NTSCエンコーダ22)と、注目フィールドの注目画素のコンポジット信号と、注目画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出する第1の輝度信号算出手段(例えば、図8の簡易Y/C分離回路23)と、注目フィールドと時間的に近接するフィールドの注目画素に対応する画素のコンポジット信号と、画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号を算出する第2の輝度信号算出手段(例えば、図8の簡易Y/C分離回路23)と、第1の輝度信号算出手段が算出した輝度信号と第2の輝度信号算出手段が算出した輝度信号との相関を算出する相関算出手段(例えば、図8の差分回路24)と、相関算出手段が算出した相関に基づいて、注目画素を所定のクラスに分類するクラス分類手段(例えば、図8のクラス分類回路26)と、学習用のコンポジット信号と係数とを用いて演算されたコンポーネント信号と、学習用のコンポーネント信号との誤差を小さくする係数を、クラス毎に求めるための演算を行う演算手段(例えば、図8の演算回路29)とを備えることを特徴とする。
【0016】
なお、勿論この記載は、各手段を上記したものに限定することを意味するものではない。
【0017】
図1は、本発明を適用したテレビジョン受像機の一実施の形態の構成例を示している。チューナ1は、図示せぬアンテナで受信されたNTSC方式のテレビジョン信号を、検波、復調し、コンポジット信号としての画像信号(以下、適宜、NTSC信号という)を、A/D変換器2に供給するとともに、音声信号を、増幅器5に供給するようになされている。A/D変換器2は、チューナ1から入力されたNTSC信号を、所定のタイミングでサンプリングし、これにより、いわゆるY−I信号、Y−Q信号、Y+I信号、Y+Q信号を、順次出力するようになされている。A/D変換器2が出力するディジタルのNTSC信号(Y−I信号、Y−Q信号、Y+I信号、Y+Q信号)は、クラス分類適応処理回路3に供給されるようになされている。ここで、例えば、Y−I信号の位相を0度とすると、Y−Q信号、Y+I信号、Y+Q信号は、位相が、それぞれ90度、180度、270度の信号となる。
【0018】
クラス分類適応処理回路3は、そこに入力されるNTSC信号のうち、注目画素のNTSC信号と、その注目画素と空間的または時間的に近接する画素のNTSC信号とを用いて、注目画素について、複数の輝度信号を算出し、その複数の輝度信号どうしの相関を算出するようになされている。さらに、クラス分類適応処理回路3は、複数の輝度信号どうしの相関に基づいて、注目画素を所定のクラスに分類するクラス分類を行い、その注目画素のクラスに対応する予測係数(後述)を用いて演算を行うことにより、注目画素のコンポーネント信号としての、例えば、RGB信号を求めるようになされている。クラス分類適応処理回路3で求められたR,G,Bの各信号は、CRT(Cathode Ray Tube)4に供給されるようになされている。CRT4は、クラス分類適応処理回路3から入力されたRGB信号に対応した画像を表示するようになされている。
【0019】
増幅器5は、チューナ1から入力された音声信号を増幅し、スピーカ6に供給するようになされている。スピーカ6は、増幅器5から入力された音声信号を再生するようになされている。
【0020】
以上のように構成されるテレビジョン受像機では、ユーザが図示せぬリモートコマンダを操作して、所定のチャンネルを選択すると、チューナ1において、そのチャンネルに対応するテレビジョン信号が、検波、復調され、そのうちの画像信号であるNTSC信号がA/D変換器2に、音声信号が増幅器5に、それぞれ供給される。
【0021】
A/D変換器2では、チューナ1から入力されたNTSC信号がA/D変換され、クラス分類適応処理回路3に供給される。クラス分類適応処理回路3では、A/D変換器2から入力されたNTSC信号が、上述したようにしてRGB信号に変換され、CRT4に供給されて表示される。一方、増幅器5では、チューナ1から入力された音声信号が増幅され、スピーカ6に供給されて出力される。
【0022】
図2は、図1のクラス分類適応処理回路3の第1の構成例を示している。A/D変換器2から入力されたNTSC信号は、フィールドメモリ11に供給されるようになされている。フィールドメモリ11は、ここでは、例えば、少なくとも3フィールド以上のNTSC信号の記憶が可能なもので、制御回路17の制御にしたがい、供給されたNTSC信号を記憶し、また、記憶したNTSC信号を読み出し、簡易Y/C分離回路12および予測タップ形成回路18に供給するようになされている。
【0023】
簡易Y/C分離回路12は、簡易Y/C分離を行うことで、フィールドメモリ11に記憶されたNTSC信号のうちの所定の注目画素のNTSC信号と、その注目画素と空間的または時間的に近接する画素のNTSC信号とを用いて、注目画素についての複数の輝度信号を算出するようになされている。
【0024】
すなわち、簡易Y/C分離回路12は、例えば、図3(A)に示すように、注目フィールドの注目画素をP1とするととともに、その注目画素P1の上または下にそれぞれ隣接する画素を、P2またはP3とするとき、例えば、式Y1=0.5P1+0.25P2+0.25P3で表される輝度信号Y1を、注目画素P1の輝度として求める。
【0025】
さらに、簡易Y/C分離回路12は、例えば、図3(B)に示すように、注目フィールドの注目画素をP1とするとともに、その注目画素P1の左または右に隣接する画素のさらに左または右に隣接する画素それぞれを、P2またはP3とするとき、例えば、式Y2=0.5P1+0.25P2+0.25P3で表される輝度信号Y2を、注目画素P1の輝度として求める。
【0026】
また、簡易Y/C分離回路12は、例えば、図3(C)に示すように、注目フィールドの注目画素をP1とするとともに、その注目画素P1と同一の位置にある、注目フィールドの2フィールド(1フレーム)前のフィールドの画素をP2とするとき、例えば、式Y3=0.5P1+0.5P2で表される輝度信号Y3を、注目画素P1の輝度として求める。
【0027】
簡易Y/C分離回路12は、輝度信号Y1乃至Y3を、注目画素の輝度信号として、差分回路13に出力するようになされている。
【0028】
差分回路13および比較回路14は、簡易Y/C分離回路12から供給される輝度信号Y1乃至Y3それぞれの間の相関を求めるようになされている。すなわち、差分回路13は、例えば、次式で表される差分絶対値D1乃至D3を求め、比較回路14に供給するようになされている。
D1=|Y1−Y2|
D2=|Y2−Y3|
D3=|Y3−Y1|
【0029】
比較回路14は、差分回路13からの差分絶対値D1乃至D3を、所定の閾値と比較し、それぞれの比較結果を表すフラグF1乃至F3を、輝度信号Y1乃至Y3それぞれの間の相関値として、クラス分類回路15に供給するようになされている。
【0030】
ここで、比較回路14は、差分絶対値D1乃至D3が所定の閾値より大きい場合、例えば1を、所定の閾値以下の場合、0を、フラグF1乃至F3として、それぞれ出力するようになされている。
【0031】
例えば、フラグF1が1の場合は、Y1とY2との差が大きく、両者の相関が小さい場合であり、これは、Y1を求めたときに用いた注目画素を含む垂直方向に並ぶ3画素(図3(A))か、またはY2を求めたときに用いた注目画素を含む水平方向に並ぶ3画素(図3(B))の中に、Y/C分離の劣化の原因となる信号が存在することを表す。具体的には、例えば、垂直方向と交わる方向か、水平方向と交わる方向に、輝度のエッジが存在する場合に、フラグF1は1となる。
【0032】
一方、フラグF1が0の場合は、Y1とY2との差が小さく、両者の相関が大きい場合であり、これは、Y1を求めたときに用いた注目画素を含む垂直方向に並ぶ3画素(図3(A))や、Y2を求めたときに用いた注目画素を含む水平方向に並ぶ3画素(図3(B))の中に、Y/C分離の劣化の原因となる信号が存在しないことを表す。
【0033】
また、フラグF2が1の場合は、Y2とY3との差が大きく、両者の相関が小さい場合であり、これは、Y2を求めたときに用いた注目画素を含む水平方向に並ぶ3画素(図3(B))か、またはY3を求めたときに用いた注目画素を含む時間方向に並ぶ2画素(図3(C))の中に、Y/C分離の劣化の原因となる信号が存在することを表す。具体的には、例えば、垂直方向と交わる方向に、輝度のエッジが存在したり、注目画素に動きがある場合に、フラグF2は1となる。
【0034】
一方、フラグF2が0の場合は、Y2とY3との差が小さく、両者の相関が大きい場合であり、これは、Y2を求めたときに用いた注目画素を含む水平方向に並ぶ3画素(図3(B))や、Y3を求めたときに用いた注目画素を含む時間方向に並ぶ2画素(図3(C))の中に、Y/C分離の劣化の原因となる信号が存在しないことを表す。
【0035】
フラグF3については、Y2がY1に、水平方向が垂直方向に、それぞれ替われるだけで、フラグF2における説明と同様であるため、説明を省略する。
【0036】
クラス分類回路15は、比較回路14からのフラグF1乃至F3に基づいて、注目画素を所定のクラスに分類するクラス分類を行い、その注目画素のクラスを、アドレスとして、予測係数メモリ部16に供給するようになされている。すなわち、クラス分類回路15は、比較回路14から入力されたフラグF1乃至F3に対応して、例えば、図4に示すような0乃至7の8つの値のうちのいずれかを、注目画素のクラスとし、予測係数メモリ部16に、アドレスとして与えるようになされている。
【0037】
予測係数メモリ部16は、Y−Iメモリ16A、Y−Qメモリ16B、Y+Iメモリ16C、およびY+Qメモリ16Dから構成されており、それぞれには、クラス分類回路15が出力する注目画素のクラスが、アドレスとして供給されるとともに、制御回路17が出力するCS(Chip Select)信号が供給されるようになされている。Y−Iメモリ16A、Y−Qメモリ16B、Y+Iメモリ16C、およびY+Qメモリ16Dは、注目画素のNTSC信号をRGB信号に変換するために用いるクラスごとの予測係数を、NTSC信号の位相ごとに記憶している。
【0038】
図5は、NTSC信号の所定のフィールドを構成する画素を示している。図5において、○印は位相が0度の信号であるY−I信号を、□印は位相が90度の信号であるY−Q信号を、●印は位相が180度の信号であるY+I信号を、■印は位相が270度の信号であるY+Q信号を、それぞれ示している。図5では、水平方向には、Y−I信号、Y−Q信号、Y+I信号、Y+Q信号が繰り返し配置され、垂直方向には、Y−I信号とY+I信号とが交互に配置された列と、Y−Q信号とY+Q信号とが交互に配置された列が、交互に配置されている。
【0039】
図2に戻り、Y−Iメモリ16A、Y−Qメモリ16B、Y+Iメモリ16C、およびY+Qメモリ16D(以下、適宜、全てをまとめて、メモリ16A乃至16Dとも記述する)は、Y−I信号、Y−Q信号、Y+I信号、およびY+Q信号をRGB信号に変換するために用いるクラスごとの予測係数を、それぞれ記憶している。そして、メモリ16A乃至16Dのうちの制御回路17から入力されたCS信号によって選択されるものが記憶しているクラスごとの予測係数の中の、クラス分類回路15から入力された注目画素のクラスに対応するものが、そこから読み出され、演算回路19に供給されるようになされている。
【0040】
なお、メモリ16A乃至16Dそれぞれにおいては、クラスごとの予測係数として、NTSC信号をR,G,Bの各信号に変換するために用いる、R,G,Bそれぞれ用の予測係数のセットが記憶されている。
【0041】
制御回路17は、フィールドメモリ11に対する読み書きを制御するようになされている。すなわち、制御回路17は、フィールドメモリ11に既に記憶されているフィールドを注目フィールドとして各種の制御を行い、その注目フィールドに対する処理が終了すると、その次のフィールドを、新たに注目フィールドとする。さらに、いままで注目フィールドとされていたフィールドに替えて、フィールドメモリ11に新たに供給されるフィールドを記憶させる。さらに、制御回路17は、注目フィールドを構成する画素を、例えば、ラインスキャン順に、順次、注目画素とし、その注目画素の処理に必要な画素を、フィールドメモリ11から読み出させ、簡易Y/C分離回路12や予測タップ形成回路18に供給する。
【0042】
また、制御回路17は、メモリ16A乃至16Dのうちの注目画素の位相に対応するものを選択するためのCS信号を出力するようにもなされている。すなわち、制御回路17は、注目画素のNTSC信号が、Y−I信号、Y−Q信号、Y+I信号、またはY+Q信号のとき、Y−Iメモリ16A、Y−Qメモリ16B、Y+Iメモリ16C、またはY+Qメモリ16Dをそれぞれ選択するCS信号を、予測係数メモリ部16に供給するようになされている。
【0043】
予測タップ形成回路18には、フィールドメモリ11から読み出された画素が供給されるようになされており、予測タップ形成回路18は、その画素から、注目画素のNTSC信号を、RGB信号に変換するために用いる予測タップを形成し、演算回路19に供給するようになされている。
【0044】
すなわち、例えば、予測タップ形成回路18は、図6(A)に示す注目フィールドの画素aが注目画素のとき、注目フィールドの注目画素aの上下左右にそれぞれ隣接する画素b乃至e、注目画素の左上、右上、左下、右下にそれぞれ隣接する画素f乃至i、注目画素の左隣の画素dの左隣の画素j、および注目画素の右隣の画素eの右隣の画素k、並びに図5(B)に示す注目フィールドの2フィールド前のフィールドにおいて、画素a乃至kと対応する位置にある画素a’乃至k’を予測タップとし、演算回路19に供給するようになされている。
【0045】
演算回路19は、予測係数メモリ部16から供給される予測係数と、予測タップ形成回路18から供給される予測タップとを用いて演算を行うことにより、注目画素のRGB信号を算出するようになされている。すなわち、上述したように、演算回路19に対しては、予測係数メモリ16部から、注目画素のNTSC信号を、R,G,Bの各信号に変換するために用いる、R,G,Bそれぞれ用の予測係数のセットが供給されるとともに、予測タップ形成回路18から、注目画素について形成された予測タップ(図6)が供給されるようになされている。そして、予測タップを構成する画素を、図5で説明したように、画素a乃至kおよび画素a’乃至k’とするとともに、R用の予測係数を、wRa乃至wRkおよびwRA乃至wRKとし、G用の予測係数を、wGa乃至wGkおよびwGA乃至wGKとし、B用の予測係数を、wBa乃至wBkおよびwBA乃至wBKとして、演算回路19は、次のような線形一次式にしたがって、注目画素のR,G,Bの各信号を算出する。
【0046】
Figure 0003962938
【0047】
なお、wRoffset、wGoffset、およびwBoffsetは、NTSC信号とRGB信号との間のバイアスの違いを補正するためのオフセット値(定数項)であり、この定数項wRoffset、wGoffset、およびwBoffsetも、R,G,Bそれぞれ用の予測係数のセットに含まれる。
【0048】
ここで、上述のように、演算回路19において、注目画素のクラスに対応した係数(予測係数)を用いて行う処理、すなわち、注目画素の性質(特性)に応じた予測係数を適応的に用いて行う処理は、適応処理と呼ばれる。以下、この適応処理について、簡単に説明する。
【0049】
例えば、いま、注目画素のコンポーネント信号yの予測値E[y]を、その注目画素と空間的または時間的に近接する位置にある画素(注目画素も含む)のコンポジット信号(以下、適宜、学習データという)x1,x2,・・・と、所定の予測係数w1,w2,・・・の線形結合により規定される線形1次結合モデルにより求めることを考える。この場合、予測値E[y]は、次式で表すことができる。
【0050】
Figure 0003962938
【0051】
そこで、一般化するために、予測係数wの集合でなる行列W、学習データの集合でなる行列X、および予測値E[y]の集合でなる行列Y’を、
【数1】
Figure 0003962938
で定義すると、次のような観測方程式が成立する。
【0052】
Figure 0003962938
【0053】
そして、この観測方程式に最小自乗法を適用して、注目画素のコンポーネント信号yに近い予測値E[y]を求めることを考える。この場合、教師データとなる注目画素の真のコンポーネント信号yの集合でなる行列Y、およびコンポーネント信号yに対する予測値E[y]の残差eの集合でなる行列Eを、
【数2】
Figure 0003962938
で定義すると、式(3)から、次のような残差方程式が成立する。
【0054】
Figure 0003962938
【0055】
この場合、コンポーネント信号yに近い予測値E[y]を求めるための予測係数wiは、自乗誤差
【数3】
Figure 0003962938
を最小にすることで求めることができる。
【0056】
したがって、上述の自乗誤差を予測係数wiで微分したものが0になる場合、すなわち、次式を満たす予測係数wiが、コンポーネント信号yに近い予測値E[y]を求めるため最適値ということになる。
【0057】
【数4】
Figure 0003962938
Figure 0003962938
【0058】
そこで、まず、式(4)を、予測係数wiで微分することにより、次式が成立する。
【0059】
【数5】
Figure 0003962938
Figure 0003962938
【0060】
式(5)および式(6)より、式(7)が得られる。
【0061】
【数6】
Figure 0003962938
Figure 0003962938
【0062】
さらに、式(4)の残差方程式における学習データx、予測係数w、教師データy、および残差eの関係を考慮すると、式(7)から、次のような正規方程式を得ることができる。
【0063】
【数7】
Figure 0003962938
Figure 0003962938
【0064】
式(8)の正規方程式は、求めるべき予測係数wの数と同じ数だけたてることができ、したがって、式(8)を解くことで(但し、式(8)を解くには、式(8)において、予測係数wにかかる係数で構成される行列が正則である必要がある)、最適な予測係数wを求めることができる。なお、式(8)を解くにあたっては、例えば、掃き出し法(Gauss-Jordanの消去法)などを適用することが可能である。
【0065】
以上のようにして、最適な予測係数wを求め、さらに、その予測係数wを用い、式(2)により、コンポーネント信号yに近い予測値E[y]を求める処理が適応処理である(但し、あらかじめ予測係数wを求めておき、その予測係数wから、予測値を求める処理も、適応処理に含まれる)。
【0066】
図2の予測係数メモリ部16には、後述するような学習によって、式(8)の正規方程式をたてて解くことにより求められるクラスごとの予測係数であって、R,G,Bそれぞれ用のものが、NTSC信号の位相ごとに記憶されている。
【0067】
なお、本実施の形態においては、上述したように、予測係数の中に、定数項wRoffset、wGoffset、およびwBoffsetが含まれるが、この定数項は、上述の手法を拡張し、式(8)に対応する正規方程式を解くことで求めることができる。
【0068】
次に、図2に示したクラス分類適応処理回路3の第1の構成例の処理について、図7のフローチャートを参照して説明する。
【0069】
フィールドメモリ11に、NTSC信号が記憶され、制御回路17において、所定のフィールドが注目フィールドとして選択されると、ステップS1において、制御回路17は、注目フィールドの所定の画素を注目画素として選択する。そして、制御回路17は、その注目画素について、図3で説明したような輝度信号Y1乃至Y3を計算するために必要な画素を、フィールドメモリ11から読み出させ、簡易Y/C分離回路12に供給させる。
【0070】
簡易Y/C分離回路12では、ステップS2において、フィールドメモリ11から入力された画素を用いて簡易Y/C分離が行われ、これにより、上述したように、注目画素について、輝度信号Y1乃至Y3が求められ、差分回路13に供給される。差分回路13では、ステップS3において、簡易Y/C分離回路12から入力された輝度信号Y1乃至Y3の差分絶対値D1乃至D3が、上述したように計算され、比較回路14に供給される。比較回路14では、ステップS4において、差分回路13から入力された差分絶対値D1乃至D3それぞれが、所定の閾値と比較され、その閾値との大小関係を表す、上述したようなフラグF1乃至F3が、クラス分類回路15に供給される。
【0071】
クラス分類回路15では、ステップS5において、比較回路14から入力されたフラグF1乃至F3に対応して、注目画素のクラス分類が行われ、その結果得られる注目画素のクラスが、アドレスとして、予測係数メモリ部16に与えられる。また、この場合、制御回路17は、注目画素のNTSC信号が、Y−I信号、Y−Q信号、Y+I信号、Y+Q信号のとき、Y−Iメモリ16A、Y−Qメモリ16B、Y+Iメモリ16C、およびY+Qメモリ16Dをそれぞれ選択するCS信号を、予測係数メモリ部16に供給する。
【0072】
予測係数メモリ部16では、ステップS6において、メモリ16A乃至16Dのうちの制御回路17から入力されたCS信号によって選択されたメモリのアドレス(クラス分類回路15から入力された注目画素のクラスに対応するアドレス)から、R,G,Bそれぞれ用の予測係数のセットが読み出され、演算回路19に供給される。
【0073】
ステップS7において、予測タップ形成回路18は、フィールドメモリ11から画素を読み出し、いま注目画素とされている画素について、図6で説明した予測タップを形成する。この予測タップは、演算回路19に供給される。
【0074】
ここで、ステップS7の処理は、ステップS2乃至S6の処理と並列に行うようにすることも可能である。
【0075】
演算回路19は、予測係数メモリ部16から予測係数を受信するとともに、予測タップ形成回路18から予測タップを受信すると、ステップS8において、その予測係数および予測タップを用いた適応処理を行う。すなわち、具体的には、式(1)に示した線形一次式を演算し、これにより、注目画素のR,G,Bの各信号を求めて出力する。
【0076】
その後、ステップS9に進み、制御回路17において、フィールドメモリ11に記憶された注目フィールドを構成する全ての画素を、注目画素として処理したか否かが判定される。ステップS9において、まだ、注目フィールドを構成する全ての画素を、注目画素として処理していないと判定された場合、ステップS1に戻り、注目フィールドを構成する画素のうち、まだ注目画素とされていない画素が、新たに注目画素とされ、ステップS2以降の処理が繰り返される。また、ステップS9において、注目フィールドを構成する全ての画素を、注目画素として処理したと判定された場合、処理を終了する。
【0077】
なお、図7のフローチャートに示すステップS1乃至S9の処理は、新たなフィールドが、注目フィールドとされるごとに繰り返し行われる。
【0078】
図8は、図2の予測係数メモリ部16に記憶させる予測係数を求める学習を行う学習装置の一実施の形態の構成例を示している。
【0079】
フィールドメモリ21には、学習用のRGB信号(学習用のコンポーネント信号)の画像が、所定数のフィールドだけ供給されて記憶されるようになされている。また、フィールドメモリ21に記憶された学習用の画像を構成する画素のRGB信号は、制御回路27の制御にしたがって読み出され、RGB/NTSCエンコーダ22や制御回路27に供給されるようになされている。
【0080】
RGB/NTSCエンコーダ22は、フィールドメモリ21から入力された各画素のRGB信号を、NTSC信号にエンコード(変換)し、簡易Y/C分離回路23や制御回路27に供給するようになされている。
【0081】
簡易Y/C分離回路23、差分回路24、比較回路25、およびクラス分類回路26は、図2の簡易Y/C分離回路12、差分回路13、比較回路14、およびクラス分類回路15とそれぞれ同様に構成されており、クラス分類回路26が出力する注目画素のクラスは、アドレスとして、学習用データメモリ部28に供給されるようになされている。
【0082】
制御回路27は、フィールドメモリ21に既に記憶されている1以上のフィールドを、順次、注目フィールドとし、さらに、注目フィールドを構成する画素を、例えば、ラインスキャン順に、順次、注目画素として、その注目画素の処理に必要な画素のRGB信号を、フィールドメモリ21から読み出させ、簡易Y/C分離回路12や自身に供給させるようになされている。
【0083】
具体的には、制御回路27は、注目画素について、図3で説明したような簡易Y/C分離を行うために必要な画素のRGB信号を読み出させ、RGB/NTSCエンコーダ22に供給させる。これにより、簡易Y/C分離を行うのに必要な画素のRGB信号は、RGB/NTSCエンコーダ22において、NTSC信号に変換され、簡易Y/C分離回路23に供給される。
【0084】
さらに、制御回路27は、注目画素のRGB信号と、その注目画素について、予測タップを構成する画素のRGB信号とを、フィールドメモリ21から読み出させ、注目画素のRGB信号は自身に供給させ、予測タップを構成する画素のRGB信号はRGB/NTSCエンコーダ22に供給させる。これにより、予測タップを構成する画素のRGB信号は、RGB/NTSCエンコーダ22において、NTSC信号(学習用のコンポジット信号)に変換され、制御回路27に供給される。
【0085】
また、制御回路27は、上述のようにして、RGB/NTSCエンコーダ22から、予測タップを構成する画素のNTSC信号を受信すると、それを学習データとし、フィールドメモリ21から読み出させた注目画素のRGB信号を教師データとして、その学習データと教師データとを組み合わせて、学習用データメモリ部28に供給するようになされている。すなわち、注目画素のRGB信号と、その注目画素に対して、図5で説明したような位置関係にある画素のNTSC信号とが組み合わされて、学習用データメモリ部28に供給されるようになされている。
【0086】
さらに、制御回路27は、学習用データメモリ部28を構成するY−Iメモリ28A、Y−Qメモリ28B、Y+Iメモリ28C、およびY+Qメモリ28D(以下、適宜、全てをまとめて、メモリ28A乃至28Dとも記述する)のうちの注目画素の位相に対応するものを選択するCS信号を出力するようにもなされている。すなわち、制御回路27は、注目画素のNTSC信号が、Y−I信号、Y−Q信号、Y+I信号、またはY+Q信号のとき、Y−Iメモリ28A、Y−Qメモリ28B、Y+Iメモリ28C、またはY+Qメモリ28Dをそれぞれ選択するCS信号を、学習用データメモリ部28に供給するようになされている。
【0087】
学習用データメモリ部28は、Y−Iメモリ28A、Y−Qメモリ28B、Y+Iメモリ28C、およびY+Qメモリ28Dから構成されており、それぞれには、クラス分類回路26が出力する注目画素のクラスが、アドレスとして供給されるとともに、制御回路27が出力するCS信号が供給されるようになされている。さらに、学習用データメモリ部28には、制御回路27が出力する、上述の教師データと学習データとの組合せが供給されるようになされている。そして、メモリ28A乃至28Dのうち、制御回路27から入力されたCS信号によって選択されたものの、クラス分類回路26が出力する注目画素のクラスに対応するアドレスには、制御回路27が出力する教師データと学習データとの組合せが記憶されるようになされている。
【0088】
したがって、Y−Iメモリ28A、Y−Qメモリ28B、Y+Iメモリ28C、またはY+Qメモリ28Dそれぞれには、注目画素のNTSC信号が、Y−I信号、Y−Q信号、Y+I信号、またはY+Q信号である場合における、その注目画素のRGB信号(教師データ)と、その注目画素について形成される予測タップを構成する画素のNTSC信号との組合せが記憶される。すなわち、学習用データメモリ部28には、注目画素のNTSC信号の位相別に、教師データと学習データとの組合せが記憶される。
【0089】
なお、メモリ28A乃至28Dそれぞれにおいては、同一アドレスに複数の情報を記憶することができるようになされており、これにより、同一アドレスには、同一のクラスに分類される画素の学習データと教師データとの組合せを複数記憶することができるようになされている。
【0090】
演算回路29A乃至29Dは、メモリ28A乃至28Dの各アドレスに記憶されている学習データとしての予測タップを構成する画素のNTSC信号と、教師データとしてのRGB信号との組合せを読み出し、それらを用いて、最小自乗法により、RGB信号の予測値と教師データとの間の誤差を最小にする予測係数をそれぞれ算出するようになされている。すなわち、演算回路29A乃至29Dでは、クラスごとに、かつ、R,G,Bの各信号について、式(8)に対応する正規方程式がたてられ、これを解くことにより、クラスごとの、R,G,B用の予測係数(R用の予測係数wRa乃至wRk、予測係数wRA乃至wRK、およびwRoffset,G用の予測係数wGa乃至wGk、予測係数wGA乃至wGK、およびwGoffset、並びにB用の予測係数wBa乃至wBk、予測係数wBA乃至wBK、およびwBoffset)が、それぞれ求められる。
【0091】
ここで、演算回路29A乃至29Dでは、メモリ28A乃至28Dに記憶されたデータを用いてそれぞれ処理が行われるため、演算回路29A乃至29Dそれぞれにおいて得られる予測係数は、NTSC信号の位相別のもの、すなわち、Y−I信号、Y−Q信号、Y+I信号、またはY+Q信号を、それぞれ、RGB信号に変換するためのものになる。
【0092】
Y−Iメモリ30A、Y−Qメモリ30B、Y+Iメモリ30C、またはY+Qメモリ30D(以下、適宜、全てをまとめて、メモリ30A乃至30Dとも記述する)は、演算回路29A乃至29Dにおいて求められる、Y−I信号、Y−Q信号、Y+I信号、またはY+Q信号をRGB信号に変換するのに用いるR,G,B用の予測係数のセットを、各クラスに対応したアドレスに、それぞれ記憶するようになされている。
【0093】
次に、この学習装置において行われる学習処理について、図9のフローチャートを参照して説明する。
【0094】
フィールドメモリ21に、学習用の画像のRGB信号が記憶されると、ステップS11において、制御回路27は、学習用の画像を構成する所定の画素を注目画素として選択し、その注目画素について、簡易Y/C分離を行うのに必要な画素を、フィールドメモリ21から読み出させ、RGB/NTSCエンコーダ22に供給させる。RGB/NTSCエンコーダ22では、フィールドメモリ21から入力された画素のRGB信号がNTSC信号に変換され、簡易Y/C分離回路23に供給される。
【0095】
簡易Y/C分離回路23では、ステップS12において、RGB/NTSCエンコーダ22から入力された画素を用いて簡易Y/C分離が行われ、これにより、図2における場合と同様に、注目画素について、輝度信号Y1乃至Y3が求められ、差分回路24に供給される。以下、差分回路24、比較回路25、またはクラス分類回路26では、ステップS13乃至S15において、図7のステップS3乃至S5それぞれにおける場合と同様の処理が行われ、これにより、クラス分類回路26からは、注目画素のクラスが出力される。この注目画素のクラスは、アドレスとして、学習用データメモリ部28に与えられる。
【0096】
そして、制御回路27は、ステップS16において、注目画素に割り当てられるNTSC信号が、Y−I信号、Y−Q信号、Y+I信号、またはY+Q信号であるとき、Y−Iメモリ28A、Y−Qメモリ28B、Y+Iメモリ28C、またはY+Qメモリ28Dをそれぞれ選択するCS信号を、学習用データメモリ部28に供給する。
【0097】
さらに、制御回路27は、ステップS16において、注目画素のRGB信号と、その注目画素について、予測タップを構成する画素のRGB信号とを、フィールドメモリ21から読み出させ、注目画素のRGB信号は自身に供給させ、予測タップを構成する画素のRGB信号はRGB/NTSCエンコーダ22に供給させる。この場合、RGB/NTSCエンコーダ22では、フィールドメモリ21から入力された予測タップを構成する画素のRGB信号がNTSC信号に変換され、制御回路27に供給される。
【0098】
そして、制御回路27は、RGB/NTSCエンコーダ22から入力された予測タップを構成する画素のNTSC信号を学習データとするとともに、フィールドメモリ21から入力された注目画素のRGB信号を教師データとし、その学習データと教師データとの組み合わせを、学習用データメモリ部28に供給する。
【0099】
なお、ステップS16の処理は、ステップS12乃至S15の処理と並列に行うことが可能である。
【0100】
学習用データメモリ部28では、ステップS17において、メモリ28A乃至28Dのうちの制御回路27から入力されたCS信号によって選択されたものの、クラス分類回路26が出力する注目画素のクラスに対応するアドレスに、制御回路27が出力する教師データと学習データとの組合せが記憶される。
【0101】
ステップS18において、制御回路27において、フィールドメモリ21に記憶された学習用の画像を構成する全ての画素を注目画素として処理したか否かが判定される。ステップS18において、まだ、学習用の画像を構成する全ての画素を注目画素として処理していないと判定された場合、ステップS11に戻り、まだ注目画素とされていない画素を、新たに注目画素として、ステップS12以下の処理が繰り返される。
【0102】
また、ステップS18において、学習用の画像を構成する全ての画素を注目画素として処理したと判定された場合、ステップS19に進み、演算回路29A乃至29Dそれぞれにおいて、メモリ28A乃至28Dに記憶された学習データと教師データとの組合せが、各アドレスごとに読み出され、R,G,Bの各信号別に、式(8)に対応する正規方程式がたてられる。さらに、ステップS19では、演算回路29A乃至29Dそれぞれにおいて、たてられた正規方程式が解かれ、これにより、Y−I信号、Y−Q信号、Y+I信号、またはY+Q信号それぞれをRGB信号に変換するのに用いるR,G,B用の予測係数のセットが、クラスごとに求められる。そして、Y−I信号、Y−Q信号、Y+I信号、またはY+Q信号に対応するクラスごとの予測係数のセットは、メモリ30A乃至30Dにそれぞれ供給されて記憶され、処理を終了する。
【0103】
以上のような学習処理により、メモリ30A乃至30Dに記憶された予測係数のセットが、図2のメモリ16A乃至16Dにそれぞれ記憶される。
【0104】
なお、学習処理において、予測係数を求めるために必要な数の正規方程式が得られないクラスが生じる場合があるが、そのようなクラスについては、例えば、クラスを無視して正規方程式をたてて解くことにより得られる予測係数などを、いわばデフォルトの予測係数として用いることができる。
【0105】
以上のように、注目画素を、その注目画素について求めた複数の輝度信号どうしの相関に基づいてクラス分類し、それにより得られるクラスに対応した予測係数、すなわち、注目画素に適した予測係数を用いて、注目画素のNTSC信号を、RGB信号に変換するようにしたので、特に、輝度によるエッジに起因するドット妨害や、輝度に伴って色が変化しているクロスカラーなどを軽減することが可能となる。
【0106】
図10は、図1のクラス分類適応処理回路3の第2の構成例を示している。A/D変換器2から入力されたNTSC信号は、フィールドメモリ41に供給されるようになされている。フィールドメモリ41は、ここでは、例えば、少なくとも3フィールド以上のNTSC信号の記憶が可能なもので、制御回路47の制御により、そこに供給されるNTSC信号を記憶し、また、記憶したNTSC信号を読み出し、簡易Y/C分離回路42および予測タップ形成回路48に供給するようになされている。
【0107】
簡易Y/C分離回路42は、簡易Y/C分離を行うことで、フィールドメモリ41に記憶されたNTSC信号のうち、所定の注目画素のNTSC信号と、その注目画素と空間的または時間的に近接する画素のNTSC信号とを用いて、注目画素について、複数の輝度信号を算出するようになされている。
【0108】
すなわち、簡易Y/C分離回路42は、例えば、図11(A)に示すように、注目フィールド(0フィールド)の注目画素(またはそのNTSC信号)をaとして、その注目画素aの上または下にそれぞれ隣接する画素のNTSC信号をb、またはcとした場合、(a+b)/2を注目画素aの輝度信号Y0とし、(a+c)/2を注目画素aの輝度信号Y1として計算する。
【0109】
また、簡易Y/C分離回路42は、注目画素aの左に連続して隣接する画素のNTSC信号をd、またはjとし、注目画素aの右に連続して隣接する画素のNTSC信号をe、またはkとした場合、(a+j)/2を注目画素aの輝度信号Y2とし、(a+k)/2を注目画素aの輝度信号Y3とし、(d+e)/2を注目画素aの輝度信号Y4として計算する。
【0110】
さらに、簡易Y/C分離回路42は、注目画素aの左上または右下にそれぞれ隣接する画素のNTSC信号をf、またはiとし、注目画素aの左下または右上にそれぞれ隣接する画素のNTSC信号をh、またはgとした場合、(f+i)/2を注目画素aの輝度信号Y5とし、(h+g)/2を注目画素aの輝度信号Y6として計算する。
【0111】
さらに、簡易Y/C分離回路42は、例えば、図11(B)に示すように、注目フィールド(0フィールド)の注目画素aと対応する位置にある、注目フィールド(0フィールド)の2フィールド(1フレーム)前のフィールド(−2フィールド)の画素(またはそのNTSC信号)をa’として、その画素a’の上または下にそれぞれ隣接する画素のNTSC信号をb’、またはc’とした場合、(a’+b’)/2を注目画素aの輝度信号Y0’とし、(a’+c’)/2を注目画素aの輝度信号Y1’として計算する。
【0112】
また、簡易Y/C分離回路42は、画素a’の左に連続して隣接する画素のNTSC信号をd’、またはj’とし、画素a’の右に連続して隣接する画素のNTSC信号をe’、またはk’とした場合、(a’+j’)/2を注目画素aの輝度信号Y2’とし、(a’+k’)/2を注目画素aの輝度信号Y3’とし、(d’+e’)/2を注目画素aの輝度信号Y4’として計算する。
【0113】
さらに、簡易Y/C分離回路42は、画素a’の左上または右下にそれぞれ隣接する画素のNTSC信号をf’、またはi’とし、注目画素a’の左下または右上にそれぞれ隣接する画素のNTSC信号をh’、またはg’とした場合、(f’+i’)/2を注目画素aの輝度信号Y5’とし、(h’+g’)/2を注目画素aの輝度信号Y6’として計算する。
【0114】
簡易Y/C分離回路42は、上述した輝度信号Y0乃至Y6および輝度信号Y0’乃至Y6’を、注目画素の輝度信号として、差分回路43に出力するようになされている。
【0115】
差分回路43および比較回路44は、簡易Y/C分離回路42から供給された輝度信号Y0乃至Y6および輝度信号Y0’乃至Y6’の相関を求めるようになされている。すなわち、差分回路43は、次式で表されるフレーム間の差分の絶対値D0乃至D6を求め、比較回路44に供給するようになされている。
D0=|Y0−Y0’|
D1=|Y1−Y1’|
D2=|Y2−Y2’|
D3=|Y3−Y3’|
D4=|Y4−Y4’|
D5=|Y5−Y5’|
D6=|Y6−Y6’|
【0116】
比較回路44は、差分回路43から入力されたフレーム間の差分絶対値D0乃至D6を、所定の閾値と比較し、それぞれの比較結果を表すフラグF0乃至F6を、クラス分類回路45に供給するようになされている。
【0117】
ここで、比較回路44は、差分絶対値D0乃至D6がそれぞれ所定の閾値より大きい場合、フラグを1とし、所定の閾値以下の場合、フラグを0として、クラス分類回路45に出力するようになされている。
【0118】
例えば、差分絶対値D0が所定の閾値よりも大きい(フラグ0が1である)場合、輝度信号Y0を演算するタップ(垂直方向のタップ)である画素aと画素b、または輝度信号Y0’を演算するタップである画素a’と画素b’を横切るようなエッジ(水平方向のエッジ)が存在するか、もしくは、注目画素aの周辺がフレーム間で動きのある部分であると考えることができる。逆に、差分絶対値D0が所定の閾値よりも小さい(フラグ0が0である)場合、輝度信号Y0、および輝度信号Y0’には、Y/C分離の劣化の原因となる信号が含まれていないと考えることができる。例えば、差分絶対値D2が所定の閾値よりも大きい(フラグ2が1である)場合、輝度信号Y2を演算するタップ(水平方向のタップ)である画素aと画素j、または輝度信号Y2’を演算するタップである画素a’と画素j’を分けるようなエッジ(垂直方向のエッジ)が存在するか、もしくは、注目画素aの周辺がフレーム間で動きのある部分であると考えることができる。逆に、差分絶対値D2が所定の閾値よりも小さい(フラグ2が0である)場合、輝度信号Y2、および輝度信号Y2’には、Y/C分離の劣化の原因となる信号が含まれていないと考えることができる。
【0119】
クラス分類回路45は、比較回路44から入力されたフラグF0乃至F6に対応して、注目画素を、7ビットで表される128種類のクラスのうちの1つのクラスに分類し、その注目画素のクラスを、アドレスとして、予測係数メモリ部46に供給するようになされている。
【0120】
予測係数メモリ部46は、Y−Iメモリ46A、Y−Qメモリ46B、Y+Iメモリ46C、およびY+Qメモリ46Dから構成されており、それぞれには、クラス分類回路45が出力する注目画素のクラスが、アドレスとして供給されるとともに、制御回路47が出力するCS(Chip Select)信号が供給されるようになされている。Y−Iメモリ46A、Y−Qメモリ46B、Y+Iメモリ46C、およびY+Qメモリ46Dは、注目画素のNTSC信号をRGB信号に変換するために用いるクラスごとの予測係数を、NTSC信号の位相ごとに記憶している。
【0121】
Y−Iメモリ46A、Y−Qメモリ46B、Y+Iメモリ46C、およびY+Qメモリ46D(以下、適宜、全てをまとめて、メモリ46A乃至46Dとも記述する)は、Y−I信号、Y−Q信号、Y+I信号、およびY+Q信号をRGB信号に変換するために用いるクラスごとの予測係数を、それぞれ記憶している。そして、メモリ46A乃至46Dのうちの制御回路47から入力されたCS信号によって選択されるものが記憶しているクラスごとの予測係数の中の、クラス分類回路45から入力された注目画素のクラスに対応するものが、そこから読み出され、演算回路49に供給されるようになされている。
【0122】
なお、メモリ46A乃至46Dそれぞれにおいては、クラスごとの予測係数として、NTSC信号をR,G,Bの各信号に変換するために用いる、R,G,Bそれぞれ用の予測係数のセットが記憶されている。
【0123】
制御回路47は、フィールドメモリ41に対する読み書きを制御するようになされている。すなわち、制御回路47は、フィールドメモリ41に既に記憶されているフィールドを注目フィールドとして各種の制御を行い、その注目フィールドに対する処理が終了すると、その次のフィールドを、新たに注目フィールドとする。さらに、いままで注目フィールドとされていたフィールドに替えて、フィールドメモリ41に新たに供給されるフィールドを記憶させる。さらに、制御回路47は、注目フィールドを構成する画素を、例えば、ラインスキャン順に、順次、注目画素とし、その注目画素の処理に必要な画素を、フィールドメモリ41から読み出させ、簡易Y/C分離回路42や予測タップ形成回路48に供給する。
【0124】
また、制御回路47は、メモリ46A乃至46Dのうちの注目画素の位相に対応するものを選択するためのCS信号を出力するようにもなされている。すなわち、制御回路47は、注目画素のNTSC信号が、Y−I信号、Y−Q信号、Y+I信号、またはY+Q信号のとき、Y−Iメモリ46A、Y−Qメモリ46B、Y+Iメモリ46C、またはY+Qメモリ46Dをそれぞれ選択するCS信号を、予測係数メモリ部46に供給するようになされている。
【0125】
予測タップ形成回路48には、フィールドメモリ41から読み出された画素が供給されるようになされており、予測タップ形成回路48は、その画素から、注目画素のNTSC信号を、RGB信号に変換するために用いる予測タップを形成し、演算回路49に供給するようになされている。
【0126】
すなわち、予測タップ形成回路48は、例えば図6(A)に示す注目フィールドの画素aが注目画素のとき、注目フィールドの画素a乃至k、および図6(B)に示す注目フィールドの2フィールド前のフィールドの画素a’乃至k’を予測タップとし、演算回路49に供給するようになされている
【0127】
演算回路49は、予測係数メモリ部46から供給される予測係数と、予測タップ形成回路48から供給される予測タップとを用いて演算を行うことにより、注目画素のRGB信号を算出するようになされている。すなわち、演算回路49は、図2の演算回路19と同様に、上述した適応処理を実行するようになされている。
【0128】
次に、図10に示したクラス分類適応処理回路3の第2の構成例の処理について、図7のフローチャートを参照して説明する。
【0129】
フィールドメモリ41に、NTSC信号が記憶され、制御回路47において、所定のフィールドが注目フィールドとして選択されると、ステップS1において、制御回路47は、注目フィールドの所定の画素を注目画素として選択する。そして、制御回路47は、その注目画素について、図11で説明したような輝度信号Y0乃至Y6、および輝度信号Y0’乃至Y6’を計算するために必要な画素を、フィールドメモリ41から読み出させ、簡易Y/C分離回路42に供給させる。
【0130】
簡易Y/C分離回路42では、ステップS2において、フィールドメモリ41から入力された画素を用いて簡易Y/C分離が行われ、これにより、上述したように、注目画素について、輝度信号Y0乃至Y6、および輝度信号Y0’乃至Y6’が求められ、差分回路43に供給される。差分回路43では、ステップS3において、簡易Y/C分離回路42から入力された輝度信号Y0乃至Y6、および輝度信号Y0’乃至Y6’のフレーム間の差分の絶対値D0乃至D6が計算され、比較回路44に供給される。比較回路44では、ステップS4において、差分回路43から入力された差分絶対値D0乃至D6それぞれが、所定の閾値と比較され、その閾値との大小関係を示すフラグF0乃至F6が、クラス分類回路45に供給される。
【0131】
クラス分類回路45では、ステップS5において、比較回路44から入力されたフラグF0乃至F6に対応して、注目画素のクラス分類が行われ、その結果得られる注目画素のクラスが、アドレスとして、予測係数メモリ部46に与えられる。また、この場合、制御回路47は、注目画素のNTSC信号が、Y−I信号、Y−Q信号、Y+I信号、Y+Q信号のとき、Y−Iメモリ46A、Y−Qメモリ46B、Y+Iメモリ46C、およびY+Qメモリ46Dをそれぞれ選択するCS信号を、予測係数メモリ部46に供給する。
【0132】
予測係数メモリ部46では、ステップS6において、メモリ46A乃至46Dのうちの制御回路47から入力されたCS信号によって選択されたメモリのアドレス(クラス分類回路45から入力された注目画素のクラスに対応するアドレス)から、R,G,Bそれぞれ用の予測係数のセットが読み出され、演算回路49に供給される。
【0133】
ステップS7において、予測タップ形成回路48は、フィールドメモリ41から画素を読み出し、いま注目画素とされている画素について、図6で説明した予測タップを形成する。この予測タップは、演算回路49に供給される。
【0134】
ここで、ステップS7の処理は、ステップS2乃至S6の処理と並列に行うようにすることも可能である。
【0135】
演算回路49は、予測係数メモリ部46から予測係数を受信するとともに、予測タップ形成回路48から予測タップを受信すると、ステップS8において、その予測係数および予測タップを用いた適応処理を行う。すなわち、演算回路49は、式(1)に示した線形一次式を演算し、これにより、注目画素のR,G,Bの各信号を求めて出力する。
【0136】
その後、ステップS9に進み、制御回路47において、フィールドメモリ41に記憶された注目フィールドを構成する全ての画素を、注目画素として処理したか否かが判定される。ステップS9において、まだ、注目フィールドを構成する全ての画素を、注目画素として処理していないと判定された場合、ステップS1に戻り、注目フィールドを構成する画素のうちのまだ注目画素とされていない画素が、新たに注目画素とされ、ステップS2以降の処理が繰り返される。また、ステップS9において、注目フィールドを構成する全ての画素を、注目画素として処理したと判定された場合、処理を終了する。
【0137】
図12は、図10の予測係数メモリ部46に記憶させる予測係数を求める学習を行う学習装置の一実施の形態の構成例を示している。
【0138】
この学習装置を構成するフィールドメモリ51、RGB/NTSCエンコーダ52、制御回路57、学習用データメモリ部58、演算回路59A乃至59D、およびメモリ60A乃至60Dは、図8に示した学習装置のフィールドメモリ21、RGB/NTSCエンコーダ22、制御回路27、学習用データメモリ部28、演算回路29A乃至29D、およびメモリ30A乃至30Dと同様に構成されているので、その説明は省略する。また、簡易Y/C分離回路53、差分回路54、比較回路55、およびクラス分類回路56は、図10の簡易Y/C分離回路42、差分回路43、比較回路44、およびクラス分類回路45とそれぞれ同様に構成されており、クラス分類回路56が出力する注目画素のクラスは、アドレスとして、学習用データメモリ部58に供給されるようになされている。
【0139】
次に、図12に示した学習装置の学習処理について、図9のフローチャートを参照して説明する。
【0140】
フィールドメモリ51に、学習用の画像のRGB信号が記憶されると、ステップS11において、制御回路57は、学習用の画像を構成する所定の画素を注目画素として選択し、その注目画素について、簡易Y/C分離を行うために必要な画素を、フィールドメモリ51から読み出させ、RGB/NTSCエンコーダ52に供給させる。RGB/NTSCエンコーダ52では、フィールドメモリ51から入力された画素のRGB信号がNTSC信号に変換され、簡易Y/C分離回路53に供給される。
【0141】
簡易Y/C分離回路53では、ステップS12において、RGB/NTSCエンコーダ52から入力された画素を用いて簡易Y/C分離が行われ、これにより、図10における場合と同様に、注目画素について、輝度信号Y0乃至Y6、および輝度信号Y0’乃至Y6’が求められ、差分回路54に供給される。以下、差分回路54、比較回路55、またはクラス分類回路56では、ステップS13乃至S15において、図10の差分回路43、比較回路44、またはクラス分類回路45と同様の処理が行われ、これにより、クラス分類回路56からは、注目画素のクラスが出力される。この注目画素のクラスは、アドレスとして、学習用データメモリ部58に与えられる。
【0142】
そして、制御回路57は、ステップS16において、注目画素に割り当てられるNTSC信号が、Y−I信号、Y−Q信号、Y+I信号、またはY+Q信号であるとき、Y−Iメモリ58A、Y−Qメモリ58B、Y+Iメモリ58C、またはY+Qメモリ58Dをそれぞれ選択するCS信号を、学習用データメモリ部58に供給する。
【0143】
さらに、制御回路57は、ステップS16において、注目画素のRGB信号と、その注目画素について、予測タップを構成する画素のRGB信号とを、フィールドメモリ51から読み出させ、注目画素のRGB信号は自身に供給させ、予測タップを構成する画素のRGB信号はRGB/NTSCエンコーダ52に供給させる。この場合、RGB/NTSCエンコーダ22では、フィールドメモリ51から入力された予測タップを構成する画素のRGB信号がNTSC信号に変換され、制御回路57に供給される。
【0144】
そして、制御回路57は、RGB/NTSCエンコーダ52から入力された予測タップを構成する画素のNTSC信号を学習データとするとともに、フィールドメモリ51から入力された注目画素のRGB信号を教師データとし、その学習データと教師データとの組み合わせを、学習用データメモリ部58に供給する。
【0145】
なお、ステップS16の処理は、ステップS12乃至S15の処理と並列に行うことが可能である。
【0146】
学習用データメモリ部58では、ステップS17において、メモリ58A乃至58Dのうちの制御回路57から入力されたCS信号によって選択されたものの、クラス分類回路56が出力する注目画素のクラスに対応するアドレスに、制御回路57が出力する教師データと学習データとの組合せが記憶される。
【0147】
ステップS18において、制御回路57において、フィールドメモリ51に記憶された学習用の画像を構成する全ての画素を注目画素として処理したか否かが判定される。ステップS18において、まだ、学習用の画像を構成する全ての画素を注目画素として処理していないと判定された場合、ステップS11に戻り、まだ注目画素とされていない画素を、新たに注目画素として、ステップS12以下の処理が繰り返される。
【0148】
また、ステップS18において、学習用の画像を構成する全ての画素を注目画素として処理したと判定された場合、ステップS19に進み、演算回路59A乃至59Dそれぞれにおいて、メモリ58A乃至58Dに記憶された学習データと教師データとの組合せが、各アドレスごとに読み出され、R,G,Bの各信号別に、式(8)に対応する正規方程式がたてられる。さらに、ステップS19では、演算回路59A乃至59Dそれぞれにおいて、たてられた正規方程式が解かれ、これにより、Y−I信号、Y−Q信号、Y+I信号、またはY+Q信号それぞれをRGB信号に変換するのに用いるR,G,B用の予測係数のセットが、クラスごとに求められる。そして、Y−I信号、Y−Q信号、Y+I信号、またはY+Q信号に対応するクラスごとの予測係数のセットは、メモリ60A乃至60Dにそれぞれ供給されて記憶され、処理を終了する。
【0149】
以上のような学習処理により、メモリ60A乃至60Dに記憶された予測係数のセットが、図10のメモリ46A乃至46Dにそれぞれ記憶される。
【0150】
なお、学習処理において、予測係数を求めるために必要な数の正規方程式が得られないクラスが生じる場合があるが、そのようなクラスについては、例えば、クラスを無視して正規方程式をたてて解くことにより得られる予測係数などを、いわばデフォルトの予測係数として用いることができる。
【0151】
以上のように、注目画素を、その注目画素について求めた複数の輝度信号どうしのフレーム間の相関に基づいてクラス分類し、それにより得られるクラスに対応した予測係数、すなわち、注目画素に適した予測係数を用いて、注目画素のNTSC信号を、RGB信号に変換するようにしたので、特に、静止画部分のエッジに起因するドット妨害を軽減することが可能となる。
【0152】
また、本実施の形態では、NTSC信号を、いわば直接、RGB信号に変換するようにしたので(そのような変換を行うための予測係数を学習するようにしたので)、従来のように、NTSC信号をY/C分離し、その結果得られるYIQ信号をマトリクス変換して、RGB信号を求める場合に比較して、装置の小規模化を図ることが可能となる。すなわち、例えば、NTSC信号をY/C分離し、その結果得られるYIQ信号をマトリクス変換して、RGB信号を求める場合には、Y/C分離を行うチップと、マトリクス変換を行うチップとが必要となるのに対し、図2、および図10に示したクラス分類適応処理回路3は、1チップで構成可能である。
【0153】
なお、本実施の形態においては、予測係数との線形一次式を計算することにより、NTSC信号をRGB信号に変換するようにしたが、その他、例えば、非線形な演算式などを計算することにより、NTSC信号をRGB信号に変換するようにすることも可能である。
【0154】
また、本実施の形態では、図5で説明した画素から、予測タップを構成するようにしたが、予測タップは、その他の画素から構成することも可能である。
【0155】
さらに、本実施の形態では、NTSC信号の位相別に、適応処理および学習処理を行うようにしたが、適応処理および学習処理は、NTSC信号の位相に関係なく行うことも可能である。ただし、NTSC信号の位相別に、適応処理および学習処理を行う方が、精度の高いRGB信号および予測係数を得ることができる。
【0156】
また、本実施の形態においては、NTSC信号をRGB信号(3原色の信号)に変換するようにしたが、その他、例えば、PAL方式などの信号をRGB信号に変換したり、また、NTSC信号を、YUV(輝度Yと色差U,Vとでなる信号)やYIQなどの信号に変換することなども可能である。すなわち、変換前のコンポジット信号および変換後のコンポーネント信号は、特に限定されるものではない。
【0157】
さらに、本実施の形態では、注目画素について求めた複数の輝度信号どうしの相関値として、それらの差分絶対値と所定の閾値との大小関係を表すフラグを用いるようにしたが、その他の物理量を用いることも可能である。
【0158】
また、本実施の形態では、フィールド単位で処理を行うようにしたが、その他、例えば、フレーム単位で処理を行うことも可能である。
【0159】
さらに、本発明は、テレビジョン受像機以外の、例えば、VTR(Video Tape Recorder)その他の画像を扱う機器に適用可能である。また、本発明は、動画および静止画のいずれにも適用可能である。
【0160】
さらに、本実施の形態では、NTSC信号をサンプリングすることにより、Y−I信号、Y−Q信号、Y+I信号、およびY+Q信号とするようにしたが、NTSC信号のサンプリングは、4サンプリングごとに、同位相の信号が得られれば、どのようなタイミングで行ってもよい。ただし、この場合、学習においても、同一位相の信号を用いる必要がある。
【0161】
【発明の効果】
以上のように、請求項1に記載の信号変換装置、および請求項6に記載の信号変換方法によれば、注目フィールドの注目画素のコンポジット信号と、注目画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号が算出され、注目フィールドと時間的に近接するフィールドの注目画素に対応する画素のコンポジット信号と、画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号が算出されて、それらの輝度信号の相関が算出される。さらに、算出された相関に基づいて、注目画素がクラス分類され、分類されたクラスに対応する係数を用いて注目画素のコンポーネント信号が演算されるようにしたので、画質が良いコンポーネント信号の画像を得ることが可能となる。
【0162】
また、請求項7に記載の学習装置、および請求項12に記載の学習方法によれば、学習用のコンポーネント信号が、学習用のコンポジット信号に変換され、注目フィールドの注目画素のコンポジット信号と、注目画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号が算出され、注目フィールドと時間的に近接するフィールドの注目画素に対応する画素のコンポジット信号と、画素と空間的に近接する画素のコンポジット信号とを用いて、注目画素に対応する輝度信号が算出されて、それらの輝度信号の相関が算出される。さらに、算出された相関に基づいて、注目画素がクラス分類される。そして、学習用のコンポジット信号と係数とを用いて演算されたコンポーネント信号と、学習用のコンポーネント信号との誤差を小さくする係数をクラス毎に求めるための演算が行われるようにしたので、画質が良いコンポーネント信号の画像を得るための係数を得ることが可能となる。
【図面の簡単な説明】
【図1】本発明を適用したテレビジョン受像機の一実施の形態の構成例を示すブロック図である。
【図2】図1のクラス分類適応処理回路3の第1の構成例を示すブロック図である。
【図3】図2の簡易Y/C分離回路12の処理を説明する図である。
【図4】図2のクラス分類回路15の処理を説明する図である。
【図5】 NTSC信号のフィールドの構成例を示す図である。
【図6】図2の予測タップ形成回路18の処理を説明する図である。
【図7】図2のクラス分類適応処理回路3の処理を説明するフローチャートである。
【図8】本発明を適用した学習装置の一実施の形態の第1の構成例を示すブロック図である。
【図9】図8の学習装置による学習処理を説明するフローチャートである。
【図10】図1のクラス分類適応処理回路3の第2の構成例を示すブロック図である。
【図11】図10の簡易Y/C分離回路42の処理を説明する図である。
【図12】本発明を適用した学習装置の一実施の形態の第2の構成例を示すブロック図である。
【符号の説明】
1 チューナ, 2 A/D変換器, 3 クラス分類適応処理回路, 4 CRT, 5 増幅器, 6 スピーカ, 11 フィールドメモリ, 12 簡易Y/C分離回路, 13 差分回路, 14 比較回路, 15 クラス分類回路,16 予測係数メモリ部, 16A乃至16D メモリ, 17 制御回路,18 予測タップ形成回路, 19 演算回路, 21 フィールドメモリ,22 RGB/NTSCエンコーダ, 23 簡易Y/C分離回路, 24 差分回路,25 比較回路, 26 クラス分類回路, 27 制御回路, 28 学習用データメモリ部, 28A乃至28D メモリ, 29A乃至29D 演算回路, 30A乃至30D メモリ, 41 フィールドメモリ, 42 簡易Y/C分離回路, 43 差分回路, 44 比較回路, 45 クラス分類回路,46 予測係数メモリ部, 46A乃至46D メモリ, 47 制御回路,48 予測タップ形成回路, 49 演算回路, 51 フィールドメモリ,52 RGB/NTSCエンコーダ, 53 簡易Y/C分離回路, 54 差分回路,55 比較回路, 56 クラス分類回路, 57 制御回路, 58 学習用データメモリ部, 58A乃至58D メモリ, 59A乃至59D 演算回路, 60A乃至60D メモリ

Claims (12)

  1. コンポジット信号をコンポーネント信号に変換する信号変換装置において、
    注目フィールドの注目画素のコンポジット信号と、前記注目画素と空間的に近接する画素のコンポジット信号とを用いて、前記注目画素に対応する輝度信号を算出する第1の輝度信号算出手段と、
    前記注目フィールドと時間的に近接するフィールドの前記注目画素に対応する画素のコンポジット信号と、前記画素と空間的に近接する画素のコンポジット信号とを用いて、前記注目画素に対応する輝度信号を算出する第2の輝度信号算出手段と、
    前記第1の輝度信号算出手段が算出した輝度信号と前記第2の輝度信号算出手段が算出した輝度信号との相関を算出する相関算出手段と、
    前記相関算出手段が算出した相関に基づいて、前記注目画素を所定のクラスに分類するクラス分類手段と、
    前記クラスに対応する所定の係数を記憶する記憶手段と、
    前記記憶手段が記憶する係数のうちの前記注目画素のクラスに対応するものを用いて前記注目画素のコンポーネント信号を演算する演算手段と
    を備えることを特徴とする信号変換装置。
  2. 前記相関算出手段は、前記第1の輝度信号算出手段が算出した輝度信号と前記第2の輝度信号算出手段が算出した輝度信号との差分と、所定の閾値との大小関係に基づいて、前記相関を算出する
    ことを特徴とする請求項1に記載の信号変換装置。
  3. 前記コンポーネント信号はRGB信号、または輝度信号および色差信号である
    ことを特徴とする請求項1に記載の信号変換装置。
  4. 前記演算手段は、前記係数と、前記注目画素と空間的または時間的に近接する画素との線形一次結合により、前記注目画素のコンポーネント信号を演算する
    ことを特徴とする請求項1に記載の信号変換装置。
  5. 前記記憶手段は、前記クラスに対応する係数を、前記コンポジット信号の位相ごとに記憶している
    ことを特徴とする請求項1に記載の信号変換装置。
  6. コンポジット信号をコンポーネント信号に変換する信号変換方法において、
    注目フィールドの注目画素のコンポジット信号と、前記注目画素と空間的に近接する画素のコンポジット信号とを用いて、前記注目画素に対応する輝度信号を算出する第1の輝度信号算出ステップと、
    前記注目フィールドと時間的に近接するフィールドの前記注目画素に対応する画素のコンポジット信号と、前記画素と空間的に近接する画素のコンポジット信号とを用いて、前記注目画素に対応する輝度信号を算出する第2の輝度信号算出ステップと、
    前記第1の輝度信号算出ステップで算出した輝度信号と前記第2の輝度信号算出ステップで算出した輝度信号との相関を算出する相関算出ステップと、
    前記相関算出ステップで算出した相関に基づいて、前記注目画素を所定のクラスに分類するクラス分類ステップと、
    前記クラスに対応する所定の係数を記憶する記憶ステップと、
    前記記憶ステップで記憶する係数のうちの前記注目画素のクラスに対応するものを用いて前記注目画素のコンポーネント信号を演算する演算ステップと
    を含むことを特徴とする信号変換方法。
  7. コンポジット信号をコンポーネント信号に変換するための演算に用いる係数を求める学習装置において、
    学習用のコンポーネント信号を、学習用のコンポジット信号に変換する変換手段と、
    注目フィールドの注目画素のコンポジット信号と、前記注目画素と空間的に近接する画素のコンポジット信号とを用いて、前記注目画素に対応する輝度信号を算出する第1の輝度信号算出手段と、
    前記注目フィールドと時間的に近接するフィールドの前記注目画素に対応する画素のコンポジット信号と、前記画素と空間的に近接する画素のコンポジット信号とを用いて、前記注目画素に対応する輝度信号を算出する第2の輝度信号算出手段と、
    前記第1の輝度信号算出手段が算出した輝度信号と前記第2の輝度信号算出手段が算出した輝度信号との相関を算出する相関算出手段と、
    前記相関算出手段が算出した相関に基づいて、前記注目画素を所定のクラスに分類するクラス分類手段と、
    学習用のコンポジット信号と前記係数とを用いて演算されたコンポーネント信号と、前記学習用のコンポーネント信号との誤差を小さくする前記係数を、前記クラス毎に求めるための演算を行う演算手段と
    を備えることを特徴とする学習装置。
  8. 前記相関算出手段は、前記第1の輝度信号算出手段が算出した輝度信号と前記第2の輝度信号算出手段が算出した輝度信号との差分と、所定の閾値との大小関係に基づいて、前記相関を算出する
    ことを特徴とする請求項7に記載の学習装置。
  9. 前記コンポーネント信号はRGB信号、または輝度信号および色差信号である
    ことを特徴とする請求項7に記載の学習装置。
  10. 前記演算手段は、前記係数と、前記注目画素と空間的または時間的に近接する画素との線形一次結合により、前記注目画素のコンポーネント信号を演算する
    ことを特徴とする請求項7に記載の学習装置。
  11. 前記演算手段は、前記クラスごとの係数を、学習用のコンポジット信号の位相ごとに求める
    ことを特徴とする請求項7に記載の学習装置。
  12. コンポジット信号をコンポーネント信号に変換するための演算に用いる係数を求める学習方法において、
    学習用のコンポーネント信号を、学習用のコンポジット信号に変換する変換ステップと、
    注目フィールドの注目画素のコンポジット信号と、前記注目画素と空間的に近接する画素のコンポジット信号とを用いて、前記注目画素に対応する輝度信号を算出する第1の輝度信号算出ステップと、
    前記注目フィールドと時間的に近接するフィールドの前記注目画素に対応する画素のコンポジット信号と、前記画素と空間的に近接する画素のコンポジット信号とを用いて、前記注目画素に対応する輝度信号を算出する第2の輝度信号算出ステップと、
    前記第1の輝度信号算出ステップで算出した輝度信号と前記第2の輝度信号算出ステップで算出した輝度信号との相関を算出する相関算出ステップと、
    前記相関算出ステップで算出した相関に基づいて、前記注目画素を所定のクラスに分類するクラス分類ステップと、
    学習用のコンポジット信号と前記係数とを用いて演算されたコンポーネント信号と、前記学習用のコンポーネント信号との誤差を小さくする前記係数を、前記クラス毎に求めるための演算を行う演算ステップと
    を含むことを特徴とする学習方法。
JP21502498A 1997-12-25 1998-07-30 信号変換装置および方法、並びに学習装置および方法 Expired - Fee Related JP3962938B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21502498A JP3962938B2 (ja) 1997-12-25 1998-07-30 信号変換装置および方法、並びに学習装置および方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-357621 1997-12-25
JP35762197 1997-12-25
JP21502498A JP3962938B2 (ja) 1997-12-25 1998-07-30 信号変換装置および方法、並びに学習装置および方法

Publications (2)

Publication Number Publication Date
JPH11243559A JPH11243559A (ja) 1999-09-07
JP3962938B2 true JP3962938B2 (ja) 2007-08-22

Family

ID=26520641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21502498A Expired - Fee Related JP3962938B2 (ja) 1997-12-25 1998-07-30 信号変換装置および方法、並びに学習装置および方法

Country Status (1)

Country Link
JP (1) JP3962938B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001285648A (ja) * 2000-04-04 2001-10-12 Sony Corp 画像処理装置および画像処理方法、並びに記録媒体

Also Published As

Publication number Publication date
JPH11243559A (ja) 1999-09-07

Similar Documents

Publication Publication Date Title
KR100655837B1 (ko) 데이터 처리 장치, 데이터 처리 방법, 및 그에 대한 기록매체
US7830449B2 (en) Deinterlacer using low angle or high angle spatial interpolation
US7349030B2 (en) Segment buffer loading in a deinterlacer
US6088395A (en) Compressing/decompressing apparatus and method to compress and decompress a video graphics signal
JPH10313445A (ja) 画像信号変換装置およびそれを使用したテレビ受信機、並びにそれに使用される係数データの生成装置および生成方法
KR100591021B1 (ko) 신호변환장치및신호변환방법
US8054318B2 (en) Image display device and a method for adjusting color thereof
US20040160526A1 (en) Deinterlacer using block-based motion detection
JP2000259146A (ja) 画像表示装置
JP3962938B2 (ja) 信号変換装置および方法、並びに学習装置および方法
JP3849817B2 (ja) 画像処理装置および画像処理方法
JP4470280B2 (ja) 画像信号処理装置及び画像信号処理方法
JP4061632B2 (ja) 画像信号処理装置および方法、学習装置および方法、並びに記録媒体
JP4734239B2 (ja) 空間的信号変換
JP2006520479A (ja) カラーシーケンシャルディスプレイのための信号処理
JP3777831B2 (ja) 画像情報変換装置および変換方法
JP4595162B2 (ja) 画像信号処理装置及び画像信号処理方法
JP4597282B2 (ja) 画像情報変換装置、変換方法および表示装置
JP4042121B2 (ja) 画像情報処理装置及び画像情報処理方法
JP2002176629A (ja) 信号処理装置、画像信号処理装置、およびその方法
JP3156247B2 (ja) 画像変換装置
JP2010204344A (ja) 映像信号出力装置および映像信号出力方法
JPH1127696A (ja) 画像処理方法及び装置並びにコンピュータ読み取り可能な記録媒体
JP2010028315A (ja) 画像信号処理装置及び画像信号処理方法
JP2010028482A (ja) 画像信号処理装置、画像信号処理方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees