JP3962125B2 - 減衰全内反射測定装置 - Google Patents

減衰全内反射測定装置 Download PDF

Info

Publication number
JP3962125B2
JP3962125B2 JP16436097A JP16436097A JP3962125B2 JP 3962125 B2 JP3962125 B2 JP 3962125B2 JP 16436097 A JP16436097 A JP 16436097A JP 16436097 A JP16436097 A JP 16436097A JP 3962125 B2 JP3962125 B2 JP 3962125B2
Authority
JP
Japan
Prior art keywords
outer layer
total internal
internal reflection
layer
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16436097A
Other languages
English (en)
Other versions
JPH1123451A (ja
Inventor
ダブリュー.シズラー ハインツ
エッシェンアウワー ウルスラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foss NIRSystems Inc
Original Assignee
Foss NIRSystems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US08/576,489 priority Critical patent/US5739537A/en
Priority to CA002207517A priority patent/CA2207517A1/en
Priority to EP97109894A priority patent/EP0886135B1/en
Application filed by Foss NIRSystems Inc filed Critical Foss NIRSystems Inc
Priority to JP16436097A priority patent/JP3962125B2/ja
Publication of JPH1123451A publication Critical patent/JPH1123451A/ja
Application granted granted Critical
Publication of JP3962125B2 publication Critical patent/JP3962125B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、減衰全内反射測定装置に関し、より詳しくは、固体粒子、ガス状粒子、その他泡等によって測定が阻害されないようになっている減衰全反射プローブを使用して、液体の吸光度を近赤外光によって測定する測定装置に関する。
【0002】
【従来の技術】
本発明の従来技術は特にはない。
【0003】
【発明が解決しようとする課題】
一般的に、液体の吸光度を測定する場合、固体粒子、ガス状粒子、その他泡によって測定が阻害されるというといった問題点があった。
そこで、本発明は、減衰全反射(ATR:Attenuated Total Reflection)による測定の実行によって、測定が粒子によって阻害されないようになる。本発明のプローブは高純度石英またはシリカのような高純度近赤外光の搬送材料で生成された円筒から構成される。分光計から射出された狭波長帯の近赤外光は軸方向に光ファイバーを通って円筒に入り、円筒の内外壁間で多重全内反射する。円筒を通る光は円筒の外面で全内反射をおこす度に、円筒の外壁に接触する液体の光吸収によって、光量を減少する。その結果、円筒を通る近赤外光は液体の吸光度に相当する光量だけ減衰する。
【0004】
【課題を解決するための手段】
請求項1記載の発明は、上記課題を解決するため、コア部分と、該コア部分より純度が高い内面と外面を有する隣接高純度外層と、前記コア部分と前記隣接高純度外層との間に形成され前記コア部分と前記隣接高純度外層とを隔離する、前記コア部分より純度が高く、屈折率が前記外層より小さく、前記外層より薄い中間高純度層を含む光搬送棒と、近赤外光を軸方向に前記外層を通過させ、該近赤外光に前記内面と前記外面で全内反射させる手段と、外層を通過する近赤外光を検出する手段と、を有することを特徴とするものである。
【0007】
請求項6記載の発明は、上記課題を解決するため、請求項3記載の減衰全内反射測定装置において、外層は略100ミクロンの厚さであり、前記中間高純度層は略20ミクロンの厚さであることを特徴とするものである。
請求項7記載の発明は、上記課題を解決するため、請求項2記載の減衰全内反射測定装置において、前記コア、前記中間高純度層、前記外層が本質的に石英から構成されることを特徴とするものである。
【0008】
本発明の好適な実施例では、円筒は高純度の石英の第1および第2薄層で被覆された安価な石英コアから構成されている。第1層は約20ミクロンの厚さを有し、その屈折率は厚さ約100ミクロンの第2外層より小さい。近赤外光は分光計から石英の外層に入れられる。石英の内層が石英のコアと石英の外層とを隔離しているので、コアの純度は円筒の内層と外層の間の境界面で発生する全内反射には何の影響も与えない。このような構造によって、近赤外光の通る円筒は薄くすることができると共に、比較的短い長さの石英層で、多数の全内反射を円筒の外面において行なうことができる。円筒は僅か20cmの長さで全近赤外波長領域にわたる測定が可能になる。
【0009】
【発明の実施の形態】
図1に示す発明の実施例において、石英管11は管壁に囲まれた空洞室13を有する。管11の両端は縮小されて固体石英の同軸棒状端15、16を形成する。その一端15は光ファイバー17によって分光計19に接続され、他端16は光ファイバー23によって検出器25へ接続されている。
【0010】
近赤外分光計19は狭波長帯の近赤外光を光ファイバーケーブル17を通じて石英棒状端15へ送り、円筒状の管壁を通じて他の棒状端16へ送る。分光計19は回転回折格子型にすることによって、近赤外スペクトル領域における狭波長帯の近赤外光の中心波長を変えることができる。搬送光の振幅は近赤外スペクトル領域にわたって、一定間隔で増分された波長毎に検出器で検出される。
【0011】
近赤外光は円筒状の管壁を通過する間に、円筒壁の内外面で多重全内反射する。管11の円筒状の外壁は外筒27で囲まれており、外筒27は管11の外壁と対面する内室29を有する。被測定液は内室29に供給され、管11を通る狭波長帯の近赤外光は円筒壁の外面で全内反射する度に、部分的に吸収される。光の吸収量は管壁を通る波長に対する液体の吸光度によって決められる。この吸収が行なわれた後、光は棒状端16から光ファイバー23を通って近赤外光検出器25へ送られ、受光された近赤外光の振幅が検出される。
【0012】
測定は近赤外スペクトル領域に分布された波長増分毎に行なわれるのが望ましい。吸光度は全内反射で測定されるので、内室29内の液体への非常に少ない透過光量で吸光度は測定される。従って、内室29内の液体に浮遊する泡、粒子は吸光度の測定に何の影響も与えない。
図2に示す実施例は図1に示すものと類似であるが、図2の装置は特に流動する液体の測定に適している点が異なる。図2に示すように、空洞石英管11は液体入口33および出口35を有するジャケット31に囲まれている。ここで、液体はジャケット31と管11の間の空室に入り、流動している液体の吸光度は減衰全反射効果によって測定することができる。
【0013】
図1および図2の実施例では、石英管の厚さは外筒から管に加えられる外力に十分耐え得る厚さでなくてはならない。管壁が厚ければ厚いほど、光が円筒状管壁を通る間に発生する全内反射は少なくなる。長い近赤外波長で全内反射量を十分必要な量にするためには、管は非常に長く、例えば、200cm迄に長くしなければならない。更に、管の両端を棒状に引抜くには難しい製作技術を必要とする。
【0014】
本発明の好適な実施例が図3〜図5に示されているが、減衰全反射プローブは2つの外層41、43でコートされた内部固体円筒39を有する固体石英棒37から形成される。内部棒39は比較的純度の低い安価な石英材から生成され、その外面は高純度石英の厚さ約20ミクロンの薄い層41と厚さ約100ミクロンの高純度石英の厚い第2外層43で被覆されている。内層41の屈折率は外層43の屈折率より小さくされているので、外層を通る光は内層41と外層43の境界面46で全内反射する。
【0015】
分光計19からの狭波長帯の近赤外光は光ファイバー連結部45を通って外層43に入り、この外層43を通って軸方向に送られ光ファイバー連結部47を経由して近赤外光検出器25に入る。光ファイバー連結部45、47はアダプター48、49により外層43に光学的に接続されている。狭波長帯の近赤外光は外層43と内層41、外層43の境界面46との間で多重全内反射する。搬送光はコア39の純度の低さには影響されない。
【0016】
コア39は境界面46で行なわれる全内反射に影響を与えないよう高純度の内層41によって外層43から隔離されている。外層43を通る光は外層43の外面と接触する外筒50内の液体の吸光によって減衰し、この減衰度を検出器で測定することによって液体の吸光度が得られる。
図5に示されるように、光ファイバー連結部45はプラスチックのクラッド53で囲まれた光ファイバー51の外装部(sheath)を有する。光ファイバーは分光計からの光を受光端55で受光すると共に、出光端59に向かって広がっている。出光端59では光ファイバーは連結用アダプター48の円筒リング状の光ファイバー61に接続されている。
アダプター48では円筒リング状の光ファイバー61は内部金属リング65と外部金属リング67とで挟まれており、光ファイバー61の出光端面は外部円筒状石英層43の軸方向の端面と接続されている。アダプター48は外部円筒状ケース69を有し、プラスチックまたは金属のような適切な材料から生成される。
【0017】
ケース69は石英棒37の端部と重なっているが、石英棒37の外層43の外部円筒表面との間には、プラスチックコート73で被覆された高純度の内部石英層71が挟み込まれ、更に、金属リング75を挿入して外層43から隔離されている。石英層71はケース69と石英棒37の外層43とを隔離するために使用され、アダプター48の重なり部において、全内反射が外層43の外面でアダプター48によって影響されないようにしてある。
【0018】
石英棒37と検出器25の間の光ファイバー連結部47と光ファイバーアダプター49は光ファイバー連結部45とアダプター48とそれぞれ全く同じである。吸光度が全内反射によって測定されるので、石英棒37に接する液体の吸光度は液体中の固体粒子やガス状粒子に阻害されることなしで容易に測定することができる。
【0019】
外層43が比較的薄く、例えば、約100ミクロンで生成できるので、外層43を通る光は軸方向で比較的に短い距離を通る間に、外層43の外筒から多くの全内反射を発生することができる。その結果、プローブの検出部の長手方向の長さは比較的短くてすみ、例えば、僅か10〜20cmで、近赤外光の領域において吸光度を有効に測定することができる。
【0020】
上記の測定器において、近赤外光は石英筒に入る前に狭波長帯幅毎に分散される。また、広波長帯の近赤外光を石英筒へ送ることができ、光は円筒を通過後、分光計によって分散され、検出器または複数の検出器で検出される。本発明の好適な上記実施例に対する各種の変形態様はクレームで定められた発明の趣旨と範囲から離脱することなしで実施することができる。
【0021】
【発明の効果】
本発明によれば、減衰全反射プローブは液体中に浮遊する固体粒子や泡による悪影響を受けることなしに液体の吸光度を有効に測定することができる。また、プローブは粒子、泡、その他を含まない液体の吸光度の測定にも有効である。
【図面の簡単な説明】
【図1】本発明のプローブの初期の段階の実施例を示す概略縦断面図である。
【図2】流動する液体を測定するために設計された本発明の初期の段階の実施例を示す。
【図3】本発明の好適な実施例の概略を示す。
【図4】好適な実施例のプローブのセンサー部の立体投影図である。
【図5】本発明のプローブの円筒状センサー部が光ファイバーに接続される部分の詳細を示す縦断面図である。
【符号の説明】
11:石英管
13:空洞室
15:石英管受光端部
16:石英管出光端部
17:光ファイバー
19:近赤外分光計
23:光ファイバー
25:近赤外光検出器
27:外筒
29:外筒内室
31:ジャケット
33:液入口
35:液出口
37:石英棒
39:内部固体円筒
41:第1内層
43:第2外層
45:光ファイバー連結部
46:内層と外層との境界面
47:光ファイバー連結部
48:アダプター
49:アダプター
50:外筒
51:光ファイバーの外装部
53:プラスチックのクラッド
55:光ファイバーの受光端
59:光ファイバーの出光端
61:アダプターの円筒リング
65:アダプターの内部金属リング
67:アダプターの外部金属リング
69:アダプターのケース
71:アダプターの内部石英層
73:アダプターのプラスチックコート
75:アダプターの金属リング

Claims (4)

  1. コア部分と、該コア部分より純度が高い内面と外面を有する隣接高純度外層と、前記コア部分と前記隣接高純度外層との間に形成され前記コア部分と前記隣接高純度外層とを隔離する、前記コア部分より純度が高く、屈折率が前記外層より小さく、前記外層より薄い中間高純度層を含む光搬送棒と、
    近赤外光を軸方向に前記外層を通過させ、該近赤外光に前記内面と前記外面で全内反射させる手段と、
    外層を通過する近赤外光を検出する手段と、を有することを特徴とする減衰全内反射測定装置。
  2. 請求項1記載の減衰全内反射測定装置において、
    近赤外光を分光計から前記外層へ送る光ファイバーと、近赤外光を前記外層から前記近赤外光検出手段へ送る光ファイバーと、を有することを特徴とする減衰全内反射測定装置。
  3. 請求項記載の減衰全内反射測定装置において、
    外層は略100ミクロンの厚さであり、前記中間高純度層は略20ミクロンの厚さであることを特徴とする減衰全内反射測定装置。
  4. 請求項記載の減衰全内反射測定装置において、
    前記コア部分、前記中間高純度層および前記外層が本質的に石英から構成されることを特徴とする減衰全内反射測定装置。
JP16436097A 1995-12-21 1997-06-20 減衰全内反射測定装置 Expired - Fee Related JP3962125B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/576,489 US5739537A (en) 1995-12-21 1995-12-21 NIR absorbance measuring instrument with ATR probe
CA002207517A CA2207517A1 (en) 1995-12-21 1997-06-12 Nir absorbance measuring instrument with atr probe
EP97109894A EP0886135B1 (en) 1995-12-21 1997-06-18 NIR absorbance measuring instrument with ATR probe
JP16436097A JP3962125B2 (ja) 1995-12-21 1997-06-20 減衰全内反射測定装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/576,489 US5739537A (en) 1995-12-21 1995-12-21 NIR absorbance measuring instrument with ATR probe
CA002207517A CA2207517A1 (en) 1995-12-21 1997-06-12 Nir absorbance measuring instrument with atr probe
EP97109894A EP0886135B1 (en) 1995-12-21 1997-06-18 NIR absorbance measuring instrument with ATR probe
JP16436097A JP3962125B2 (ja) 1995-12-21 1997-06-20 減衰全内反射測定装置

Publications (2)

Publication Number Publication Date
JPH1123451A JPH1123451A (ja) 1999-01-29
JP3962125B2 true JP3962125B2 (ja) 2007-08-22

Family

ID=27427372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16436097A Expired - Fee Related JP3962125B2 (ja) 1995-12-21 1997-06-20 減衰全内反射測定装置

Country Status (4)

Country Link
US (1) US5739537A (ja)
EP (1) EP0886135B1 (ja)
JP (1) JP3962125B2 (ja)
CA (1) CA2207517A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534768B1 (en) * 2000-10-30 2003-03-18 Euro-Oeltique, S.A. Hemispherical detector
JP2006329680A (ja) * 2005-05-23 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> 光センサヘッド
US20160299063A1 (en) * 2013-10-11 2016-10-13 Dic Corporation Atr element, immersion probe, and spectrophotometer
BE1022968B1 (nl) * 2015-04-24 2016-10-24 Atlas Copco Airpower Naamloze Vennootschap Oliesensor voor een compressor.
WO2017060853A1 (en) * 2015-10-07 2017-04-13 Duvas Technologies Limited Systems for detecting gas and vapor species using a multi-pass absorption cell

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3460893A (en) * 1965-09-15 1969-08-12 Wilks Scientific Corp Apparatus for analyzing a continuously moving strip by means of attenuated total reflection
US4844869A (en) * 1985-09-09 1989-07-04 Ord, Inc. Immunoassay apparatus
EP0221011A3 (de) * 1985-09-26 1989-11-02 Ciba-Geigy Ag Analysenverfahren, unter Verwendung der abgeschwächten Totalreflexion
JPS63274840A (ja) * 1987-05-06 1988-11-11 Hamamatsu Photonics Kk プロセス監視制御装置
US4894532A (en) * 1988-03-28 1990-01-16 Westinghouse Electric Corp. Optical fiber sensor with light absorbing moisture-sensitive coating
JPH0257947A (ja) * 1988-08-23 1990-02-27 Shimadzu Corp Atr分光分析用試料セル
US5051551A (en) * 1989-05-18 1991-09-24 Axiom Analytical, Inc. Immersion probe for infrared internal reflectance spectroscopy
JPH04186140A (ja) * 1990-11-21 1992-07-02 Hitachi Ltd 光学セル
DE4038354C2 (de) * 1990-12-01 1994-06-30 Bruker Analytische Messtechnik ATR-Meßsonde
US5097129A (en) * 1990-12-06 1992-03-17 International Business Machines Corporation Surface contamination detection using infrared-transparent fibers or attenuated total reflection crystals
JPH05142142A (ja) * 1991-11-18 1993-06-08 Hitachi Ltd 分光光度計
US5315673A (en) * 1992-03-09 1994-05-24 Transducer Research, Inc. Optical waveguide vapor sensor
GB2276003B (en) * 1993-03-09 1997-01-08 Spectra Tech Inc Method and apparatus for enhancing the usefulness of infrared transmitting materials
JP3157952B2 (ja) * 1993-06-02 2001-04-23 アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー 化学物質検出用光学センサー
US5416579A (en) * 1993-07-23 1995-05-16 Nova Chem Bv Method for determining concentration in a solution using attenuated total reflectance spectrometry
US5436454A (en) * 1993-10-15 1995-07-25 Nicolet Instrument Corporation Optical probe for remote attenuated total reflectance measurements
US5585634A (en) * 1994-09-29 1996-12-17 Foster-Miller, Inc. Attenuated total reflectance sensing

Also Published As

Publication number Publication date
JPH1123451A (ja) 1999-01-29
CA2207517A1 (en) 1998-12-12
EP0886135A1 (en) 1998-12-23
US5739537A (en) 1998-04-14
EP0886135B1 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP3660685B2 (ja) 減衰全反射検出
EP0034181B1 (en) Fiber optic strain sensor
US5239176A (en) Tapered optical fiber sensing attenuated total reflectance
MXPA97002263A (en) Attenuated total reflectance sensing
US20060291768A1 (en) Optical fiber sensors based on pressure-induced temporal periodic variations in refractive index
WO2019186448A1 (en) Optical fiber sensor for salinity and temperature measurement
CA1267790A (en) Fiber optic doppler anemometer
US20050063633A1 (en) Optical waveguide monitoring
KR101109093B1 (ko) 광화이버 센서 및 그를 이용한 측정 장치
US5164588A (en) Method and apparatus for sensing ambient conditions at locations along an optical fiber transmission path
JP3962125B2 (ja) 減衰全内反射測定装置
US5129022A (en) Method and apparatus for providing reference signals from points along an optical fiber transmission path
KR20130019889A (ko) 할로우 코어를 갖는 광섬유를 이용한 반사형 프로브 타입의 기체 검출 장치 및 기체 검출 방법
JP2002350335A (ja) 屈折率センサー、センサーシステムおよび光ファイバ
CN114111857A (zh) 一种基于游标效应的光纤fpi级联mi传感装置
CN105911026A (zh) 一种终端反射型螺旋芯光纤表面等离子体共振传感器
CN110308115A (zh) 一种干涉型光纤spr传感器
JP2650998B2 (ja) 液体、気体等の検知用光ファイバ
JPH1082734A (ja) 分子吸収分光用の管状減衰光波センサ
WO2023151112A1 (zh) 一种自带温度标定的光纤湿度传感器
JPH04230707A (ja) 偏心コア光ファイバ
JP3079981B2 (ja) 温度検出装置
CN109060726B (zh) 在线传输式多芯光纤spr传感器
JPH08219983A (ja) 光ファイバおよび光ファイバセンサー
CN1194217C (zh) 纵向分布式表面等离子体波传感器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees