JP3961244B2 - Method and apparatus for measuring suspended particulate matter - Google Patents
Method and apparatus for measuring suspended particulate matter Download PDFInfo
- Publication number
- JP3961244B2 JP3961244B2 JP2001229151A JP2001229151A JP3961244B2 JP 3961244 B2 JP3961244 B2 JP 3961244B2 JP 2001229151 A JP2001229151 A JP 2001229151A JP 2001229151 A JP2001229151 A JP 2001229151A JP 3961244 B2 JP3961244 B2 JP 3961244B2
- Authority
- JP
- Japan
- Prior art keywords
- filter
- particulate matter
- suspended particulate
- atmosphere
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000013618 particulate matter Substances 0.000 title claims description 67
- 238000000034 method Methods 0.000 title claims description 10
- 239000002245 particle Substances 0.000 claims description 63
- 238000009826 distribution Methods 0.000 claims description 60
- 238000005259 measurement Methods 0.000 claims description 26
- 230000003287 optical effect Effects 0.000 claims description 22
- 230000001678 irradiating effect Effects 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000007654 immersion Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 5
- 238000005070 sampling Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
Images
Landscapes
- Sampling And Sample Adjustment (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、大気中に存在する浮遊粒子状物質の粒度分布を測定する方法および装置に関し、更に詳しくは、浮遊粒子状物質の粒度分布を広い粒度範囲にわたって高分解能のもとに測定することのできる浮遊粒子状物質の測定方法および装置に関する。
【0002】
【従来の技術】
大気中に浮遊している粉じんのうち、粒径が10μm以下のものは浮遊粒子状物質(SPM)と称される。この浮遊粒子状物質は、巻き上げられた土なども含まれるが、ディーゼル車が排出する黒煙や未燃焼燃料、硫黄化合物などが多くを占め(関東では35%がディーゼル車からのもの)、これらは有害性もより高いと言われている。このディーゼル車からの排気ガスが原因の粒子状物質は、特にDEPと称される。また、より粒径の小さい2.5μm以下のものは微小粒子状物質(PM2.5)と称され、欧米では調査・研究が盛んになってきている。このPM2.5の場合、その排出原因はディーゼル車の排ガスである割合がより高くなると言われている。
【0003】
以上のような大気中の浮遊粒子状物質(SPM)や微小粒子状物質(PM2.5)の粒度分布を測定する装置として、従来、カスケードインパクタ方式に基づく装置が実用化されている。このカスケードインパクタ方式に基づく測定装置は、流体を捕集板に衝突させてその流れの方向を急変させることによって粒子を流体から分離するインパクタ法を利用したものであり、50%捕集効率の粒径を順次変化させたインパクタを多段に直列接続して、各段における50%捕集効率の粒径をそれぞれの段の代表径として、それぞれの段における捕集量の測定結果から、流体中の粒度分布を求めるものである。
【0004】
【発明が解決しようとする課題】
ところで、SPMやPM2.5の測定に供されているカスケードインパクタ方式に基づく測定装置においては、その原理上、粒径の測定上限値が10μm程度に限定されてしまうという問題があるとともに、粒径の分解能が捕集板の数によって決まってしまうために、高い分解能で粒度分布を測定することは望めないという欠点もある。
【0005】
本発明はこのような実状に鑑みてなされたもので、大気中の浮遊粒子状物質(SPM)や微小粒子状物質(PM2.5)の粒度分布を、粒子径10μm以上を含むより広い粒径範囲において高い分解能のもとに測定することのできる浮遊粒子状物質の測定方法および装置の提供を目的としている。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、本発明の浮遊粒子状物質の測定方法は、大気中に含まれる浮遊粒子状物質を測定する方法であって、大気をポンプにより吸引してフィルタに供給することによって当該フィルタに大気中の浮遊粒子状物質を付着させて捕集するとともに、その浮遊粒子状物質が付着したフィルタに対し、当該フィルタに液体を染み込ませて光学的に透明化した状態で、レーザ光を照射して得られる回折・散乱光の空間強度分布を測定し、その測定結果から浮遊粒子状物質の粒度分布を求めることによって特徴づけられる(請求項1)。
【0007】
また、本発明の浮遊粒子状物質の測定装置は、上記した本発明方法を用いて大気中に含まれる浮遊粒子状物質を測定する装置であって、大気中の浮遊粒子状物質を付着させるためのフィルタと、大気を吸引してそのフィルタに供給するポンプと、大気の供給により浮遊粒子状物質が付着したフィルタに液体を染み込ませて透明化した状態で保持する保持手段と、その保持手段により保持されているフィルタに対してレーザ光を照射する照射光学系と、そのレーザ光のフィルタに付着している浮遊粒子状物質による回折・散乱光の空間強度分布を測定する測定光学系と、その測定された回折・散乱光の空間強度分布からフィルタに付着している浮遊粒子状物質の粒度分布を算出する演算手段を備えていることによって特徴づけられる(請求項2)。
【0008】
ここで、以上の各請求項において言うポンプとは、大気を吸引して圧送できる空気機械を言い、具体的には圧縮機もしくは送風機である。
【0009】
また、本発明において、浮遊粒子状物質を付着させるフィルタと、そのフィルタを光学的に透明化する液体としては、メンブレンフィルタと、そのメンブレンフィルタと略同等の屈折率を有するイマージョンオイルなどを好適に採用することができる。
【0010】
本発明は、広い粒径範囲において高い分解能のもとに粒度分布を測定することのできるレーザ回折・散乱法に基づく粒度分布測定を、大気中の浮遊粒子状物質の粒度分布の測定に利用するとともに、その利用に当たって、レーザ光の照射時に十分な強度の回折・散乱光が得られるように、直接的に大気中の浮遊粒子状物質に対してレーザ光を照射するのではなく、浮遊粒子状物質を効率的にフィルタで捕集して付着させ、そのフィルタを液体を用いて光学的に透明化した状態でレーザ光を照射することによって、所期の目的を達成しようとするものである。
【0011】
すわなち、レーザ回折・散乱式の粒度分布測定装置においては、一般に、分散状態の被測定粒子群にレーザ光を照射して得られる回折・散乱光の空間強度分布を測定し、その光強度分布がミーの散乱理論ないしはフラウンホーファの回折理論に則ることを利用し、回折・散乱光の空間強度分布の測定結果からミーの散乱理論ないしはフラウンホーファの回折理論に基づく演算によって被測定粒子群の粒度分布を求める。このレーザ回折・散乱式粒度分布測定装置装置によれば、被測定粒子群を適度な濃度範囲で媒体中に分散させることによって、広い粒径範囲において高い分解能で粒度分布を求めることができる。すなわち、濃度が低すぎると回折・散乱光の空間強度分布を正確に測定することができず、また、濃度が高すぎると多重散乱などを生じて正確な空間強度分布の測定ができない。
【0012】
ここで、大気中の浮遊粒子状物質に直接的にレーザ光を照射して回折・散乱光を測定しようとしても、大気中における浮遊粒子状物質の濃度が低すぎる関係上、粒度分布を求めるに十分な回折・散乱光を得ることができない。
【0013】
そこで、本発明においては、大気をポンプによって吸引してフィルタに供給することにより、大気中に含まれている浮遊粒子状物質をそのフィルタに付着させて捕集し、その浮遊粒子状物質が付着したフィルタを、液体を用いて光学的に透明化した状態でレーザ光を照射して回折・散乱光を測定する。フィルタに付着する浮遊粒子状物質の密度を、レーザ回折・散乱光の空間強度分布の正確な測定が可能な範囲とすることによって、通常のレーザ回折・散乱式の粒度分布測定と同等の広い粒子径範囲、つまりサブミクロンオーダーから10μmを越える広い粒子径範囲において、高い分解能のもとに浮遊粒子状物質の粒度分布を求めることができる。
【0014】
また、本発明においては、大気をポンプで吸引してフィルタに供給することによって、このフィルタに大気中に含まれている浮遊粒子状物質を付着させて捕集するので、ポンプの流量とその駆動時間によってフィルタに供給した大気の量を容易に把握することができ、かつ、フィルタを適宜に選定することによって、ポンプから供給された大気中の浮遊粒子状物質をほぼ漏れなく捕集することができ、従って一定量の大気中に存在する浮遊粒子状物質の粒子径ごとの量を簡単に割り出すことができる。
【0015】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の構成図であり、光学的構成並びに機械的構成を表す模式図と、電気的構成を表すブロック図とを併記して示す図である。
【0016】
フィルタ1は、この例においてサブミクロンの細孔径を有するメンブレンフィルタであって、基体21とその基体21に対して着脱自在の蓋体22とからなるフィルタ保持部材2の内部に保持され、このフィルタ保持部材2の内部を上下に仕切っている。フィルタ保持部材2の基体21および蓋体22は、それぞれフィルタ1を保持する大径部21a,22aと小径の開口部21b,22bを備えた漏斗状の形状を有しており、基体21の開口部21bはポンプ(捕集用圧縮機)3の吸引口に連通しているとともに、蓋体22の開口部22bは大気に開放されて大気の流入口を形成している。
【0017】
以上の構成において、ポンプ3を駆動すると、大気が開口部22bを介してフィルタ保持部材2の内部に吸引され、フィルタ1を通過した後に開口部21bを介してポンプ3の吸引口に吸引される。このとき、大気中に存在する浮遊粒子状物質Pは、細孔径がサブミクロンオーダーのメンブレンフィルタを用いたフィルタ1を通過する際に、ほぼその全量が付着して捕集される。
【0018】
適宜量の浮遊粒子状物質Pが付着したフィルタ1は、フィルタ保持部材2から取り出されて、当該フィルタ1と同じ屈折率を持つイマージョンオイルが染み込まされ、これによってフィルタ1が透明化される。
【0019】
浮遊粒子状物質Pが付着し、かつ、透明化されたフィルタ1は、例えば2枚の透明なガラス板41a,41bとその支持材42からなるフィルタ保持具40によって保持された状態で、レーザ回折・散乱式粒度分布測定装置50の回折・散乱光の測定に供される。すなわち、浮遊粒子状物質Pが付着し、かつ、イマージョンオイルの染み込みにより透明化されたフィルタ1は、2枚のガラス板41a,41bの間に挟み込まれた状態で、その全体が鉛直方向に沿うように支持具42で支持されて、水平方向からレーザ光が照射されるレーザ回折・散乱式粒度分布測定装置50の測定位置に配置される。
【0020】
レーザ回折・散乱式粒度分布測定装置50は、フィルタ保持具40によって鉛直方向に沿うように保持されたフィルタ1に対して水平の光軸に沿ったレーザ光を照射する照射光学系51と、その照射光学系51からのレーザ光の回折・散乱光の空間強度分布を測定する測定光学系52と、その測定光学系52の出力をサンプリングするデータサンプリング回路53、およびそのデータサンプリング回路53によりサンプリングされた回折・散乱光の空間強度分布データを用いて、フィルタ1に付着している浮遊粒子状物質Pの粒度分布を算出するコンピュータ54を主体として構成されている。
【0021】
照射光学系51は、レーザ光源51a、集光レンズ51b、空間フィルタ51c、コリメートレンズ51dによって構成され、レーザ光源51aから出力されたレーザ光を平行光束としてフィルタ保持具40に保持され、かつ、透明化されたフィルタ1に照射する。このフィルタ1に照射されたレーザ光は、当該透明化されたフィルタ1に付着している浮遊粒子状物質Pにより回折・散乱を受ける。この回折・散乱光の空間強度分布は測定光学系52によって測定される。
【0022】
測定光学系52は、照射光学系51の光軸上にフィルタ1を挟んで配置された集光レンズ52aおよびリングディテクタ52bと、その外側に配置された前方広角度散乱光センサ群52cと、フィルタ1の側方および後方(照射光学系51側)に配置された側方/後方散乱光センサ群52dによって構成されている。リングディテクタ52bは、互いに異なる半径のリング状または1/2リング状もしくは1/4リング状の受光面を有する光センサを同心上に配置した光センサアレイであって、集光レンズ52aにより集光された前方所定角度以内の回折・散乱光の強度分布を検出することができる。従って、これらのセンサ群からなる測定光学系52により、フィルタ1に付着している浮遊粒子状物質Pによる回折・散乱光の空間強度分布が、前方微小角度から後方に至る広い範囲で測定される。
【0023】
以上の測定光学系52による各回折・散乱角度ごとの光強度検出信号は、それぞれのアンプ並びにA−D変換器を有してなるデータサンプリング回路53によって増幅された上でデジタル化され、回折・散乱光の空間強度分布データとしてコンピュータ54に取り込まれる。
【0024】
コンピュータ54では、その回折・散乱光の空間強度分布を用いて、レーザ回折・散乱式の粒度分布測定において公知の、ミーの散乱理論およびフラウンホーファの回折理論に基づく演算手法により、レーザ光が回折・散乱した原因粒子である浮遊粒子状物質Pの粒度分布を算出する。
【0025】
以上の構成において、ポンプ3の単位時間当たりの流量とその駆動時間から、フィルタ1に供給した大気の総量を把握することができ、このフィルタ1に供給する空気の総量を適宜に設定することにより、フィルタ1に付着する浮遊粒子状物質Pの密度を、測定光学系52によって十分に回折・散乱光の空間強度分布を測定できる程度とすることができる。
【0026】
このレーザ回折・散乱式粒度分布測定装置50による粒度分布の測定によれば、サブミクロンオーダーから10μmを越える広い粒径範囲において高い分解能でその粒度分布の測定が可能である。
【0027】
また、以上のように所定量の大気をフィルタ1に供給して浮遊粒子状物質Pを当該フィルタ1に付着させ、その付着させたフィルタ1をイマージョンオイルなどによって透明化してレーザ光を照射し、その回折・散乱光の空間強度分布を測定して粒度分布を求めてそのフィルタ1を廃棄した後、または同時に、フィルタ保持部材2に新たなフィルタ1をセットして上記と同様にそのフィルタ1に大気を供給して浮遊粒子状物質Pを付着させ、透明化したうえで次回の回折・散乱光の空間強度分布の測定を行う、という動作を一定時間ごとに繰り返し行えば、連続的に大気中に浮遊粒子状物質Pの状況を監視することができる。
【0028】
更に、各回の測定動作においてフィルタ1に供給する大気の総量を一定とすると、その各回の測定において得られる回折・散乱光の絶対強度は、大気中の浮遊粒子状物質Pの濃度に相関するので、その絶対強度の変化から大気中の浮遊粒子状物質Pの濃度の経時的変化を監視することができる。
【0029】
更にまた、フィルタ1の単位面積中に付着する個数が既知の標準粒子を用いてキャリブレーションを行っておけば、実際の測定時にフィルタ1に供給された大気の総量と、そのフィルタ1にレーザ光を照射して得られた回折・散乱光の空間強度分布とから、単位体積の大気に含まれる浮遊粒子状物質Pの粒度分布と、その各粒子径の粒子の個数との関係を計算することもできる。
【0030】
なお、フィルタ1に大気中を供給して浮遊粒子状物質Pを付着させるに当たって当該フィルタ1を保持するフィルタ保持部材2の構造については、以上の実施の形態で用いたものに限られることなく、吸引した大気を余すところなくフィルタ1に導くことができさえすれば、任意の構造のものを用いることができる。
【0031】
また、以上の実施の形態においては、フィルタ1としてメンブレンフィルタを用いるとともに、そのフィルタ1を透明化するのにイマージョンオイルを用いた例を示したが、本発明はこれに限定されることなく、サブミクロンオーダーから10μmを越える粒子を付着させることができ、また、適宜の液体により透明化することのできるフィルタであれば任意のものを用いることができる。
【0032】
【発明の効果】
以上のように、本発明によれば、ポンプによって大気をフィルタに供給し、そのフィルタに対して大気中に含まれている浮遊粒子状物質を付着させ、その浮遊粒子状物質が付着したフィルタを液体によって透明化した状態でレーザ光を照射することにより、フィルタに付着している浮遊粒子状物質による回折・散乱光の空間強度分布を測定し、その測定結果からレーザ回折・散乱式粒度分布測定の原理に基づいて浮遊粒子状物質の粒度分布を求めるので、従来のカスケードインパクタによる粒度分布の測定に比して、粒子径の分解能を大幅に向上させることができると同時に、10μm以上の粒径範囲の粒度分布をも測定することができるようになった。
【図面の簡単な説明】
【図1】本発明の実施の形態の構成図であり、光学的構成並びに機械的構成を表す模式図と、電気的構成を表すブロック図とを併記して示す図である。
【符号の説明】
1 フィルタ
2 フィルタ保持部材
21 基体
22 蓋体
21a,22a 大径部
21b,22b 開口部
3 ポンプ
40 フィルタ保持具
41a,41b ガラス板
42 支持材
50 レーザ回折・散乱式粒度分布測定装置
51 照射光学系
52 測定光学系
53 データサンプリング回路
54 コンピュータ
P 浮遊粒子状物質[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for measuring the particle size distribution of airborne particulate matter present in the atmosphere, and more particularly, to measure the particle size distribution of airborne particulate matter over a wide particle size range with high resolution. The present invention relates to a method and apparatus for measuring suspended particulate matter.
[0002]
[Prior art]
Of the dust suspended in the atmosphere, those having a particle size of 10 μm or less are called suspended particulate matter (SPM). This suspended particulate matter includes rolled-up soil, etc., but black smoke, unburned fuel, sulfur compounds, etc., emitted by diesel cars account for a lot (35% is from diesel cars in Kanto). Is said to be more harmful. Particulate matter caused by exhaust gas from this diesel vehicle is particularly referred to as DEP. In addition, those having a smaller particle diameter of 2.5 μm or less are referred to as microparticulate substances (PM2.5), and research and research are actively conducted in the West. In the case of this PM2.5, it is said that the ratio of exhaust gas from diesel vehicles becomes higher.
[0003]
As a device for measuring the particle size distribution of suspended particulate matter (SPM) and fine particulate matter (PM2.5) in the atmosphere as described above, a device based on the cascade impactor system has been put into practical use. This measuring device based on the cascade impactor system uses an impactor method in which particles are separated from the fluid by causing the fluid to collide with the collecting plate and abruptly changing the flow direction. The impactors with different diameters are connected in series in multiple stages, and the particle diameter of 50% collection efficiency at each stage is used as the representative diameter of each stage. The particle size distribution is obtained.
[0004]
[Problems to be solved by the invention]
By the way, in the measuring device based on the cascade impactor method used for the measurement of SPM and PM2.5, there is a problem that the upper limit value of the particle size is limited to about 10 μm in principle, and the particle size In other words, the particle size distribution cannot be measured with high resolution.
[0005]
The present invention has been made in view of such a situation, and the particle size distribution of the suspended particulate matter (SPM) and the fine particulate matter (PM2.5) in the atmosphere is wider than the particle size including 10 μm or more. An object of the present invention is to provide a measurement method and apparatus for suspended particulate matter that can be measured with high resolution in a range.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the method for measuring suspended particulate matter of the present invention is a method for measuring suspended particulate matter contained in the atmosphere, wherein the atmosphere is sucked by a pump and supplied to a filter. In addition to collecting and collecting suspended particulate matter in the atmosphere on the filter, laser light is absorbed in the filter so that the suspended particulate matter adheres to the filter and optically transparent. It is characterized by measuring the spatial intensity distribution of the diffracted / scattered light obtained by irradiating and determining the particle size distribution of the suspended particulate matter from the measurement result (claim 1).
[0007]
Moreover, the suspended particulate matter measuring device of the present invention is a device for measuring suspended particulate matter contained in the atmosphere using the above-described method of the present invention, in order to attach the suspended particulate matter in the atmosphere. A filter for sucking the atmosphere and supplying it to the filter, a holding means for holding the liquid soaked in a filter to which suspended particulate matter has adhered by the supply of the atmosphere and holding it transparent, and the holding means Irradiation optical system for irradiating laser light to the held filter, measurement optical system for measuring spatial intensity distribution of diffracted / scattered light due to suspended particulate matter adhering to the laser light filter, and It is characterized by comprising a calculation means for calculating the particle size distribution of the suspended particulate matter adhering to the filter from the measured spatial intensity distribution of the diffracted / scattered light. .
[0008]
Here, the pump referred to in each of the above claims refers to an air machine capable of sucking and feeding the atmosphere and specifically a compressor or a blower.
[0009]
In the present invention, the filter for adhering the suspended particulate matter and the liquid for optically transparentizing the filter are preferably a membrane filter and an immersion oil having a refractive index substantially equal to that of the membrane filter. Can be adopted.
[0010]
The present invention utilizes the particle size distribution measurement based on the laser diffraction / scattering method capable of measuring the particle size distribution with high resolution in a wide particle size range for measuring the particle size distribution of suspended particulate matter in the atmosphere. At the same time, in order to obtain sufficient intensity of diffracted / scattered light at the time of laser beam irradiation, the suspended particulate matter is not directly irradiated to the suspended particulate matter in the atmosphere. A substance is efficiently collected and attached by a filter, and an intended purpose is achieved by irradiating a laser beam in a state where the filter is optically transparent using a liquid.
[0011]
In other words, a laser diffraction / scattering particle size distribution analyzer generally measures the spatial intensity distribution of diffracted / scattered light obtained by irradiating a group of particles in a dispersed state with laser light, and the light intensity. Using the fact that the distribution conforms to Mie's scattering theory or Fraunhofer's diffraction theory, the particle size of the particle group to be measured is calculated from the measurement result of the spatial intensity distribution of the diffracted / scattered light by calculation based on Mie's scattering theory or Fraunhofer's diffraction theory. Find the distribution. According to the laser diffraction / scattering type particle size distribution measuring apparatus, the particle size distribution can be obtained with high resolution in a wide particle size range by dispersing the particles to be measured in the medium in an appropriate concentration range. That is, if the concentration is too low, the spatial intensity distribution of the diffracted / scattered light cannot be measured accurately, and if the concentration is too high, multiple scattering or the like occurs and the accurate spatial intensity distribution cannot be measured.
[0012]
Here, even if it is intended to measure the diffraction / scattered light by directly irradiating the suspended particulate matter in the atmosphere with laser light, the concentration distribution of the suspended particulate matter in the atmosphere is too low. Sufficient diffracted / scattered light cannot be obtained.
[0013]
Therefore, in the present invention, the air is sucked with a pump and supplied to the filter, so that the suspended particulate matter contained in the atmosphere is attached to the filter and collected, and the suspended particulate matter is attached. The diffracted / scattered light is measured by irradiating the filter with a laser beam in an optically transparent state using a liquid. By setting the density of suspended particulate matter adhering to the filter to a range that allows accurate measurement of the spatial intensity distribution of laser diffraction / scattered light, wide particles equivalent to normal laser diffraction / scattering type particle size distribution measurement In the diameter range, that is, in a wide particle diameter range from the submicron order to over 10 μm, the particle size distribution of the suspended particulate matter can be obtained with high resolution.
[0014]
Also, in the present invention, air is sucked with a pump and supplied to the filter, so that the suspended particulate matter contained in the air is attached to the filter and collected. The amount of air supplied to the filter over time can be easily grasped, and by selecting the filter appropriately, airborne particulate matter supplied from the pump can be collected almost without leakage. Therefore, it is possible to easily determine the amount of suspended particulate matter existing in a certain amount of air for each particle diameter.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram illustrating a schematic diagram showing an optical configuration and a mechanical configuration, and a block diagram showing an electrical configuration.
[0016]
The filter 1 is a membrane filter having a submicron pore diameter in this example, and is held inside a
[0017]
In the above configuration, when the pump 3 is driven, the air is sucked into the
[0018]
The filter 1 to which an appropriate amount of suspended particulate matter P adheres is taken out from the
[0019]
The filter 1 to which the suspended particulate matter P adheres and is made transparent is held by a
[0020]
The laser diffraction / scattering particle size
[0021]
The irradiation
[0022]
The measurement
[0023]
The light intensity detection signal for each diffraction / scattering angle by the measurement
[0024]
The
[0025]
In the above configuration, the total amount of air supplied to the filter 1 can be grasped from the flow rate per unit time of the pump 3 and its driving time, and the total amount of air supplied to the filter 1 can be set appropriately. The density of the suspended particulate matter P adhering to the filter 1 can be set to such an extent that the spatial intensity distribution of the diffracted / scattered light can be sufficiently measured by the measurement
[0026]
According to the measurement of the particle size distribution by the laser diffraction / scattering type particle size
[0027]
In addition, as described above, a predetermined amount of air is supplied to the filter 1 to attach the suspended particulate matter P to the filter 1, and the attached filter 1 is made transparent with immersion oil or the like and irradiated with laser light. After measuring the spatial intensity distribution of the diffracted / scattered light to determine the particle size distribution and discarding the filter 1, or simultaneously, setting a new filter 1 on the
[0028]
Furthermore, if the total amount of air supplied to the filter 1 in each measurement operation is constant, the absolute intensity of diffracted / scattered light obtained in each measurement correlates with the concentration of suspended particulate matter P in the atmosphere. The change with time of the concentration of the suspended particulate matter P in the atmosphere can be monitored from the change in the absolute intensity.
[0029]
Furthermore, if calibration is performed using standard particles with a known number of particles adhering to the unit area of the filter 1, the total amount of air supplied to the filter 1 at the time of actual measurement and the laser light applied to the filter 1. The relationship between the particle size distribution of the suspended particulate matter P contained in the unit volume of the atmosphere and the number of particles of each particle size from the spatial intensity distribution of the diffracted / scattered light obtained by irradiating You can also.
[0030]
Note that the structure of the
[0031]
Moreover, in the above embodiment, while using a membrane filter as the filter 1 and an example in which immersion oil is used to make the filter 1 transparent, the present invention is not limited to this. Any filter can be used as long as it can attach particles exceeding 10 μm from the submicron order and can be made transparent with an appropriate liquid.
[0032]
【The invention's effect】
As described above, according to the present invention, the air is supplied to the filter by the pump, the suspended particulate matter contained in the atmosphere is attached to the filter, and the filter to which the suspended particulate matter is attached is provided. By irradiating laser light in a transparent state with a liquid, the spatial intensity distribution of diffracted / scattered light due to suspended particulate matter adhering to the filter is measured, and the laser diffraction / scattering particle size distribution measurement is performed from the measurement results. Since the particle size distribution of the suspended particulate matter is obtained based on the principle of the particle size, it is possible to greatly improve the particle size resolution as compared with the measurement of the particle size distribution by the conventional cascade impactor, and at the same time, the particle size of 10 μm or more. A range of particle size distributions can now be measured.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram illustrating a schematic diagram showing an optical configuration and a mechanical configuration, and a block diagram showing an electrical configuration.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001229151A JP3961244B2 (en) | 2001-07-30 | 2001-07-30 | Method and apparatus for measuring suspended particulate matter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001229151A JP3961244B2 (en) | 2001-07-30 | 2001-07-30 | Method and apparatus for measuring suspended particulate matter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003042932A JP2003042932A (en) | 2003-02-13 |
JP3961244B2 true JP3961244B2 (en) | 2007-08-22 |
Family
ID=19061541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001229151A Expired - Lifetime JP3961244B2 (en) | 2001-07-30 | 2001-07-30 | Method and apparatus for measuring suspended particulate matter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3961244B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102608010A (en) * | 2012-03-28 | 2012-07-25 | 姚水良 | Particulate matter (PM) detecting method and equipment |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104280324A (en) * | 2014-08-27 | 2015-01-14 | 北京市环境保护监测中心 | Method for monitoring mass concentration of near-surface fine particulate matter by satellite remote sensing |
CN104865175A (en) * | 2015-05-20 | 2015-08-26 | 常州大学 | Method for detecting concentration of PM2.5 (particulate matter) in air |
CN105865994B (en) * | 2016-04-22 | 2017-12-15 | 苏州翰霖汽车科技有限公司 | A kind of PM2.5 transducer calibrations equipment and its scaling method |
CN106501141A (en) * | 2016-10-27 | 2017-03-15 | 合肥福瞳光电科技有限公司 | A kind of atmosphere particle concentration on-line monitoring method |
CN111006981A (en) * | 2019-12-03 | 2020-04-14 | 北京航空航天大学 | Human body microenvironment air quality detection and prediction system based on intelligent mobile terminal |
-
2001
- 2001-07-30 JP JP2001229151A patent/JP3961244B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102608010A (en) * | 2012-03-28 | 2012-07-25 | 姚水良 | Particulate matter (PM) detecting method and equipment |
Also Published As
Publication number | Publication date |
---|---|
JP2003042932A (en) | 2003-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3622696B2 (en) | Method and apparatus for measuring suspended particulate matter | |
US10481070B2 (en) | Systems, devices, and methods for flow control and sample monitoring control | |
Grimm et al. | Aerosol measurement: the use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction | |
EP3356793B1 (en) | Optical particle counter | |
US6807874B2 (en) | Collecting apparatus of floating dusts in atmosphere | |
JP4690789B2 (en) | Atmospheric particulate measuring device | |
JP2008508527A (en) | Pathogen and particulate detection system and detection method | |
US11047787B2 (en) | And method for optical bench for detecting particles | |
CN107607449A (en) | A kind of device and method for detecting particulate matter quality concentration | |
JP3961244B2 (en) | Method and apparatus for measuring suspended particulate matter | |
JP2004053357A (en) | Collecting method and measuring method of yellow sand particle | |
JP3758577B2 (en) | Device for collecting suspended particulate matter in the atmosphere and measuring method for collected suspended particulate matter | |
CN108181213A (en) | A kind of outdoor constant current pump suction type laser dust detection device | |
CN103698153B (en) | Aerosol particle sample detecting method and apparatus based on energy trapping method | |
JP2003035655A (en) | Method and equipment for measuring floating particulate material | |
JP3758603B2 (en) | Device for collecting suspended particulate matter in the atmosphere | |
JP2002116134A (en) | Measuring apparatus for suspended particulate matter | |
JP3786049B2 (en) | Airborne particulate matter collection device | |
JP3758602B2 (en) | Measuring device for pollen in the atmosphere | |
CN202928837U (en) | Aerosol particle sampling and detecting device based on energy trap method | |
JP2003254888A (en) | Method for measuring suspended particulate matter | |
CN207816769U (en) | Photometer sensor device | |
CN207472723U (en) | A kind of particle concentration detecting system having from zero calibration | |
US20240344956A1 (en) | Device and method for detection of particles using a line laser | |
CN104792735B (en) | Method and device for detecting virus by using surface plasmon scattering imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040420 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040618 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040628 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20040723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070516 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3961244 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100525 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110525 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110525 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120525 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130525 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130525 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140525 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |