JP2003035655A - Method and equipment for measuring floating particulate material - Google Patents

Method and equipment for measuring floating particulate material

Info

Publication number
JP2003035655A
JP2003035655A JP2001222417A JP2001222417A JP2003035655A JP 2003035655 A JP2003035655 A JP 2003035655A JP 2001222417 A JP2001222417 A JP 2001222417A JP 2001222417 A JP2001222417 A JP 2001222417A JP 2003035655 A JP2003035655 A JP 2003035655A
Authority
JP
Japan
Prior art keywords
particulate matter
suspended particulate
particle size
filter
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001222417A
Other languages
Japanese (ja)
Inventor
Shinichiro Totoki
慎一郎 十時
Takeshi Niwa
猛 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001222417A priority Critical patent/JP2003035655A/en
Publication of JP2003035655A publication Critical patent/JP2003035655A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and an equipment for measuring the particle size distribution of floating particulate material (SPM) or particulate material (PM2.5) in the atmosphere with high resolution over a wide particle size range including particle size of 10 μm and above. SOLUTION: Atmosphere is sucked by means of a pump 3 and supplied to a filter 1 where floating particulate material P in the atmosphere is captured and dispersed into liquid L which is then irradiated with laser light. Spatial intensity distribution of diffracted/scattered light thus obtained is measured and particle size distribution of floating particulate material P is determined from the measurements. Concentration of the floating particulate material P being dispersed into the liquid L is set at such a level as a laser diffraction/ scattering type particle size distribution measurement can be employed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、大気中に存在する
浮遊粒子状物質の粒度分布を測定する方法および装置に
関し、更に詳しくは、浮遊粒子状物質の粒度分布を広い
粒度範囲にわたって高分解能のもとに測定することので
きる浮遊粒子状物質の測定方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the particle size distribution of suspended particulate matter existing in the atmosphere, and more particularly, to a method for measuring the particle size distribution of suspended particulate matter with high resolution over a wide particle size range. The present invention relates to a method and apparatus for measuring suspended particulate matter that can be originally measured.

【0002】[0002]

【従来の技術】大気中に浮遊している粉じんのうち、粒
径が10μm以下のものは浮遊粒子状物質(SPM)と
称される。この浮遊粒子状物質は、巻き上げられた土な
ども含まれるが、ディーゼル車が排出する黒煙や未燃焼
燃料、硫黄化合物などが多くを占め(関東では35%が
ディーゼル車からのもの)、これらは有害性もより高い
と言われている。このディーゼル車からの排気ガスが原
因の粒子状物質は、特にDEPと称される。また、より
粒径の小さい2.5μm以下のものは微小粒子状物質
(PM2.5)と称され、欧米では調査・研究が盛んに
なってきている。このPM2.5の場合、その排出原因
はディーゼル車の排ガスである割合がより高くなると言
われている。
2. Description of the Related Art Among dust particles floating in the atmosphere, those having a particle size of 10 μm or less are called suspended particulate matter (SPM). This suspended particulate matter includes rolled up soil, but black smoke, unburned fuel, and sulfur compounds emitted by diesel vehicles account for a large proportion (35% in the Kanto region are from diesel vehicles). Is said to be more harmful. The particulate matter caused by the exhaust gas from this diesel vehicle is especially called DEP. Further, particles having a particle size of 2.5 μm or less, which are smaller, are called fine particulate matter (PM2.5), and investigations and studies have become popular in Europe and America. In the case of PM2.5, it is said that the cause of the emission is a higher proportion of exhaust gas from diesel vehicles.

【0003】以上のような大気中の浮遊粒子状物質(S
PM)や微小粒子状物質(PM2.5)の粒度分布を測
定する装置として、従来、カスケードインパクタ方式に
基づく装置が実用化されている。このカスケードインパ
クタ方式に基づく測定装置は、流体を捕集板に衝突させ
てその流れの方向を急変させることによって粒子を流体
から分離するインパクタ法を利用したものであり、50
%捕集効率の粒径を順次変化させたインパクタを多段に
直列接続して、各段における50%捕集効率の粒径をそ
れぞれの段の代表径として、それぞれの段における捕集
量の測定結果から、流体中の粒度分布を求めるものであ
る。
Suspended particulate matter (S
As a device for measuring the particle size distribution of PM and fine particulate matter (PM2.5), a device based on the cascade impactor system has been put into practical use. The measuring device based on the cascade impactor method uses an impactor method in which particles are separated from a fluid by colliding the fluid with a collecting plate to suddenly change the flow direction thereof.
Measuring the amount of trapping in each stage by connecting in series multiple impactors with varying particle size of% trapping efficiency in series and using the particle size of 50% trapping efficiency in each stage as the representative diameter of each stage. The particle size distribution in the fluid is determined from the results.

【0004】[0004]

【発明が解決しようとする課題】ところで、SPMやP
M2.5の測定に供されているカスケードインパクタ方
式に基づく測定装置においては、その原理上、粒径の測
定上限値が10μm程度に限定されてしまうという問題
があるとともに、粒径の分解能が捕集板の数によって決
まってしまうために、高い分解能で粒度分布を測定する
ことは望めないという欠点もある。
By the way, SPM and P
In the measuring device based on the cascade impactor method used for the measurement of M2.5, there is a problem that the upper limit of the particle size measurement is limited to about 10 μm and the resolution of the particle size is trapped. Since it depends on the number of collecting plates, it is not possible to measure the particle size distribution with high resolution.

【0005】本発明はこのような実状に鑑みてなされた
もので、大気中の浮遊粒子状物質(SPM)や微小粒子
状物質(PM2.5)の粒度分布を、粒子径10μm以
上を含むより広い粒径範囲において高い分解能のもとに
測定することのできる浮遊粒子状物質の測定方法および
装置の提供を目的としている。
The present invention has been made in view of the above circumstances, and the particle size distribution of suspended particulate matter (SPM) and fine particulate matter (PM2.5) in the atmosphere is more than that including a particle diameter of 10 μm or more. It is an object of the present invention to provide a method and apparatus for measuring suspended particulate matter that can be measured with a high resolution in a wide particle size range.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の浮遊粒子状物質の測定方法は、大気中に含
まれる浮遊粒子状物質を測定する方法であって、大気を
ポンプにより吸引してフィルタに供給することによって
当該フィルタにより大気中の浮遊粒子状物質を捕集する
とともに、そのフィルタで捕集した浮遊粒子状物質を液
体中に分散させた状態でレーザ光を照射して得られる回
折・散乱光の空間強度分布を測定し、その測定結果から
浮遊粒子状物質の粒度分布を求めることによって特徴づ
けられる(請求項1)。
In order to achieve the above object, the method for measuring suspended particulate matter of the present invention is a method for measuring suspended particulate matter contained in the atmosphere, wherein the atmosphere is pumped. By aspirating and supplying to the filter, the airborne particulate matter in the atmosphere is collected by the filter, and the suspended particulate matter collected by the filter is irradiated with laser light in a state of being dispersed in the liquid. It is characterized by measuring the spatial intensity distribution of the obtained diffracted / scattered light and determining the particle size distribution of the suspended particulate matter from the measurement result (claim 1).

【0007】また、本発明の浮遊粒子状物質の測定装置
は、上記した本発明方法を用いて大気中に含まれる浮遊
粒子状物質を測定する装置であって、大気中の浮遊粒子
状物質を捕集するためのフィルタと、大気を吸引してそ
のフィルタに供給するポンプと、上記フィルタに捕集さ
れた大気中の浮遊粒子状物質を液体中に分散させる分散
手段と、その浮遊粒子状物質が分散した液体が流される
フローセルと、そのフローセルに対してレーザ光を照射
する照射光学系と、そのレーザ光の液体中の浮遊粒子状
物質による回折・散乱光の空間強度分布を測定する測定
光学系と、その測定された回折・散乱光の空間強度分布
から液体中に分散されている浮遊粒子状物質の粒度分布
を算出する演算手段を備えていることによって特徴づけ
られる(請求項2)。
The airborne particulate matter measuring apparatus of the present invention is an apparatus for measuring airborne particulate matter contained in the atmosphere using the above-described method of the present invention. A filter for collecting, a pump for sucking the air and supplying it to the filter, a dispersing means for dispersing the suspended particulate matter in the atmosphere captured by the filter in a liquid, and the suspended particulate matter Flow cell in which a liquid in which is dispersed flows, an irradiation optical system that irradiates the flow cell with laser light, and measurement optics that measures the spatial intensity distribution of the laser light diffracted / scattered by suspended particulate matter in the liquid The present invention is characterized by including a system and a calculation means for calculating a particle size distribution of suspended particulate matter dispersed in a liquid from the measured spatial intensity distribution of diffracted / scattered light (claim 2). .

【0008】ここで、以上の各請求項において言うポン
プとは、大気を吸引して圧送できる空気機械を言い、具
体的には圧縮機もしくは送風機である。
Here, the pump referred to in each of the above claims refers to an air machine capable of sucking air and sending it by pressure, and more specifically, it is a compressor or a blower.

【0009】また、本発明において、フィルタで捕集し
た浮遊粒子状物質を分散させるべく用いる液体として
は、蒸留水等の清浄な水、または有機溶媒、あるいはこ
れらに界面活性剤等の分散剤を添加したものを好適に用
いることができる。
In the present invention, as the liquid used to disperse the suspended particulate matter collected by the filter, clean water such as distilled water or an organic solvent, or a dispersant such as a surfactant is added to these. The added one can be preferably used.

【0010】本発明は、広い粒径範囲において高い分解
能のもとに粒度分布を測定することのできるレーザ回折
・散乱法に基づく粒度分布測定を、大気中の浮遊粒子状
物質の粒度分布の測定に利用するとともに、その利用に
当たって、レーザ光の照射時に十分な強度の回折・散乱
光が得られるように、直接的に大気中の浮遊粒子状物質
に対してレーザ光を照射するのではなく、浮遊粒子状物
質を効率的に捕集して、十分な濃度のもとに分散させて
レーザ光を照射することによって、所期の目的を達成し
ようとするものである。
The present invention uses a particle size distribution measurement based on a laser diffraction / scattering method capable of measuring a particle size distribution with a high resolution in a wide particle size range, and a particle size distribution measurement of suspended particulate matter in the atmosphere. In addition to irradiating directly to the suspended particulate matter in the atmosphere with laser light in order to obtain diffracted / scattered light of sufficient intensity when irradiating with laser light, It is intended to achieve the intended purpose by efficiently collecting suspended particulate matter, dispersing it in a sufficient concentration, and irradiating it with laser light.

【0011】すわなち、レーザ回折・散乱式の粒度分布
測定装置においては、一般に、分散状態の被測定粒子群
にレーザ光を照射して得られる回折・散乱光の空間強度
分布を測定し、その光強度分布がミーの散乱理論ないし
はフラウンホーファの回折理論に則ることを利用し、回
折・散乱光の空間強度分布の測定結果からミーの散乱理
論ないしはフラウンホーファの回折理論に基づく演算に
よって被測定粒子群の粒度分布を求める。このレーザ回
折・散乱式粒度分布測定装置によれば、被測定粒子群を
分散させるための媒体中における被測定粒子群の濃度を
適正範囲とすることによって、広い粒径範囲において高
い分解能で粒度分布を求めることができる。
That is, in the laser diffraction / scattering type particle size distribution measuring apparatus, generally, the spatial intensity distribution of the diffracted / scattered light obtained by irradiating the measured particle group in the dispersed state with laser light is measured. By utilizing that the light intensity distribution is based on Mie's scattering theory or Fraunhofer's diffraction theory, the measured particles can be calculated from the measurement results of the spatial intensity distribution of diffracted / scattered light by Mie's scattering theory or Fraunhofer's diffraction theory. Determine the particle size distribution of the group. According to this laser diffraction / scattering type particle size distribution measuring apparatus, by setting the concentration of the measured particle group in the medium for dispersing the measured particle group in an appropriate range, the particle size distribution with high resolution in a wide particle size range can be obtained. Can be asked.

【0012】しかしながら、大気中の浮遊粒子状物質に
直接的にレーザ光を照射して回折・散乱光を測定しよう
としても、大気中における浮遊粒子状物質の濃度が低す
ぎる関係上、粒度分布を求めるに十分な回折・散乱光を
得ることができない。
However, even if an attempt is made to measure the diffracted / scattered light by directly irradiating the suspended particulate matter in the atmosphere with a laser beam, the particle size distribution will be reduced because the concentration of the suspended particulate matter in the atmosphere is too low. Not enough diffracted / scattered light to obtain.

【0013】そこで、本発明においては、大気をポンプ
によって吸引してフィルタに供給することにより、大気
中に含まれている浮遊粒子状物質をそのフィルタで捕集
し、その捕集した浮遊粒子状物質をレーザ回折・散乱式
の粒度分布測定に適した濃度範囲のもとに液体中に分散
させてレーザ光を照射して回折・散乱光の空間強度分布
を測定する。これにより、通常のレーザ回折・散乱式の
粒度分布測定と同等の広い粒子径範囲、つまりサブミク
ロンオーダーから10μmを越える広い粒子径範囲にお
いて、高い分解能のもとに浮遊粒子状物質の粒度分布を
求めることができる。
Therefore, in the present invention, the air is sucked by the pump and supplied to the filter, whereby the suspended particulate matter contained in the atmosphere is collected by the filter, and the collected suspended particulate matter is collected. A substance is dispersed in a liquid within a concentration range suitable for laser diffraction / scattering particle size distribution measurement, and laser light is irradiated to measure the spatial intensity distribution of diffracted / scattered light. As a result, the particle size distribution of suspended particulate matter can be determined with high resolution in a wide particle size range equivalent to that of ordinary laser diffraction / scattering particle size distribution measurement, that is, in a wide particle size range from submicron order to more than 10 μm. You can ask.

【0014】また、本発明においては、大気をポンプで
吸引してフィルタに供給することによって、このフィル
タで大気中に含まれている浮遊粒子状物質を捕集するの
で、ポンプの流量とその駆動時間によってフィルタに供
給した大気の量を容易に把握することができ、かつ、フ
ィルタを適宜に選定すること(例えばメンブレンフィル
タ等)によってポンプから供給された大気中の浮遊粒子
状物質をほぼ漏れなく捕集することができ、従って一定
量の大気中に存在する浮遊粒子状物質の粒子径ごとの量
を簡単に割り出すことができる。
Further, according to the present invention, the air is sucked by the pump and supplied to the filter, so that the suspended particulate matter contained in the air is collected by the filter. The amount of air supplied to the filter can be easily grasped according to the time, and by appropriately selecting the filter (for example, a membrane filter, etc.), the suspended particulate matter in the air supplied from the pump can be hardly leaked. Therefore, it is possible to easily collect the amount of the suspended particulate matter existing in the atmosphere for each particle size.

【0015】[0015]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1は本発明の実施の形
態の構成図であり、光学的構成並びに配管構成を表す模
式図と、電気的構成を表すブロック図とを併記して示す
図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram in which a schematic diagram showing an optical configuration and a piping configuration and a block diagram showing an electrical configuration are shown together.

【0016】フィルタ1は、この例においてサブミクロ
ンの細孔径を有するメンブレンフィルタであって、基体
21とその基体21に対して着脱自在の蓋体22とから
なるフィルタ保持部材2の内部に保持され、このフィル
タ保持部材2の内部を上下に仕切っている。フィルタ保
持部材2の基体21および蓋体22は、それぞれフィル
タ1を保持する大径部21a,22aと小径の開口部2
1b,22bを備えた漏斗状の形状を有しており、基体
21の開口部21bはポンプ(捕集用圧縮機)3の吸引
口に連通しているとともに、蓋体22の開口部22bは
大気に開放されて大気の流入口を形成している。
The filter 1 is a membrane filter having a submicron pore size in this example, and is held inside a filter holding member 2 comprising a base 21 and a lid 22 which is detachable from the base 21. The inside of the filter holding member 2 is partitioned vertically. The base 21 and the lid 22 of the filter holding member 2 have large diameter portions 21a and 22a for holding the filter 1 and a small diameter opening portion 2 respectively.
It has a funnel-like shape with 1b and 22b, the opening 21b of the base 21 communicates with the suction port of the pump (compression compressor) 3, and the opening 22b of the lid 22 has It is open to the atmosphere and forms an inlet for the atmosphere.

【0017】以上の構成において、ポンプ3を駆動する
と、大気が開口部22bを介してフィルタ保持部材2の
内部に吸引され、フィルタ1を通過した後に開口部21
bを介してポンプ3の吸引口に吸引される。このとき、
大気中に存在する浮遊粒子状物質Pは、細孔径がサブミ
クロンオーダーのメンブレンフィルタを用いたフィルタ
1を通過する際に、ほぼその全量が捕集される。
In the above structure, when the pump 3 is driven, the atmosphere is sucked into the inside of the filter holding member 2 through the opening 22b, and after passing through the filter 1, the opening 21 is opened.
It is sucked into the suction port of the pump 3 via b. At this time,
The suspended particulate matter P existing in the atmosphere is almost entirely collected when passing through the filter 1 using a membrane filter having a pore size of submicron order.

【0018】フィルタ1に捕集された浮遊粒子状物質P
は、例えば蒸留水もしくは有機溶媒、またはこれらに界
面活性剤等の分散剤を添加した液体からなる媒液Lを収
容した分散槽41内に投入され、分散される。分散槽4
1は、攪拌機42および超音波振動子43を備えてお
り、フィルタ1に捕集された浮遊粒子状物質Pの分散槽
41内への分離・投入は、フィルタ1に対する浮遊粒子
状物質Pの付着力が弱い場合にはフィルタ1を分散槽4
1内に浸漬して適宜の方法で洗い流すか、あるいは、フ
ィルタ1に対する浮遊粒子状物質Pの付着力が強い場合
には、フィルタ1を分散槽41内に浸漬した状態で超音
波振動子43を駆動することによる超音波洗浄によって
フィルタ1から分離させる方法などを採用することがで
きる。
The suspended particulate matter P collected by the filter 1
Is poured into and dispersed in a dispersion tank 41 containing a liquid medium L made of, for example, distilled water or an organic solvent, or a liquid in which a dispersant such as a surfactant is added. Dispersion tank 4
1 is equipped with a stirrer 42 and an ultrasonic oscillator 43, and when the suspended particulate matter P collected in the filter 1 is separated and input into the dispersion tank 41, the suspended particulate matter P is attached to the filter 1. If the adhesion is weak, filter 1 to dispersion tank 4
1 is washed away by an appropriate method, or when the adherence of the suspended particulate matter P to the filter 1 is strong, the ultrasonic vibrator 43 is immersed in the dispersion tank 41 while the ultrasonic transducer 43 is being immersed. A method of separating from the filter 1 by ultrasonic cleaning by driving can be adopted.

【0019】分散槽41には、その底部に循環用配管4
4の一端が連通しており、この循環用配管44は循環用
ポンプ45を介してレーザ回折・散乱式粒度分布測定装
置50のフローセル51の入口に連通し、更にそのフロ
ーセル51の出口から分散槽41の上方にまで至って開
口している。また、この分散槽41の底部には、内容物
を排出するための排出バルブ41aが設けられている。
The dispersion tank 41 has a circulation pipe 4 at the bottom thereof.
4, one end of which communicates with the circulation pipe 44, which communicates with the inlet of the flow cell 51 of the laser diffraction / scattering particle size distribution measuring device 50 through the circulation pump 45, and further from the outlet of the flow cell 51. It opens up to above 41. A discharge valve 41a for discharging the contents is provided at the bottom of the dispersion tank 41.

【0020】分散槽41内の媒液L中に浮遊粒子状物質
Pが投入された状態で、攪拌機42および超音波振動子
43を駆動することによって、浮遊粒子状物質Pは媒液
L中に均一に分散するとともに、媒液L中に含まれてい
る気泡が取り除かれる。
By driving the stirrer 42 and the ultrasonic vibrator 43 in a state where the suspended particulate matter P is put into the medium solution L in the dispersion tank 41, the suspended particulate matter P is transferred into the medium solution L. Air bubbles contained in the liquid medium L are removed while being dispersed uniformly.

【0021】媒体Lおよびそこに分散している浮遊粒子
状物質Pは、循環用ポンプ45の駆動により循環用配管
44を介してフローセル51内を流れた後、分散槽41
内に戻される。
The medium L and the suspended particulate matter P dispersed therein flow in the flow cell 51 through the circulation pipe 44 by the drive of the circulation pump 45, and then the dispersion tank 41.
Returned inside.

【0022】レーザ回折・散乱式粒度分布測定装置50
は、上記したフローセル51と、そのフローセル51に
対してレーザ光を照射する照射光学系52と、その照射
光学系52からのレーザ光の回折・散乱光の空間強度分
布を測定する測定光学系53と、その測定光学系53の
出力をサンプリングするデータサンプリング回路54、
およびそのデータサンプリング回路54によりサンプリ
ングされた回折・散乱光の空間強度分布データを用い
て、媒液L中に含まれる粒子群の粒度分布を算出するコ
ンピュータ55を主体として構成されている。
Laser diffraction / scattering type particle size distribution measuring device 50
Is a flow cell 51, an irradiation optical system 52 that irradiates the flow cell 51 with laser light, and a measurement optical system 53 that measures the spatial intensity distribution of the diffracted / scattered light of the laser light from the irradiation optical system 52. And a data sampling circuit 54 for sampling the output of the measurement optical system 53,
And a computer 55 for calculating the particle size distribution of the particle group contained in the liquid medium L using the spatial intensity distribution data of the diffracted / scattered light sampled by the data sampling circuit 54.

【0023】照射光学系52は、レーザ光源52a、集
光レンズ52b、空間フィルタ52c、コリメートレン
ズ52dによって構成され、レーザ光源52aから出力
されたレーザ光を平行光束としてフローセル51に照射
する。このフローセル51に照射されたレーザ光は、そ
の内部を流れる媒液L中の浮遊粒子状物質Pにより回折
・散乱を受ける。この回折・散乱光の空間強度分布は測
定光学系53によって測定される。
The irradiation optical system 52 is composed of a laser light source 52a, a condenser lens 52b, a spatial filter 52c, and a collimator lens 52d, and irradiates the flow cell 51 with the laser light output from the laser light source 52a as a parallel light flux. The laser light applied to the flow cell 51 is diffracted and scattered by the suspended particulate matter P in the liquid medium L flowing inside the flow cell 51. The spatial intensity distribution of the diffracted / scattered light is measured by the measurement optical system 53.

【0024】測定光学系53は、照射光学系52の光軸
上にフローセル51を挟んで配置された集光レンズ53
aおよびリングディテクタ53bと、その外側に配置さ
れた前方広角度散乱光センサ群53cと、フローセル5
1の側方および後方(照射光学系52側)に配置された
側方/後方散乱光センサ群53dによって構成されてい
る。リングディテクタ53bは、互いに異なる半径のリ
ング状または1/2リング状もしくは1/4リング状の
受光面を有する光センサを同心上に配置した光センサア
レイであって、集光レンズ53aにより集光された前方
所定角度以内の回折・散乱光の強度分布を検出すること
ができる。従って、これらのセンサ群からなる測定光学
系53により、フローセル51内の媒液L中に分散して
いる浮遊粒子状物質Pによる回折・散乱光の空間強度分
布が、前方微小角度から後方に至る広い範囲で測定され
る。
The measurement optical system 53 is a condenser lens 53 arranged on the optical axis of the irradiation optical system 52 with the flow cell 51 interposed therebetween.
a and the ring detector 53b, the front wide-angle scattered light sensor group 53c arranged outside thereof, and the flow cell 5
It is configured by side / back scattered light sensor groups 53d arranged on the side and the rear of the No. 1 (on the side of the irradiation optical system 52). The ring detector 53b is an optical sensor array in which optical sensors having ring-shaped, ½ ring-shaped, or ¼ ring-shaped light-receiving surfaces having different radii are concentrically arranged, and are condensed by a condenser lens 53a. It is possible to detect the intensity distribution of the diffracted / scattered light within the predetermined front angle. Therefore, by the measurement optical system 53 including these sensor groups, the spatial intensity distribution of the diffracted / scattered light by the suspended particulate matter P dispersed in the liquid medium L in the flow cell 51 extends from the front minute angle to the rear. It is measured in a wide range.

【0025】以上の測定光学系53による各回折・散乱
角度ごとの光強度検出信号は、それぞれのアンプ並びに
A−D変換器を有してなるデータサンプリング回路54
によって増幅された上でデジタル化され、回折・散乱光
の空間強度分布データとしてコンピュータ55に取り込
まれる。
The light intensity detection signal for each diffraction / scattering angle by the above measurement optical system 53 is a data sampling circuit 54 having respective amplifiers and AD converters.
Is amplified, digitized, and taken into the computer 55 as spatial intensity distribution data of diffracted / scattered light.

【0026】コンピュータ55では、その回折・散乱光
の空間強度分布を用いて、レーザ回折・散乱式の粒度分
布測定において公知の、ミーの散乱理論およびフラウン
ホーファの回折理論に基づく演算手法により、レーザ光
が回折・散乱した原因粒子である浮遊粒子状物質の粒度
分布を算出する。
The computer 55 uses the spatial intensity distribution of the diffracted / scattered light to calculate the laser light by a calculation method based on Mie's scattering theory and Fraunhofer's diffraction theory, which are known in laser diffraction / scattering particle size distribution measurement. Calculate the particle size distribution of the suspended particulate matter that is the cause of the diffracted and scattered particles.

【0027】以上の構成において、ポンプ3の単位時間
当たりの流量とその駆動時間から、フィルタ1に供給し
た大気の総量を把握することができ、このフィルタ1に
供給する空気の総量を適宜に設定することにより、フィ
ルタ1で捕集した浮遊粒子状物質Pを分散槽41内に媒
液L中に分散させたとき、その媒液L中の浮遊粒子状物
質Pの濃度を、測定光学系53によって十分に回折・散
乱光の空間強度分布を測定できる程度とすることができ
る。
In the above configuration, the total amount of the air supplied to the filter 1 can be grasped from the flow rate of the pump 3 per unit time and its driving time, and the total amount of the air supplied to the filter 1 can be set appropriately. Accordingly, when the suspended particulate matter P collected by the filter 1 is dispersed in the medium liquid L in the dispersion tank 41, the concentration of the suspended particulate matter P in the medium solution L is measured by the measurement optical system 53. Therefore, the spatial intensity distribution of the diffracted / scattered light can be sufficiently measured.

【0028】このレーザ回折・散乱式粒度分布測定装置
50による粒度分布の測定によれば、サブミクロンオー
ダーから10μmを越える広い粒径範囲において高い分
解能でその粒度分布の測定が可能である。
According to the measurement of the particle size distribution by the laser diffraction / scattering type particle size distribution measuring device 50, the particle size distribution can be measured with a high resolution in a wide particle size range from the submicron order to over 10 μm.

【0029】また、以上のように所定量の大気をフィル
タ1に供給して浮遊粒子状物質Pを捕集し、その捕集し
た浮遊粒子状物質Pを分散槽41内の媒液L中に分散さ
せてレーザ光を照射し、その回折・散乱光の空間強度分
布を測定して粒度分布を求めた後、排出バルブ41aを
開放して内部の液を排出し、新たに清浄な媒液Lを分散
槽41内に注入したうえで、その媒液L中に、新たなフ
ィルタ1を用いて上記と同様にして捕集した浮遊粒子状
物質Pを分散させ、次の回折・散乱光の空間強度分布の
測定動作を開始する、という動作を一定時間ごとに繰り
返し行えば、連続的に大気中の浮遊粒子状物質の状況を
監視することができる。
As described above, a predetermined amount of air is supplied to the filter 1 to collect the suspended particulate matter P, and the collected suspended particulate matter P is introduced into the medium liquid L in the dispersion tank 41. After the laser light is dispersed and irradiated, the spatial intensity distribution of the diffracted / scattered light is measured to obtain the particle size distribution, the discharge valve 41a is opened to discharge the internal liquid, and a new clean liquid medium L is obtained. After being injected into the dispersion tank 41, the suspended particulate matter P collected in the same manner as above using the new filter 1 is dispersed in the medium L, and the space for the next diffraction / scattered light is dispersed. By repeating the operation of starting the intensity distribution measurement operation at regular intervals, it is possible to continuously monitor the state of suspended particulate matter in the atmosphere.

【0030】更に、各回の測定動作においてフィルタ1
に供給する大気の総量を一定とすると、その各回の測定
において得られる回折・散乱光の絶対強度は、大気中の
浮遊粒子状物質Pの濃度に相関するので、その絶対強度
の変化から大気中の浮遊粒子状物質Pの濃度の経時的変
化を監視することができる。
Further, the filter 1 is used in each measurement operation.
Assuming that the total amount of the atmosphere supplied to the air is constant, the absolute intensity of the diffracted / scattered light obtained in each measurement is correlated with the concentration of the suspended particulate matter P in the atmosphere. It is possible to monitor the time-dependent change in the concentration of the suspended particulate matter P.

【0031】更にまた、媒液Lの単位体積中に含まれる
個数が既知の標準粒子を用いてキャリブレーションを行
っておけば、媒液L中に分散させた浮遊粒子状物質Pを
捕集するために要した空気の総量と、そのときに得られ
た回折・散乱光の絶対強度とから、単位体積の大気に含
まれる浮遊粒子状物質Pの粒度分布と、その各粒子径の
粒子の個数との関係を計算することもできる。
Furthermore, if calibration is performed using standard particles of which the number contained in the unit volume of the liquid medium L is known, the suspended particulate matter P dispersed in the liquid medium L is collected. From the total amount of air required for this purpose and the absolute intensity of the diffracted / scattered light obtained at that time, the particle size distribution of suspended particulate matter P contained in the unit volume of the atmosphere and the number of particles of each particle size You can also calculate the relationship with.

【0032】なお、以上の実施の形態においては、フィ
ルタ1としてメンブレンフィルタを用いたが、本発明は
これに限定されることなく、例えばガラス繊維を用いた
フィルタ等も使用することができ、要は供給された大気
に含まれているサブミクロンオーダーから10μmを越
える粒子を分離・捕集することのできるフィルタであれ
ば任意のフィルタを用いることができる。
Although a membrane filter is used as the filter 1 in the above embodiments, the present invention is not limited to this, and a filter using glass fiber, for example, can be used. Can be any filter as long as it can separate and collect particles exceeding 10 μm from the submicron order contained in the supplied atmosphere.

【0033】また、フィルタ1を保持するフィルタ保持
部材2についても、以上の実施の形態で用いた構造のも
のに限られることなく、吸引した大気を余すところなく
フィルタ1に導くことができさえすれば、任意の構造の
ものを用い得ることは勿論である。
Further, the filter holding member 2 for holding the filter 1 is not limited to the structure used in the above-described embodiment, and the sucked air can be guided to the filter 1 completely. Of course, any structure can be used.

【0034】[0034]

【発明の効果】以上のように、本発明によれば、ポンプ
によって大気をフィルタに供給し、そのフィルタによっ
て大気中に含まれている浮遊粒子状物質を捕集し、その
捕集した浮遊粒子状物質を適当な濃度のもとに媒液中に
分散させた状態でレーザ光を照射し、そのレーザ光の浮
遊粒子状物質による回折・散乱光の空間強度分布を測定
し、その測定結果からレーザ回折・散乱式粒度分布測定
の原理に基づいて浮遊粒子状物質の粒度分布を求めるの
で、従来のカスケードインパクタによる粒度分布の測定
に比して、粒子径の分解能を大幅に向上させることがで
きると同時に、10μm以上の粒径範囲の粒度分布をも
測定することができる。
As described above, according to the present invention, the air is supplied to the filter by the pump, the suspended particulate matter contained in the atmosphere is collected by the filter, and the collected suspended particles are collected. The laser light is irradiated in the state that the particulate matter is dispersed in the medium liquid at an appropriate concentration, and the spatial intensity distribution of the diffracted / scattered light by the suspended particulate matter of the laser light is measured. Since the particle size distribution of suspended particulate matter is obtained based on the principle of laser diffraction / scattering particle size distribution measurement, the particle size resolution can be greatly improved compared to the conventional particle size distribution measurement using a cascade impactor. At the same time, the particle size distribution in the particle size range of 10 μm or more can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の構成図であり、光学的構
成並びに配管構成を表す模式図と、電気的構成を表すブ
ロック図とを併記して示す図である。
FIG. 1 is a configuration diagram of an embodiment of the present invention, in which a schematic diagram showing an optical configuration and a pipe configuration and a block diagram showing an electrical configuration are shown together.

【符号の説明】[Explanation of symbols]

1 フィルタ 2 フィルタ保持部材 21 基体 22 蓋体 21a,22a 大径部 21b,22b 開口部 3 ポンプ 41 分散槽 42 攪拌機 43 超音波振動子 44 循環用配管 45 循環用ポンプ 50 レーザ回折・散乱式粒度分布測定装置 51 フローセル 52 照射光学系 53 測定光学系 54 データサンプリング回路 55 コンピュータ L 媒液 P 浮遊粒子状物質 1 filter 2 Filter holding member 21 Base 22 Lid 21a, 22a Large diameter part 21b, 22b openings 3 pumps 41 dispersion tank 42 Stirrer 43 Ultrasonic transducer 44 Circulation piping 45 Circulation pump 50 Laser Diffraction / Scattering Particle Size Analyzer 51 flow cell 52 Irradiation optical system 53 Measuring optical system 54 Data sampling circuit 55 Computer L medium P Suspended particulate matter

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G052 AA01 AA04 AA05 AC02 AD02 AD29 AD46 BA05 BA14 CA02 CA03 CA04 CA12 EA03 FD09 GA11    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G052 AA01 AA04 AA05 AC02 AD02                       AD29 AD46 BA05 BA14 CA02                       CA03 CA04 CA12 EA03 FD09                       GA11

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 大気中に含まれる浮遊粒子状物質を測定
する方法であって、大気をポンプにより吸引してフィル
タに供給することによって当該フィルタにより大気中の
浮遊粒子状物質を捕集するとともに、そのフィルタで捕
集した浮遊粒子状物質を液体中に分散させた状態でレー
ザ光を照射して得られる回折・散乱光の空間強度分布を
測定し、その測定結果から浮遊粒子状物質の粒度分布を
求めることを特徴とする浮遊粒子状物質の測定方法。
1. A method for measuring suspended particulate matter contained in the atmosphere, the method comprising collecting the suspended particulate matter in the atmosphere by sucking the atmosphere with a pump and supplying the same to a filter. , The spatial intensity distribution of the diffracted / scattered light obtained by irradiating the laser light with the suspended particulate matter collected by the filter dispersed in the liquid is measured, and from the measurement results, the particle size of the suspended particulate matter is measured. A method for measuring suspended particulate matter, characterized by obtaining a distribution.
【請求項2】 大気中に含まれる浮遊粒子状物質を測定
する装置であって、大気中の浮遊粒子状物質を捕集する
ためのフィルタと、大気を吸引してそのフィルタに供給
するポンプと、上記フィルタに捕集された浮遊粒子状物
質を液体中に分散させる分散手段と、その浮遊粒子状物
質が分散した液体が流されるフローセルと、そのフロー
セルに対してレーザ光を照射する照射光学系と、そのレ
ーザ光の液体中の浮遊粒子状物質による回折・散乱光の
空間強度分布を測定する測定光学系と、その測定された
回折・散乱光の空間強度分布から液体中に分散されてい
る浮遊粒子状物質の粒度分布を算出する演算手段を備え
ていることを特徴とする浮遊粒子状物質の測定装置。
2. An apparatus for measuring suspended particulate matter contained in the atmosphere, comprising: a filter for collecting suspended particulate matter in the atmosphere; and a pump for sucking the atmosphere and supplying it to the filter. A dispersion means for dispersing the suspended particulate matter collected in the filter in a liquid, a flow cell in which the liquid in which the suspended particulate matter is dispersed, and a irradiation optical system for irradiating the flow cell with laser light And the measuring optical system for measuring the spatial intensity distribution of the diffracted / scattered light of the laser light by the suspended particulate matter in the liquid, and the measured spatial intensity distribution of the diffracted / scattered light dispersed in the liquid An apparatus for measuring suspended particulate matter, comprising an arithmetic means for calculating a particle size distribution of suspended particulate matter.
JP2001222417A 2001-07-24 2001-07-24 Method and equipment for measuring floating particulate material Pending JP2003035655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222417A JP2003035655A (en) 2001-07-24 2001-07-24 Method and equipment for measuring floating particulate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222417A JP2003035655A (en) 2001-07-24 2001-07-24 Method and equipment for measuring floating particulate material

Publications (1)

Publication Number Publication Date
JP2003035655A true JP2003035655A (en) 2003-02-07

Family

ID=19055897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222417A Pending JP2003035655A (en) 2001-07-24 2001-07-24 Method and equipment for measuring floating particulate material

Country Status (1)

Country Link
JP (1) JP2003035655A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126111A (en) * 2004-11-01 2006-05-18 Horiba Ltd Method of producing liquid sample for component analysis
JP2008070222A (en) * 2006-09-14 2008-03-27 Kanomax Japan Inc Fine particle classification device and fine particle sampler
JP2014505865A (en) * 2010-12-21 2014-03-06 シンヴェント・アクシェセルスカープ Fluid transportation system
CN104198348A (en) * 2014-09-16 2014-12-10 北京交通大学 System and method for PM2.5 concentration detection based on photoelectric integration
CN104266948A (en) * 2014-10-20 2015-01-07 崔海林 Particulate matter sensor and particulate matter monitoring method
CN108786938A (en) * 2018-05-25 2018-11-13 上海大学 Haze particle forms analog meter
CN111474142A (en) * 2020-05-21 2020-07-31 中南大学 Method for detecting concentration of micro-plastic by using near-infrared 1550nm laser
KR102357757B1 (en) * 2020-10-20 2022-02-08 동우 화인켐 주식회사 Flow Nanoparticle Measuring Apparatus and Measuring Method
CN116359086A (en) * 2023-06-01 2023-06-30 南昌科晨电力试验研究有限公司 Measurement device-based pulverized coal particle size and mass concentration measurement method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126111A (en) * 2004-11-01 2006-05-18 Horiba Ltd Method of producing liquid sample for component analysis
JP2008070222A (en) * 2006-09-14 2008-03-27 Kanomax Japan Inc Fine particle classification device and fine particle sampler
JP2014505865A (en) * 2010-12-21 2014-03-06 シンヴェント・アクシェセルスカープ Fluid transportation system
CN104198348A (en) * 2014-09-16 2014-12-10 北京交通大学 System and method for PM2.5 concentration detection based on photoelectric integration
CN104266948A (en) * 2014-10-20 2015-01-07 崔海林 Particulate matter sensor and particulate matter monitoring method
CN108786938A (en) * 2018-05-25 2018-11-13 上海大学 Haze particle forms analog meter
CN108786938B (en) * 2018-05-25 2021-02-23 上海大学 Haze particle formation simulator
CN111474142A (en) * 2020-05-21 2020-07-31 中南大学 Method for detecting concentration of micro-plastic by using near-infrared 1550nm laser
CN111474142B (en) * 2020-05-21 2021-08-03 中南大学 Method for detecting concentration of micro-plastic by using near-infrared 1550nm laser
KR102357757B1 (en) * 2020-10-20 2022-02-08 동우 화인켐 주식회사 Flow Nanoparticle Measuring Apparatus and Measuring Method
CN116359086A (en) * 2023-06-01 2023-06-30 南昌科晨电力试验研究有限公司 Measurement device-based pulverized coal particle size and mass concentration measurement method
CN116359086B (en) * 2023-06-01 2023-09-08 南昌科晨电力试验研究有限公司 Measurement device-based pulverized coal particle size and mass concentration measurement method

Similar Documents

Publication Publication Date Title
JP2003028781A (en) Measuring method and measuring device of suspended particulate matter
US6807874B2 (en) Collecting apparatus of floating dusts in atmosphere
EP1879016A2 (en) Particle measuring system and method
JP2003315244A (en) Method for measuring granular substances floating in the air
JP2004053357A (en) Collecting method and measuring method of yellow sand particle
EP1607734A1 (en) Method and device for inspecting honeycomb structure
JP2003035655A (en) Method and equipment for measuring floating particulate material
JP2011152109A (en) Method and apparatus for inspecting virus
JP3758577B2 (en) Device for collecting suspended particulate matter in the atmosphere and measuring method for collected suspended particulate matter
JP2002116134A (en) Measuring apparatus for suspended particulate matter
Imani et al. Acoustic separation of submicron solid particles in air
JP5703987B2 (en) Particle measuring device
JP3961244B2 (en) Method and apparatus for measuring suspended particulate matter
JP2003254888A (en) Method for measuring suspended particulate matter
TW201905465A (en) High resolution surface particle detector
JP3786049B2 (en) Airborne particulate matter collection device
JP4830983B2 (en) Particle size distribution measuring device
JP3758603B2 (en) Device for collecting suspended particulate matter in the atmosphere
JP2003329552A (en) Capturing apparatus of pollen in air, and measuring apparatus and method
CN104792735B (en) A kind of method and apparatus that image checking virus is scattered using surface phasmon
JP2011156527A (en) In-situ detection and analysis apparatus for membrane filtration process
JP4830841B2 (en) Particle size distribution measuring device
JP2002340779A (en) Instrument for measuring particle size distribution
JPH1114511A (en) Instrument and system for measuring fine substance suspended in atmosphere
Rintaro et al. 1P4-6 Characteristics of particle size distribution of agglomerates in an ultrasonic source with a cylindrical rigid wall

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307