JP3758603B2 - Device for collecting suspended particulate matter in the atmosphere - Google Patents

Device for collecting suspended particulate matter in the atmosphere Download PDF

Info

Publication number
JP3758603B2
JP3758603B2 JP2002142817A JP2002142817A JP3758603B2 JP 3758603 B2 JP3758603 B2 JP 3758603B2 JP 2002142817 A JP2002142817 A JP 2002142817A JP 2002142817 A JP2002142817 A JP 2002142817A JP 3758603 B2 JP3758603 B2 JP 3758603B2
Authority
JP
Japan
Prior art keywords
particulate matter
suspended particulate
particle size
size distribution
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002142817A
Other languages
Japanese (ja)
Other versions
JP2003337086A (en
Inventor
慎一郎 十時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002142817A priority Critical patent/JP3758603B2/en
Priority to US10/322,677 priority patent/US6807874B2/en
Publication of JP2003337086A publication Critical patent/JP2003337086A/en
Priority to US10/882,621 priority patent/US6923848B2/en
Priority to US11/048,895 priority patent/US7041153B2/en
Application granted granted Critical
Publication of JP3758603B2 publication Critical patent/JP3758603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の属する技術分野】
本発明は、大気中に存在する浮遊粒子状物質の捕集装置に関し、例えばレーザ回折・散乱式の粒度分布測定装置を用いて浮遊粒子状物質の粒度分布を測定する際に用いるのに適した捕集装置に関する。
【従来の技術】
大気中に浮遊している粉じんのうち、粒径が10μm以下のものは浮遊粒子状物質(SPM)と称される。この浮遊粒子状物質は、巻き上げられた土なども含まれるが、ディーゼル車が排出する黒煙や未燃焼燃料、硫黄化合物などが多くを占め(関東では35%がディーゼル車からのもの)、これらは有害性もより高いと言われている。このディーゼル車からの排気ガスが原因の粒子状物質は、特にDEPと称される。また、より粒径の小さい2.5μm以下のものは微小粒子状物質(PM2.5)と称され、欧米では調査・研究が盛んになってきている。このPM2.5の場合、その排出原因はディーゼル車の排ガスである割合がより高くなると言われている。
このような大気中の浮遊粒子状物質(SPM)や微小粒子状物質(PM2.5)の形状等を顕微鏡で調査したり、あるいはそこに含まれている化学物質を同定すべく化学分析を行うには、大気中からこれらの粒子状物質を捕集する必要があるが、この捕集は、従来、大気中からこれらの粒子状物質をフィルタにより捕集する方法が採用されている。
また、以上のような大気中の浮遊粒子状物質(SPM)や微小粒子状物質(PM2.5)の粒度分布を測定する装置として、従来、カスケードインパクタ方式に基づく装置が実用化されている。このカスケードインパクタ方式に基づく測定装置は、流体を捕集板に衝突させてその流れの方向を急変させることによって粒子を流体から分離するインパクタ法を利用したものであり、50%捕集効率の粒径を順次変化させたインパクタを多段に直列接続して、各段における50%捕集効率の粒径をそれぞれの段の代表径として、それぞれの段における捕集量の測定結果から、流体中の粒度分布を求めるものである。
【発明が解決しようとする課題】
ところで、SPMやPM2.5を顕微鏡で観察したり、あるいは各種化学分析機器に供すべくフィルタにより捕集する方法では、浮遊粒子状物質を単独で抽出することが極めて困難であるため、顕微鏡により観察するに当たってはフィルタに付着した状態の浮遊粒子状物質を観察することになるが、その場合、背景のフィルタ像で粒子の像が不鮮明となり、観察しにくいという問題がある。また、捕集した浮遊粒子状物質を各種化学分析機器に供する場合においても、フィルタから浮遊粒子状物質を単独で抽出することが困難であることから、機器によってはフィルタに付着した状態で分析を行う必要があり、その場合、例えば蛍光X線分光装置などにおいては粒子のみにX線を照射することが困難となり、実質的に分析不能となってしまうという問題がある。
また、フィルタに付着させて捕集する従来の方法では、捕集した浮遊粒子状物質を当初の状態を変化させずに保存することが困難であるという問題もある。
更に、浮遊粒子状物質の粒度分布の測定に供されているカスケードインパクタ方式に基づく従来の測定装置においては、その原理上、粒径の測定上限値が10μm程度に限定されてしまうという問題があるとともに、粒径の分解能が捕集板の数によって決まってしまうために、高い分解能で粒度分布を測定することは望めないという欠点もある。
浮遊粒子状物質の粒度分布を測定する有効な方法として、レーザ回折・散乱式粒度分布測定装置を用いる方法がある。このレーザ回折・散乱式粒度分布測定装置は、分散飛翔状態の被測定粒子群にレーザ光を照射して得られる回折・散乱光の空間強度分布を測定し、その強度分布がミーの散乱理論やフラウンホーファの回折理論に則ることを利用して、回折・散乱光の空間強度分布の測定結果から被測定粒子群の粒度分布を求めるものであって、広い粒径範囲で高い分解能のもとに粒度分布を求めることができる。しかしながら、このレーザ回折・散乱式粒度分布測定装置を用いて浮遊粒子状物質の粒度分布を求めるには、被測定粒子群である浮遊粒子状物質を捕集したうえで分散状態にする必要があり、従来のフィルタを用いて浮遊粒子状物質を捕集する方法では、フィルタから浮遊粒子状物質を分離して媒液等に分散させることが極めて困難であるという問題がある。
本発明はこのような実情に鑑みてなされたもので、大気中の浮遊粒子状物質を効率的に捕集することができ、しかも捕集した浮遊粒子状物質をそのままの状態で保存することが容易であり、また、極めて容易に顕微鏡で観察したり、あるいは容易に個別の粒子を取り出して分析機器等による分析に供することができ、更にはレーザ回折・散乱式粒度分布測定装置による測定に容易に供することのできる捕集装置の提供を目的としている。
【課題を解決するための手段】
上記の目的を達成するため、本発明の大気中の浮遊粒子状物質の捕集装置は、大気中の浮遊粒子状物質を捕集する装置であって、捕集容器と、その捕集容器内に大気を吸引するポンプと、捕集容器内に配置され、単極イオンを発生して当該容器内の浮遊粒子状物質を帯電させる放電電極と、その放電電極に対して電位差が与えられることにより捕集容器内で帯電した浮遊粒子状物質を引き寄せて捕集する集塵電極を備え、この集塵電極は、表面に凹部が形成された透明部材と、少なくともその凹部の底面にコーティングされた透明電極膜によって構成されていることによって特徴づけられる。
本発明は、大気中の浮遊粒子状物質を帯電させ、その帯電させた浮遊粒子状物質を、ガラス板や透明なプラスチック板等の透明部材の表面に凹部を設けてその凹部底面に透明電極をコーティングしてなる集塵電極に電位差を利用して捕集することによって、所期の目的を達成するものである。
すなわち、本発明の構成において、大気をポンプで捕集容器内に吸引し、その捕集容器内に配置された放電電極によって単極イオンを発生させると、大気中に含まれている浮遊粒子状物質が帯電する。この帯電した浮遊粒子状物質は、捕集容器内で放電電極に対して電位差が与えられている集塵電極へと向かい、この集塵電極上に捕集される。この集塵電極として、透明部材の表面に凹部を形成し、その凹部の少なくとも底面に透明電極膜をコーティングしたものを用いることにより、帯電した浮遊粒子状物質は凹部内の透明電極膜上に捕集される。
凹部内に浮遊粒子状物質が捕集されるため、凹部に例えば蓋を被せることにより、捕集した浮遊粒子状物質を当初の付着状態のまま容易に保存することができる。また、集塵電極が透明部材であるため、そこに付着したままの状態で容易に顕微鏡による観察が可能であり、更には、容易に浮遊粒子状物質を取り出すことができるため、各種分析器による分析に供したり、あるいはレーザ回折・散乱式粒度分布測定装置による粒度分布測定に供することが容易化される。
そして、レーザ回折・散乱式粒度分布測定装置を用いて浮遊粒子状物質の粒度分布を測定するに当たっては、捕集した浮遊粒子状物質による回折・散乱光の空間強度分布の測定に先立ち、媒液に分散させた標準粒子を集塵電極の凹部に封入して、装置の調整を行うことができ、集塵電極の形状等に起因する粒度分布測定結果の差異をなくすることができる。
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の構成を表す模式図であり、図2はその集塵電極4の詳細構造を示す模式的断面図である。
開閉自在の蓋1aを備えた捕集容器1には、大気の流入口1bと、ポンプ(捕集用圧縮機)2の吸引口に連通する連通口1cが形成されており、蓋1aを閉じた状態でポンプ2を駆動することにより、大気が流入口1bを介して捕集容器1内に吸引される。
捕集容器1内には、その上部に放電電極3が設けられているとともに、その放電電極3に対向してその下部には集塵電極4が配置されている。放電電極3には高圧電源5からの高電圧が印加され、これによって放電電極3の近傍の空気が電離し、単極イオンが発生する。
一方、集塵電極4は、図2に示すように、透明なガラス板4aの片面に凹部41aを形成するとともに、その凹部41aの底面41bに透明電極膜4bを形成した構造を有している。捕集容器1内においては、凹部41aの形成側の面が放電電極3に対向して上方を向くように配置されているとともに、透明電極膜4bが接地電位6に接続されている。透明電極膜4bの材質としては、例えばITOやSnO2 などの公知の導電性材料を用いることができる。また、ガラス板4aの代わりに透明なプラスチック、例えばアクリル樹脂製の板等を使用することができる。更に、集塵電極の板は、1枚の平板と孔のくり抜かれた他の板を貼り合わせることによって凹部を形成してもよい。
以上の構成において、ポンプ2を駆動しつつ放電電極3に高電圧を印加すると、その周囲の空気が電離して生成された単極イオンは、透明電極膜4bとの電位差により集塵電極4側に向けて移動し、その過程で捕集容器1内に吸引された大気中の浮遊粒子状物質Pと接触してこれを帯電させる。帯電した浮遊粒子状物質Pは、同じく放電電極3と透明電極膜4bとの電位差によって当該透明電極膜4b上、つまり集塵電極4の凹部41aの底面41b上にランダムに分散した状態で捕集されていく。帯電した浮遊粒子状物質Pが多量に捕集されていっても、透明電極膜4bが設置されているため、捕集効率が低下することなく、高い効率を維持しつつ浮遊粒子状物質Pを捕集することができる。
以上のように捕集された浮遊粒子状物質Pは、集塵電極4の凹部41a内の透明電極膜4b上に付着した状態であるため、個々の粒子を容易に取り出すことができ、各種分析機器等を用いた分析などに容易に供することが可能である。また、集塵電極4が透明であるため、そのまま顕微鏡の観察に供して鮮明な粒子像を得ることができる。更には、図3に断面図を示すように、凹部41aを覆う蓋42を用意し、浮遊粒子状物質Pを捕集した後に蓋42で凹部41aに蓋を被せることにより、捕集後の浮遊粒子状物質Pを接触することなく保存状態とすることができる。
また、以上のように捕集された浮遊粒子状物質Pは、以下に示すレーザ回折・散乱式粒度分布測定装置を用いることによって、極めて容易に広い粒径範囲にわたり高分解能のもとにその粒度分布を測定することができる。
図4はその粒度分布測定に際しての装置構成例を示す図で、光学的構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。
レーザ回折・散乱式粒度分布測定装置20は、被測定粒子群に対して平行なレーザ光を照射する照射光学系21と、被測定粒子群による回折・散乱光の空間強度分布を測定する測定光学系22と、その測定光学系22の出力をサンプリングするデータサンプリング回路23、およびそのデータサンプリング回路23によりサンプリングされた回折・散乱光の空間強度分布データを用いて、被測定粒子群の粒度分布を算出するコンピュータ24を主体として構成されている。
図1に示した捕集装置によってその集塵電極4の凹部41a内に捕集された浮遊粒子状物質Pは、その凹部41a内の透明電極膜4bに付着させたままの状態で、照射光学系21と測定光学系22の間に、その光軸に直交するように立てて配置される。
照射光学系21は、レーザ光源21a,集光レンズ22b、空間フィルタ22cおよびコリメートレンズ23dによって構成され、レーザ光源21aから出力これたレーザ光を平行光束として集塵電極4の透明電極膜4bに付着している浮遊粒子状物質Pに照射する。この集塵電極4に照射されたレーザ光は、透明電極膜4bに付着している浮遊粒子状物質Pにより回折・散乱を受ける。この回折・散乱光の空間強度分布は測定光学系22によって測定される。
測定光学系22は、集光レンズ22aおよびリングディテクタ22bと、その外側に配置された前方広角度散乱光センサ群22cと、集塵電極4の側方および後方(照射光学系21側)に配置された側方/後方散乱光センサ群22dによって構成されている。リングディテクタ22bは、互いに異なる半径のリング状または1/2リング状もしくは1/4リング状の受光面を有する光センサを同心上に配置した光センサアレイであって、集光レンズ22aにより集光された前方所定角度以内の回折・散乱光の空間強度分布を検出することができる。従って、これらのセンサ群からなる測定光学系22により、透明電極膜4bにランダムに分散して付着している浮遊粒子状物質Pによる回折・散乱光の空間強度分布が、前方微小角度から後方に至る広い範囲で測定される。
以上の測定光学系22による各回折・散乱角度ごとの光強度検出信号は、それぞれのアンプ並びにA−D変換器を有してなるデータサンプリング回路23によって増幅された上でデジタル化され、回折・散乱光の空間強度分布データとしてコンピュータ24に取り込まれる。
コンピュータ24では、その回折・散乱光の空間強度分布を用いて、レーザ回折・散乱式の粒度分布測定において公知の、ミーの散乱理論およびフラウンホーファの回折理論に基づく演算手法により、レーザ光が回折・散乱した原因粒子である浮遊粒子状物質の粒度分布を算出する。
このレーザ回折・散乱式粒度分布測定装置20による粒度分布の測定によれば、サブミクロンオーダーから10μmを越える広い粒径範囲において高い分解能でその粒度分布の測定が可能であり、集塵電極4上の浮遊粒子状物質Pの量を、十分な回折・散乱光強度が得られる程度とすることにより、短時間のうちに大気中の浮遊粒子状物質Pの粒度分布を高い精度で測定することができる。
ここで、レーザ回折・散乱式粒度分布測定装置20により上記のように正確な粒度分布を求めるためには、装置の調整が必要である。この調整は、被測定粒子群の測定時と同等の条件のもとに、粒子径が既知の標準粒子を分散状態にしてレーザ光を照射してその回折・散乱光の空間強度分布などを測定する必要がある。上記した本発明の実施の形態における集塵電極4は、透明部材に凹部41aを形成してその凹部41aの底面に被測定粒子群である浮遊粒子状物質Pを付着させて捕集する構造を有しているため、標準粒子を水などの媒液に分散させて凹部41a内に封入してレーザ光を照射することができる。これにより、浮遊粒子状物質Pの捕集に用いて回折・散乱光の空間強度分布を測定するものと全く同じ捕集電極4を用いて調整が可能となり、従って、集塵電極4の形状に起因する粒度分布の測定結果の差異をなくして正確な粒度分布を得ることができる。
なお、集塵電極4の透明電極膜4bによるコーティング領域は、上記のように凹部41aの底面41bのほか、底面41bを含む任意領域としてもよいが、底面41bのみに透明電極膜4bをコーティングすることが、浮遊粒子状物質Pを凹部41a内に集中して捕集することができ、捕集された浮遊粒子状物質Pの面密度を増加させ得る点において好ましい。
【発明の効果】
以上のように、本発明によれば、大気中の浮遊粒子状物質を帯電させて、透明部材の表面に凹部を形成してその凹部の底面に透明電極膜をコーティングした集塵電極上に捕集するので、そのままの状態で顕微鏡による観察に供して鮮明な粒子像を得ることができ、また、個々の粒子を容易に取り出して分析等に供することができる、更には適当な蓋を被せることによって、捕集した浮遊粒子状物質を接触することなく保存することができる。
また、レーザ回折・散乱式粒度分布測定装置を用いて、浮遊粒子状物質を捕集した集塵電極に対してレーザ光を直接的に照射して回折・散乱光を測定して粒度分布を測定することができ、極めて簡単な作業のもとに、従来方法に比してより広い粒径範囲で高分解能の粒度分布の測定が可能となり、その際、測定に先立ち、集塵電極の凹部に標準粒子を媒液に分散させて封入して装置の調整が可能であることから、集塵電極(試料保持部材)の形状に起因する差異をなくすることができるという利点もある。
【図面の簡単な説明】
【図1】本発明の実施の形態の構成を表す模式図である。
【図2】本発明の実施の形態における集塵電極4の詳細構造を示す模式的断面図である。
【図3】本発明の実施の形態における集塵電極4に捕集した浮遊粒子状物質Pの保存方法の例の説明図である。
【図4】本発明の実施の形態における集塵電極4に捕集した浮遊粒子状物質Pの粒度分布を、レーザ回折・散乱式粒度分布測定装置を用いて測定する場合の装置構成例を示す図で、光学的構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。
【符号の説明】
1 捕集容器
2 ポンプ
3 放電電極
4 集塵電極
4a ガラス板
41a 凹部
41b 底面
4b 透明電極膜
5 高圧電源
6 接地電位
20 レーザ回折・散乱式粒度分布測定装置
21 照射光学系
22 測定光学系
23 データサンプリング回路
24 コンピュータ
P 浮遊粒子状物質
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for collecting suspended particulate matter existing in the atmosphere, and is suitable for use in measuring the particle size distribution of suspended particulate matter using, for example, a laser diffraction / scattering particle size distribution measuring apparatus. It relates to a collection device.
[Prior art]
Of the dust suspended in the atmosphere, those having a particle size of 10 μm or less are called suspended particulate matter (SPM). This suspended particulate matter includes rolled-up soil, etc., but black smoke, unburned fuel, sulfur compounds, etc., emitted by diesel cars account for a lot (35% is from diesel cars in Kanto). Is said to be more harmful. Particulate matter caused by exhaust gas from this diesel vehicle is particularly referred to as DEP. In addition, those having a smaller particle diameter of 2.5 μm or less are referred to as microparticulate substances (PM2.5), and research and research are actively conducted in the West. In the case of this PM2.5, it is said that the ratio of exhaust gas from diesel vehicles becomes higher.
The shape of such suspended particulate matter (SPM) or microparticulate matter (PM2.5) in the atmosphere is examined with a microscope, or chemical analysis is performed to identify chemical substances contained therein. However, it is necessary to collect these particulate substances from the atmosphere, and conventionally, a method of collecting these particulate substances from the atmosphere using a filter has been adopted.
In addition, as a device for measuring the particle size distribution of suspended particulate matter (SPM) and fine particulate matter (PM2.5) in the atmosphere as described above, a device based on the cascade impactor method has been put into practical use. This measuring device based on the cascade impactor system uses an impactor method in which particles are separated from the fluid by causing the fluid to collide with the collecting plate and abruptly changing the flow direction. The impactors with different diameters are connected in series in multiple stages, and the particle diameter of 50% collection efficiency at each stage is used as the representative diameter of each stage. The particle size distribution is obtained.
[Problems to be solved by the invention]
By the way, it is very difficult to extract SPM and PM2.5 with a microscope or to collect them with a filter so as to be used for various chemical analysis instruments. In doing so, the suspended particulate matter adhering to the filter is observed, but in that case, there is a problem that the image of the particle becomes unclear in the background filter image, and is difficult to observe. In addition, even when the collected suspended particulate matter is used in various chemical analysis instruments, it is difficult to extract the suspended particulate matter alone from the filter. In this case, for example, in an X-ray fluorescence spectrometer, it is difficult to irradiate only the particles with X-rays, and there is a problem that the analysis becomes substantially impossible.
In addition, in the conventional method of collecting by attaching to a filter, there is also a problem that it is difficult to store the collected suspended particulate matter without changing the initial state.
Furthermore, in the conventional measuring apparatus based on the cascade impactor system used for measuring the particle size distribution of suspended particulate matter, there is a problem that the upper limit value of the particle size is limited to about 10 μm in principle. In addition, since the resolution of the particle size is determined by the number of collecting plates, there is a disadvantage that it is not possible to measure the particle size distribution with high resolution.
As an effective method for measuring the particle size distribution of suspended particulate matter, there is a method using a laser diffraction / scattering particle size distribution measuring apparatus. This laser diffraction / scattering particle size distribution measuring device measures the spatial intensity distribution of diffracted / scattered light obtained by irradiating laser beams to a group of particles in a dispersed flight state. By utilizing the diffraction theory of Fraunhofer, the particle size distribution of the group of particles to be measured is obtained from the measurement result of the spatial intensity distribution of the diffracted / scattered light. The particle size distribution can be determined. However, in order to obtain the particle size distribution of suspended particulate matter using this laser diffraction / scattering type particle size distribution measuring device, it is necessary to collect suspended particulate matter that is the group of particles to be measured and to make it dispersed. The conventional method of collecting suspended particulate matter using a filter has a problem that it is extremely difficult to separate the suspended particulate matter from the filter and disperse it in a liquid medium or the like.
The present invention has been made in view of such circumstances, and can efficiently collect suspended particulate matter in the atmosphere, and can store the collected suspended particulate matter as it is. It is easy and can be observed very easily with a microscope, or individual particles can be easily taken out for analysis by an analytical instrument, etc., and further easy to measure with a laser diffraction / scattering particle size distribution analyzer The purpose is to provide a collection device that can be used for
[Means for Solving the Problems]
In order to achieve the above object, the airborne particulate matter trapping device of the present invention is a device for collecting airborne particulate matter in the air, and includes a collecting container and the inside of the collecting container. And a discharge electrode which is disposed in a collection container and generates monopolar ions to charge floating particulate matter in the container, and a potential difference is given to the discharge electrode. It has a dust collection electrode that attracts and collects suspended particulate matter charged in the collection container, and this dust collection electrode has a transparent member with a recess formed on the surface and a transparent coated at least on the bottom surface of the recess It is characterized by being comprised by the electrode film.
In the present invention, suspended particulate matter in the atmosphere is charged, and the charged suspended particulate matter is provided with a concave portion on the surface of a transparent member such as a glass plate or a transparent plastic plate, and a transparent electrode is provided on the bottom surface of the concave portion. The intended purpose is achieved by collecting the coated dust collecting electrode using a potential difference.
That is, in the configuration of the present invention, when the atmosphere is sucked into the collection container by a pump and the unipolar ions are generated by the discharge electrode disposed in the collection container, the suspended particulates contained in the atmosphere Material is charged. This charged floating particulate matter moves toward the dust collecting electrode where a potential difference is given to the discharge electrode in the collecting container, and is collected on the dust collecting electrode. As the dust collecting electrode, a concave part is formed on the surface of the transparent member, and at least the bottom surface of the concave part is coated with the transparent electrode film, so that the charged suspended particulate matter is captured on the transparent electrode film in the concave part. Be collected.
Since the suspended particulate matter is collected in the recess, the collected suspended particulate matter can be easily preserved in the original attached state by, for example, covering the recessed portion with a lid. Moreover, since the dust collecting electrode is a transparent member, it can be easily observed with a microscope while attached to the dust collecting electrode, and furthermore, suspended particulate matter can be easily taken out. It is easy to use for analysis or for particle size distribution measurement by a laser diffraction / scattering type particle size distribution measuring apparatus.
When measuring the particle size distribution of suspended particulate matter using a laser diffraction / scattering type particle size distribution measuring device, prior to measuring the spatial intensity distribution of diffracted / scattered light by the collected suspended particulate matter, The standard particles dispersed in can be sealed in the concave portion of the dust collecting electrode, and the apparatus can be adjusted, and the difference in the particle size distribution measurement result due to the shape of the dust collecting electrode can be eliminated.
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing a configuration of an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view showing a detailed structure of the dust collecting electrode 4.
A collection container 1 having an openable / closable lid 1 is formed with an air inlet 1b and a communication port 1c communicating with a suction port of a pump (collecting compressor) 2. The lid 1a is closed. By driving the pump 2 in this state, the atmosphere is sucked into the collection container 1 through the inlet 1b.
In the collection container 1, a discharge electrode 3 is provided at the upper part thereof, and a dust collection electrode 4 is disposed at the lower part thereof so as to face the discharge electrode 3. A high voltage from the high-voltage power supply 5 is applied to the discharge electrode 3, whereby the air in the vicinity of the discharge electrode 3 is ionized and unipolar ions are generated.
On the other hand, as shown in FIG. 2, the dust collecting electrode 4 has a structure in which a concave portion 41a is formed on one surface of a transparent glass plate 4a and a transparent electrode film 4b is formed on a bottom surface 41b of the concave portion 41a. . In the collection container 1, the surface on the formation side of the recess 41 a is disposed so as to face the discharge electrode 3 and face upward, and the transparent electrode film 4 b is connected to the ground potential 6. As a material of the transparent electrode film 4b, a known conductive material such as ITO or SnO 2 can be used. Further, instead of the glass plate 4a, a transparent plastic such as an acrylic resin plate can be used. Further, the plate of the dust collecting electrode may be formed with a recess by bonding one flat plate and another plate with holes cut out.
In the above configuration, when a high voltage is applied to the discharge electrode 3 while driving the pump 2, the unipolar ions generated by ionizing the surrounding air are collected on the dust collection electrode 4 side by the potential difference with the transparent electrode film 4b. In the process, it is brought into contact with the suspended particulate matter P in the atmosphere sucked into the collection container 1 and charged. The charged suspended particulate matter P is also collected in a state of being randomly dispersed on the transparent electrode film 4b, that is, on the bottom surface 41b of the concave portion 41a of the dust collecting electrode 4 due to the potential difference between the discharge electrode 3 and the transparent electrode film 4b. It will be done. Even if a large amount of charged floating particulate matter P is collected, the transparent electrode film 4b is installed, so that the suspended particulate matter P is maintained while maintaining high efficiency without lowering the collection efficiency. Can be collected.
Since the suspended particulate matter P collected as described above is attached to the transparent electrode film 4b in the concave portion 41a of the dust collecting electrode 4, individual particles can be easily taken out and subjected to various analyzes. It can be easily used for analysis using an instrument or the like. Further, since the dust collecting electrode 4 is transparent, it can be directly used for observation with a microscope to obtain a clear particle image. Further, as shown in a cross-sectional view in FIG. 3, a lid 42 covering the recess 41 a is prepared, and the suspended particulate matter P is collected, and then the lid 42 is covered with the lid 41 a by the lid 42. The particulate matter P can be stored without contact.
In addition, the suspended particulate matter P collected as described above can be obtained easily and with high resolution over a wide particle size range by using the following laser diffraction / scattering particle size distribution measuring device. Distribution can be measured.
FIG. 4 is a diagram showing an apparatus configuration example for measuring the particle size distribution, and is a diagram showing a schematic diagram showing an optical configuration and a block diagram showing an electrical configuration.
The laser diffraction / scattering particle size distribution measuring apparatus 20 includes an irradiation optical system 21 that irradiates a laser beam parallel to a group of particles to be measured, and measurement optics that measures the spatial intensity distribution of diffracted / scattered light by the group of particles to be measured. Using the system 22, the data sampling circuit 23 that samples the output of the measurement optical system 22, and the spatial intensity distribution data of the diffracted / scattered light sampled by the data sampling circuit 23, the particle size distribution of the group of particles to be measured is determined. The computer 24 to be calculated is mainly configured.
The suspended particulate matter P collected in the concave portion 41a of the dust collecting electrode 4 by the collecting device shown in FIG. 1 remains attached to the transparent electrode film 4b in the concave portion 41a, and the irradiation optics. Between the system 21 and the measurement optical system 22, it is arranged upright so as to be orthogonal to the optical axis.
The irradiation optical system 21 includes a laser light source 21a, a condensing lens 22b, a spatial filter 22c, and a collimating lens 23d. The laser light output from the laser light source 21a is attached to the transparent electrode film 4b of the dust collecting electrode 4 as a parallel light beam. The suspended particulate matter P is irradiated. The laser light applied to the dust collection electrode 4 is diffracted and scattered by the suspended particulate matter P adhering to the transparent electrode film 4b. The spatial intensity distribution of the diffracted / scattered light is measured by the measurement optical system 22.
The measurement optical system 22 is disposed on the side and back of the dust collecting electrode 4 (on the irradiation optical system 21 side), and the front wide-angle scattered light sensor group 22c disposed on the outside of the condenser lens 22a and the ring detector 22b. The side / backscattered light sensor group 22d is configured. The ring detector 22b is a photosensor array in which photosensors having ring-shaped, ½-ring or ¼-ring-shaped light receiving surfaces with different radii are arranged concentrically, and condensed by a condenser lens 22a. The spatial intensity distribution of the diffracted / scattered light within the predetermined forward angle can be detected. Therefore, the spatial intensity distribution of the diffracted / scattered light by the suspended particulate matter P that is randomly dispersed and attached to the transparent electrode film 4b by the measurement optical system 22 composed of these sensor groups is changed from the front minute angle to the rear. Measured over a wide range.
The light intensity detection signal for each diffraction / scattering angle by the measurement optical system 22 is amplified by the data sampling circuit 23 having the respective amplifiers and AD converters, digitized, It is taken into the computer 24 as spatial intensity distribution data of scattered light.
The computer 24 uses the spatial intensity distribution of the diffracted / scattered light to diffract the laser light by a calculation method based on Mie's scattering theory and Fraunhofer's diffraction theory known in laser diffraction / scattering type particle size distribution measurement. The particle size distribution of the suspended particulate matter that is the cause particle that has been scattered is calculated.
According to the particle size distribution measurement by the laser diffraction / scattering type particle size distribution measuring device 20, the particle size distribution can be measured with high resolution in a wide particle size range from submicron order to over 10 μm. By measuring the amount of suspended particulate matter P in such a manner that sufficient diffraction / scattered light intensity can be obtained, the particle size distribution of suspended particulate matter P in the atmosphere can be measured with high accuracy in a short time. it can.
Here, in order to obtain an accurate particle size distribution as described above by the laser diffraction / scattering particle size distribution measuring apparatus 20, it is necessary to adjust the apparatus. This adjustment measures the spatial intensity distribution of the diffracted / scattered light by irradiating a laser beam with standard particles of known particle size dispersed under the same conditions as when measuring the particle group to be measured. There is a need to. The dust collecting electrode 4 in the above-described embodiment of the present invention has a structure in which the concave portion 41a is formed in the transparent member and the suspended particulate matter P, which is a group of particles to be measured, is attached to the bottom surface of the concave portion 41a and collected. Therefore, the standard particles can be dispersed in a liquid medium such as water and sealed in the recess 41a, and laser light can be irradiated. This makes it possible to make adjustments using the same collection electrode 4 that is used to collect the suspended particulate matter P and to measure the spatial intensity distribution of diffracted / scattered light. An accurate particle size distribution can be obtained by eliminating the difference in the measurement result of the resulting particle size distribution.
The coating region of the dust collecting electrode 4 by the transparent electrode film 4b may be an arbitrary region including the bottom surface 41b in addition to the bottom surface 41b of the recess 41a as described above, but only the bottom surface 41b is coated with the transparent electrode film 4b. This is preferable in that the suspended particulate matter P can be concentrated and collected in the recess 41a, and the surface density of the collected suspended particulate matter P can be increased.
【The invention's effect】
As described above, according to the present invention, the suspended particulate matter in the atmosphere is charged to form a recess on the surface of the transparent member, and is captured on the dust collecting electrode coated with the transparent electrode film on the bottom surface of the recess. Since it is collected, it can be used for observation with a microscope as it is, and a clear particle image can be obtained, and individual particles can be easily taken out for analysis, etc. Further, an appropriate lid is put on. Thus, the collected suspended particulate matter can be stored without contact.
Using a laser diffraction / scattering particle size distribution measurement device, the particle size distribution is measured by directly irradiating a dust collecting electrode that collects suspended particulate matter with laser light and measuring the diffraction / scattered light. It is possible to measure the particle size distribution with high resolution in a wider particle size range than the conventional method under extremely simple work. Since it is possible to adjust the apparatus by dispersing standard particles in a liquid medium and enclosing them, there is also an advantage that the difference due to the shape of the dust collecting electrode (sample holding member) can be eliminated.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing a detailed structure of a dust collecting electrode 4 in the embodiment of the present invention.
FIG. 3 is an explanatory diagram of an example of a method for preserving the suspended particulate matter P collected by the dust collecting electrode 4 in the embodiment of the present invention.
FIG. 4 shows an apparatus configuration example in the case where the particle size distribution of the suspended particulate matter P collected by the dust collecting electrode 4 in the embodiment of the present invention is measured using a laser diffraction / scattering type particle size distribution measuring apparatus. In the figure, a schematic diagram showing an optical configuration and a block diagram showing an electrical configuration are shown together.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Collection container 2 Pump 3 Discharge electrode 4 Dust collection electrode 4a Glass plate 41a Recess 41b Bottom surface 4b Transparent electrode film 5 High voltage power source 6 Ground potential 20 Laser diffraction / scattering type particle size distribution measuring device 21 Irradiation optical system 22 Measurement optical system 23 Data Sampling circuit 24 computer P suspended particulate matter

Claims (1)

大気中の浮遊粒子状物質を捕集する装置であって、捕集容器と、その捕集容器内に大気を吸引するポンプと、捕集容器内に配置され、単極イオンを発生して当該容器内の浮遊粒子状物質を帯電させる放電電極と、その放電電極に対して電位差が与えられることにより捕集容器内で帯電した浮遊粒子状物質を引き寄せて捕集する集塵電極を備え、この集塵電極は、表面に凹部が形成された透明部材と、少なくともその凹部の底面にコーティングされた透明電極膜によって構成されていることを特徴とする大気中の浮遊粒子状物質の捕集装置。An apparatus for collecting suspended particulate matter in the atmosphere, which is disposed in a collection container, a pump for sucking air in the collection container, and in the collection container to generate unipolar ions and A discharge electrode for charging the suspended particulate matter in the container, and a dust collection electrode for attracting and collecting the suspended particulate matter charged in the collection container by applying a potential difference to the discharge electrode. The dust collecting electrode is composed of a transparent member having a concave portion formed on a surface thereof and a transparent electrode film coated at least on the bottom surface of the concave portion.
JP2002142817A 2002-01-21 2002-05-17 Device for collecting suspended particulate matter in the atmosphere Expired - Fee Related JP3758603B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002142817A JP3758603B2 (en) 2002-05-17 2002-05-17 Device for collecting suspended particulate matter in the atmosphere
US10/322,677 US6807874B2 (en) 2002-01-21 2002-12-19 Collecting apparatus of floating dusts in atmosphere
US10/882,621 US6923848B2 (en) 2002-01-21 2004-07-02 Collecting apparatus of floating dusts in atmosphere
US11/048,895 US7041153B2 (en) 2002-01-21 2005-02-03 Method of measuring floating dusts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002142817A JP3758603B2 (en) 2002-05-17 2002-05-17 Device for collecting suspended particulate matter in the atmosphere

Publications (2)

Publication Number Publication Date
JP2003337086A JP2003337086A (en) 2003-11-28
JP3758603B2 true JP3758603B2 (en) 2006-03-22

Family

ID=29702991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002142817A Expired - Fee Related JP3758603B2 (en) 2002-01-21 2002-05-17 Device for collecting suspended particulate matter in the atmosphere

Country Status (1)

Country Link
JP (1) JP3758603B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2479843B (en) 2007-05-18 2012-02-29 Malvern Instr Ltd Method and apparatus for dispersing a sample of particulate material
WO2010096425A1 (en) * 2009-02-18 2010-08-26 Battelle Memorial Institute Small area electrostatic aerosol collector
JP5152070B2 (en) * 2009-03-31 2013-02-27 大日本印刷株式会社 Decorative sheet, decorative molded product, and injection molding simultaneous decoration method
US9618431B2 (en) * 2010-11-30 2017-04-11 Inspirotec, Inc. Electrokinetic device for capturing assayable agents in a dielectric fluid
JP2012233796A (en) * 2011-05-02 2012-11-29 Sharp Corp Detection device and detection method
KR102598425B1 (en) * 2018-09-20 2023-11-06 현대자동차주식회사 Sensor assembly for particulate matter

Also Published As

Publication number Publication date
JP2003337086A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
JP3622696B2 (en) Method and apparatus for measuring suspended particulate matter
US6807874B2 (en) Collecting apparatus of floating dusts in atmosphere
CA2957725C (en) Devices, systems and methods for detecting particles
JP6096846B2 (en) Biological and chemical microscopic targeting
JP2003315244A (en) Method for measuring granular substances floating in the air
US11047787B2 (en) And method for optical bench for detecting particles
JP3758577B2 (en) Device for collecting suspended particulate matter in the atmosphere and measuring method for collected suspended particulate matter
JP2003337087A (en) Apparatus for collecting suspended particle
KR100554531B1 (en) Collecting and measuring method of yellow sand particles
JP3758603B2 (en) Device for collecting suspended particulate matter in the atmosphere
JP3961244B2 (en) Method and apparatus for measuring suspended particulate matter
JP3786049B2 (en) Airborne particulate matter collection device
JP3758602B2 (en) Measuring device for pollen in the atmosphere
JP2002116134A (en) Measuring apparatus for suspended particulate matter
JP2003035655A (en) Method and equipment for measuring floating particulate material
JP2003254888A (en) Method for measuring suspended particulate matter
JP4200373B2 (en) Airborne particulate matter collection device
JP4058624B2 (en) Device for collecting and measuring suspended particulate matter in the atmosphere
US20240344956A1 (en) Device and method for detection of particles using a line laser
Chen et al. Aerosol Instrumentation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3758603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees