JP3786049B2 - Airborne particulate matter collection device - Google Patents

Airborne particulate matter collection device Download PDF

Info

Publication number
JP3786049B2
JP3786049B2 JP2002132613A JP2002132613A JP3786049B2 JP 3786049 B2 JP3786049 B2 JP 3786049B2 JP 2002132613 A JP2002132613 A JP 2002132613A JP 2002132613 A JP2002132613 A JP 2002132613A JP 3786049 B2 JP3786049 B2 JP 3786049B2
Authority
JP
Japan
Prior art keywords
particulate matter
suspended particulate
electrode
dust collecting
collection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002132613A
Other languages
Japanese (ja)
Other versions
JP2003329587A (en
Inventor
慎一郎 十時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002132613A priority Critical patent/JP3786049B2/en
Priority to US10/322,677 priority patent/US6807874B2/en
Publication of JP2003329587A publication Critical patent/JP2003329587A/en
Priority to US10/882,621 priority patent/US6923848B2/en
Priority to US11/048,895 priority patent/US7041153B2/en
Application granted granted Critical
Publication of JP3786049B2 publication Critical patent/JP3786049B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Electrostatic Separation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は大気中の浮遊粒子状物質を補集する装置に関する。
【0002】
大気中に浮遊している粉じんのうち、粒径が10μm以下のものは浮遊粒子状物質(SPM)と称される。この浮遊粒子状物質は、巻き上げられた土なども含まれるが、ディーゼル車が排出する黒煙や未燃焼燃料、硫黄化合物などが多くを占め(関東では35%がディーゼル車からのもの)、これらは有害性もより高いと言われている。このディーゼル車からの排気ガスが原因の粒子状物質は、特にDEPと称される。また、より粒径の小さい2.5μm以下のものは微小粒子状物質(PM2.5)と称され、欧米では調査・研究が盛んになってきている。このPM2.5の場合、その排出原因はディーゼル車の排ガスである割合がより高くなると言われている。
【0003】
このような浮遊粒子状物質を補集する方法としては、従来、大気を吸引してフィルタを通過させることにより、浮遊粒子状物質をフィルタに付着させる方法が採用されている。
【0004】
【発明が解決しようとする課題】
【0005】
ところで、以上のように大気を吸引してフィルタを通過させることによって浮遊粒子状物質をそのフィルタに付着させる従来の補集方法では、フィルタから個々の粒子を取り出すことが実質的に不可能であり、補集した粒子状物質を各種測定や分析に供することが困難であるという問題がある。
【0006】
しかも、補集した浮遊粒子状物質を、例えばレーザ回折・散乱式粒度分布測定装置を用いた浮遊粒子状物質の粒度分布の測定手に供する場合等においては、サンプル濃度が測定に適した濃度範囲のもとにレーザ光を照射してその回折・散乱光を測定する必要があるが、このような測定に適した濃度範囲のもとに浮遊粒子状物質を各種測定に供するために、例えば一定時間だけ大気を吸引して浮遊粒子状物質を捕集することにより、一定量の浮遊粒子状物質を捕集することが考えられるが、大気中の浮遊粒子状物質の濃度は一定ではなく、捕集中においても変動するため、捕集を終了した時点で捕集した粒子量が予想とはかけはなれたものになって、所要の濃度範囲のサンプルを得ることができないなどの問題もある。
【0007】
本発明は以上の問題点を解決すべくなされたもので、補集した浮遊粒子状物質を各種測定に供しやすく、かつ、確実に特定の濃度範囲のもとに浮遊粒子状物質を補集することのできる補集装置の提供を目的としている。
【0008】
上記目的を達成するため、本発明の浮遊粒子状物質の補集装置は、補集容器と、その補集容器内に大気を吸引するポンプと、補集容器内に配置され、単極イオンを発生して当該容器内の浮遊粒子状物質を帯電させる放電電極と、その放電電極に対して電位差が与えられることにより補集容器内で帯電した浮遊粒子状物質を引き寄せて補集する透明部材からなる集塵電極と、その集塵電極に対して光を照射する光照射手段と、その光の集塵電極の透過光強度を検出する検出手段と、その検出値と上記集塵電極上の浮遊粒子状物質の量との関係を記憶するとともに、浮遊粒子状物質の補集量を任意に設定可能で、かつ、上記検出手段による検出値が設定された補集量に対応する値に到達した時点で上記ポンプを停止させる制御手段を備えていることによって特徴づけられる。
【0009】
ここで、発明において、透明部材からなる集塵電極とは、例えばガラス板や樹脂板等の透明板の表面に透明電極をコーティングした構造のほか、透明電極等をコーティングしたガラス板等からなる皿状ないしは容器状の内部に水などの透明な液体を収容してその液体中に浮遊粒子状物質を捕集するようにした構造のものなどを含む。
【0010】
本発明は、大気を補集容器中に吸引し、その容器内の浮遊粒子状物質を放電電極により帯電させて集塵電極上に補集するとともに、その集塵電極を透明部材からなる電極とすることにより、その集塵電極の透過光の強度から当該集塵電極上に補集された浮遊粒子状物質の濃度情報、つまり補集量情報を得ることを可能とし、所期の目的を達成しようとするものである。
【0011】
すなわち、補集容器内に大気を吸引しつつ、放電電極から単極イオンを発生させると、補集容器内に吸引された大気に含まれる浮遊粒子状物質は帯電し、放電電極に対して電位差が与えられている集塵電極側に引き寄せられてこの集塵電極上に順次補集されていき、集塵電極の表面に均一に堆積していく。透明部材からなる集塵電極に光を照射して、その透過光の強度を検出すれば、その検出値は集塵電極上に補集された浮遊粒子状物質量に応じた値となる。つまり、集塵電極の透過光強度の検出値は、集塵電極上に補集された浮遊粒子状物質の補集量をリアルタイムで表す情報となり、キャリブレーションによ透過光強度と浮遊粒子状物質の補集量との関係を求めておくことができ、ポンプを制御する制御手段にその関係を記憶しておく。また、この制御手段に対して、浮遊粒子状物質の補集量を任意に設定可能としておき、検出手段による透過光の検出値がその設定された補集量に対応する値に到達した時点で自動的にポンプを停止するように構成することで、補集電極上に設定された量の浮遊粒子状物質を補集することができる。
【0012】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の構成図であり、機械的構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。
【0013】
捕集容器1には、大気の流入口1aと、ポンプ(捕集用圧縮機)2の吸引口への連通口1bが形成されており、ポンプ2を駆動することによって、流入口1aを介して捕集容器12内に大気が吸引される。この捕集容器1内には、その上部に放電電極3が配置されているとともに、底部近傍には集塵電極4が配置されている。なお、捕集容器1には、集塵電極4を出し入れするための蓋ないしは開閉扉(図示せず)を有しており、その蓋ないしは開閉扉を閉じた状態では、流入口1aおよび連通口1bにおいてのみ外部に連通した状態となる。
【0014】
放電電極3には、高圧電源5からの高電圧が印加され、これによって放電電極3の近傍の空気が電離し、単極イオンが発生する。
集塵電極4は表面が平滑な透明の平板状の電極であって、例えばガラス板ないしは樹脂の表面に透明電極をコーティングした構造を有しており、この集塵電極4は接地電位6に接続されている。
【0015】
以上の構成において、ポンプ2を駆動しつつ放電電極3に高電圧を印加することにより、放電電極3の近傍の空気の電離により発生した単極イオンが、集塵電極4との電位差により集塵電極4側に移動し、その過程で捕集容器1内の大気中に含まれている浮遊粒子状物質Pと接触してこれを帯電させる。そして、帯電した浮遊粒子状物質Pは、同じく放電電極3と集塵電極4との電位差によって集塵電極4に向けて移動し、集塵電極4の表面上に捕集される。
【0016】
さて、捕集容器1の底面には、集塵電極4の略中央部の直下に相当する位置にガラス板等からなる透明な窓1cが設けられているとともに、その窓1cの鉛直上方の天井面にも同様の透明な窓1dが設けられている。そして、窓1cの下方には、レーザ光もしくはランプ光からなる平行ビームを鉛直上方に向けて照射する光源7が配置されている一方、窓1dの上方には、光源7からの平行ビームの集塵電極4を透過した光の強度を検出する光検出器8が配置されている。
【0017】
光検出器8の検出出力は、演算・制御装置9に取り込まれる。演算・制御装置8には、集塵電極4の表面に浮遊粒子状物質Pが全く捕集されていない状態での光検出器8の出力と、既知量の浮遊粒子状物質Pが集塵電極4の表面に捕集された状態での光検出器8の出力とを用いたキャリブレーションにより求められた、光検出器8による透過光強度の検出値と浮遊粒子状物質Pの量との関係があらかじめ格納されている。
【0018】
この演算・制御装置9は、ポンプ2および高圧電源4に対して駆動制御信号を供給する。また、この演算・制御装置9は、プリンタ10を接続することにより、光検出器8の出力に基づく集塵電極4上の浮遊粒子状物質Pの刻々の濃度情報をプリントアウトできるようになっている。
【0019】
以上の本発明の実施の形態は、大気中の浮遊粒子状物質Pの濃度測定装置と、同じく大気中の浮遊粒子状物質Pの捕集装置のいずれとしても用いることができる。
【0020】
濃度測定装置として用いる場合、ポンプ2を駆動しつつ放電電極3に高電圧を印加した状態において、例えば一定の時間ごとに光検出器8の出力に基づく集塵電極4上への浮遊粒子状物質Pの捕集量情報をプリンタ10に出力する。ポンプ2による大気の単位時間当たりの吸引量を一定にしておくことにより、起動開始時点から任意の経過時間において、その時点までに捕集容器1内に吸引した大気の総量が判るので、従って、プリンタ10に逐次出力される浮遊粒子状物質Pの捕集量情報は、各時点でそれまでに捕集容器1内に吸引した大気の総量中に含まれる浮遊粒子状物質Pの量を表す。また、一定時間経過時点ごとの捕集量情報の差分を計算すれば、大気中の浮遊粒子状物質Pの経時的濃度変化を表す。
【0021】
一方、本発明の実施の形態を浮遊粒子状物質Pの捕集装置として用いる場合には、演算・制御装置9に所望の粒子濃度(捕集量)を設定して装置を起動する。演算・制御装置9では、光検出器8の出力に基づく捕集量情報が、設定値に一致した時点で、ポンプ2並びに放電電極3を自動的に停止する。これにより、集塵電極4上には、設定された量の浮遊粒子状物質Pが捕集されることになる。
【0022】
このようにして捕集した浮遊粒子状物質Pは、透明平板状の集塵電極4の表面に付着させたままの状態で、例えばレーザ回折・散乱式粒度分布測定装置を用いることにより、その粒度分布を広い粒径範囲で高分解能のもとに測定することができる。すなわち、レーザ回折・散乱式の粒度分布測定装置は、分散状態の被測定粒子群にレーザ光を照射して得られる回折・散乱光の空間強度分布を測定し、ミーの散乱理論ないしはフラウンホーファの回折理論を用いて粒度分布に換算するものであって、被測定粒子群の濃度が、十分な回折・散乱光強度が得られ、かつ、多重散乱を起こさない程度であれば、広い粒径範囲にわたって高分解能の粒度分布を求めることができる。
【0023】
また、以上の実施の形態により捕集された浮遊粒子状物質Pは、透明な平板状の集塵電極4の表面に付着した状態となるので、顕微鏡により観察する場合等においても、従来のフィルタによる捕集方法のように背景像によって粒子像が影響を受けず、鮮明な像を観察することができるという利点もある。
【0024】
なお、以上の実施の形態においては、集塵電極4として透明な平板状のものを用いてその表面に浮遊粒子状物質Pを付着させる例を示したが、図2に示すように、上記と同等の透明な平板状の集塵電極4の上面に、透明な材料に透明電極をコーティングして導電性を持たせたシャーレ状の捕集具4aを搭載し、その捕集具4a内に液体Lを収容して、帯電した浮遊粒子状物質Pをこの液体L中に捕集されるように構成してもよい。この場合においても、キャリブレーションを液体Lを含んだ状態で行っておくことにより、上記と同様に光検出器8の出力が浮遊粒子状物質Pの捕集量情報を表すことになる。
【0025】
また、このように液体L中に浮遊粒子状物質Pを捕集した場合、レーザ回折・散乱式粒度分布測定装置により粒度分布を測定するに当たっては、被測定粒子群を媒液中に分散させてレーザ光を照射する、いわゆる湿式測定により行えばよく、液体Lをその湿式測定で用いる媒液と同じ液体とすれば好都合である。
【0026】
【発明の効果】
以上のように、本発明によれば、補集容器内に吸引した大気中に含まれる浮遊粒子状物質を放電電極により帯電させ、その帯電粒子を、透明部材により形成され、かつ、光が照射される集塵電極に引き寄せて補集するとともに、この集塵電極を透過した光の強度を検出して当該集塵電極上に補集した浮遊粒子状物質の量(濃度)を得て、その量があらかじめ設定されている量に達した時点で自動的に大気の吸引を停止して補集を終了するので、補集中に大気中の浮遊粒子状物質の濃度が変化しても、常に正確に設定された量の浮遊粒子状物質を補集することができ、例えばレーザ回折・散乱式の粒度分布測定装置による粒度分布の測定等に供する場合等において、安定して最適な濃度範囲の被測定試料を用意することが可能となる。
【図面の簡単な説明】
【図1】 本発明の実施の形態の構成図で、機械的構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。
【図2】 本発明の他の実施の形態の集塵電極の構成例の説明図である。
【符号の説明】
1 捕集容器
2 ポンプ
3 放電電極
4 集塵電極
5 高圧電源
6 接地電位
7 光源
8 光検出器
9 演算・制御装置
10 プリンタ
P 浮遊粒子状物質
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for collecting suspended particulate matter in the atmosphere .
[0002]
Of the dust suspended in the atmosphere, those having a particle size of 10 μm or less are called suspended particulate matter (SPM). This suspended particulate matter includes rolled-up soil, etc., but black smoke, unburned fuel, sulfur compounds, etc., emitted by diesel cars account for a lot (35% is from diesel cars in Kanto). Is said to be more harmful. Particulate matter caused by exhaust gas from this diesel vehicle is particularly referred to as DEP. In addition, those having a smaller particle diameter of 2.5 μm or less are referred to as microparticulate substances (PM2.5), and research and research are actively conducted in the West. In the case of this PM2.5, it is said that the ratio of exhaust gas from diesel vehicles becomes higher.
[0003]
As a method for collecting such suspended particulate matter, conventionally, a method is adopted in which the suspended particulate matter is adhered to the filter by sucking the air and passing it through the filter.
[0004]
[Problems to be solved by the invention]
[0005]
By the way, it is practically impossible to take out individual particles from the filter by the conventional collection method in which the suspended particulate matter adheres to the filter by sucking the air and passing through the filter as described above . However, there is a problem that it is difficult to use the collected particulate matter for various measurements and analyses.
[0006]
In addition, when the collected suspended particulate matter is used, for example, for measuring the particle size distribution of the suspended particulate matter using a laser diffraction / scattering type particle size distribution measuring device, the sample concentration is in a concentration range suitable for measurement. there is also need to measure the diffracted and scattered light is irradiated bets on the laser beam to it, in order to provide the suspended particulate matter on the basis of the concentration range suitable for such measurements in various measurements, for example, a constant It is conceivable to collect a certain amount of suspended particulate matter by aspirating the atmosphere for a period of time to collect suspended particulate matter, but the concentration of suspended particulate matter in the atmosphere is not constant, and Since the concentration also varies, there is a problem that the amount of particles collected at the time when the collection is finished is not expected and a sample having a required concentration range cannot be obtained.
[0007]
The present invention has been made to solve the above problems point, easily subjected collecting suspended particulate matter in the various measurements, and, reliably floating particles based on the particular concentration range scavenged An object of the present invention is to provide a collection device that can do this.
[0008]
To achieve the above object, collecting device suspended particulate matter of the present invention comprises a collecting container, a pump for sucking air into the collecting container, disposed collecting vessel, monopolar ion Discharge electrode that charges the suspended particulate matter in the container and a transparent member that attracts and collects the suspended particulate matter charged in the collection container by applying a potential difference to the discharge electrode A dust collecting electrode comprising: a light irradiating means for irradiating the dust collecting electrode with light; a detecting means for detecting the transmitted light intensity of the light collecting electrode; and a detected value on the dust collecting electrode. Memorize the relationship with the amount of suspended particulate matter, set the amount of suspended particulate matter arbitrarily, and reach the value corresponding to the amount collected by the detection means and a control means for stopping the pump when the It is characterized by a.
[0009]
Here, in the present invention, the dust collecting electrode made of a transparent member includes, for example, a structure in which the surface of a transparent plate such as a glass plate or a resin plate is coated with a transparent electrode, or a glass plate coated with a transparent electrode or the like. It includes a structure in which a transparent liquid such as water is accommodated in a dish-like or container-like shape and suspended particulate matter is collected in the liquid.
[0010]
The present invention sucks the atmosphere in the collecting container, as well as scavenged on the dust collecting electrode the suspended particulate matter in the vessel is charged by the discharge electrodes, the electrodes comprising the dust collecting electrode of a transparent member and by the concentration information from the intensity of the transmitted light wherein the collector suspended particulate matter that is scavenged on the dust electrodes of the dust-collecting electrodes, that is it possible to obtain a collecting volume information, the desired object That is what we are trying to achieve.
[0011]
That is , when monopolar ions are generated from the discharge electrode while the atmosphere is sucked into the collection container, the suspended particulate matter contained in the atmosphere sucked into the collection container is charged, and a potential difference is generated with respect to the discharge electrode. Is attracted to the dust collecting electrode side and is collected on the dust collecting electrode sequentially, and is uniformly deposited on the surface of the dust collecting electrode. If light is applied to the dust collecting electrode made of a transparent member and the intensity of the transmitted light is detected, the detected value becomes a value corresponding to the amount of suspended particulate matter collected on the dust collecting electrode. In other words, the detected value of the transmitted light intensity of the dust collection electrode is information that indicates the amount of suspended particulate matter collected on the dust collection electrode in real time, and the transmitted light intensity and suspended particulate matter are obtained by calibration. The relationship with the amount of collected water can be obtained, and the relationship is stored in the control means for controlling the pump. In addition, for this control means, it is possible to arbitrarily set the collection amount of the suspended particulate matter, and when the detection value of the transmitted light by the detection means reaches a value corresponding to the set collection amount. By configuring the pump to automatically stop, it is possible to collect a set amount of suspended particulate matter on the collecting electrode.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram illustrating a schematic diagram representing a mechanical configuration and a block diagram representing an electrical configuration.
[0013]
The collection container 1 is formed with an air inlet 1 a and a communication port 1 b to the suction port of a pump (collecting compressor) 2. By driving the pump 2, the inlet 1 a is passed through the inlet 1 a. The air is sucked into the collection container 12. In the collection container 1, a discharge electrode 3 is disposed at the top, and a dust collection electrode 4 is disposed in the vicinity of the bottom. The collection container 1 has a lid or an opening / closing door (not shown) for taking in and out the dust collecting electrode 4. When the lid or the opening / closing door is closed, the inflow port 1 a and the communication port are provided. Only 1b is in communication with the outside.
[0014]
A high voltage from the high-voltage power supply 5 is applied to the discharge electrode 3, whereby the air in the vicinity of the discharge electrode 3 is ionized and unipolar ions are generated.
The dust collecting electrode 4 is a transparent flat electrode having a smooth surface, and has a structure in which, for example, a glass plate or a resin surface is coated with a transparent electrode. The dust collecting electrode 4 is connected to a ground potential 6. Has been.
[0015]
In the above configuration, by applying a high voltage to the discharge electrode 3 while driving the pump 2, unipolar ions generated by the ionization of air in the vicinity of the discharge electrode 3 are collected by the potential difference with the dust collection electrode 4. It moves to the electrode 4 side and in contact with the suspended particulate matter P contained in the atmosphere in the collection container 1 in the process, it is charged. Then, the charged suspended particulate matter P moves toward the dust collecting electrode 4 due to the potential difference between the discharge electrode 3 and the dust collecting electrode 4 and is collected on the surface of the dust collecting electrode 4.
[0016]
A transparent window 1c made of a glass plate or the like is provided on the bottom surface of the collection container 1 at a position just below the central portion of the dust collection electrode 4, and a ceiling directly above the window 1c. A similar transparent window 1d is also provided on the surface. A light source 7 for irradiating a parallel beam made of laser light or lamp light vertically upward is disposed below the window 1c, while a collection of parallel beams from the light source 7 is disposed above the window 1d. A photodetector 8 that detects the intensity of light transmitted through the dust electrode 4 is disposed.
[0017]
The detection output of the photodetector 8 is taken into the arithmetic / control device 9. In the calculation / control device 8, the output of the photodetector 8 in a state in which no suspended particulate matter P is collected on the surface of the dust collecting electrode 4, and a known amount of suspended particulate matter P is collected in the dust collecting electrode. Between the detected value of the transmitted light intensity by the photodetector 8 and the amount of the suspended particulate matter P obtained by calibration using the output of the photodetector 8 collected on the surface of 4 Is stored in advance.
[0018]
The arithmetic / control device 9 supplies drive control signals to the pump 2 and the high-voltage power supply 4. Further, the calculation / control device 9 can print out the concentration information of the suspended particulate matter P on the dust collecting electrode 4 based on the output of the photodetector 8 by connecting the printer 10. Yes.
[0019]
The above-described embodiment of the present invention can be used as either a concentration measuring device for suspended particulate matter P in the atmosphere or a collecting device for suspended particulate matter P in the atmosphere.
[0020]
When used as a concentration measuring device, suspended particulate matter on the dust collection electrode 4 based on the output of the photodetector 8 at regular intervals, for example, in a state where a high voltage is applied to the discharge electrode 3 while driving the pump 2. The collected amount information of P is output to the printer 10. By keeping the amount of air sucked per unit time by the pump 2 constant, the total amount of air sucked into the collection container 1 up to that point in time after the start of starting can be determined. The collected amount information of the suspended particulate matter P sequentially output to the printer 10 represents the amount of the suspended particulate matter P contained in the total amount of air sucked into the collection container 1 at each time point. Moreover, if the difference of the collection amount information for every fixed time passage is calculated, the change with time of the concentration of the suspended particulate matter P in the atmosphere is represented.
[0021]
On the other hand, when the embodiment of the present invention is used as a collection device for the suspended particulate matter P, a desired particle concentration (collection amount) is set in the calculation / control device 9 to start the device. The arithmetic / control device 9 automatically stops the pump 2 and the discharge electrode 3 when the collected amount information based on the output of the photodetector 8 matches the set value. As a result, a set amount of suspended particulate matter P is collected on the dust collecting electrode 4.
[0022]
The suspended particulate matter P collected in this way is kept attached to the surface of the transparent flat-plate-shaped dust collecting electrode 4, for example, by using a laser diffraction / scattering type particle size distribution measuring device. The distribution can be measured over a wide particle size range with high resolution. In other words, a laser diffraction / scattering particle size distribution measuring device measures the spatial intensity distribution of diffraction / scattered light obtained by irradiating a group of particles to be measured in a dispersed state with laser light, and uses Mie scattering theory or Fraunhofer diffraction It is converted into particle size distribution using theory, and the concentration of the particles to be measured can be obtained over a wide particle size range as long as sufficient diffracted / scattered light intensity is obtained and multiple scattering is not caused. A high-resolution particle size distribution can be obtained.
[0023]
In addition, since the suspended particulate matter P collected by the above embodiment is attached to the surface of the transparent flat dust collecting electrode 4, the conventional filter can be used even when observing with a microscope. The particle image is not affected by the background image as in the collection method according to, and there is an advantage that a clear image can be observed.
[0024]
In the above embodiment, the example in which the suspended particulate matter P is attached to the surface using a transparent flat plate as the dust collecting electrode 4 is shown. As shown in FIG. A petri dish-shaped collecting tool 4a, which is made of a transparent material coated with a transparent electrode and provided with conductivity, is mounted on the upper surface of an equivalent transparent flat-plate-shaped dust collecting electrode 4. A liquid is placed in the collecting tool 4a. L may be accommodated so that the charged suspended particulate matter P is collected in the liquid L. Even in this case, by performing the calibration in a state including the liquid L, the output of the photodetector 8 represents the collected amount information of the suspended particulate matter P as described above.
[0025]
Further, when the suspended particulate matter P is collected in the liquid L in this way, when measuring the particle size distribution with a laser diffraction / scattering type particle size distribution measuring device, the particles to be measured are dispersed in the liquid medium. What is necessary is just to perform what is called wet measurement which irradiates a laser beam, and it is convenient if the liquid L is the same liquid as the liquid medium used for the wet measurement.
[0026]
【The invention's effect】
As described above, according to the present invention, the suspended particulate matter contained in the atmosphere sucked into the collection container is charged by the discharge electrode, and the charged particles are formed by the transparent member and irradiated with light. The amount of the suspended particulate matter collected on the dust collecting electrode is obtained by detecting the intensity of the light transmitted through the dust collecting electrode and collecting it. When the amount reaches the preset amount, the air suction is automatically stopped and the collection is completed, so even if the concentration of suspended particulate matter in the air changes due to the supplemental concentration, it is always positive. Accurately set amount of suspended particulate matter can be collected. For example, when it is used for measurement of particle size distribution by laser diffraction / scattering type particle size distribution measuring device, etc. It is possible to prepare a sample to be measured.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram illustrating a schematic diagram showing a mechanical configuration and a block diagram showing an electrical configuration.
FIG. 2 is an explanatory diagram of a configuration example of a dust collection electrode according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Collection container 2 Pump 3 Discharge electrode 4 Dust collection electrode 5 High voltage power supply 6 Ground potential 7 Light source 8 Light detector 9 Calculation / control apparatus 10 Printer P Suspended particulate matter

Claims (1)

大気中浮遊粒子状物質を補集する装置であって、
補集容器と、その補集容器内に大気を吸引するポンプと、補集容器内に配置され、単極イオンを発生して当該容器内の浮遊粒子状物質を帯電させる放電電極と、その放電電極に対して電位差が与えられることにより補集容器内で帯電した浮遊粒子状物質を引き寄せて補集する透明部材からなる集塵電極と、その集塵電極に対して光を照射する光照射手段と、その光の集塵電極の透過光強度を検出する検出手段と、その検出値と上記集塵電極上の浮遊粒子状物質の量との関係を記憶するとともに、浮遊粒子状物質の補集量を任意に設定可能で、かつ、上記検出手段による検出値が設定された補集量に対応する値に到達した時点で上記ポンプを停止させる制御手段を備えていることを特徴とする大気中の浮遊粒子状物質の補集装置。
A device that collects suspended particulate matter in the atmosphere,
A collection container, a pump that sucks air into the collection container, a discharge electrode that is disposed in the collection container and generates unipolar ions to charge suspended particulate matter in the container, and the discharge A dust collecting electrode made of a transparent member that attracts and collects suspended particulate matter charged in the collecting container by applying a potential difference to the electrode, and a light irradiation means for irradiating the dust collecting electrode with light And a detecting means for detecting the intensity of the transmitted light through the dust collecting electrode, the relationship between the detected value and the amount of the suspended particulate matter on the dust collecting electrode, and the collection of the suspended particulate matter In the atmosphere, it is possible to arbitrarily set the amount, and provided with control means for stopping the pump when the detection value by the detection means reaches a value corresponding to the set collection amount Airborne particulate matter collector .
JP2002132613A 2002-01-21 2002-05-08 Airborne particulate matter collection device Expired - Lifetime JP3786049B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002132613A JP3786049B2 (en) 2002-05-08 2002-05-08 Airborne particulate matter collection device
US10/322,677 US6807874B2 (en) 2002-01-21 2002-12-19 Collecting apparatus of floating dusts in atmosphere
US10/882,621 US6923848B2 (en) 2002-01-21 2004-07-02 Collecting apparatus of floating dusts in atmosphere
US11/048,895 US7041153B2 (en) 2002-01-21 2005-02-03 Method of measuring floating dusts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002132613A JP3786049B2 (en) 2002-05-08 2002-05-08 Airborne particulate matter collection device

Publications (2)

Publication Number Publication Date
JP2003329587A JP2003329587A (en) 2003-11-19
JP3786049B2 true JP3786049B2 (en) 2006-06-14

Family

ID=29696098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002132613A Expired - Lifetime JP3786049B2 (en) 2002-01-21 2002-05-08 Airborne particulate matter collection device

Country Status (1)

Country Link
JP (1) JP3786049B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4019267B2 (en) * 2002-11-21 2007-12-12 株式会社島津製作所 Device for collecting suspended particulate matter in the atmosphere
JP4058624B2 (en) * 2002-11-28 2008-03-12 株式会社島津製作所 Device for collecting and measuring suspended particulate matter in the atmosphere
WO2010096425A1 (en) * 2009-02-18 2010-08-26 Battelle Memorial Institute Small area electrostatic aerosol collector
KR101034401B1 (en) * 2009-07-24 2011-05-16 한국지질자원연구원 Airborne Sampler
JP6030353B2 (en) * 2012-03-23 2016-11-24 シャープ株式会社 Particle collection device and particle detection device having the same
JP5997532B2 (en) * 2012-07-30 2016-09-28 シャープ株式会社 Particle detector
JP5860175B2 (en) * 2013-01-29 2016-02-16 株式会社日立製作所 Airborne substance detection device and cartridge used therefor
JP7534121B2 (en) 2020-04-24 2024-08-14 アマノ株式会社 Particle collection device and particle measurement device

Also Published As

Publication number Publication date
JP2003329587A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP2003028781A (en) Measuring method and measuring device of suspended particulate matter
US6807874B2 (en) Collecting apparatus of floating dusts in atmosphere
US10481070B2 (en) Systems, devices, and methods for flow control and sample monitoring control
JP2003315244A (en) Method for measuring granular substances floating in the air
JP5975100B2 (en) Fine particle classification measurement device, sample preparation device with uniform particle concentration distribution, and nanoparticle film formation device
JP3786049B2 (en) Airborne particulate matter collection device
JP2003337087A (en) Apparatus for collecting suspended particle
JP2004053357A (en) Collecting method and measuring method of yellow sand particle
JP3758577B2 (en) Device for collecting suspended particulate matter in the atmosphere and measuring method for collected suspended particulate matter
CN104297119B (en) A kind of air inspirable particle concentration off-limit alarm method
JP3758603B2 (en) Device for collecting suspended particulate matter in the atmosphere
JP2002116134A (en) Measuring apparatus for suspended particulate matter
JP2003254888A (en) Method for measuring suspended particulate matter
JP3961244B2 (en) Method and apparatus for measuring suspended particulate matter
JP2003035655A (en) Method and equipment for measuring floating particulate material
JP4019267B2 (en) Device for collecting suspended particulate matter in the atmosphere
JP3758602B2 (en) Measuring device for pollen in the atmosphere
JP4200373B2 (en) Airborne particulate matter collection device
JP4058624B2 (en) Device for collecting and measuring suspended particulate matter in the atmosphere
JP2003215021A (en) Method for measuring suspended particulate matter in atmosphere
Alinaghipour et al. Determining optimal sampling conditions in the TSI Nanometer Aerosol Sampler 3089
Chen et al. Aerosol Instrumentation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent or registration of utility model

Ref document number: 3786049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8