JP3758602B2 - Measuring device for pollen in the atmosphere - Google Patents

Measuring device for pollen in the atmosphere Download PDF

Info

Publication number
JP3758602B2
JP3758602B2 JP2002142012A JP2002142012A JP3758602B2 JP 3758602 B2 JP3758602 B2 JP 3758602B2 JP 2002142012 A JP2002142012 A JP 2002142012A JP 2002142012 A JP2002142012 A JP 2002142012A JP 3758602 B2 JP3758602 B2 JP 3758602B2
Authority
JP
Japan
Prior art keywords
pollen
electrode
collection
atmosphere
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002142012A
Other languages
Japanese (ja)
Other versions
JP2003329552A (en
Inventor
慎一郎 十時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002142012A priority Critical patent/JP3758602B2/en
Priority to US10/322,677 priority patent/US6807874B2/en
Publication of JP2003329552A publication Critical patent/JP2003329552A/en
Priority to US10/882,621 priority patent/US6923848B2/en
Priority to US11/048,895 priority patent/US7041153B2/en
Application granted granted Critical
Publication of JP3758602B2 publication Critical patent/JP3758602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
本発明は、大気中に浮遊する花粉の測定装置に関する。
【0002】
【従来の技術】
近年、各種花粉症の増加に伴い、大気中に浮遊する花粉についての情報が重要となりつつある。花粉症の原因は、おもにスギやヒノキの花粉であり、これらの花粉は直径約30〜50μm程度でほぼ球形をしている。
【0003】
大気中に浮遊する花粉を捕集して測定する方法として、従来、スライドガラスの表面にワセリン等の粘着物質を塗布したものを大気中に放置し、大気中の花粉を自然沈降させてそのスライドガラスの表面に付着させ、そのスライドガラス上に沈降させた花粉を顕微鏡で観察してその形状、大きさ、個数および種類等を測定する方法が用いられている。
【0004】
【発明が解決しようとする課題】
ところで、大気中に浮遊する花粉を自然沈降させてスライドガラスの表面に付着させてる従来の捕集方法では、その捕集に要する時間が例えば24時間等と長時間となってしまうばかりでなく、風等の影響によって単位時間当たりに捕集される量が左右され、その捕集量は実際に大気中に存在する花粉量を表す量とはならないという問題がある。
【0005】
また、このようにして捕集した花粉を顕微鏡で観察する方法では、その形状や種類の特定については容易であるが、上記したように、捕集される花粉が風等の影響を受けるが故に、大気中に浮遊する花粉の全てについての情報とはなり得ないという問題がある。更には、このように顕微鏡で観察して大きさや個数等を測定する方法では、花粉の粒度分布を測定するためには個々の花粉の径を測定して累計していく必要があり、煩雑であるという問題がある。
【0006】
本発明はこのような実情に鑑みてなされたもので、風等の影響を受けることなく大気中に浮遊する花粉を確実に捕集してその粒度分布を容易かつ正確に測定することのできる測定装置の提供を目的としている。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明の花粉の測定装置は、大気中に浮遊する花粉を測定する装置であって、捕集容器と、その捕集容器内に大気を吸引するポンプと、捕集容器内に配置され、単極イオンを発生して当該容器内に吸引された大気に含まれる花粉を帯電させる放電電極と、透明材料からなり、上記放電電極に対して電位差が与えられることにより捕集容器内で帯電した花粉を引き寄せて捕集する集塵電極を備えてなる捕集装置と、その捕集装置の駆動により捕集された花粉が付着した集塵電極にレーザ光を照射する照射光 学系と、そのレーザ光の花粉による回折・散乱光の空間強度分布を測定する測定光学系と、その測定結果から上記集塵電極上に捕集された花粉の粒度分布を算出する演算手段を備えていることによって特徴づけられる。
【0008】
本発明は、大気中の花粉を電気的に捕集することにより、風等の影響を受けることなく、ポンプにより容器内に吸引した大気中に含まれる花粉をのほぼ全量を短時間のうちに捕集することを可能とし、この捕集装置の特性と、レーザ回折・散乱式粒度分布測定装置の特性を活かして、大気中に浮遊する花粉の粒度分布を正確かつ迅速に測定することを可能とするものである。
【0009】
すなわち、本発明においては、まず、測定すべき花粉の捕集に用いる捕集装置において、ポンプにより大気を捕集容器内に吸引し、その捕集容器内に配置された放電電極から単極イオンを発生させると、大気中に含まれている花粉が帯電する。この帯電した花粉は、捕集容器内で放電電極に対して電位差が与えられている集塵電極へと向かい、集塵電極上に捕集される。このように捕集容器内で花粉を帯電させて集塵電極上に捕集することにより、捕集容器内に吸引した大気中に含まれている花粉のほぼ全量を捕集することができ、その捕集結果は、風等の影響を受けることなく、捕集容器内に吸引した大気の量との関係において、実際に単位体積当たりの大気中に存在する花粉の量を表す量となり得る。
【0010】
そして、本発明では、以上のようにして捕集した花粉、従って容器内に吸引した大気に含まれるほぼ全量の花粉を、レーザ回折・散乱式の粒度分布測定装置を用いた乾式測定によって、その粒度分布を測定する。これにより、大気中に浮遊する花粉の粒度分布を正確に測定することができる。
【0011】
ここで、レーザ回折・散乱式粒度分布測定装置は、分散状態の被測定粒子群にレーザ光を照射したときに得られる回折・散乱光の空間強度分布を測定し、その光強度分布がミーの散乱理論ないしはフラウンホーファの回折理論に則ることを利用し、回折・散乱光の空間強度分布の測定結果からミーの散乱理論ないしはフラウンホーファの回折理論に基づく演算によって被測定粒子群の粒度分布を求める。このレーザ回折・散乱式粒度分布測定装置によれば、被測定粒子群の分散媒中での濃度を適正範囲とすることによって、前記した各種花粉に見られる直径30〜50μmを含む広い粒径範囲において高い分解能で迅速かつ正確に粒度分布を求めることができる。
【0012】
しかしながら、大気中に自然状態で浮遊している花粉に直接的にレーザ光を照射して回折・散乱光を測定しようとしても、その濃度が低すぎる関係上、粒度分布を求めるに十分な回折・散乱光を得ることができない。
【0013】
そこで、発明においては、前記した捕集装置を用いて大気中に浮遊している花粉を透明材料からなる集塵電極上に電気的に捕集する。このとき、花粉は集塵電極の表面に一様に分散した状態となり、レーザ回折・散乱式の粒度分布測定に適した濃度範囲のもとに花粉が付着した状態でレーザ光を照射して回折・散乱光の空間強度分布を照射する。これにより、各種花粉の粒度分布を広い粒径範囲で高い分解能のもとに正確に測定することができる。
【0014】
ここで、透明材料からなる集塵電極の表面に捕集されて分散状態で載っている粉を落下させないように当該集塵電極の表面にガラス板を被せてもよく、その集塵電極およびガラス板の間に花粉を挟み込んだ状態でレーザ光を照射して、花粉による回折・散乱光を測定してもよい。
【0015】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の構成図であり、光学的並びに機械的構成を表す模式図と、電気的構成を表すブロック図とを併記して示す図である。
【0016】
開閉自在の蓋1aを備えた捕集容器1には、大気の流入口1bと、ポンプ(捕集用圧縮機)2の吸引口への連通口1cが形成されており、蓋1aを閉じた状態でポンプ2の駆動により流入口1bを介して大気が捕集容器1内に吸引される。この捕集容器1内には、その上部に放電電極3が設けられているとともに、その放電電極3に対向してその下部には集塵電極4が配置されている。放電電極3には高圧電源5によって高電圧が印加され、これによって放電電極3の近傍の空気が電離し、単極イオンが発生する。
【0017】
一方、集塵電極4はこの例において接地電位6に接続され、この集塵電極4と放電電極3の電位差により、単極イオンは集塵電極4に向けて移動し、その過程で捕集容器1内の大気中に含まれている花粉Pと接触してこれを帯電させる。帯電した花粉Pは、同じく放電電極3と集塵電極4の電位差によって集塵電極4に向けて移動し、集塵電極4上に捕集される。そして、この集塵電極4は、ガラス板や透明樹脂板の少なくとも表面に透明電極をコーティングしてなる全体として透明な部材である。
【0018】
以上の捕集容器1、ポンプ2、放電電極3高圧電源5、および集塵電極4と接地電位6によって、花粉Pの捕集装置10を構成している。この捕集装置10によると、風等の影響を受けることなく、捕集容器1内に吸引した大気中に含まれる花粉Pのほぼ全量を効率よく集塵電極4上に捕集することができる。
【0019】
表面に花粉Pが捕集された透明な集塵電極4は、花粉が落下してしまうことを防止するために、必要に応じてガラス等の透明板41を用いて花粉Pを挟み込んだ状態で、レーザ回折・散乱式粒度分布測定装置20の測定部位に配置される。
【0020】
ーザ回折・散乱式粒度分布測定装置20は、以上のように花粉Pを捕集して測定部位に配置された集塵電極4に対してレーザ光を照射する照射光学系22と、その照射光学系22からのレーザ光の回折・散乱光の空間強度分布を測定する測定光学系23と、その測定光学系23の出力をサンプリングするデータサンプリング回路24、およびそのデータサンプリング回路24によりサンプリングされた回折・散乱光の空間強度分布データを用いて、集塵電極4上に捕集された粒子群の粒度分布を算出するコンピュータ25を主体として構成されている。
【0021】
照射光学系22は、レーザ光源22a、集光レンズ22b、空間フィルタ22c、コリメートレンズ22dによって構成され、レーザ光源22aから出力されたレーザ光を平行光束としてフローセル21に照射する。このフローセル21に照射されたレーザ光は、その内部を流れる媒液L中の花粉Pにより回折・散乱を受ける。この回折・散乱光の空間強度分布は測定光学系23によって測定される。
【0022】
測定光学系23は、照射光学系22の光軸上に、測定部位の集塵電極4を挟んで配置された集光レンズ23aおよびリングディテクタ23bと、その外側に配置された前方広角度散乱光センサ群23cと、測定部位上の集塵電極4の側方および後方(照射光学系22側)に配置された側方/後方散乱光センサ群23dによって構成されている。リングディテクタ23bは、互いに異なる半径のリング状または1/2リング状もしくは1/4リング状の受光面を有する光センサを同心上に配置した光センサアレイであって、集光レンズ23aにより集光された前方所定角度以内の回折・散乱光の強度分布を検出することができる。従って、これらのセンサ群からなる測定光学系23により、フローセル21内の媒液L中に分散している花粉Pによる回折・散乱光の空間強度分布が、前方微小角度から後方に至る広い範囲で測定される。
【0023】
以上の測定光学系23による各回折・散乱角度ごとの光強度検出信号は、それぞれのアンプおよびA−D変換器を有してなるデータサンプリング回路24によって増幅された上でデジタル化され、回折・散乱光の空間強度分布データとしてコンピュータ25に取り込まれる。
【0024】
コンピュータ25では、その回折・散乱光の空間強度分布を用いて、レーザ回折・散乱式の粒度分布測定において公知の、ミーの散乱理論およびフラウンホーファの回折理論に基づく演算手法により、レーザ光が回折・散乱した原因粒子である花粉Pの粒度分布を算出する。
【0025】
以上の構成において、ポンプ2の単位時間当たりの流量とその駆動時間から、捕集容器1内に送り込んだ大気の総量を把握することができ、その捕集容器1内に送り込む空気の総量を適宜に設定することにより、集塵電極4上に捕集されて分散している花粉Pの濃度を、測定光学系22によって十分に回折・散乱光の空間強度分布を測定できる程度とすることができる。これにより、レーザ回折・散乱式粒度分布測定装置20により広い粒径範囲において高い分解能で花粉Pの粒度分布を測定することができる。
【0026】
また、以上のように所定量の大気を捕集容器1内に吸引して花粉Pを集塵電極4上に捕集し、レーザ回折・散乱式粒度分布測定装置20により粒度分布を求めた後、捕集容器1内の集塵電極4上に新たに捕集した花粉Pについて同様の測定を行う、という動作を一定時間ごとに繰り返し行えば、連続的に大気中に浮遊する花粉の状況を監視することができる。
【0027】
更に、各回の測定動作において捕集容器1内に送り込む大気の総量を一定とすると、その各回の測定において得られる回折・散乱光の絶対強度は、大気中の花粉Pの濃度に相関するので、その絶対強度の変化から大気中の花粉Pの濃度の経時的変化を監視することができる。
【0028】
ここで、本発明においては、集塵電極4として透明部材によって構成したものを用いるのでこの集塵電極上に捕集した花粉Pをそのまま顕微鏡の観察に供することができるという利点もある。そして、捕集装置10の集塵電極4上には、捕集容器1内に吸引された大気中に含まれる花粉をほぼ余すところなく捕集しているため、顕微鏡による観察結果は、大気中に浮遊している花粉Pの全体の情報を正確に表すものとなる。
【0029】
【発明の効果】
以上のように、本発明によれば、まず、放電電極と集塵電極が配置された捕集容器内に大気を吸引し、その大気に含まれている花粉を帯電させて集塵電極上に捕集するので、自然落下によりガラス板上に捕集する従来の捕集手法に比して、迅速に、かつ、風等の影響を受けることなく、常に安定して大気中に浮遊している花粉を代表するサンプリングを行うことができる。
【0030】
そして、このようにして捕集されて透明な集塵電極上に付着した花粉を、レーザ回折・散乱式粒度分布測定装置を用いた乾式測定により、つまり花粉が付着した集塵電極をそのまま、もしくはガラス板等によって花粉を挟み込んだ状態でレーザ回折・散乱式粒度分布測定装置の測定部位に配置してレーザ光を照射して回折・散乱光の空間強度分布を測定して、花粉の粒度分布を求めるので、迅速かつ正確に大気中に浮遊している花粉の粒度分布を測定することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態の構成図で、機械的構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。
【符号の説明】
1 捕集容器
2 ポンプ
3 放電電極
4 集塵電極
41 透明板
5 高圧電源
6 接地電位
10 捕集装置
20 レーザ回折・散乱式粒度分布測定装置
22 照射光学系
23 測定光学系
24 データサンプリング回路
25 コンピュータ
P 花粉
[0001]
The present invention is related to measurement device pollen floating in the air.
[0002]
[Prior art]
In recent years, with an increase in various hay fever, information about pollen floating in the atmosphere is becoming important. The cause of hay fever is mainly pollen of cedar and cypress, and these pollens are approximately spherical with a diameter of about 30 to 50 μm.
[0003]
As a method of collecting and measuring pollen floating in the atmosphere, the slide glass with a sticky substance such as petrolatum applied to the surface of the slide is left in the atmosphere and the pollen in the atmosphere is allowed to settle naturally. A method of measuring the shape, size, number, type, etc. of the pollen deposited on the glass surface and observing with a microscope is used.
[0004]
[Problems to be solved by the invention]
By the way, in the conventional collection method in which pollen floating in the air naturally settles and adheres to the surface of the slide glass, not only the time required for the collection becomes, for example, 24 hours, There is a problem that the amount collected per unit time depends on the influence of wind and the like, and the amount collected does not represent the amount of pollen actually present in the atmosphere.
[0005]
In addition, in the method of observing pollen collected in this way with a microscope, it is easy to specify the shape and type, but as described above, the collected pollen is affected by wind and the like. There is a problem that it cannot be information about all pollen floating in the atmosphere. Furthermore, in the method of measuring the size, number, etc. by observing with a microscope in this way, it is necessary to measure and accumulate the individual pollen diameters in order to measure the particle size distribution of the pollen. There is a problem that there is.
[0006]
But the present invention has been made in view of such circumstances, capable of pollen floating in the air without being affected by wind or the like is reliably collected to measure the particle size distribution easily and accurately It is the object of the present invention to provide a measurement equipment.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a pollen measuring device of the present invention is a device for measuring pollen floating in the atmosphere, and includes a collection container, a pump for sucking air into the collection container, A discharge electrode that is disposed in a collecting container and generates unipolar ions to charge pollen contained in the atmosphere sucked into the container; and a transparent material, and a potential difference is given to the discharge electrode. A laser beam is applied to a collecting device including a dust collecting electrode for attracting and collecting charged pollen in the collecting container, and a dust collecting electrode to which the pollen collected by driving the collecting device is attached. calculation for calculating an illumination light science system, a measuring optical system for measuring the spatial intensity distribution of diffracted and scattered light from the pollen of the laser beam, the particle size distribution of the pollen collected on the dust collecting electrode from the measurement result characterized by that it comprises a means It is.
[0008]
The present invention electrically collects pollen in the atmosphere, and without being affected by wind, the entire amount of pollen contained in the atmosphere sucked into the container by a pump can be obtained in a short time. It makes it possible to collect, and characteristics of the collecting device, taking advantage of the characteristics of the laser diffraction-scattering particle size distribution measuring device, to measure accurately and rapidly the particle size distribution of pollen floating in the air and makes it possible.
[0009]
That is, in the present invention, first, in a collection device used for collecting pollen to be measured , air is sucked into a collection container by a pump, and unipolar ions are discharged from a discharge electrode arranged in the collection container. When pollen is generated, pollen contained in the atmosphere is charged. This charged pollen goes to the dust collection electrode where a potential difference is given to the discharge electrode in the collection container, and is collected on the dust collection electrode. In this way, by charging the pollen in the collection container and collecting it on the dust collection electrode, it is possible to collect almost the entire amount of pollen contained in the atmosphere sucked into the collection container, The collection result can be an amount that represents the amount of pollen actually present in the atmosphere per unit volume in relation to the amount of air sucked into the collection container without being affected by wind or the like.
[0010]
In the present invention, the pollen collected as described above, and therefore almost the entire amount of pollen contained in the air sucked into the container, is measured by dry measurement using a laser diffraction / scattering particle size distribution measuring device. Measure the particle size distribution. Thereby, the particle size distribution of the pollen which floats in air | atmosphere can be measured correctly.
[0011]
Here, the laser diffraction / scattering particle size distribution measuring device measures the spatial intensity distribution of diffracted / scattered light obtained when a group of particles in a dispersed state is irradiated with laser light, and the light intensity distribution is Based on the scattering theory or the Fraunhofer diffraction theory, the particle size distribution of the particle group to be measured is obtained from the measurement result of the spatial intensity distribution of the diffracted / scattered light by calculation based on the Mie scattering theory or the Fraunhofer diffraction theory. According to this laser diffraction / scattering type particle size distribution measuring device, by setting the concentration of the particles to be measured in the dispersion medium to an appropriate range, a wide particle size range including a diameter of 30 to 50 μm found in various types of pollen described above. The particle size distribution can be obtained quickly and accurately with high resolution.
[0012]
However, even if it is intended to measure diffraction / scattered light by directly irradiating pollen floating in the air in the natural state, the concentration is too low, so that sufficient diffraction / Scattered light cannot be obtained.
[0013]
Therefore, in the present invention, pollen floating in the atmosphere is electrically collected on a dust collection electrode made of a transparent material using the collection device described above . At this time, pollen is in a state of being uniformly dispersed on the surface of the dust collecting electrode, and is diffracted by irradiating the laser beam with pollen attached in a concentration range suitable for laser diffraction / scattering particle size distribution measurement. -Irradiate the spatial intensity distribution of scattered light. Thus, the original high resolution particle size distribution of the various pollen in a wide size range can be measure accurately.
[0014]
Here, so as not to drop the flour collected on the surface of the dust collecting electrode made of a transparent material rests in a dispersed state may be covered with a glass plate on the surface of the dust-collecting electrodes, the dust-collecting electrodes and Laser light may be irradiated with pollen sandwiched between glass plates, and diffracted / scattered light from pollen may be measured .
[0015]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram illustrating a schematic diagram representing an optical and mechanical configuration and a block diagram representing an electrical configuration.
[0016]
A collection container 1 having an openable / closable lid 1a is formed with an air inlet 1b and a communication port 1c to a suction port of a pump (collecting compressor) 2. The lid 1a is closed. In the state, the air is sucked into the collection container 1 through the inlet 1b by driving the pump 2. In the collection container 1, a discharge electrode 3 is provided at an upper portion thereof, and a dust collection electrode 4 is disposed at a lower portion thereof so as to face the discharge electrode 3. A high voltage is applied to the discharge electrode 3 by the high-voltage power supply 5, whereby the air in the vicinity of the discharge electrode 3 is ionized to generate unipolar ions.
[0017]
On the other hand, the dust collecting electrode 4 is connected to the ground potential 6 in this example. Due to the potential difference between the dust collecting electrode 4 and the discharge electrode 3, monopolar ions move toward the dust collecting electrode 4, and in the process It comes into contact with pollen P contained in the atmosphere in 1 and is charged. Similarly, the charged pollen P moves toward the dust collecting electrode 4 due to the potential difference between the discharge electrode 3 and the dust collecting electrode 4 and is collected on the dust collecting electrode 4. The dust collection electrode 4 is a transparent member as a whole formed by coating a transparent electrode on at least the surface of a glass plate or a transparent resin plate.
[0018]
The above-described collection container 1, pump 2, discharge electrode 3, high-voltage power supply 5, dust collection electrode 4, and ground potential 6 constitute a pollen P collection device 10. According to this collection device 10, almost all of the pollen P contained in the atmosphere sucked into the collection container 1 can be efficiently collected on the dust collection electrode 4 without being affected by wind or the like. .
[0019]
In order to prevent pollen from falling, the transparent dust collecting electrode 4 with pollen P collected on the surface is in a state where the pollen P is sandwiched using a transparent plate 41 such as glass as necessary. The laser diffraction / scattering particle size distribution measuring device 20 is disposed at the measurement site.
[0020]
Les chromatography The diffraction-scattering particle size distribution measuring apparatus 20, the irradiation optical system 22 for irradiating a laser beam to the dust collecting electrode 4 disposed in the measurement portion was collected pollen P as described above, the Sampled by a measurement optical system 23 that measures the spatial intensity distribution of the diffracted / scattered light of the laser light from the irradiation optical system 22, a data sampling circuit 24 that samples the output of the measurement optical system 23, and the data sampling circuit 24. The computer 25 is mainly configured to calculate the particle size distribution of the particles collected on the dust collecting electrode 4 using the spatial intensity distribution data of the diffracted / scattered light.
[0021]
The irradiation optical system 22 includes a laser light source 22a, a condensing lens 22b, a spatial filter 22c, and a collimating lens 22d, and irradiates the flow cell 21 with the laser light output from the laser light source 22a as a parallel light beam. The laser light applied to the flow cell 21 is diffracted and scattered by the pollen P in the medium L flowing inside. The spatial intensity distribution of the diffracted / scattered light is measured by the measurement optical system 23.
[0022]
The measurement optical system 23 includes a condensing lens 23a and a ring detector 23b arranged on the optical axis of the irradiation optical system 22 with the dust collecting electrode 4 at the measurement site interposed therebetween, and a wide-angle scattered light scattered forward. The sensor group 23c is configured by a side / backscattered light sensor group 23d disposed on the side and back of the dust collecting electrode 4 on the measurement site (on the irradiation optical system 22 side). The ring detector 23b is a photosensor array in which photosensors having ring-shaped, ½-ring or ¼-ring-shaped light receiving surfaces with different radii are arranged concentrically, and condensed by a condenser lens 23a. The intensity distribution of the diffracted / scattered light within a predetermined forward angle can be detected. Therefore, the spatial intensity distribution of the diffracted / scattered light by the pollen P dispersed in the liquid medium L in the flow cell 21 is measured in a wide range from the front minute angle to the rear by the measurement optical system 23 including these sensor groups. Measured.
[0023]
The light intensity detection signal for each diffraction / scattering angle by the measurement optical system 23 is amplified by a data sampling circuit 24 having a respective amplifier and AD converter, digitized, It is taken into the computer 25 as spatial intensity distribution data of scattered light.
[0024]
The computer 25 uses the spatial intensity distribution of the diffracted / scattered light to diffract the laser light by a calculation method based on Mie's scattering theory and Fraunhofer's diffraction theory known in laser diffraction / scattering type particle size distribution measurement. The particle size distribution of pollen P, which is the cause particle that has been scattered, is calculated.
[0025]
In the above configuration, the total amount of air sent into the collection container 1 can be grasped from the flow rate per unit time of the pump 2 and its driving time, and the total amount of air sent into the collection container 1 can be appropriately determined. By setting to, the concentration of the pollen P collected and dispersed on the dust collecting electrode 4 can be set to such an extent that the spatial intensity distribution of diffracted / scattered light can be sufficiently measured by the measurement optical system 22. . Thereby, the particle size distribution of the pollen P can be measured with high resolution in a wide particle size range by the laser diffraction / scattering type particle size distribution measuring device 20.
[0026]
In addition, after a predetermined amount of air is sucked into the collection container 1 to collect pollen P on the dust collection electrode 4 as described above, the particle size distribution is obtained by the laser diffraction / scattering particle size distribution measuring device 20. If the same measurement is repeatedly performed at regular intervals on the pollen P newly collected on the dust collection electrode 4 in the collection container 1, the state of pollen continuously floating in the atmosphere can be obtained. Can be monitored.
[0027]
Furthermore, if the total amount of air sent into the collection container 1 in each measurement operation is constant, the absolute intensity of the diffracted / scattered light obtained in each measurement correlates with the concentration of pollen P in the atmosphere. The change with time of the concentration of pollen P in the atmosphere can be monitored from the change in absolute intensity.
[0028]
In the present invention, there Runode used as constituted by a transparent member as the dust collecting electrode 4, an advantage that the pollen P which is collected on the collection electrode can be directly subjected to microscopic observation. And since the pollen contained in the air sucked in the collection container 1 is collected almost on the dust collecting electrode 4 of the collection device 10, the observation result by the microscope is in the atmosphere. It accurately represents the entire information of the pollen P floating on the surface.
[0029]
【The invention's effect】
As described above, according to this onset bright, first, the discharge electrodes and the dust collection electrode air sucked in arranged collection container, the dust collecting electrode is charged pollen contained in that atmosphere Because it collects in the air, it will float in the atmosphere quickly and stably, without being affected by wind, etc., compared to the conventional collection method of collecting on a glass plate by natural fall. Sampling that represents pollen can be performed.
[0030]
Then, the pollen collected in this way and attached to the transparent dust collecting electrode is subjected to dry measurement using a laser diffraction / scattering particle size distribution measuring device , that is, the dust collecting electrode to which pollen is attached is left as it is, or The pollen particle size distribution can be obtained by measuring the spatial intensity distribution of the diffracted / scattered light by irradiating the laser beam and placing it on the measurement part of the laser diffraction / scattering particle size distribution measuring device with the pollen sandwiched between glass plates. Therefore, the particle size distribution of pollen floating in the air can be measured quickly and accurately.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram illustrating a schematic diagram showing a mechanical configuration and a block diagram showing an electrical configuration.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Collection container 2 Pump 3 Discharge electrode 4 Dust collection electrode 41 Transparent plate 5 High voltage power supply 6 Ground potential 10 Collection apparatus 20 Laser diffraction and scattering type particle size distribution measurement apparatus 22 Irradiation optical system 23 Measurement optical system 24 Data sampling circuit 25 Computer P pollen

Claims (1)

大気中に浮遊する花粉を測定する装置であって、捕集容器と、その捕集容器内に大気を吸引するポンプと、捕集容器内に配置され、単極イオンを発生して当該容器内に吸引された大気に含まれる花粉を帯電させる放電電極と、透明材料からなり、上記放電電極に対して電位差が与えられることにより捕集容器内で帯電した花粉を引き寄せて捕集する集塵電極を備えてなる捕集装置と、その捕集装置の駆動により捕集された花粉が付着した集塵電極にレーザ光を照射する照射光学系と、そのレーザ光の花粉による回折・散乱光の空間強度分布を測定する測定光学系と、その測定結果から上記集塵電極上に捕集された花粉の粒度分布を算出する演算手段を備えていることを特徴とする花粉の測定装置。An apparatus for measuring pollen floating in the atmosphere, which is disposed in a collection container, a pump that sucks air in the collection container, and in the collection container to generate unipolar ions. A discharge electrode for charging pollen contained in the air sucked into the air, and a dust collection electrode made of a transparent material and attracting and collecting the pollen charged in the collection container by applying a potential difference to the discharge electrode. A collection device, an irradiation optical system for irradiating a dust collecting electrode to which pollen collected by driving the collection device is attached, and a space of diffraction / scattered light by the pollen of the laser beam A pollen measuring apparatus comprising: a measuring optical system for measuring an intensity distribution; and an arithmetic means for calculating a particle size distribution of the pollen collected on the dust collecting electrode from the measurement result .
JP2002142012A 2002-01-21 2002-05-16 Measuring device for pollen in the atmosphere Expired - Fee Related JP3758602B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002142012A JP3758602B2 (en) 2002-05-16 2002-05-16 Measuring device for pollen in the atmosphere
US10/322,677 US6807874B2 (en) 2002-01-21 2002-12-19 Collecting apparatus of floating dusts in atmosphere
US10/882,621 US6923848B2 (en) 2002-01-21 2004-07-02 Collecting apparatus of floating dusts in atmosphere
US11/048,895 US7041153B2 (en) 2002-01-21 2005-02-03 Method of measuring floating dusts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002142012A JP3758602B2 (en) 2002-05-16 2002-05-16 Measuring device for pollen in the atmosphere

Publications (2)

Publication Number Publication Date
JP2003329552A JP2003329552A (en) 2003-11-19
JP3758602B2 true JP3758602B2 (en) 2006-03-22

Family

ID=29702444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002142012A Expired - Fee Related JP3758602B2 (en) 2002-01-21 2002-05-16 Measuring device for pollen in the atmosphere

Country Status (1)

Country Link
JP (1) JP3758602B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034401B1 (en) 2009-07-24 2011-05-16 한국지질자원연구원 Airborne Sampler
US9618431B2 (en) * 2010-11-30 2017-04-11 Inspirotec, Inc. Electrokinetic device for capturing assayable agents in a dielectric fluid
CN109030092A (en) * 2018-10-24 2018-12-18 中国地质科学院水文地质环境地质研究所 A kind of field pollen collecting device and pollen collecting and processing method
JP7534121B2 (en) 2020-04-24 2024-08-14 アマノ株式会社 Particle collection device and particle measurement device
CN114208502A (en) * 2021-12-24 2022-03-22 南通大学 Simple indoor atmospheric pollen collector and pollen treatment method thereof

Also Published As

Publication number Publication date
JP2003329552A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP3622696B2 (en) Method and apparatus for measuring suspended particulate matter
US6807874B2 (en) Collecting apparatus of floating dusts in atmosphere
JP2004053357A (en) Collecting method and measuring method of yellow sand particle
KR101540914B1 (en) Device for characterizing a size distribution of electrically-charged airborne particles in an air flow
CN102147350A (en) Method and device for fast detection of aerosol particle concentration and size distribution
JP2003315244A (en) Method for measuring granular substances floating in the air
JP3758577B2 (en) Device for collecting suspended particulate matter in the atmosphere and measuring method for collected suspended particulate matter
JP2003337087A (en) Apparatus for collecting suspended particle
KR20160091142A (en) System for measuring fine particulate and gas particulate
CN104502551B (en) Measure the on-line monitoring system of Inhalable Particulate
JP3758602B2 (en) Measuring device for pollen in the atmosphere
JP3758603B2 (en) Device for collecting suspended particulate matter in the atmosphere
JP3961244B2 (en) Method and apparatus for measuring suspended particulate matter
JP3786049B2 (en) Airborne particulate matter collection device
TWI695163B (en) Particulate matter sensing device
JP2003035655A (en) Method and equipment for measuring floating particulate material
Yang et al. An integrated system for automated measurement of airborne pollen based on electrostatic enrichment and image analysis with machine vision
Mark Occupational exposure to nanoparticles and nanotubes
JP2002116134A (en) Measuring apparatus for suspended particulate matter
JP2003254888A (en) Method for measuring suspended particulate matter
JP4058624B2 (en) Device for collecting and measuring suspended particulate matter in the atmosphere
RU2360229C2 (en) Photoelectric device for measuring concentration and dispersion composition of aerosols
CN2929695Y (en) Real time collector for particulate matter
GB2254920A (en) Measurement of airborne fibres
Rood et al. Construction of a portable fiber monitor measuring the differential light scattering from aligned fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3758602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees