JP2002340779A - Instrument for measuring particle size distribution - Google Patents

Instrument for measuring particle size distribution

Info

Publication number
JP2002340779A
JP2002340779A JP2001145852A JP2001145852A JP2002340779A JP 2002340779 A JP2002340779 A JP 2002340779A JP 2001145852 A JP2001145852 A JP 2001145852A JP 2001145852 A JP2001145852 A JP 2001145852A JP 2002340779 A JP2002340779 A JP 2002340779A
Authority
JP
Japan
Prior art keywords
flow cell
particle size
measured
size distribution
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001145852A
Other languages
Japanese (ja)
Other versions
JP3783574B2 (en
Inventor
Haruo Shimaoka
治夫 島岡
Akihiro Fukai
秋博 深井
Michiro Higuchi
三千郎 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001145852A priority Critical patent/JP3783574B2/en
Publication of JP2002340779A publication Critical patent/JP2002340779A/en
Application granted granted Critical
Publication of JP3783574B2 publication Critical patent/JP3783574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser diffraction/scattering particle size distribution measuring instrument in which the time required for measuring cycle can be shortened greatly. SOLUTION: The apparatus for measuring particle size distribution comprises a medium liquid supply/discharge system 2 in which a medium liquid is supplied to a flow cell 3 and then discharged to the outside and a particle group being measured can be thrown in at any time on the upstream side of the flow cell 3, an optical system 5 for measuring the spatial intensity distribution of a light diffracted/scattered by the particle group, and an operating means 7 for calculating a stored particle distribution using the output from the measuring optical system 5 as effective data when it has reached a preset level. The particle group being measured flows into the flow cell 3 only for a moment following throw-in thereof and discharged immediately to the outside of the system so that a state where the inside of the system is cleaned by clean medium liquid is brought about thus eliminating the conventional process for cleaning the inside of the system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ回折・散乱
式の粒度分布測定装置に関し、特に短いインターバルで
被測定粒子群をサンプリングして次々とその粒度分布を
測定する必要のある分野に用いるのに適した粒度分布測
定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser diffraction / scattering type particle size distribution measuring apparatus, and more particularly to an apparatus which needs to sample particles to be measured at short intervals and measure the particle size distribution one after another. The present invention relates to a particle size distribution measuring device suitable for a device.

【0002】[0002]

【従来の技術】粒体の粒度分布を比較的短時間で正確に
測定する装置として、レーザ回折・散乱法に基づく、い
わゆるレーザ回折・散乱式粒度分布測定装置が知られて
いる。このレーザ回折・散乱式粒度分布測定装置におい
ては、分散飛翔状態の被測定粒子群にレーザ光を照射す
ることによって生じる回折・散乱光の空間強度分布を測
定し、その光強度分布がミーの散乱理論ないしはフラウ
ンホーファの回折理論に則ることを利用し、回折・散乱
光の空間強度分布の測定結果からミーの散乱理論ないし
はフラウンホーファ回折理論に基づく演算によって被測
定粒子群の粒度分布を算出する。
2. Description of the Related Art A so-called laser diffraction / scattering type particle size distribution measuring apparatus based on a laser diffraction / scattering method is known as an apparatus for accurately measuring the particle size distribution of particles in a relatively short time. This laser diffraction / scattering type particle size distribution measuring device measures the spatial intensity distribution of the diffracted / scattered light generated by irradiating the measured particle group in the dispersed and flying state with laser light, and the light intensity distribution is measured by Mie scattering. Utilizing the theory or the Fraunhofer diffraction theory, the particle size distribution of the particles to be measured is calculated from the measurement results of the spatial intensity distribution of the diffracted / scattered light by calculation based on the Mie scattering theory or the Fraunhofer diffraction theory.

【0003】従来のこの種の粒度分布測定装置において
は、図2に例示するような装置構成が採用されている。
すなわち、被測定粒子群Pは、媒液供給ポンプ211か
ら供給される媒液Lとともに、攪拌機212および超音
波振動子213を備えた分散槽210に投入され、ここ
で媒液L中に被測定粒子群Pが分散してなる懸濁液Sが
生成される。分散槽210は、循環用配管221により
フローセル230と連通しており、循環/排出ポンプ2
22を駆動することによって懸濁液Sが分散槽210と
フローセル230の間で循環する。
[0003] In this type of conventional particle size distribution measuring apparatus, an apparatus configuration as illustrated in FIG. 2 is employed.
That is, the particle group P to be measured is put into the dispersion tank 210 provided with the stirrer 212 and the ultrasonic vibrator 213 together with the medium liquid L supplied from the medium liquid supply pump 211, and the medium P A suspension S in which the particle groups P are dispersed is generated. The dispersion tank 210 communicates with the flow cell 230 via a circulation pipe 221 and a circulation / discharge pump 2.
By driving the suspension 22, the suspension S circulates between the dispersion tank 210 and the flow cell 230.

【0004】この懸濁液Sの循環状態、つまりフローセ
ル230中を懸濁液Sが流れている状態で、レーザ光源
241からのレーザ光を集光レンズ242,空間フィル
タ243およびコリメータ244を介してフローセル2
30に照射することによって、フローセル230中の被
測定粒子群Pによりそのレーザ光は回折・散乱を受け
る。この回折・散乱光のうち、前方への回折・散乱光は
集光レンズ251を介して前方散乱光センサ252の受
光面上に集光されて測定され、側方への散乱光は側方散
乱光センサ253に、また、後方への散乱光は後方散乱
光センサ254によって測定される。
In a state where the suspension S is circulating, that is, in a state where the suspension S is flowing in the flow cell 230, the laser light from the laser light source 241 is transmitted through the condenser lens 242, the spatial filter 243 and the collimator 244. Flow cell 2
By irradiating the laser beam 30, the laser beam is diffracted and scattered by the measured particle group P in the flow cell 230. Of the diffracted / scattered light, the forward diffracted / scattered light is condensed on the light receiving surface of the forward scattered light sensor 252 via the condenser lens 251 and measured. The backscattered light is measured by the light sensor 253 and the backscattered light sensor 254.

【0005】前方散乱光センサ252は、図3(A)に
その正面図を例示するように、互いに半径の異なるリン
グの一部をなす受光面を有する複数の光センサPSを同
心状に並べたものであり、この前方散乱光センサ252
によって前方所定角度範囲の回折・散乱光の空間強度分
布を測定することができ、側方散乱光センサ253およ
び後方散乱光センサ254による測定と併せて、図3
(B)に測定結果を表す棒グラフを示すように、回折・
散乱光の空間強度分布を広い角度範囲で測定することが
できる。
The forward scattered light sensor 252 has a plurality of light sensors PS having light receiving surfaces forming a part of rings having different radii concentrically arranged as shown in the front view of FIG. 3A. The forward scattered light sensor 252
3 can measure the spatial intensity distribution of the diffracted / scattered light in a predetermined angle range in the forward direction, and together with the measurement by the side scattered light sensor 253 and the back scattered light sensor 254, FIG.
As shown in the bar graph showing the measurement results in FIG.
The spatial intensity distribution of the scattered light can be measured in a wide angle range.

【0006】以上のようにして測定された光強度分布
は、各光センサの出力を増幅するアンプおよびその増幅
信号をデジタル化するA−D変換器を備えてなるデータ
サンプリング回路260を介してコンピュータ270に
取り込まれる。コンピュータ270では、この回折・散
乱光の空間強度分布の測定データと、被測定粒子群Pお
よび媒液Lの屈折率を用いることにより、ミーの散乱理
論ないしはフラウンホーファの回折理論に基づいた公知
の演算によって、被測定粒子群Pの粒度分布を算出する
ことができる。
The light intensity distribution measured as described above is transmitted to a computer via a data sampling circuit 260 comprising an amplifier for amplifying the output of each optical sensor and an AD converter for digitizing the amplified signal. 270. The computer 270 uses the measured data of the spatial intensity distribution of the diffracted / scattered light and the refractive indices of the particle group P to be measured and the medium L to obtain a known calculation based on Mie's scattering theory or Fraunhofer's diffraction theory. Thereby, the particle size distribution of the measured particle group P can be calculated.

【0007】ここで、図2において223は循環/排出
バルブであって、この循環/排出バルブ223を操作す
ることにより、上記したように懸濁液Sをフローセル2
30との間で循環させるか、あるいは、分散槽210並
びにフローセル230中の懸濁液Sを外部に排出できる
ようになっており、一つのサンプルの測定後に、懸濁液
Sを外部に排出して分散槽210および循環用配管22
1並びにフローセル230内を洗浄することによって、
先のサンプルの影響が後のサンプルの測定結果に及ばな
いようにすることができる。
Here, in FIG. 2, reference numeral 223 denotes a circulation / discharge valve. By operating the circulation / discharge valve 223, the suspension S is supplied to the flow cell 2 as described above.
30 or the suspension S in the dispersion tank 210 and the flow cell 230 can be discharged to the outside. After the measurement of one sample, the suspension S is discharged to the outside. Dispersion tank 210 and circulation pipe 22
1 and by washing the inside of the flow cell 230,
The influence of the first sample can be prevented from affecting the measurement result of the second sample.

【0008】以上のようなレーザ回折・散乱式粒度分布
測定装置においては、回折・散乱光の測定に要する時間
が短く、従って他の測定方法を用いた粒度分布測定装置
に比して、その測定に要する時間が短くてすむという大
きなメリットがある。
In the above-mentioned laser diffraction / scattering type particle size distribution measuring apparatus, the time required for measuring the diffraction / scattered light is short, and therefore, compared to the particle size distribution measuring apparatus using other measurement methods, There is a great merit that the time required for the process is short.

【0009】[0009]

【発明が解決しようとする課題】ところで、近年におい
て普及してきている高速粉砕機においては、その粉砕過
程を監視するために、短時間、例えば20秒程度ごとに
粉体の粒度分布の測定を繰り返し、その結果に基づいて
粉砕機の運転の続行/停止を行う、という要求がある。
By the way, in a high-speed pulverizer that has become widespread in recent years, in order to monitor the pulverization process, the particle size distribution of the powder is repeatedly measured in a short time, for example, about every 20 seconds. There is a demand to continue / stop the operation of the crusher based on the result.

【0010】ここで、前述した従来のレーザ回折・散乱
式粒度分布測定装置においては、回折・散乱光の空間強
度分布の測定に要する時間は短時間ですむのであるが、
被測定粒子群のサンプリングを含めた測定の1サイクル
に要する時間は、上記した要求にはとても応えられな
い。
In the above-mentioned conventional laser diffraction / scattering type particle size distribution measuring apparatus, the time required for measuring the spatial intensity distribution of the diffracted / scattered light is short, but
The time required for one cycle of the measurement including the sampling of the particle group to be measured cannot meet the above-mentioned requirements very much.

【0011】すなわち、従来のレーザ回折・散乱式粒度
分布測定装置では、「分散槽内への媒液の供給→同じく
分散槽内へのサンプル投入→分散→懸濁液の循環→回折
・散乱光測定→懸濁液の排出→循環系の洗浄」が測定の
1サイクルであり、しかも、洗浄工程自体が、「分散槽
内への媒液の供給→一定時間の循環→排出」という工程
が必要であり、測定全体としての1サイクルを数十秒と
することは実質的に不可能である。
That is, in the conventional laser diffraction / scattering type particle size distribution measuring apparatus, “supply of a medium solution into a dispersion tank → input sample into the dispersion tank as well → dispersion → circulation of suspension → diffraction / scattered light One cycle of measurement is “measurement → discharge of suspension → cleaning of circulation system”, and the washing process itself requires a process of “supply of the liquid medium into the dispersion tank → circulation for a certain time → discharge”. Therefore, it is substantially impossible to make one cycle as a whole measurement several tens of seconds.

【0012】本発明はこのような実情に鑑みてなされた
もので、従来のレーザ回折・散乱式粒度分布測定装置に
比して、測定の1サイクルを大幅に短縮化することがで
き、もって高速粉砕機における上記した要求等を十分に
満たすことのできる粒度分布測定装置の提供を目的とし
ている。
The present invention has been made in view of such circumstances, and one cycle of measurement can be greatly shortened as compared with a conventional laser diffraction / scattering type particle size distribution measuring apparatus. It is an object of the present invention to provide a particle size distribution measuring device which can sufficiently satisfy the above-mentioned requirements in a pulverizer.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の粒度分布測定装置は、分散飛翔状態の被測
定粒子群にレーザ光を照射することによって得られる回
折・散乱光の空間強度分布を測定し、その測定結果を用
いて被測定粒子群の粒度分布を演算する粒度分布測定装
置であって、フローセルと、そのフローセルに対して媒
液を供給し、かつ、当該フローセルから流出した媒液を
排出するとともに、フローセルの上流側で被測定粒子群
を投入可能に構成された媒液供給・排出系と、上記フロ
ーセルに対してレーザ光を照射する照射光学系と、その
レーザ光の照射により生じる回折・散乱光の空間強度分
布を測定する測定光学系と、その測定光学系により測定
された光強度があらかじめ設定されたレベル以上になっ
たとき、当該測定光学系による測定結果を用いて粒度分
布を演算する演算手段を備えていることによって特徴づ
けられる。
In order to achieve the above object, a particle size distribution measuring apparatus according to the present invention comprises a space for diffracted and scattered light obtained by irradiating a group of particles to be measured in a dispersed and flying state with a laser beam. A particle size distribution measuring device that measures an intensity distribution and calculates a particle size distribution of a group of particles to be measured using the measurement result, and supplies a medium to the flow cell and the flow cell, and flows out of the flow cell. A medium supply / discharge system configured to discharge the medium fluid that has been discharged and to be able to input a particle group to be measured upstream of the flow cell, an irradiation optical system that irradiates the flow cell with laser light, and the laser light. Measurement optical system that measures the spatial intensity distribution of the diffracted and scattered light generated by the irradiation of light, and when the light intensity measured by the measurement optical system exceeds a predetermined level, Characterized by that it comprises a calculating means for calculating a particle size distribution by using the measurement result by Manabu system.

【0014】本発明は、従来のレーザ回折・散乱式粒度
分布測定装置のように被測定粒子群を媒液中に分散させ
た懸濁液をフローセルと分散槽の間で循環させるのでは
なく、フローセルに対して清浄な媒液を常時供給して排
出する媒液供給・排出系を設け、粒度分布の測定に際し
ては被測定粒子群をその系内に投入することによって懸
濁液として、フローセルを経て外部に排出するようにす
ることで、所期の目的を達成しようとするものである。
The present invention does not circulate a suspension in which particles to be measured are dispersed in a liquid medium between a flow cell and a dispersion tank as in a conventional laser diffraction / scattering type particle size distribution analyzer. A medium liquid supply / discharge system that constantly supplies and discharges a clean medium liquid to the flow cell is provided, and when measuring the particle size distribution, the particles to be measured are put into the system so that the flow cell becomes a suspension. It is intended to achieve its intended purpose by discharging it through the outside.

【0015】すなわち、本発明においては、フローセル
に対して清浄な媒液を供給し、フローセルを出た媒液は
外部に排出し、その媒液供給・排出系のフローセルの上
流側で被測定粒子群の投入可能な部分を設けるととも
に、フローセルには照射光学系からのレーザ光を常時照
射しておく。従って、媒液供給・排出系に被測定粒子群
を投入することにより、媒液が懸濁化してフローセル内
を流れた後、外部に排出される。この懸濁液がフローセ
ル内を流れている間のみ、被測定粒子群による回折・散
乱光の空間強度分布が測定光学系によって測定される。
このとき、測定光学系による回折・散乱光の空間強度分
布の測定値のレベルが上がるため、演算手段では、その
レベルがあらかじめ設定されているレベルを越えたとき
に、その測定結果を用いて被測定粒子群の粒度分布を演
算する。
That is, in the present invention, a clean medium liquid is supplied to the flow cell, the medium liquid exiting the flow cell is discharged to the outside, and the particles to be measured are located upstream of the flow cell of the medium liquid supply / discharge system. A portion into which the group can be put is provided, and the flow cell is constantly irradiated with laser light from the irradiation optical system. Therefore, by introducing the particle group to be measured into the medium liquid supply / discharge system, the medium liquid is suspended, flows through the flow cell, and is then discharged to the outside. Only while the suspension is flowing in the flow cell, the spatial intensity distribution of the diffracted / scattered light by the measured particle group is measured by the measuring optical system.
At this time, since the level of the measured value of the spatial intensity distribution of the diffracted / scattered light by the measuring optical system increases, when the level exceeds a preset level, the arithmetic unit uses the measurement result to cover the level. Calculate the particle size distribution of the measured particle group.

【0016】このようなサンプリング系を用いることに
よって、投入した被測定粒子群はフローセルを流れた後
に直ちに外部に排出されるとともに、次の被測定粒子群
が投入されるまでの間に清浄な媒液が常時系内を流れて
実質的にサンプリング系が洗浄されているため、被測定
粒子群の投入間隔、従って測定のインターバルを短くし
ても、先に投入した粒子群の影響を受けることなく、正
確な粒度分布の測定が可能となる。
By using such a sampling system, the charged particles to be measured are discharged to the outside immediately after flowing through the flow cell, and a clean medium is supplied before the next particles to be measured are charged. Since the liquid always flows in the system and the sampling system is substantially washed, even if the interval between the input of the particles to be measured, and thus the interval of the measurement, is shortened, it is not affected by the previously input particles. And accurate measurement of the particle size distribution becomes possible.

【0017】[0017]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1は本発明の実施の形
態の構成図で、光学系の構成を表す模式図と電気的構成
を表すブロック図とを併記して示す図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram showing both a schematic diagram showing a configuration of an optical system and a block diagram showing an electrical configuration.

【0018】分散槽1は、前記した従来のこの種の測定
装置と同様に、攪拌機11および超音波振動子12を有
しており、この分散槽1には媒液供給ポンプ13から清
浄な媒液が供給される。分散槽1の下端部は送液ポンプ
21の吸引口が連通しており、この送液ポンプ21の吐
出口は液供給用配管22を介してフローセル3の下端開
口部に連通している。また、フローセル3の上端開口部
は液排出用配管23に連通している。これらの送液ポン
プ21、液供給用配管22および液排出用配管23によ
って媒液供給・排出系2を構成しており、媒液はフロー
セル3を流れた後、外部に排出されるようになってい
る。また、分散槽1は上向きに開口しており、この開口
部分から随時に被測定粒子群を投入することができるよ
うになっている。
The dispersion tank 1 has a stirrer 11 and an ultrasonic vibrator 12 as in the above-described conventional measuring apparatus. Liquid is supplied. The lower end of the dispersion tank 1 communicates with the suction port of the liquid feed pump 21, and the discharge port of the liquid feed pump 21 communicates with the lower end opening of the flow cell 3 via the liquid supply pipe 22. The upper end opening of the flow cell 3 communicates with the liquid discharge pipe 23. The liquid supply pump 21, the liquid supply pipe 22, and the liquid discharge pipe 23 constitute a medium liquid supply / discharge system 2, and the medium is discharged to the outside after flowing through the flow cell 3. ing. Further, the dispersion tank 1 is opened upward, so that a group of particles to be measured can be introduced at any time from the opening.

【0019】フローセル3には、照射光学系4からのレ
ーザ光が照射される。照射光学系4は、従来と同様にレ
ーザ光源41、集光レンズ42、空間フィルタ43およ
びコリメータ44からなり、フローセル3に対して平行
なレーザ光を照射することができる。
The flow cell 3 is irradiated with laser light from an irradiation optical system 4. The irradiation optical system 4 includes a laser light source 41, a condenser lens 42, a spatial filter 43, and a collimator 44 as in the related art, and can irradiate a parallel laser beam to the flow cell 3.

【0020】フローセル3を挟んで照射光学系4と反対
側には、集光レンズ51およびその焦点位置に置かれた
前方散乱光センサ52が配置されており、また、フロー
セル3の側方には側方散乱光センサ53が、更にフロー
セル3の後方、つまり照射光学系4側には後方散乱光セ
ンサ54が配置されており、これらによって、従来と同
様の測定光学系5を構成している。各光センサの出力は
アンプおよびA−D変換器からなるデータサンプリング
回路6を介して刻々とコンピュータ7に取り込まれる。
A condensing lens 51 and a forward scattered light sensor 52 placed at the focal point thereof are disposed on the opposite side of the irradiation optical system 4 with the flow cell 3 interposed therebetween. A side scattered light sensor 53 and a back scattered light sensor 54 are arranged further behind the flow cell 3, that is, on the side of the irradiation optical system 4, and these constitute a measurement optical system 5 similar to the conventional one. The output of each optical sensor is captured by a computer 7 via a data sampling circuit 6 comprising an amplifier and an A / D converter.

【0021】以上の本発明の実施の形態の使用に際して
は、媒液供給ポンプ13および送液ポンプ21、更には
攪拌機11および超音波振動子12が常時駆動状態に置
かれ、フローセル3には清浄な媒液が常時流され、フロ
ーセル3内を流れた媒液は順次外部に排出される。ま
た、フローセル3には常時照射光学系4からのレーザ光
が照射され、測定光学系5の各センサの出力がデータサ
ンプリング回路6により所定の微小時間ごとにデジタル
化されてコンピュータ7に刻々と取り込まれる。粒度分
布の測定に際しては、適宜量の被測定粒子群を分散槽1
内に投入する。これにより、その粒子群が媒液内に分散
して懸濁液となってフローセル3内に導かれた後に系外
に排出され、再び媒液のみがフローセル3内を流れる状
態となる。フローセル3に照射されているレーザ光は、
粒子群がフローセル3中を通過している間のみ、回折・
散乱を受ける。
In using the above embodiment of the present invention, the medium liquid supply pump 13 and the liquid supply pump 21, the stirrer 11 and the ultrasonic oscillator 12 are always driven, and the flow cell 3 is cleaned. The medium is constantly flowed, and the medium flowing in the flow cell 3 is sequentially discharged to the outside. The flow cell 3 is constantly irradiated with a laser beam from the irradiation optical system 4, and the output of each sensor of the measurement optical system 5 is digitized by the data sampling circuit 6 every predetermined minute time and is taken into the computer 7 every moment. It is. When measuring the particle size distribution, an appropriate amount of the particles to be measured is dispersed in the dispersion tank 1.
Put in. As a result, the particle group is dispersed in the medium, becomes a suspension, is guided into the flow cell 3, is then discharged out of the system, and only the medium flows in the flow cell 3 again. The laser beam applied to the flow cell 3 is
Only when the particle group passes through the flow cell 3 is diffraction /
Receive scattering.

【0022】コンピュータ7では、その測定光学系5の
各光センサの出力の大きさを監視し、その出力値があら
かじめ設定されているレベルに達している間のみ、各光
センサの出力を有効データとして刻々と蓄積する。より
具体的には、例えば前方散乱光センサ52内の特定の散
乱角度に位置する一つの光センサの出力を監視し、その
出力値とあらかじめ設定されているレベルとを比較し
て、出力値がそのレベルに達している間のみ、測定光学
系5の全光センサの出力を各センサごとに順次蓄積して
いく。そして、監視している光センサの出力値が上記の
レベル未満になった時点で、それまでに蓄積した各セン
サごとの出力を回折・散乱光の空間強度分布データとし
て、公知の演算によって粒度分布に換算して、付属の表
示器7aに表示する。
The computer 7 monitors the magnitude of the output of each optical sensor of the measurement optical system 5, and outputs the output of each optical sensor to valid data only while the output value reaches a preset level. Accumulates every moment. More specifically, for example, the output of one optical sensor located at a specific scattering angle in the forward scattered light sensor 52 is monitored, and the output value is compared with a preset level to determine the output value. Only when the level is reached, the outputs of all the optical sensors of the measuring optical system 5 are sequentially accumulated for each sensor. When the output value of the monitored optical sensor falls below the above level, the output of each sensor accumulated up to that point is used as spatial intensity distribution data of the diffracted / scattered light, and the particle size distribution is calculated by a known calculation. And displayed on the attached display 7a.

【0023】以上の本発明の実施の形態によると、分散
槽1に被測定粒子群を投入した後の僅かな間のみ、フロ
ーセル3を含む媒液供給・排出系2内の媒液が粒子群に
よって懸濁化し、その状態での測定光学系5の出力が自
動的に有効データとして蓄積されて粒度分布の算出に供
されるものの、その懸濁液はフローセル3を通過した後
に直ちに系外に排出され、後は清浄な媒液のみが系内を
流れるため、被測定粒子群の投入後の僅かな時間を経過
した後は、フローセル3を含む媒液供給・排出系2内は
実質的に洗浄されて次の被測定粒子群を測定するための
待機状態となり、従って、測定の1サイクルは図2に例
示した従来のレーザ回折・散乱式粒度分布測定装置に比
して大幅に短くなる。
According to the above embodiment of the present invention, the medium in the medium supply / discharge system 2 including the flow cell 3 is used only for a short time after the particles to be measured have been put into the dispersion tank 1. The output of the measurement optical system 5 in that state is automatically accumulated as effective data and used for calculation of the particle size distribution, but the suspension is immediately out of the system after passing through the flow cell 3. After being discharged and only the clean medium flows through the system, after a lapse of a short time after the introduction of the particle group to be measured, the inside of the medium supply and discharge system 2 including the flow cell 3 is substantially After being washed, the apparatus is in a standby state for measuring the next group of particles to be measured. Therefore, one cycle of the measurement is significantly shorter than that of the conventional laser diffraction / scattering type particle size distribution measuring apparatus illustrated in FIG.

【0024】なお、以上の実施の形態においては、被測
定粒子群の分散槽1内への投入後、前方散乱光センサ5
2内の一つの特定の光センサの出力が設定レベルを越え
ている間にのみ各光センサの出力を有効データとして蓄
積して粒度分布の算出に供した例を示したが、本発明は
これに限定されることなく、例えば複数の光センサの出
力を監視し、その平均値が設定レベルを越えている間に
のみ各光センサの出力を有効データとしてもよく、ま
た、大きさの異なる2つのレベルを設定しておき、特定
の一つの光センサの出力、あるいは特定の複数の光セン
サの出力の平均値が、大きい側のレベルを越えた時点で
各光センサの出力の蓄積を開始し、小さい側のレベル未
満になったときにその蓄積を終了するように構成しても
よく、要は、被測定粒子群がフローセル3内に所定の濃
度以上で存在していることを測定光学系5のいずれか適
当な光センサの出力に基づいて自動的に検知し、その被
測定粒子群のフローセル3内の濃度が有効なデータを採
取し得ない程度に低くなった時点で各光センサの出力の
蓄積を自動的に終了できれば、任意の方法を採用するこ
とができる。
In the above embodiment, after the particles to be measured are put into the dispersion tank 1, the forward scattered light sensor 5
2 shows an example in which the output of each optical sensor is accumulated as valid data and used for calculation of the particle size distribution only while the output of one specific optical sensor in 2 exceeds the set level. For example, the outputs of a plurality of optical sensors may be monitored, and the output of each optical sensor may be used as valid data only while the average value exceeds a set level. When the output of one specific optical sensor or the average value of the outputs of specific multiple optical sensors exceeds the higher level, the accumulation of the output of each optical sensor is started. The accumulation may be terminated when the level becomes lower than the level on the smaller side. In other words, it is determined that the particle group to be measured exists in the flow cell 3 at a predetermined concentration or higher. Output of any suitable optical sensor If the accumulation of the output of each optical sensor can be automatically terminated when the concentration of the particle group to be measured in the flow cell 3 becomes so low that valid data cannot be collected, it is optional. Method can be adopted.

【0025】また、以上の実施の形態では、被測定粒子
群を分散槽1内に投入する方法については特に言及しな
かったが、例えば投入用の容器を用意し、その容器に被
測定粒子群を満たして人手によって投入するほか、同様
の容器に自動的に被測定粒子群を満たして分散槽1内に
投入する投入機構を設け、スイッチ操作によってその投
入機構を駆動して被測定粒子群を分散槽1内に投入し、
あるいは一定のインターバルでその投入機構を駆動して
自動的に被測定粒子群を分散槽1内に投入するように構
成することもできる。
In the above embodiment, the method of charging the particle group to be measured into the dispersion tank 1 is not particularly described. However, for example, a container for charging is prepared, and the particle group to be measured is placed in the container. In addition, a charging mechanism is provided for automatically filling the same container with the particles to be measured and charging the same into the dispersion tank 1, and driving the charging mechanism by a switch operation to collect the particles to be measured. Into the dispersion tank 1,
Alternatively, it is also possible to adopt a configuration in which the charging mechanism is driven at regular intervals to automatically charge the particle group to be measured into the dispersion tank 1.

【0026】[0026]

【発明の効果】以上のように、本発明によれば、レーザ
光が照射されるフローセル内に媒液を供給した後に系外
に排出する媒液供給・排出系を設け、その媒液供給・排
出系を介して随時に被測定粒子群を投入して懸濁化させ
てフローセルに導いた後、その懸濁液を直ちに系外に排
出できるように構成するとともに、その被測定粒子群の
投入があったことを測定光学系の出力から自動的に検知
して、有効データとして粒度分布の算出に供するように
構成しているので、被測定粒子群を投入した後、僅かな
時間の経過によってフローセルを含む媒液供給・排出系
内が清浄な媒液の流れによって自動的に洗浄されること
になり、従来のように洗浄工程を別途設ける必要がなく
なり、測定の1サイクルを大幅に短縮化することができ
る。その結果、高速粉砕機や造粒プラントなどに適用し
て、粒度分布測定結果をフィードバックしてこれらの装
置やプラントなどを制御することが可能となった。
As described above, according to the present invention, a medium supply / discharge system for supplying a medium into a flow cell irradiated with laser light and then discharging the medium outside the system is provided. After introducing the particles to be measured through the discharge system at any time, suspending the particles, introducing the particles into the flow cell, and then immediately discharging the suspension to the outside of the system, and introducing the particles to be measured. Is automatically detected from the output of the measurement optical system, and is provided to calculate the particle size distribution as effective data. The inside of the medium supply / discharge system including the flow cell is automatically washed by the flow of the clean medium, eliminating the need for a separate washing step as in the past, greatly shortening the measurement cycle. can do. As a result, it became possible to control these devices and plants by applying the results of the particle size distribution measurement to a high-speed pulverizer or a granulation plant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の構成図で、光学系の構成
を表す模式図と電気的構成を表すブロック図とを併記し
て示す図である。
FIG. 1 is a configuration diagram of an embodiment of the present invention, showing a schematic diagram illustrating a configuration of an optical system and a block diagram illustrating an electrical configuration.

【図2】従来のレーザ回折・散乱式粒度分布測定装置の
構成例を示す図で、光学系の構成を表す模式図と電気的
構成を表すブロック図とを併記して示す図である。
FIG. 2 is a diagram showing a configuration example of a conventional laser diffraction / scattering type particle size distribution measuring apparatus, and is a diagram showing both a schematic diagram showing a configuration of an optical system and a block diagram showing an electrical configuration.

【図3】レーザ回折・散乱式粒度分布測定装置に多用さ
れている前方散乱光センサの説明図で、(A)はその構
成例を示す正面図であり、(B)はその各光センサPS
の出力による回折・散乱光の空間強度分布の測定例を示
すグラフである。
3A and 3B are explanatory diagrams of a forward scattered light sensor frequently used in a laser diffraction / scattering type particle size distribution measuring device, wherein FIG. 3A is a front view showing a configuration example thereof, and FIG.
6 is a graph showing a measurement example of the spatial intensity distribution of the diffracted / scattered light by the output of FIG.

【符号の説明】[Explanation of symbols]

1 分散槽 11 攪拌機 12 超音波振動子 13 媒液供給ポンプ 2 媒液供給・排出系 21 送液ポンプ 22 液供給用配管 23 液排出用配管 3 フローセル 4 照射光学系 41 レーザ光源 42 集光レンズ 43 空間フィルタ 44 コリメータ 5 測定光学系 51 集光レンズ 52 前方散乱光センサ 53 側方散乱光センサ 54 後方散乱光センサ 6 データサンプリング回路 7 コンピュータ 7a 表示器 DESCRIPTION OF SYMBOLS 1 Dispersion tank 11 Stirrer 12 Ultrasonic oscillator 13 Medium supply pump 2 Medium supply / discharge system 21 Liquid supply pump 22 Liquid supply pipe 23 Liquid discharge pipe 3 Flow cell 4 Irradiation optical system 41 Laser light source 42 Condensing lens 43 Spatial filter 44 Collimator 5 Measurement optical system 51 Condenser lens 52 Forward scattered light sensor 53 Side scattered light sensor 54 Back scattered light sensor 6 Data sampling circuit 7 Computer 7a Display

フロントページの続き (72)発明者 樋口 三千郎 京都市中京区西ノ京桑原町1番地 株式会 社島津製作所内Continued on the front page (72) Inventor Sanshiro Higuchi 1 Nishinokyo Kuwaharacho, Nakagyo-ku, Kyoto City Shimadzu Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 分散飛翔状態の被測定粒子群にレーザ光
を照射することによって得られる回折・散乱光の空間強
度分布を測定し、その測定結果を用いて被測定粒子群の
粒度分布を演算する粒度分布測定装置であって、 フローセルと、そのフローセルに対して媒液を供給し、
かつ、当該フローセルから流出した媒液を排出するとと
もに、フローセルの上流側で被測定粒子群を投入可能に
構成された媒液供給・排出系と、上記フローセルに対し
てレーザ光を照射する照射光学系と、そのレーザ光の照
射により生じる回折・散乱光の空間強度分布を測定する
測定光学系と、その測定光学系により測定された回折・
散乱光強度があらかじめ設定されたレベル以上になった
とき、当該測定光学系による測定結果を用いて粒度分布
を演算する演算手段を備えていることを特徴とする粒度
分布測定装置。
1. A method for measuring a spatial intensity distribution of diffracted / scattered light obtained by irradiating a laser beam onto a group of particles to be measured in a dispersed and flying state, and calculating a particle size distribution of the group of particles to be measured using the measurement result. A particle size distribution measuring device, comprising: supplying a flow cell and a medium to the flow cell;
And a medium liquid supply / discharge system configured to discharge the medium liquid flowing out of the flow cell and to be capable of introducing a group of particles to be measured upstream of the flow cell, and an irradiation optical system for irradiating the flow cell with laser light. System, a measurement optical system that measures the spatial intensity distribution of the diffraction and scattered light generated by the irradiation of the laser light, and the diffraction and the diffraction measured by the measurement optical system.
When the scattered light intensity becomes equal to or higher than a predetermined level, the particle size distribution measuring device is provided with a calculating means for calculating a particle size distribution using a measurement result by the measuring optical system.
JP2001145852A 2001-05-16 2001-05-16 Particle size distribution measuring device Expired - Lifetime JP3783574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001145852A JP3783574B2 (en) 2001-05-16 2001-05-16 Particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001145852A JP3783574B2 (en) 2001-05-16 2001-05-16 Particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2002340779A true JP2002340779A (en) 2002-11-27
JP3783574B2 JP3783574B2 (en) 2006-06-07

Family

ID=18991595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001145852A Expired - Lifetime JP3783574B2 (en) 2001-05-16 2001-05-16 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP3783574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100619A1 (en) * 2019-11-22 2021-05-27 ソニーグループ株式会社 Sample dispersing device, sample dispersing method, sample aliquoting kit and micro particle aliquoting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100619A1 (en) * 2019-11-22 2021-05-27 ソニーグループ株式会社 Sample dispersing device, sample dispersing method, sample aliquoting kit and micro particle aliquoting device

Also Published As

Publication number Publication date
JP3783574B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
EP1278057B1 (en) Method and apparatus for determining the size distribution of suspended particulate matter in the atmospheric air
US5818583A (en) Particle analysis system and method
JP2020054234A (en) Cell culture apparatus, imaging unit, and culture monitoring method
KR100503020B1 (en) Method and apparatus for measuring turbidity
US7839493B2 (en) Apparatus and method for detecting particulates in water
JP3672158B2 (en) Turbidity measuring method and apparatus
JP5884544B2 (en) Optical particle measuring device
JP2004053357A (en) Collecting method and measuring method of yellow sand particle
JPH06109615A (en) Grain size distribution measuring device
JP2002116134A (en) Measuring apparatus for suspended particulate matter
JP2003035655A (en) Method and equipment for measuring floating particulate material
JP2002340779A (en) Instrument for measuring particle size distribution
JP4830983B2 (en) Particle size distribution measuring device
JP3783606B2 (en) Particle size distribution measuring device
JP3409510B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP2669290B2 (en) Particle size distribution analyzer
JP4716055B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP2000002644A (en) Laser diffraction/scattering type grain size distribution- measuring device
JP4830841B2 (en) Particle size distribution measuring device
JPH03102242A (en) Method and apparatus for analyzing granular substance and ultrapure water making and control apparatus utilizing the same
JP2004117096A (en) Method and apparatus for measuring particle size distribution
JP2003042932A (en) Method and instrument for measuring suspended particulate matter
JP5549390B2 (en) Particle size distribution measuring device
JP2003329552A (en) Capturing apparatus of pollen in air, and measuring apparatus and method
JP2013024760A (en) Particle size distribution measurement instrument

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3783574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

EXPY Cancellation because of completion of term