JP3783574B2 - Particle size distribution measuring device - Google Patents

Particle size distribution measuring device Download PDF

Info

Publication number
JP3783574B2
JP3783574B2 JP2001145852A JP2001145852A JP3783574B2 JP 3783574 B2 JP3783574 B2 JP 3783574B2 JP 2001145852 A JP2001145852 A JP 2001145852A JP 2001145852 A JP2001145852 A JP 2001145852A JP 3783574 B2 JP3783574 B2 JP 3783574B2
Authority
JP
Japan
Prior art keywords
flow cell
measured
liquid
particle size
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001145852A
Other languages
Japanese (ja)
Other versions
JP2002340779A (en
Inventor
治夫 島岡
秋博 深井
三千郎 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001145852A priority Critical patent/JP3783574B2/en
Publication of JP2002340779A publication Critical patent/JP2002340779A/en
Application granted granted Critical
Publication of JP3783574B2 publication Critical patent/JP3783574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ回折・散乱式の粒度分布測定装置に関し、特に短いインターバルで被測定粒子群をサンプリングして次々とその粒度分布を測定する必要のある分野に用いるのに適した粒度分布測定装置に関する。
【0002】
【従来の技術】
粒体の粒度分布を比較的短時間で正確に測定する装置として、レーザ回折・散乱法に基づく、いわゆるレーザ回折・散乱式粒度分布測定装置が知られている。このレーザ回折・散乱式粒度分布測定装置においては、分散飛翔状態の被測定粒子群にレーザ光を照射することによって生じる回折・散乱光の空間強度分布を測定し、その光強度分布がミーの散乱理論ないしはフラウンホーファの回折理論に則ることを利用し、回折・散乱光の空間強度分布の測定結果からミーの散乱理論ないしはフラウンホーファ回折理論に基づく演算によって被測定粒子群の粒度分布を算出する。
【0003】
従来のこの種の粒度分布測定装置においては、図2に例示するような装置構成が採用されている。すなわち、被測定粒子群Pは、媒液供給ポンプ211から供給される媒液Lとともに、攪拌機212および超音波振動子213を備えた分散槽210に投入され、ここで媒液L中に被測定粒子群Pが分散してなる懸濁液Sが生成される。分散槽210は、循環用配管221によりフローセル230と連通しており、循環/排出ポンプ222を駆動することによって懸濁液Sが分散槽210とフローセル230の間で循環する。
【0004】
この懸濁液Sの循環状態、つまりフローセル230中を懸濁液Sが流れている状態で、レーザ光源241からのレーザ光を集光レンズ242,空間フィルタ243およびコリメータ244を介してフローセル230に照射することによって、フローセル230中の被測定粒子群Pによりそのレーザ光は回折・散乱を受ける。この回折・散乱光のうち、前方への回折・散乱光は集光レンズ251を介して前方散乱光センサ252の受光面上に集光されて測定され、側方への散乱光は側方散乱光センサ253に、また、後方への散乱光は後方散乱光センサ254によって測定される。
【0005】
前方散乱光センサ252は、図3(A)にその正面図を例示するように、互いに半径の異なるリングの一部をなす受光面を有する複数の光センサPSを同心状に並べたものであり、この前方散乱光センサ252によって前方所定角度範囲の回折・散乱光の空間強度分布を測定することができ、側方散乱光センサ253および後方散乱光センサ254による測定と併せて、図3(B)に測定結果を表す棒グラフを示すように、回折・散乱光の空間強度分布を広い角度範囲で測定することができる。
【0006】
以上のようにして測定された光強度分布は、各光センサの出力を増幅するアンプおよびその増幅信号をデジタル化するA−D変換器を備えてなるデータサンプリング回路260を介してコンピュータ270に取り込まれる。コンピュータ270では、この回折・散乱光の空間強度分布の測定データと、被測定粒子群Pおよび媒液Lの屈折率を用いることにより、ミーの散乱理論ないしはフラウンホーファの回折理論に基づいた公知の演算によって、被測定粒子群Pの粒度分布を算出することができる。
【0007】
ここで、図2において223は循環/排出バルブであって、この循環/排出バルブ223を操作することにより、上記したように懸濁液Sをフローセル230との間で循環させるか、あるいは、分散槽210並びにフローセル230中の懸濁液Sを外部に排出できるようになっており、一つのサンプルの測定後に、懸濁液Sを外部に排出して分散槽210および循環用配管221並びにフローセル230内を洗浄することによって、先のサンプルの影響が後のサンプルの測定結果に及ばないようにすることができる。
【0008】
以上のようなレーザ回折・散乱式粒度分布測定装置においては、回折・散乱光の測定に要する時間が短く、従って他の測定方法を用いた粒度分布測定装置に比して、その測定に要する時間が短くてすむという大きなメリットがある。
【0009】
【発明が解決しようとする課題】
ところで、近年において普及してきている高速粉砕機においては、その粉砕過程を監視するために、短時間、例えば20秒程度ごとに粉体の粒度分布の測定を繰り返し、その結果に基づいて粉砕機の運転の続行/停止を行う、という要求がある。
【0010】
ここで、前述した従来のレーザ回折・散乱式粒度分布測定装置においては、回折・散乱光の空間強度分布の測定に要する時間は短時間ですむのであるが、被測定粒子群のサンプリングを含めた測定の1サイクルに要する時間は、上記した要求にはとても応えられない。
【0011】
すなわち、従来のレーザ回折・散乱式粒度分布測定装置では、「分散槽内への媒液の供給→同じく分散槽内へのサンプル投入→分散→懸濁液の循環→回折・散乱光測定→懸濁液の排出→循環系の洗浄」が測定の1サイクルであり、しかも、洗浄工程自体が、「分散槽内への媒液の供給→一定時間の循環→排出」という工程が必要であり、測定全体としての1サイクルを数十秒とすることは実質的に不可能である。
【0012】
本発明はこのような実情に鑑みてなされたもので、従来のレーザ回折・散乱式粒度分布測定装置に比して、測定の1サイクルを大幅に短縮化することができ、もって高速粉砕機における上記した要求等を十分に満たすことのできる粒度分布測定装置の提供を目的としている。
【0013】
【課題を解決するための手段】
上記の目的を達成するため、本発明の粒度分布測定装置は、分散飛翔状態の被測定粒子群にレーザ光を照射することによって得られる回折・散乱光の空間強度分布を測定し、その測定結果を用いて被測定粒子群の粒度分布を演算する粒度分布測定装置であって、フローセルと、投入された被測定粒子群を媒液中に分散させるための分散槽と、その分散槽に対して連続的に媒液を供給する媒液供給ポンプと、上記分散槽内の液を上記フローセル内に連続的に送り込む送液ポンプおよび液供給用配管と、上記フローセル内を流れた液を外部に排出する液排出用配管と、上記フローセルに対してレーザ光を照射する照射光学系と、そのレーザ光の照射により生じる回折・散乱光の空間強度分布を測定する測定光学系と、その測定光学系の出力があらかじめ設定されたレベルに達しているか否かで被測定粒子群の存在を検知し、その存在検知状態における当該出力を有効データとして用いて被測定粒子群の粒度分布を演算する演算手段を備えていることによって特徴づけられる。
【0014】
本発明は、従来のレーザ回折・散乱式粒度分布測定装置のように被測定粒子群を媒液中に分散させた懸濁液をフローセルと分散槽の間で循環させるのではなく、フローセルに対して清浄な媒液を常時供給して排出する媒液供給・排出系を設け、粒度分布の測定に際しては被測定粒子群をその系内に投入することによって懸濁液として、フローセルを経て外部に排出するようにすることで、所期の目的を達成しようとするものである。
【0015】
すなわち、本発明においては、フローセルに対して清浄な媒液を連続的に供給し、フローセルを出た媒液は外部に排出するとともに、そのフローセルの上流側で被測定粒子群投入できるように構成すべく、分散槽に対して媒液を連続的に供給する媒液供給ポンプを設けるとともに、その分散槽内の液を送液ポンプによりフローセルに連続的に送液し、フローセルを流れた液は外部に排出する配管を設け、フローセルには照射光学系からのレーザ光を常時照射しておく。従って、フローセルに対して連続的に媒液が流されている状態で、分散槽に随時に被測定粒子群を投入することにより、媒液が懸濁化してフローセル内を流れた後、外部に排出される。この懸濁液がフローセル内を流れている間のみ、被測定粒子群による回折・散乱光の空間強度分布が測定光学系によって測定される。このとき、測定光学系による回折・散乱光の空間強度分布の測定値のレベルが上がるため、演算手段では、そのレベルがあらかじめ設定されているレベルを越えたときに、その測定結果を用いて被測定粒子群の粒子分布を演算する。
【0016】
このようなサンプリング系を用いることによって、投入した被測定粒子群はフローセルを流れた後に直ちに外部に排出されるとともに、次の被測定粒子群が投入されるまでの間に清浄な媒液が常時系内を流れて実質的にサンプリング系が洗浄されているため、被測定粒子群の投入間隔、従って測定のインターバルを短くしても、先に投入した粒子群の影響を受けることなく、正確な粒度分布の測定が可能となる。
【0017】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の構成図で、光学系の構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。
【0018】
分散槽1は、前記した従来のこの種の測定装置と同様に、攪拌機11および超音波振動子12を有しており、この分散槽1には媒液供給ポンプ13から清浄な媒液が供給される。分散槽1の下端部は送液ポンプ21の吸引口が連通しており、この送液ポンプ21の吐出口は液供給用配管22を介してフローセル3の下端開口部に連通している。また、フローセル3の上端開口部は液排出用配管23に連通している。これらの送液ポンプ21、液供給用配管22および液排出用配管23によって媒液供給・排出系2を構成しており、媒液はフローセル3を流れた後、外部に排出されるようになっている。また、分散槽1は上向きに開口しており、この開口部分から随時に被測定粒子群を投入することができるようになっている。
【0019】
フローセル3には、照射光学系4からのレーザ光が照射される。照射光学系4は、従来と同様にレーザ光源41、集光レンズ42、空間フィルタ43およびコリメータ44からなり、フローセル3に対して平行なレーザ光を照射することができる。
【0020】
フローセル3を挟んで照射光学系4と反対側には、集光レンズ51およびその焦点位置に置かれた前方散乱光センサ52が配置されており、また、フローセル3の側方には側方散乱光センサ53が、更にフローセル3の後方、つまり照射光学系4側には後方散乱光センサ54が配置されており、これらによって、従来と同様の測定光学系5を構成している。各光センサの出力はアンプおよびA−D変換器からなるデータサンプリング回路6を介して刻々とコンピュータ7に取り込まれる。
【0021】
以上の本発明の実施の形態の使用に際しては、媒液供給ポンプ13および送液ポンプ21、更には攪拌機11および超音波振動子12が常時駆動状態に置かれ、フローセル2には清浄な媒液が常時流され、フローセル3内を流れた媒液は順次外部に排出される。換言すれば、フローセル3には媒液が連続的に流され、その媒液はフローセル3を経て連続的に排出されることになる。また、フローセル3には常時照射光学系4からのレーザ光が照射され、測定光学系5の各センサの出力がデータサンプリング回路6により所定の微小時間ごとにデジタル化されてコンピュータ7に刻々と取り込まれる。粒度分布の測定に際しては、適宜量の被測定粒子群を分散槽1内に投入する。これにより、その粒子群が媒液内に分散して懸濁液となってフローセル3内に導かれた後に系外に排出され、再び媒液のみがフローセル3内を流れる状態となる。フローセル3に照射されているレーザ光は、粒子群がフローセル3中を通過している間のみ、回折・散乱を受ける。
【0022】
コンピュータ7では、その測定光学系5の各光センサの出力の大きさを監視し、その出力値があらかじめ設定されているレベルに達している間のみ、各光センサの出力を有効データとして刻々と蓄積する。より具体的には、例えば前方散乱光センサ52内の特定の散乱角度に位置する一つの光センサの出力を監視し、その出力値とあらかじめ設定されているレベルとを比較して、出力値がそのレベルに達している間のみ、測定光学系5の全光センサの出力を各センサごとに順次蓄積していく。そして、監視している光センサの出力値が上記のレベル未満になった時点で、それまでに蓄積した各センサごとの出力を回折・散乱光の空間強度分布データとして、公知の演算によって粒度分布に換算して、付属の表示器7aに表示する。
【0023】
以上の本発明の実施の形態によると、分散槽1に被測定粒子群を投入した後の僅かな間のみ、フローセル3を含む媒液供給・排出系2内の媒液が粒子群によって懸濁化し、その状態での測定光学系5の出力が自動的に有効データとして蓄積されて粒度分布の算出に供されるものの、その懸濁液はフローセル3を通過した後に直ちに系外に排出され、後は清浄な媒液のみが系内を流れるため、被測定粒子群の投入後の僅かな時間を経過した後は、フローセル3を含む媒液供給・排出系2内は実質的に洗浄されて次の被測定粒子群を測定するための待機状態となり、従って、測定の1サイクルは図2に例示した従来のレーザ回折・散乱式粒度分布測定装置に比して大幅に短くなる。
【0024】
なお、以上の実施の形態においては、被測定粒子群の分散槽1内への投入後、前方散乱光センサ52内の一つの特定の光センサの出力が設定レベルを越えている間にのみ各光センサの出力を有効データとして蓄積して粒度分布の算出に供した例を示したが、本発明はこれに限定されることなく、例えば複数の光センサの出力を監視し、その平均値が設定レベルを越えている間にのみ各光センサの出力を有効データとしてもよく、また、大きさの異なる2つのレベルを設定しておき、特定の一つの光センサの出力、あるいは特定の複数の光センサの出力の平均値が、大きい側のレベルを越えた時点で各光センサの出力の蓄積を開始し、小さい側のレベル未満になったときにその蓄積を終了するように構成してもよく、要は、被測定粒子群がフローセル3内に所定の濃度以上で存在していることを測定光学系5のいずれか適当な光センサの出力に基づいて自動的に検知し、その被測定粒子群のフローセル3内の濃度が有効なデータを採取し得ない程度に低くなった時点で各光センサの出力の蓄積を自動的に終了できれば、任意の方法を採用することができる。
【0025】
また、以上の実施の形態では、被測定粒子群を分散槽1内に投入する方法については特に言及しなかったが、例えば投入用の容器を用意し、その容器に被測定粒子群を満たして人手によって投入するほか、同様の容器に自動的に被測定粒子群を満たして分散槽1内に投入する投入機構を設け、スイッチ操作によってその投入機構を駆動して被測定粒子群を分散槽1内に投入し、あるいは一定のインターバルでその投入機構を駆動して自動的に被測定粒子群を分散槽1内に投入するように構成することもできる。
【0026】
【発明の効果】
以上のように、本発明によれば、分散槽に対して連続的に媒液を供給する媒液供給ポンプを設けるとともに、送液ポンプによりその分散槽内の液をフローセルに対して連続的に送液した後に外部に排出するような配管を設けることで、フローセルには常時清浄な媒液が流れ、分散槽に随時に被測定粒子群を投入したときにのみ媒液が懸濁化し、その懸濁液はフローセルを流れた後、直ちに系外に排出されるように構成するとともに、その被測定粒子群の投入があったことを測定光学系の出力から自動的に検知して、有効データとして粒度分布の産出に供するように構成しているので、被測定粒子群を投入した後、僅かな時間の経過によってフローセルを含む媒液供給・排出系内が清浄な媒液の流れによって自動的に洗浄されることになり、従来のように洗浄工程を別途設ける必要がなくなり、測定の1サイクルを大幅に短縮化することができる。その結果、高速粉砕機や造粒プラントなどに適用して、粒度分布測定結果をフィードバックしてこられの装置やプラントなどを制御することが可能となった。
【図面の簡単な説明】
【図1】本発明の実施の形態の構成図で、光学系の構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。
【図2】従来のレーザ回折・散乱式粒度分布測定装置の構成例を示す図で、光学系の構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。
【図3】レーザ回折・散乱式粒度分布測定装置に多用されている前方散乱光センサの説明図で、(A)はその構成例を示す正面図であり、(B)はその各光センサPSの出力による回折・散乱光の空間強度分布の測定例を示すグラフである。
【符号の説明】
1 分散槽
11 攪拌機
12 超音波振動子
13 媒液供給ポンプ
2 媒液供給・排出系
21 送液ポンプ
22 液供給用配管
23 液排出用配管
3 フローセル
4 照射光学系
41 レーザ光源
42 集光レンズ
43 空間フィルタ
44 コリメータ
5 測定光学系
51 集光レンズ
52 前方散乱光センサ
53 側方散乱光センサ
54 後方散乱光センサ
6 データサンプリング回路
7 コンピュータ
7a 表示器
[0001]
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser diffraction / scattering type particle size distribution measuring apparatus, and more particularly to a particle size distribution measuring apparatus suitable for use in a field where it is necessary to sample a group of particles to be measured at short intervals and measure the particle size distribution one after another. About.
[0002]
[Prior art]
A so-called laser diffraction / scattering particle size distribution measuring apparatus based on a laser diffraction / scattering method is known as an apparatus for accurately measuring the particle size distribution of a granule in a relatively short time. In this laser diffraction / scattering type particle size distribution measuring device, the spatial intensity distribution of diffracted / scattered light generated by irradiating laser light to a group of particles in a dispersed flight state is measured, and the light intensity distribution is scattered by Mie. Based on the theory or the diffraction theory of Fraunhofer, the particle size distribution of the particle group to be measured is calculated from the measurement result of the spatial intensity distribution of the diffracted / scattered light by calculation based on Mie's scattering theory or Fraunhofer diffraction theory.
[0003]
In this type of conventional particle size distribution measuring apparatus, an apparatus configuration as illustrated in FIG. 2 is employed. That is, the particle group P to be measured is put into the dispersion tank 210 including the stirrer 212 and the ultrasonic vibrator 213 together with the liquid medium L supplied from the liquid medium supply pump 211, where the measured liquid group P is measured in the liquid medium L. A suspension S in which the particle group P is dispersed is generated. The dispersion tank 210 communicates with the flow cell 230 via a circulation pipe 221, and the suspension S circulates between the dispersion tank 210 and the flow cell 230 by driving the circulation / discharge pump 222.
[0004]
In a circulating state of the suspension S, that is, in a state where the suspension S is flowing in the flow cell 230, the laser light from the laser light source 241 is passed to the flow cell 230 via the condenser lens 242, the spatial filter 243, and the collimator 244. By irradiating, the laser beam is diffracted and scattered by the measured particle group P in the flow cell 230. Of the diffracted / scattered light, the forward diffracted / scattered light is collected and measured on the light receiving surface of the forward scattered light sensor 252 via the condenser lens 251, and the side scattered light is side-scattered. Scattered light from the optical sensor 253 and backward is measured by a backscattered light sensor 254.
[0005]
As illustrated in the front view of FIG. 3A, the forward scattered light sensor 252 is a concentric arrangement of a plurality of light sensors PS having light receiving surfaces that are part of rings having different radii. The spatial intensity distribution of diffracted / scattered light in a predetermined forward angle range can be measured by the forward scattered light sensor 252. FIG. 3 (B) is combined with the measurement by the side scattered light sensor 253 and the back scattered light sensor 254. ), The spatial intensity distribution of diffracted / scattered light can be measured over a wide angular range, as shown in the bar graph showing the measurement results.
[0006]
The light intensity distribution measured as described above is taken into the computer 270 via the data sampling circuit 260 including an amplifier that amplifies the output of each optical sensor and an A / D converter that digitizes the amplified signal. It is. The computer 270 uses the measurement data of the spatial intensity distribution of the diffracted / scattered light and the refractive index of the particle group P to be measured and the liquid medium L to calculate a known calculation based on Mie's scattering theory or Fraunhofer's diffraction theory. Thus, the particle size distribution of the particle group P to be measured can be calculated.
[0007]
Here, in FIG. 2, reference numeral 223 denotes a circulation / discharge valve. By operating this circulation / discharge valve 223, the suspension S is circulated with the flow cell 230 or dispersed as described above. The suspension S in the tank 210 and the flow cell 230 can be discharged to the outside. After measurement of one sample, the suspension S is discharged to the outside and the dispersion tank 210, the circulation pipe 221 and the flow cell 230 are discharged. By cleaning the inside, it is possible to prevent the influence of the previous sample from affecting the measurement result of the subsequent sample.
[0008]
In the laser diffraction / scattering type particle size distribution measuring apparatus as described above, the time required for measuring the diffraction / scattered light is short, and therefore the time required for the measurement compared to the particle size distribution measuring apparatus using other measurement methods. Has the great advantage of being short.
[0009]
[Problems to be solved by the invention]
By the way, in high-speed pulverizers that have become widespread in recent years, in order to monitor the pulverization process, the measurement of the particle size distribution of the powder is repeated for a short time, for example, about every 20 seconds. There is a request to continue / stop operation.
[0010]
Here, in the conventional laser diffraction / scattering particle size distribution measuring apparatus described above, the time required for measuring the spatial intensity distribution of the diffracted / scattered light is short, but sampling of the group of particles to be measured is included. The time required for one cycle of measurement cannot meet the above requirements.
[0011]
In other words, the conventional laser diffraction / scattering type particle size distribution measuring device is described as follows: “Supplying the liquid medium into the dispersion tank → Put the sample into the dispersion tank → Dispersion → Suspension circulation → Diffraction / scattered light measurement → Suspension “Discharging of turbid liquid → cleaning of circulation system” is one cycle of measurement, and the cleaning process itself requires a process of “supply of liquid medium into dispersion tank → circulation of certain time → discharge”. It is practically impossible to make one cycle as a whole measurement to be several tens of seconds.
[0012]
The present invention has been made in view of such circumstances, and can greatly shorten one cycle of measurement as compared with a conventional laser diffraction / scattering type particle size distribution measuring apparatus, and thus in a high-speed crusher. An object of the present invention is to provide a particle size distribution measuring apparatus that can sufficiently satisfy the above-described requirements.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the particle size distribution measuring apparatus of the present invention measures the spatial intensity distribution of diffracted / scattered light obtained by irradiating laser light to a group of particles in a dispersed flight state, and the measurement result Is a particle size distribution measuring device for calculating the particle size distribution of the particle group to be measured using a flow cell, a dispersion tank for dispersing the charged particle group to be measured in a liquid medium, and the dispersion tank A liquid supply pump for continuously supplying the liquid medium, a liquid feed pump and liquid supply pipe for continuously feeding the liquid in the dispersion tank into the flow cell, and discharging the liquid flowing in the flow cell to the outside. A liquid discharge pipe , an irradiation optical system for irradiating the flow cell with laser light, a measurement optical system for measuring the spatial intensity distribution of diffraction / scattered light generated by the laser light irradiation, and the measurement optical system Output Computation means is provided for detecting the presence of a group of particles to be measured based on whether or not a preset level has been reached, and calculating the particle size distribution of the group of particles to be measured using the output in the presence detection state as valid data. It is characterized by having.
[0014]
The present invention does not circulate a suspension obtained by dispersing a group of particles to be measured in a liquid medium between a flow cell and a dispersion tank as in a conventional laser diffraction / scattering type particle size distribution measuring apparatus. A liquid supply / discharge system that constantly supplies and discharges clean medium liquid is provided, and when measuring particle size distribution, a group of particles to be measured is introduced into the system as a suspension, which is passed through the flow cell to the outside. By trying to discharge, we are going to achieve the intended purpose.
[0015]
That is, in the present invention, a clean medium was continuously supplied to the flow cell, medium liquid exiting the flow cell as well as discharged to the outside, can be put the particles to be measured on the upstream side of that flow cell In order to configure the liquid tank, the liquid supply pump for continuously supplying the liquid medium to the dispersion tank is provided, and the liquid in the dispersion tank is continuously fed to the flow cell by the liquid feed pump to flow through the flow cell. A pipe for discharging the liquid to the outside is provided, and the flow cell is always irradiated with laser light from the irradiation optical system. Therefore, by introducing the particles to be measured into the dispersion tank as needed while the medium is continuously flowing to the flow cell, the medium is suspended and flows through the flow cell, and then externally. Discharged. Only while this suspension is flowing in the flow cell, the spatial intensity distribution of the diffracted / scattered light by the group of particles to be measured is measured by the measurement optical system. At this time, since the level of the measured value of the spatial intensity distribution of the diffracted / scattered light by the measurement optical system increases, the calculation means uses the measurement result to cover the level when the level exceeds a preset level. The particle distribution of the measurement particle group is calculated.
[0016]
By using such a sampling system, the charged particles to be measured are discharged to the outside immediately after flowing through the flow cell, and a clean medium is always supplied until the next particles to be measured are charged. Since the sampling system is substantially washed by flowing through the system, even if the input interval of the particle group to be measured, and hence the measurement interval, is shortened, it is not affected by the particle group that has been input first, and is accurate. The particle size distribution can be measured.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram illustrating a schematic diagram showing a configuration of an optical system and a block diagram showing an electrical configuration.
[0018]
The dispersion tank 1 includes a stirrer 11 and an ultrasonic vibrator 12 as in the above-described conventional measuring apparatus of this type, and a clean medium liquid is supplied to the dispersion tank 1 from a medium supply pump 13. Is done. The lower end of the dispersion tank 1 communicates with the suction port of the liquid feed pump 21, and the discharge port of the liquid feed pump 21 communicates with the lower end opening of the flow cell 3 via the liquid supply pipe 22. The upper end opening of the flow cell 3 communicates with the liquid discharge pipe 23. The liquid feed pump 21, the liquid supply pipe 22 and the liquid discharge pipe 23 constitute a medium supply / discharge system 2, and the medium is discharged to the outside after flowing through the flow cell 3. ing. Moreover, the dispersion tank 1 is opened upward, and a group of particles to be measured can be introduced at any time from this opening.
[0019]
The flow cell 3 is irradiated with laser light from the irradiation optical system 4. The irradiation optical system 4 includes a laser light source 41, a condenser lens 42, a spatial filter 43, and a collimator 44 as in the conventional case, and can irradiate the flow cell 3 with parallel laser light.
[0020]
A condensing lens 51 and a forward scattered light sensor 52 placed at the focal position thereof are arranged on the opposite side of the irradiation optical system 4 with the flow cell 3 interposed therebetween, and side scattering is provided on the side of the flow cell 3. The optical sensor 53 is further provided with a backscattered light sensor 54 behind the flow cell 3, that is, on the irradiation optical system 4 side, and these constitute the measurement optical system 5 similar to the conventional one. The output of each optical sensor is taken into the computer 7 through the data sampling circuit 6 comprising an amplifier and an A / D converter.
[0021]
In using the above-described embodiment of the present invention, the medium supply pump 13 and the liquid feed pump 21, and the stirrer 11 and the ultrasonic vibrator 12 are always driven, and the flow cell 2 has a clean medium. Is constantly flowing, and the liquid medium that has flowed through the flow cell 3 is sequentially discharged to the outside. In other words, the liquid medium is continuously flowed through the flow cell 3, and the liquid medium is continuously discharged through the flow cell 3. The flow cell 3 is always irradiated with laser light from the irradiation optical system 4, and the output of each sensor of the measurement optical system 5 is digitized by the data sampling circuit 6 every predetermined minute time and taken into the computer 7 every moment. It is. When measuring the particle size distribution, an appropriate amount of particles to be measured is put into the dispersion tank 1. As a result, the particle group is dispersed in the liquid medium to be a suspension, guided into the flow cell 3 and then discharged out of the system, so that only the liquid medium flows through the flow cell 3 again. The laser light applied to the flow cell 3 is diffracted and scattered only while the particle group passes through the flow cell 3.
[0022]
The computer 7 monitors the output level of each optical sensor of the measurement optical system 5 and only outputs the output of each optical sensor as effective data every time the output value reaches a preset level. accumulate. More specifically, for example, the output of one optical sensor located at a specific scattering angle in the forward scattered light sensor 52 is monitored, and the output value is compared with a preset level. Only while the level is reached, the output of the all-optical sensor of the measurement optical system 5 is sequentially accumulated for each sensor. When the output value of the optical sensor being monitored falls below the above level, the output of each sensor accumulated so far is used as the spatial intensity distribution data of diffracted / scattered light, and the particle size distribution is obtained by a known calculation. And is displayed on the attached display 7a.
[0023]
According to the above-described embodiment of the present invention, the liquid medium in the liquid supply / discharge system 2 including the flow cell 3 is suspended by the particle group only for a short time after the particle group to be measured is introduced into the dispersion tank 1. Although the output of the measurement optical system 5 in that state is automatically accumulated as effective data and used for calculation of the particle size distribution, the suspension is immediately discharged out of the system after passing through the flow cell 3, After that, since only the clean fluid flows through the system, after a short time after the introduction of the particles to be measured, the fluid supply / discharge system 2 including the flow cell 3 is substantially cleaned. Therefore, the next measurement target particle group is in a standby state, and therefore, one measurement cycle is significantly shorter than that of the conventional laser diffraction / scattering particle size distribution measuring apparatus illustrated in FIG.
[0024]
In the embodiment described above, each time only after the output of one specific photosensor in the forward scattered light sensor 52 exceeds the set level after the particles to be measured are put into the dispersion tank 1, Although the example in which the output of the optical sensor is accumulated as effective data and used for calculation of the particle size distribution has been shown, the present invention is not limited to this, for example, the output of a plurality of optical sensors is monitored, and the average value is The output of each photosensor may be used as valid data only while the set level is exceeded, and two levels of different sizes are set, and the output of one specific photosensor or a specific plurality of It may be configured to start accumulation of the output of each photosensor when the average value of the output of the photosensor exceeds the level on the large side, and to terminate the accumulation when it becomes less than the level on the small side. Well, in short, the particles to be measured are The presence of a concentration higher than a predetermined concentration in the cell 3 is automatically detected based on the output of any suitable optical sensor in the measurement optical system 5, and the concentration of the measured particle group in the flow cell 3 is effective. Any method can be adopted as long as the accumulation of the output of each optical sensor can be automatically terminated when the data becomes low enough to collect no data.
[0025]
In the above embodiment, no particular mention was made of a method for charging the particle group to be measured into the dispersion tank 1, but for example, a container for charging is prepared, and the container to be measured is filled with the particle group to be measured. In addition to being charged manually, a similar mechanism is used to automatically fill the measured particle group into the dispersion tank 1 and to throw it into the dispersion tank 1, and by driving the switch mechanism to move the measured particle group to the dispersion tank 1 Alternatively, it may be configured such that the particle group to be measured is automatically charged into the dispersion tank 1 by driving the charging mechanism at regular intervals.
[0026]
【The invention's effect】
As described above, according to the present invention, the liquid medium supply pump that continuously supplies the liquid medium to the dispersion tank is provided, and the liquid in the dispersion tank is continuously supplied to the flow cell by the liquid feed pump. By providing piping that discharges to the outside after sending the liquid, the flow medium always flows a clean liquid medium, and the liquid medium suspends only when the particles to be measured are introduced into the dispersion tank at any time , The suspension is configured to be discharged out of the system immediately after flowing through the flow cell, and automatically detects from the output of the measurement optical system that the measured particle group has been introduced, and is effective. Since it is configured to produce the particle size distribution as data, the medium supply / discharge system including the flow cell is automatically turned on by the flow of clean liquid after a short period of time after the particles to be measured are introduced. Will be washed automatically. It is not necessary to separately provide a washing step as described above, one cycle of measurement can be significantly shortened. As a result, it has become possible to control these devices and plants by feeding them back to the particle size distribution measurement results when applied to high-speed crushers and granulation plants.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram illustrating a schematic diagram showing a configuration of an optical system and a block diagram showing an electrical configuration.
FIG. 2 is a diagram illustrating a configuration example of a conventional laser diffraction / scattering particle size distribution measuring apparatus, which is a diagram illustrating a schematic diagram illustrating a configuration of an optical system and a block diagram illustrating an electrical configuration.
FIGS. 3A and 3B are explanatory diagrams of a forward scattered light sensor frequently used in a laser diffraction / scattering type particle size distribution measuring apparatus. FIG. 3A is a front view showing a configuration example thereof, and FIG. It is a graph which shows the example of a measurement of the spatial intensity distribution of the diffracted / scattered light by the output of.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dispersion tank 11 Stirrer 12 Ultrasonic vibrator 13 Medium liquid supply pump 2 Medium liquid supply / discharge system 21 Liquid feed pump 22 Liquid supply pipe 23 Liquid discharge pipe 3 Flow cell 4 Irradiation optical system 41 Laser light source 42 Condensing lens 43 Spatial filter 44 Collimator 5 Measuring optical system 51 Condensing lens 52 Forward scattered light sensor 53 Side scattered light sensor 54 Back scattered light sensor 6 Data sampling circuit 7 Computer 7a Display

Claims (1)

分散飛翔状態の被測定粒子群にレーザ光を照射することによって得られる回折・散乱光の空間強度分布を測定し、その測定結果を用いて被測定粒子群の粒度分布を演算する粒度分布測定装置であって、
フローセルと、投入された被測定粒子群を媒液中に分散させるための分散槽と、その分散槽に対して連続的に媒液を供給する媒液供給ポンプと、上記分散槽内の液を上記フローセル内に連続的に送り込む送液ポンプおよび液供給用配管と、上記フローセル内を流れた液を外部に排出する液排出用配管と、上記フローセルに対してレーザ光を照射する照射光学系と、そのレーザ光の照射により生じる回折・散乱光の空間強度分布を測定する測定光学系と、その測定光学系の出力があらかじめ設定されたレベルに達しているか否かで被測定粒子群の存在を検知し、その存在検知状態における当該出力を有効データとして用いて被測定粒子群の粒度分布を演算する演算手段を備えていることを特徴とする粒度分布測定装置。
A particle size distribution measuring device that measures the spatial intensity distribution of diffracted / scattered light obtained by irradiating laser particles to a group of particles in a dispersed flight state, and calculates the particle size distribution of the group of particles to be measured using the measurement results Because
A flow cell, a dispersion tank for dispersing the charged particles to be measured in the liquid medium, a medium liquid supply pump for continuously supplying the liquid medium to the dispersion tank, and the liquid in the dispersion tank A liquid feed pump and a liquid supply pipe continuously fed into the flow cell; a liquid discharge pipe for discharging the liquid flowing in the flow cell to the outside; and an irradiation optical system for irradiating the flow cell with laser light; The measurement optical system that measures the spatial intensity distribution of the diffracted / scattered light generated by the laser light irradiation, and the presence of the group of particles to be measured depending on whether or not the output of the measurement optical system has reached a preset level. A particle size distribution measuring device comprising: a calculating means for detecting and calculating a particle size distribution of a group of particles to be measured using the output in the presence detection state as effective data.
JP2001145852A 2001-05-16 2001-05-16 Particle size distribution measuring device Expired - Lifetime JP3783574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001145852A JP3783574B2 (en) 2001-05-16 2001-05-16 Particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001145852A JP3783574B2 (en) 2001-05-16 2001-05-16 Particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2002340779A JP2002340779A (en) 2002-11-27
JP3783574B2 true JP3783574B2 (en) 2006-06-07

Family

ID=18991595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001145852A Expired - Lifetime JP3783574B2 (en) 2001-05-16 2001-05-16 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP3783574B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021081380A (en) * 2019-11-22 2021-05-27 ソニーグループ株式会社 Sample dispersion device, method for dispersing sample, sample splitter kit, and microparticle splitter

Also Published As

Publication number Publication date
JP2002340779A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
EP1278057B1 (en) Method and apparatus for determining the size distribution of suspended particulate matter in the atmospheric air
JP5304434B2 (en) Fine particle measuring device
JP3672158B2 (en) Turbidity measuring method and apparatus
JP2020054234A (en) Cell culture apparatus, imaging unit, and culture monitoring method
JP5884544B2 (en) Optical particle measuring device
JP3783574B2 (en) Particle size distribution measuring device
JP2002062248A (en) Device and method for specifying particle size distribution
JP3783606B2 (en) Particle size distribution measuring device
US20230366816A1 (en) Turbidimeter
JP2010125441A (en) System for producing liquid containing bubble particle
JPH06109615A (en) Grain size distribution measuring device
JP2000146817A (en) Grain size distribution measuring device
JP2008309746A (en) Particle size distribution measuring instrument
JP3409510B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP2002116134A (en) Measuring apparatus for suspended particulate matter
KR20200102382A (en) System for detecting underwater bacteria in real time using bubble
JP2003035655A (en) Method and equipment for measuring floating particulate material
JP4716055B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP2669290B2 (en) Particle size distribution analyzer
JP2004117096A (en) Method and apparatus for measuring particle size distribution
CN108226015A (en) A kind of new liquid grain count method and system
JP5012679B2 (en) Particle size distribution measuring device
JP4877089B2 (en) Particle size distribution measuring apparatus and measuring method
JP4830841B2 (en) Particle size distribution measuring device
CN206095917U (en) Oil content concentration meter detection loop self - cleaning device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3783574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

EXPY Cancellation because of completion of term