JP2000146817A - Grain size distribution measuring device - Google Patents

Grain size distribution measuring device

Info

Publication number
JP2000146817A
JP2000146817A JP10321191A JP32119198A JP2000146817A JP 2000146817 A JP2000146817 A JP 2000146817A JP 10321191 A JP10321191 A JP 10321191A JP 32119198 A JP32119198 A JP 32119198A JP 2000146817 A JP2000146817 A JP 2000146817A
Authority
JP
Japan
Prior art keywords
size distribution
particle size
particle
powder sample
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10321191A
Other languages
Japanese (ja)
Inventor
Manabu Ohata
学 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP10321191A priority Critical patent/JP2000146817A/en
Publication of JP2000146817A publication Critical patent/JP2000146817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain size distribution measuring device capable of accurately catching grain properties of sample powder, controlling the dispersed state of the sample powder based on a result of this, and measuring qualities of the sample powder with higher accuracy. SOLUTION: In this grain size distribution measuring device 1, while sample powder is being supplied to a measuring place, laser light is radiated to the sample powder passing through the measuring place and the diffracted/scattered state of laser light is detected, and by arithmetically processing detection data by a computer, grain size distribution of the sample powder is measured. The grain size distribution measuring device 1 is integrally provided with a grain image photographing part 9 comprising a light source 10 and a CCD camera 11, image data obtained by the grain image photographing part 9 are arithmetically processed by the computer, and thereby grain properties including at least the aggregated state of grains of the sample powder are measured while the scattered state of the sample powder supplied to the measuring place is controlled based on a result of the measurement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉体工業上におけ
る粒度分布測定装置に係わり、特に、レーザ光回折・散
乱方式の粒度分布測定装置では捉えることのできない、
粒度分布以外の測定試料の凝集・分散状態をも捉えるこ
とができると共に、例えばこの情報に基づいて測定装置
をフィードバック制御し得る粒度分布測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle size distribution measuring apparatus in the powder industry, and more particularly to a particle size distribution measuring apparatus of a laser beam diffraction / scattering type.
The present invention relates to a particle size distribution measuring device capable of capturing the aggregation / dispersion state of a measurement sample other than the particle size distribution and capable of performing feedback control of the measuring device based on this information, for example.

【0002】[0002]

【従来の技術】一般的に、粉体の状態確認や製造品質を
捉える手段としては、粒度(粒度分布)を測定する方法
が広く採用され、また重要視されている。中でも粉体試
料(粒子)に例えばレーザ光等の平行光線を照射し、粒
子によって回折・散乱されたレーザ光のパターンを測定
・解析することによって、粒度分布を算出するレーザ光
回折・散乱方式の粒度分布測定装置が、従来その簡便
性、迅速性、データ再現性から、最も多く利用されてい
る。
2. Description of the Related Art In general, as a means for confirming the state of a powder and ascertaining the production quality, a method of measuring the particle size (particle size distribution) is widely adopted and is regarded as important. Among them, a laser beam diffraction / scattering method in which a powder sample (particles) is irradiated with a parallel beam such as a laser beam, and the particle size distribution is calculated by measuring and analyzing the pattern of the laser beam diffracted / scattered by the particles. Conventionally, a particle size distribution measuring device is most often used because of its simplicity, quickness, and data reproducibility.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この粒
度分布測定装置にあっては、レーザ光回折・散乱方式の
採用により前述したように多くの利点を有するものの、
例えば散乱場(測定場所)における粒子の凝集・分散状
態やその変化、測定中の粒子の形状等の性状変化、ある
いは粒子の形状自体等の粒子性状を測定することができ
ない。
However, although this particle size distribution measuring apparatus has many advantages as described above due to the adoption of the laser light diffraction / scattering method,
For example, it is not possible to measure the state of aggregation and dispersion of particles in a scattering field (measurement place), the change thereof, the change of properties such as the shape of the particles being measured, or the particle properties such as the shape of the particles themselves.

【0004】ところで、近年、例えば粒子の製造品質の
的確な把握のために、粉体試料の粒度分布の測定時に、
粉体試料のこれらの粒子性状を確認したいという要求が
増加する傾向にある。そのため、前述したレーザ光回折
・散乱方式で得られた粒度分布から、例えば凝集状態を
捉えようとする試みもあるが、この場合は、作業者の勘
や経験に基づいて粒度分布から粒子性状を把握している
のが実状であり、正確性の面において劣るという問題点
があり、また、粒子性状に基づく、前記粒度分布測定装
置の制御(特に粉体試料の粒子の分散制御)は現状行わ
れていない。
In recent years, for example, in order to accurately grasp the production quality of particles, when measuring the particle size distribution of a powder sample,
There is a tendency that demands for confirming these particle properties of powder samples increase. Therefore, there is an attempt to capture, for example, the state of aggregation from the particle size distribution obtained by the laser light diffraction / scattering method described above, but in this case, the particle properties are determined from the particle size distribution based on the intuition and experience of the operator. There is a problem that the actual state is grasped and the accuracy is inferior. In addition, the control of the particle size distribution measuring device (particularly, the dispersion control of the particles of the powder sample) based on the particle properties is currently performed. Not done.

【0005】本発明はこのような事情に鑑みてなされた
もので、請求項1記載の発明の目的は、粉体試料の粒度
分布以外に粒子性状を正確に捉えることができて、粉体
試料の品質を高精度に測定し得る粒度分布測定装置を提
供することにある。また、請求項2記載の発明の目的
は、粉体試料の粒子性状を正確に捉えることができると
共に、その結果に基づいて粉体試料の分散状態を制御
し、粉体試料の品質をより高精度に測定し得る粒度分布
測定装置を提供することにある。また、請求項3記載の
発明の目的は、請求項1または2記載の発明の目的に加
え、粉体試料の粒子の凝集状態を的確に把握して粉体試
料の分散状態を測定に最適な状態とし得る粒度分布測定
装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for accurately measuring a particle property other than a particle size distribution of a powder sample. It is an object of the present invention to provide a particle size distribution measuring device capable of measuring the quality of a powder with high accuracy. Another object of the present invention is to not only accurately grasp the particle properties of the powder sample, but also control the dispersion state of the powder sample on the basis of the result to improve the quality of the powder sample. An object of the present invention is to provide a particle size distribution measuring device capable of measuring with high accuracy. Further, the object of the invention described in claim 3 is, in addition to the object of the invention described in claim 1 or 2, in which the state of aggregation of the particles of the powder sample is accurately grasped and the dispersion state of the powder sample is optimally measured. An object of the present invention is to provide a particle size distribution measuring device that can be in a state.

【0006】[0006]

【課題を解決するための手段】かかる目的を達成すべ
く、本発明のうち請求項1記載の発明は、粉体試料を測
定場に供給しつつ、該測定場を通過する粉体試料にレー
ザ光を照射して該レーザ光の回折・散乱状態を検出し、
この検出データをコンピュータで演算処理することによ
って粉体試料の粒度分布を測定する粒度分布測定装置に
おいて、粒度分布測定装置に光源とCCDカメラからな
る粒子画像撮像部を一体的に設け、該粒子画像撮像部で
得られた画像データを前記コンピュータで演算処理する
ことによって、粉体試料の粒子性状を測定することを特
徴とする。
In order to achieve the above object, according to the first aspect of the present invention, a powder sample is supplied to a measuring field while a laser is applied to the powder sample passing through the measuring field. Irradiate light to detect the diffraction and scattering state of the laser light,
In a particle size distribution measuring device that measures the particle size distribution of a powder sample by performing arithmetic processing on the detected data by a computer, a particle image capturing unit including a light source and a CCD camera is provided integrally with the particle size distribution measuring device. It is characterized in that the particle properties of the powder sample are measured by performing arithmetic processing on the image data obtained by the imaging unit by the computer.

【0007】このように構成することにより、測定場を
通過する粉体試料に、粒子画像撮像部の光源からハロゲ
ン光等の光が照射され、この光の透過光や反射光をCC
Dカメラで撮像することにより、粒子画像が撮像され
る。この粒子画像の画像データは、レーザ光による散乱
光強度分布を粒度分布に変換処理する演算処理と並行し
て処理され、例えば粒子画像が直接モニタリングされて
その粒子性状が測定される。これにより、粉体試料の粒
度分布以外に粒子性状が捉えられ、粉体試料の品質が高
精度に測定される。
With this configuration, the powder sample passing through the measuring field is irradiated with light such as halogen light from the light source of the particle image pickup unit, and the transmitted light or reflected light of the light is subjected to CC.
By taking an image with the D camera, a particle image is taken. The image data of the particle image is processed in parallel with the arithmetic processing for converting the intensity distribution of the scattered light by the laser beam into the particle size distribution. For example, the particle image is directly monitored and the particle properties are measured. Thereby, the particle properties other than the particle size distribution of the powder sample are captured, and the quality of the powder sample is measured with high accuracy.

【0008】また、請求項2記載の発明は、粉体試料を
測定場に供給しつつ、該測定場を通過する粉体試料にレ
ーザ光を照射して該レーザ光の回折・散乱状態を検出
し、この検出データをコンピュータで演算処理すること
によって粉体試料の粒度分布を測定する粒度分布測定装
置において、粒度分布測定装置に光源とCCDカメラか
らなる粒子画像撮像部を一体的に設け、該粒子画像撮像
部で得られた画像データを前記コンピュータで演算処理
することによって粉体試料の粒子性状を測定すると共
に、該測定結果に基づいて測定場に供給される粉体試料
の分散状態を制御することを特徴とする。
According to a second aspect of the invention, a powder sample is supplied to a measuring field, and the powder sample passing through the measuring field is irradiated with laser light to detect a diffraction / scattering state of the laser light. Then, in a particle size distribution measuring device that measures the particle size distribution of the powder sample by performing arithmetic processing on the detected data by a computer, a particle image capturing unit including a light source and a CCD camera is provided integrally with the particle size distribution measuring device. The particle data of the powder sample is measured by performing arithmetic processing on the image data obtained by the particle image capturing unit by the computer, and the dispersion state of the powder sample supplied to the measurement site is controlled based on the measurement result. It is characterized by doing.

【0009】このように構成することにより、請求項1
記載の発明と同様に、粒子画像撮像部で粉体試料の粒子
性状が捉えられ、その結果に基づいて、例えば測定装置
に設けられる分散器を作動させる。この分散器の作動で
粉体試料の分散状態が制御されて粉体試料に良好な分散
状態が得られ、これにより、粉体試料の粒度分布や粒子
性状がより正確に捉えられ、粉体試料の品質がより高精
度に測定される。
According to this structure, the first aspect of the present invention is provided.
As in the case of the described invention, the particle properties of the powder sample are captured by the particle image capturing unit, and a disperser provided in, for example, a measuring device is operated based on the result. By operating the disperser, the dispersion state of the powder sample is controlled and a good dispersion state is obtained in the powder sample, whereby the particle size distribution and particle properties of the powder sample can be more accurately grasped, Quality is more accurately measured.

【0010】また、請求項3記載の発明は、粉体試料の
粒子性状が、粉体試料の粒子の凝集体の存在を測定する
ことによって得られる凝集状態であることを特徴とす
る。このように構成することにより、粒子画像撮像部
で、粉体試料の粒子の凝集状態が凝集体の存在によって
捉えられることから、その結果により、測定装置の測定
場に供給される粉体試料の分散状態を制御して測定に最
適な状態とすることができ、粉体試料の品質がより一層
高精度に測定される。
The invention according to claim 3 is characterized in that the particle property of the powder sample is an aggregated state obtained by measuring the presence of an aggregate of particles of the powder sample. With this configuration, in the particle image capturing unit, the state of aggregation of the particles of the powder sample is detected by the presence of the aggregates. The dispersion state can be controlled to make the state optimal for measurement, and the quality of the powder sample is measured with higher accuracy.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。図1〜図5は、本発明に係
わる粒度分布測定装置の一実施例を示し、図1がその基
本構成図、図2が本発明を湿式系粒度分布測定装置に適
用した場合の基本ブロック図、図3がその測定場の概念
を示す斜視図、図4が動作の一例を示すフローチャー
ト、図5がその粒子画像のイメージ図と射影濃度分布図
である。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 5 show an embodiment of a particle size distribution measuring apparatus according to the present invention, FIG. 1 is a basic configuration diagram thereof, and FIG. 2 is a basic block diagram when the present invention is applied to a wet type particle size distribution measuring apparatus. FIG. 3 is a perspective view showing the concept of the measurement field, FIG. 4 is a flowchart showing an example of the operation, and FIG. 5 is an image diagram of the particle image and a projected density distribution diagram.

【0012】図1において、粒度分布測定装置1は、レ
ーザ光を照射するレーザ光源2と、粉体試料Sによるレ
ーザ光の散乱光を集光する集光レンズ3と、散乱光強度
分布を検出する検出器4と、この検出器4で検出された
データをデジタル信号に変換処理する信号処理器5と、
この信号処理器5の出力信号や後述する粒子画像撮像部
9の出力信号を演算処理するCPU6と、このCPU6
で処理された信号や粒子画像撮像部9の出力信号に基づ
いて所定の処理を行うコンピュータ7と、カラーモニタ
8及び前記粒子画像撮像部9とで構成されている。な
お、CPU6は、その機能をコンピュータ7に持たせる
ことによって省略することもできる。
In FIG. 1, a particle size distribution measuring apparatus 1 includes a laser light source 2 for irradiating a laser beam, a condensing lens 3 for condensing laser light scattered by a powder sample S, and detecting a scattered light intensity distribution. A signal processor 5 for converting the data detected by the detector 4 into a digital signal;
A CPU 6 for calculating and processing an output signal of the signal processor 5 and an output signal of a particle image capturing unit 9 described later;
And a color monitor 8 and the particle image capturing unit 9 for performing a predetermined process based on the signal processed by the computer and the output signal of the particle image capturing unit 9. Note that the CPU 6 can be omitted by giving the function to the computer 7.

【0013】前記粒子画像撮像部9は、ハロゲン光源1
0及びCCDカメラ11と、画像信号処理器12等で形
成され、画像信号処理器12の出力側がCPU6と、コ
ンピュータ7に接続されている。すなわち、本発明に係
わる粒度分布測定装置1は、レーザ光源2、集光レンズ
3、検出器4、信号処理器5、CPU6によって形成さ
れるレーザ光回折・散乱方式の粒度分析計に、粒子画像
撮像部9を一体的に組み込むと共に、これらとコンピュ
ータ7及びカラーモニタ8を機能的に組み合わせること
によって構成されている。
The particle image pickup section 9 includes the halogen light source 1
0, a CCD camera 11, an image signal processor 12, and the like. The output side of the image signal processor 12 is connected to the CPU 6 and the computer 7. In other words, the particle size distribution measuring apparatus 1 according to the present invention uses a laser light diffraction / scattering type particle size analyzer formed by the laser light source 2, the condenser lens 3, the detector 4, the signal processor 5, and the CPU 6 to provide a particle image. The image pickup unit 9 is integrally incorporated, and a computer 7 and a color monitor 8 are functionally combined with these components.

【0014】なお、粒子画像撮像部9のハロゲン光源1
0とCCDカメラ11は、図1に示すように、例えば矢
印方向に流下する粉体試料Sに対して反対方向に配置さ
れるが、粉体試料Sに対して同一方向(図1において粉
体試料Sの流下方向の一方側)に配置することも勿論可
能である。また、前記コンピュータ7は、図示しないキ
ーボード等が接続された例えばパソコンで形成され、C
PU、RAM及びROM等を有し、このコンピュータ7
で処理された各種データがカラーモニタ8に表示された
り、図示しないプリンタで印刷される。
The halogen light source 1 of the particle image pickup unit 9
As shown in FIG. 1, the CCD camera 11 and the CCD camera 11 are arranged in the opposite direction to the powder sample S flowing down, for example, in the direction of the arrow. Of course, it is also possible to dispose it on one side of the flow direction of the sample S). The computer 7 is formed of, for example, a personal computer to which a keyboard or the like (not shown) is connected.
The computer 7 has a PU, a RAM, a ROM, and the like.
Are displayed on the color monitor 8 or printed by a printer (not shown).

【0015】そして、粒度分布測定装置1は、粉体試料
Sの粒子径・粒子径分布(粒度分布)以外に、粒子性状
(測定場における粒子の凝集状態もしくは分散状態及び
その変化や、粒子の形状及びその変化等)を捉えて、こ
れをカラーモニタ8で直接確認することができると共
に、測定された粒子性状データに基づいて、後述する如
く粒度分布測定装置1自体を制御して、粉体試料Sの粒
度分布や粒子性状等の測定がより高精度に行え得るよう
に構成されている。
The particle size distribution measuring device 1 is capable of measuring the particle properties (aggregation state or dispersion state of the particles in the measurement field and the change thereof, as well as the particle size / particle size distribution (particle size distribution) of the powder sample S, The shape and its change) can be grasped and directly confirmed on the color monitor 8, and based on the measured particle property data, the particle size distribution measuring device 1 itself is controlled as described later to obtain the powder. It is configured so that the particle size distribution and particle properties of the sample S can be measured with higher accuracy.

【0016】図2は、本発明を湿式系の粒度分布測定装
置に適用した場合を示し、この湿式系粒度分布測定装置
15(以下、粒度分布測定装置15という)は、粒度分
析計16と試料循環器17とで構成されている。粒度分
析計16は、内部に測定場18を有して前記粒度分布測
定装置1の粒度分析計と基本的に同一構成をなし、この
粒度分析計16の測定場18に、試料循環器17から粉
体試料Sとしての懸濁液が循環供給される。試料循環器
17は、撹拌モータ19の作動によって投入された粉体
(粒子)を所定の液体(例えば水)に懸濁させて懸濁液
を生成するタンク20と、粒度分析計16内の測定場1
8から戻される懸濁液中の粒子を、図示しない超音波ホ
モジナイザーで分散させる分散器21を有している。
FIG. 2 shows a case in which the present invention is applied to a wet type particle size distribution measuring device. The wet type particle size distribution measuring device 15 (hereinafter, referred to as a particle size distribution measuring device 15) includes a particle size analyzer 16 and a sample. And a circulator 17. The particle size analyzer 16 has a measurement field 18 therein and has basically the same configuration as the particle size analyzer of the particle size distribution measuring device 1. The suspension as the powder sample S is circulated and supplied. The sample circulator 17 is configured to suspend a powder (particles) charged by the operation of the stirring motor 19 in a predetermined liquid (for example, water) to form a suspension 20 and a measurement in the particle size analyzer 16. Place 1
It has a disperser 21 for dispersing the particles in the suspension returned from 8 with an ultrasonic homogenizer (not shown).

【0017】前記測定場18は、例えば図3(a)〜
(c)に示す3種類の形態のいずれかで形成されてい
る。先ず、図3(a)に示す測定場18は、レーザ光が
通過するセルと粒子画像撮像用のセルを1つのガラスフ
ローセル22で共通化し、このガラスフローセル22を
懸濁液が循環する一系統の配管23a、23bの途中に
配置したものである。この測定場18の場合は、コンピ
ュータ7等の制御で任意の時間毎に粉体試料Sの散乱光
強度分布検出と粒子画像撮像を繰り返すことによって、
粒度分布測定とそれ以外の前記粒子性状の測定を例えば
交互に行うことができる。
The measuring field 18 is, for example, shown in FIGS.
It is formed in one of the three types shown in FIG. First, in a measurement field 18 shown in FIG. 3A, a cell through which a laser beam passes and a cell for capturing a particle image are shared by one glass flow cell 22, and the glass flow cell 22 is a system in which a suspension circulates. Are arranged in the middle of the pipes 23a and 23b. In the case of the measurement site 18, the detection of the scattered light intensity distribution of the powder sample S and the imaging of the particle image are repeated at an arbitrary time under the control of the computer 7 or the like.
The particle size distribution measurement and the other measurement of the particle properties can be performed alternately, for example.

【0018】また、図3(b)に示す測定場18は、レ
ーザ光が通過するためのガラスフローセル22aと、粒
子画像撮像用のガラスフローセル22bを、配管23a
〜23cの各途中にシリーズ(直列)に配置したもので
あり、図3(c)に示す測定場18は、レーザ光が通過
するガラスフローセル22aと、粒子画像撮像用のガラ
スフローセル22bを、配管23a、23b間及び配管
23c、23d間にパラレル(並列)に配置したもので
ある。この両測定場18の場合は、連続的に粉体試料S
の粒度分布を測定しながら粒子性状も測定することがで
きる。
The measurement field 18 shown in FIG. 3B includes a glass flow cell 22a for passing a laser beam and a glass flow cell 22b for capturing a particle image, and a pipe 23a.
23c are arranged in a series (serial), and the measurement field 18 shown in FIG. 3 (c) includes a glass flow cell 22a through which laser light passes, and a glass flow cell 22b for imaging particle images. It is arranged in parallel (parallel) between 23a and 23b and between pipes 23c and 23d. In the case of both the measurement sites 18, the powder sample S is continuously
While measuring the particle size distribution of the particles, the particle properties can also be measured.

【0019】次に、上記粒度分布測定装置15における
動作の一例を図4及び図5等に基づいて説明する。な
お、図4は、粉体試料Sに対してハロゲン光源10とC
CDカメラ11が反対方向に配置されている場合の、粒
子性状データに基づく粒子の分散処理制御を示すフロー
チャートで、このフローチャートはコンピュータ7に予
め記憶されているプログラムに従って自動的に実行され
る。また、説明の便宜上、測定場18は図3(a)に示
す形態であるとする。
Next, an example of the operation of the particle size distribution measuring device 15 will be described with reference to FIGS. FIG. 4 shows the halogen light source 10 and C
This is a flowchart showing particle dispersion processing control based on particle property data when the CD camera 11 is arranged in the opposite direction. This flowchart is automatically executed according to a program stored in the computer 7 in advance. Further, for convenience of explanation, it is assumed that the measurement field 18 has a form shown in FIG.

【0020】先ず、プログラムの分散処理判断ルーチン
が開始(S101)されると、ハロゲン光源10からハ
ロゲン光がガラスフローセル22に照射され、粒子画像
が撮像(S102)される。この粒子画像の撮像は、ハ
ロゲン光源10から照射されるハロゲン光をガラスフロ
ーセル22内を通過する懸濁液中に透過させ、この透過
光をCCDカメラ11で射影として撮像することによっ
て行われ、例えば図5(a)に示すように、粒子R1、
R2の大きさ、形状に応じて射影濃度の異なる撮像画像
(画像データ)が得られる。なお、この撮像画像はカラ
ーモニタ8に逐次表示(S300)されて、作業員の目
視による直接確認作業等に利用される。
First, when the distributed processing determination routine of the program is started (S101), a halogen light is irradiated from the halogen light source 10 onto the glass flow cell 22, and a particle image is captured (S102). The imaging of the particle image is performed by transmitting the halogen light emitted from the halogen light source 10 into the suspension passing through the glass flow cell 22 and imaging the transmitted light as a projection by the CCD camera 11. As shown in FIG. 5A, the particles R1,
Captured images (image data) having different projected densities are obtained according to the size and shape of R2. The captured images are sequentially displayed on the color monitor 8 (S300), and are used for a direct confirmation work or the like by visual observation by an operator.

【0021】粒子画像が撮像されると、この撮像画像を
複数のスライスレベルで二値化(S103)する。この
撮像画像の二値化は、例えば撮像画像が図5(a)に示
す状態で、その射影濃度分布が図5(b)であり、複数
のスライスレベルとして3つのレベルA〜Cが予めコン
ピュータ7のRAMに設定されている場合、次のように
して行われる。
When a particle image is captured, the captured image is binarized at a plurality of slice levels (S103). In this binarization of the captured image, for example, the captured image is in a state shown in FIG. 5A, the projected density distribution is shown in FIG. 5B, and three levels A to C are previously set as a plurality of slice levels. 7 are set as follows.

【0022】すなわち、例えば3つのレベルA〜Cは、
レベルAの射影濃度が最も高い値で、以下所定幅(例え
ば一定幅)で順に低くなるように設定されており、この
3つのレベルA〜Cで図5の撮像画像を二値化すると、
レベルAでは粒子数1個と判定され、レベルBでは粒子
数2個と判定され、レベルCでは粒子数1個と判定され
る。この判定された各レベルA〜Cの粒子数は、コンピ
ュータ7の例えばRAMに一時記憶される。
That is, for example, three levels A to C are:
The projected density of the level A is the highest value, and is set so as to become lower in order at a predetermined width (for example, a constant width). When the captured image of FIG. 5 is binarized at these three levels A to C,
At level A, the number of particles is determined to be one, at level B, the number of particles is determined to be two, and at level C, the number of particles is determined to be one. The determined particle numbers of the levels A to C are temporarily stored in, for example, the RAM of the computer 7.

【0023】そして、粒子画像が二値化されたら、設定
した全てのスライスレベルにおける全粒子数をカウント
(S104)しこれを一時記憶し、その後、隣り合うス
ライスレベル間の粒子数の変化率Y1を算出(S10
5)する。この変化率Y1の算出は、例えば前述した3
つのレベルA〜Cで二値化した場合、レベルA、B間で
は、1/2=0.5となり、レベルB、C間では2/1
=2となる。なお、この例の変化率Y1は、スライスレ
ベルの射影濃度が低いレベルから高いレベルに移動させ
た場合の粒子数の変動度合いである。
Then, when the particle image is binarized, the total number of particles in all the set slice levels is counted (S104) and temporarily stored, and thereafter, the change rate Y1 of the number of particles between adjacent slice levels Y1 Is calculated (S10
5) Do it. The calculation of the change rate Y1 is performed by, for example, the aforementioned 3
When binarization is performed between two levels A to C, 1 / = 0.5 between levels A and B, and 2/1 between levels B and C.
= 2. The change rate Y1 in this example is the degree of change in the number of particles when the projected density of the slice level is moved from a low level to a high level.

【0024】この変化率Y1を算出することにより、粒
子の凝集状態が判定され、粒子が凝集している場合は、
例えばスライスレベル間における粒子数の変化率Y1が
大きくなり、粒子が凝集していない場合は、例えばスラ
イスレベル間における粒子数の変化率Y1は、ほとんど
変化しないか僅かな変化として現れることになる。
By calculating the rate of change Y1, the state of aggregation of the particles is determined.
For example, when the change rate Y1 of the number of particles between the slice levels is large and the particles are not aggregated, the change rate Y1 of the number of particles between the slice levels appears as little change or slight change.

【0025】この粒子数の変化率Y1が算出されたら、
算出した変化率Y1が予め設定した設定値Y1s以上が
否かが判断(S106)される。この判断S106で
「YES」の場合、すなわち、例えば隣り合う複数のス
ライスレベル間の粒子数の変化率Y1の少なくとも一つ
(あるいは複数か全て)が設定値Y1s以上の場合は、
懸濁液中の粒子に凝集が発生しているものとして、すな
わち分散不十分と判定して、試料循環器17に内蔵され
ている分散器21に作動信号を出力して、この分散器2
1をオン(S107)させる。
When the change rate Y1 of the number of particles is calculated,
It is determined whether the calculated change rate Y1 is equal to or greater than a preset set value Y1s (S106). If “YES” in the determination S106, that is, if at least one (or a plurality or all) of the change rates Y1 of the number of particles between a plurality of adjacent slice levels is equal to or more than the set value Y1s,
It is determined that the particles in the suspension are agglomerated, that is, it is determined that the dispersion is insufficient, and an operation signal is output to the disperser 21 built in the sample circulator 17, and this disperser 2
1 is turned on (S107).

【0026】この分散器21のオンにより、超音波ホモ
ジナイザーが作動して、その超音波によって粒度分析計
16と試料循環器17間を循環する懸濁液に分散作用が
付与されて、懸濁液中の凝集した粒子が分散される。こ
の分散は、予め設定されている所定の処理時間行われ
(S108)、この時間が経過した時点で判断S108
で「YES」となり、次に粒子の画像撮像が設定回数実
施されたか否かが判断(S109)される。この判断S
109で「NO」の場合は、ステップS102に戻り、
次の粒子画像を撮像し、ステップS103以降を繰り返
す。
When the disperser 21 is turned on, the ultrasonic homogenizer is activated, and the ultrasonic waves apply a dispersing action to the suspension circulating between the particle size analyzer 16 and the sample circulator 17, whereby the suspension is dispersed. The aggregated particles therein are dispersed. This dispersion is performed for a predetermined processing time that is set in advance (S108), and when this time has elapsed is determined S108
Is "YES", and it is determined whether or not the image capturing of the particles has been performed a set number of times (S109). This judgment S
If “NO” in 109, the process returns to step S102,
The next particle image is captured, and the steps from step S103 are repeated.

【0027】そして、粒子の画像撮像を所定回数実施し
たら、判断S109で「YES」となり、分散処理ルー
チンを終了(S110)し、その後、粒度分布測定を開
始(S111)する。この粒度分布測定は、前述したよ
うに、レーザ光回折・散乱方式によって行われ、検出器
4で検出された検出データが信号処理器5で処理され、
これがCPU6及びコンピュータ7で適宜処理されてヒ
ストグラムが作成され、これが例えばカラーモニタ8に
表示されたりプリンタで印刷される。
After the image pickup of the particles has been performed a predetermined number of times, "YES" is determined in the judgment S109, the dispersion processing routine is ended (S110), and thereafter, the particle size distribution measurement is started (S111). This particle size distribution measurement is performed by the laser light diffraction / scattering method as described above, and the detection data detected by the detector 4 is processed by the signal processor 5,
This is appropriately processed by the CPU 6 and the computer 7 to create a histogram, which is displayed on the color monitor 8 or printed by a printer, for example.

【0028】一方、判断S106で「NO」の場合、す
なわち、隣り合うスライスレベル間の粒子数の変化率Y
1が設定値Y1s未満の場合は、懸濁液中の粒子に凝集
が発生していないかもしくは測定に影響しない凝集であ
るものとして、ステップS110にジャンプし分散処理
ルーチンを終了する。これによって、一連のステップが
終了し、一つの種類の粉体試料Sの粒子性状及び粒度分
布が測定されることになる。
On the other hand, if the determination in step S106 is "NO", that is, the change rate Y of the number of particles between adjacent slice levels,
If 1 is less than the set value Y1s, it is determined that no aggregation has occurred in the particles in the suspension or the aggregation does not affect the measurement, and the process jumps to step S110 to end the dispersion processing routine. Thus, a series of steps is completed, and the particle properties and particle size distribution of one type of powder sample S are measured.

【0029】ところで、図4に示すフローチャートにお
いては、粒度分布測定装置15が湿式系である場合を例
にして説明したが、例えば乾式系粒度分布測定装置の場
合の分散は、例えばエジェクター等からなる分散器(図
示せず)に圧縮空気を供給をして分散器内を負圧にして
粉体試料Sを吸い込むことによって行うため、ステップ
S107において、この圧縮空気圧(分散圧力)を所定
圧力増加させ、この状態をステップS108で予め設定
した所定の処理時間継続(増圧)することによって行う
ことになる。
In the flowchart shown in FIG. 4, the case where the particle size distribution measuring device 15 is of a wet type has been described as an example. However, for example, in the case of a dry type particle size distribution measuring device, the dispersion is composed of, for example, an ejector. In step S107, the compressed air pressure (dispersion pressure) is increased by a predetermined pressure to supply the compressed air to a disperser (not shown) and to suction the powder sample S by setting the inside of the disperser to a negative pressure. This state is performed by continuing (pressurizing) a predetermined processing time set in advance in step S108.

【0030】なお、以上の例では、粒子画像を二値化す
る際に、スライスレベルがレベルA〜Cの3つである場
合について説明したが、例えは2つや4つ以上のレベル
を設定しても良いし、そのレベル間隔も一定に限らず異
ならせたり、隣り合うスライスレベルの変化率Y1に限
らず、所定位置のスライスレベル間の変化率Y1を算出
する等、適宜に設定することができる。また、予め設定
された回数分散処理しても、懸濁液中の粒子の分散が所
定のレベルにならない場合は、判断S109から強制的
にステップS110に移って分散処理ルーチンを終了
し、粒度分布測定開始(S111)に進むようにしても
良い。
In the above example, when the particle image is binarized, the case where the slice levels are three levels A to C has been described. However, for example, two or four or more levels are set. Alternatively, the level intervals may be set differently without being constant, and may be set appropriately, such as calculating the rate of change Y1 between slice levels at a predetermined position, not limited to the rate of change Y1 between adjacent slice levels. it can. Also, if the dispersion of the particles in the suspension does not reach the predetermined level even after the dispersion process performed a preset number of times, the process is forcibly moved from step S109 to step S110, and the dispersion process routine is terminated, and the particle size distribution The process may proceed to the start of measurement (S111).

【0031】さらに、上記判断S108における処理時
間も、予め特定の時間を設定することによって行うこと
もできるが、例えばステップS105で算出した変化率
Y1の度合いに応じて、処理時間を予め設定されている
テーブル等に従って決定するようにすれば、凝集度合い
が高い場合には比較的長い時間分散処理し、凝集度合い
が低い場合には、比較的短時間で分散処理することがで
きる。
Further, the processing time in the judgment S108 can also be made by setting a specific time in advance. For example, the processing time is set in advance according to the degree of the change rate Y1 calculated in step S105. If the degree of aggregation is high, the dispersion processing can be performed for a relatively long time, and if the degree of aggregation is low, the dispersion processing can be performed in a relatively short time.

【0032】図6は、粒子画像撮像部9のハロゲン光源
10とCCDカメラ11が粉体試料Sに対して同一方向
にある場合の、図4と同様のフローチャートを示してい
る。以下、特に図4と異なる部分を詳細な状態で説明す
る。先ず、分散処理ルーチンが開始(S201)される
と粒子画像が撮像(S202)される。この粒子画像
は、ハロゲン光源10とCCDカメラ11が粉体試料S
に対して同一方向に配置されていることから、粉体試料
Sからの反射光を撮像することになり、例えば図7に示
すようなイメージ図の粒子画像が得られる。
FIG. 6 shows a flowchart similar to that of FIG. 4 when the halogen light source 10 and the CCD camera 11 of the particle image pickup section 9 are in the same direction with respect to the powder sample S. Hereinafter, a part different from FIG. 4 will be described in detail. First, when the distributed processing routine is started (S201), a particle image is captured (S202). This particle image is obtained when the halogen light source 10 and the CCD camera 11
, The reflected light from the powder sample S is imaged, and for example, a particle image of an image diagram as shown in FIG. 7 is obtained.

【0033】粒子画像が撮像されると、設定した所定の
スライスレベルで二値化(S203)し、この二値化し
たデータから粒子間の境界線Lを検出(S204)す
る。この境界線Lの検出は、図7に示す粒子画像の場
合、3個の粒子R3〜R5が部分的に重なっているた
め、この重なり部分24と重なっていない部分25との
間に、濃度の急激な変化が生じることになり、この急激
に変化する部分(曲線)を二値化データから抽出するこ
とにより、境界線Lが検出されることになる。
When a particle image is captured, binarization is performed at a predetermined slice level (S203), and a boundary L between particles is detected from the binarized data (S204). In the detection of the boundary line L, in the case of the particle image shown in FIG. 7, since three particles R3 to R5 partially overlap, the density of the density is set between the overlapping portion 24 and the non-overlapping portion 25. A sudden change occurs, and the boundary line L is detected by extracting the rapidly changing portion (curve) from the binarized data.

【0034】なお、図7の場合は2本の境界線L1、L
2が検出されることになり、他の2本の境界線L3、L
4は濃度の変化が少ないため、ステップS204で境界
線Lとしては検出されない。つまり、粒子R3〜R5が
凝集していると重なり部分24の数も多くなって検出さ
れる境界線Lの本数も必然的に多くなるが、粒子R3〜
R5が凝集せず良好に分散されている場合は、重なり部
分24の数が少なく、検出される境界線Lの本数も少な
くなる。
In the case of FIG. 7, two boundary lines L1 and L
2 is detected, and the other two boundary lines L3, L
No. 4 has a small change in density, and is not detected as the boundary line L in step S204. That is, when the particles R3 to R5 are aggregated, the number of the overlapping portions 24 is increased, and the number of the detected boundary lines L is inevitably increased.
When R5 is well dispersed without aggregation, the number of overlapping portions 24 is small, and the number of boundary lines L detected is also small.

【0035】そして、ステップS204で境界線Lが検
出されたら、境界線Lの本数Y2を計数(S205)
し、この境界線Lの本数Y2が予め設定されている設定
値Y2s以上が否かが判断(S206)される。この判
断S206で「YES」の場合は分散不十分として、図
4と同様に湿式系の分散器21をオンさせたり乾式系の
分散器の分散圧力を増加(S207)させる。この処理
を所定時間行い(S208)、粒子画像の撮像回数が所
定回数に達した時点で、判断S209からステップS2
10に移り分散処理ルーチンを終了する。その後、レー
ザ光回折・散乱方式による粒度分布測定を開始(S21
1)する。
When the boundary line L is detected in step S204, the number Y2 of the boundary lines L is counted (S205).
Then, it is determined whether or not the number Y2 of the boundary lines L is equal to or greater than a preset value Y2s (S206). If "YES" in this determination S206, the dispersion is determined to be insufficient, and the wet-type disperser 21 is turned on and the dispersion pressure of the dry-type disperser is increased (S207) as in FIG. This processing is performed for a predetermined time (S208), and when the number of times of capturing the particle image reaches the predetermined number, the processing proceeds from determination S209 to step S2.
The routine goes to 10, and the distributed processing routine ends. After that, the particle size distribution measurement by the laser light diffraction / scattering method is started (S21).
1) Yes.

【0036】なお、このフローチャートにおいては、重
なり部分24の境界線Lの本数Y2を検出して、これを
設定値Y2sと比較して粒子の凝集状態を判定するよう
にしたが、例えば所定領域を有する重なり部分24の二
値化データ数を計数(面積を算出)して、これを設定値
と比較するようにしても良く、この処理方式によれば、
図7の粒子画像の場合には2個の重なり部分24が検出
されることになる。また、スライスレベルも一つでな
く、複数設けて各スライスレベルの判定結果に応じて凝
集状態を判定することもできる。
In this flowchart, the number Y2 of the boundary lines L of the overlapping portion 24 is detected and compared with the set value Y2s to determine the aggregation state of the particles. The number of binarized data of the overlapping portion 24 may be counted (area is calculated) and compared with a set value. According to this processing method,
In the case of the particle image of FIG. 7, two overlapping portions 24 are detected. Also, the number of slice levels is not limited to one, and a plurality of slice levels may be provided to determine the aggregation state according to the determination result of each slice level.

【0037】このように、上記実施例の粒度分布測定装
置15によれば、粒度分布測定に最も実績のあるレーザ
光回折・散乱方式の粒度分析計16に、ハロゲン光源1
0とCCDカメラ11からなる粒子画像撮像部9を一体
的に設けているため、一台の粒度分布測定装置15で粒
度分布以外の粒子の凝集状態や粒子形状及びそれらの変
化等の粒子性状を測定することができて、例えばこの粒
子性状をカラーモニタ8で直接モニタリングすることが
できる。これにより、今までレーザ光散乱法の粒度分析
計では勘や経験に頼っていた粒子性状の状態の良否を可
視化できると共に、分散状態が悪い場合には、自動的に
分散器21等を作動させて分散を促進させる処置を行う
ことができて、粉体試料Sの各種品質を高精度に測定す
ることができる。
As described above, according to the particle size distribution measuring device 15 of the above embodiment, the halogen light source 1
Since the particle image capturing unit 9 including the CCD camera 11 and the CCD camera 11 is provided integrally, a single particle size distribution measuring device 15 can be used to determine the particle aggregating state other than the particle size distribution, the particle shape, and their changes. For example, the particle properties can be directly monitored by the color monitor 8. With this, it is possible to visualize the quality of the particle property state, which has been relying on intuition and experience with the particle size analyzer of the laser light scattering method, and when the dispersion state is bad, the disperser 21 and the like are automatically activated. Thus, a treatment for accelerating the dispersion can be performed, and various qualities of the powder sample S can be measured with high accuracy.

【0038】特に、粒子画像撮像部9によって撮像され
た粒子画像を、例えば複数のスライスレベルで二値化し
て粒子の凝集状態を判定したり、所定のスライスレベル
で二値化して境界線Lを検出することによって粒子の凝
集状態を判定するため、凝集状態を的確に捉えることが
できると共に、その結果に応じて分散器21を所定時間
作動させたり分散圧力を増加させることができるため、
粉体試料Sの粒子の凝集状態を解消して最適な状態とす
ることができる。その結果、良好な分散状態で粒子性状
や粒度分布を測定することができ、粉体試料Sの品質を
より高精度に測定することが可能になる。
In particular, the particle image captured by the particle image capturing section 9 is binarized at a plurality of slice levels, for example, to determine the aggregation state of the particles, or binarized at a predetermined slice level to form a boundary line L. Since the aggregation state of the particles is determined by detection, the aggregation state can be accurately grasped, and the disperser 21 can be operated for a predetermined time or the dispersion pressure can be increased according to the result, so that
The agglomerated state of the particles of the powder sample S can be eliminated to achieve an optimal state. As a result, the particle properties and the particle size distribution can be measured in a good dispersion state, and the quality of the powder sample S can be measured with higher accuracy.

【0039】また、従来から存在するレーザ光による画
像解析で得られる粒度分布測定と合わせて、原理の異な
るハロゲン光による粒子画像撮像で粒子性状やその他の
各種情報を測定することができるため、粉体試料Sの多
角的な品質評価を行うことができ、結果として、より一
層高精度な測定を行うことができる。さらに、レーザ光
回折・散乱方式の粒度分析計16に粒子画像撮像部9を
一体的に組み込み、これらを一つのコンピュータ7で制
御できるため、粒度分布測定装置15の構成を比較的簡
素に形成しかつそのコストアップを抑えることができ
る。
In addition to the particle size distribution measurement obtained by image analysis using a conventional laser beam, the particle properties and other various information can be measured by imaging a particle image using a halogen light having a different principle. Multilateral quality evaluation of the body sample S can be performed, and as a result, more accurate measurement can be performed. Furthermore, since the particle image capturing section 9 is integrated into the laser light diffraction / scattering type particle size analyzer 16 and can be controlled by one computer 7, the configuration of the particle size distribution measuring device 15 can be formed relatively simply. And the cost increase can be suppressed.

【0040】なお、上記実施例においては、粒子画像撮
像部9で撮像した粉体試料Sの画像データにより分散器
21を作動させて粒度分布測定装置15自体を制御した
が、粒子画像撮像部9の画像データによる粒度分布測定
装置15の制御は、分散器21の作動制御に限らず、試
料循環器17の例えば撹拌モータ19等の他の機構や部
品を制御して粉体試料Sの粒子の分散状態を制御するこ
ともできる。さらに、上記実施例における、粒度分析計
16、試料循環器17の構成、分散器21や測定場18
の形態やフローセルの構造、粒子画像撮像部9の光源の
種類等も一例であって、本発明に係わる各発明の要旨を
逸脱しない範囲において、種々変更可能であることはい
うまでもない。
In the above embodiment, the particle size distribution measuring device 15 itself was controlled by operating the disperser 21 based on the image data of the powder sample S captured by the particle image capturing unit 9. The control of the particle size distribution measuring device 15 based on the image data of not only the operation control of the disperser 21 but also other mechanisms and components such as the stirring motor 19 of the sample circulator 17 to control the particle size of the powder sample S. The state of dispersion can also be controlled. Furthermore, the configuration of the particle size analyzer 16, the sample circulator 17, the disperser 21 and the
The form, the structure of the flow cell, the type of the light source of the particle image capturing unit 9 and the like are also examples, and it is needless to say that various changes can be made without departing from the gist of each invention according to the present invention.

【0041】[0041]

【発明の効果】以上詳述したように、請求項1記載の発
明によれば、レーザ光の回折・散乱方式で粒度分布を測
定する粒度分布測定装置に、光源とCCDカメラからな
る粒子画像撮像部を一体的に設け、この粒子画像撮像部
で得られた画像データをコンピュータで演算処理するた
め、一台の粒度分布測定装置で粒度分布の他に粉体試料
の粒子性状を捉えることができて、粉体試料の品質を高
精度に測定することができる。
As described above in detail, according to the first aspect of the present invention, a particle size measuring apparatus for measuring a particle size distribution by a laser beam diffraction / scattering method is provided with a light source and a CCD camera. The unit is provided integrally, and the image data obtained by this particle image pickup unit is processed by a computer, so that one particle size distribution measuring device can capture the particle properties of the powder sample in addition to the particle size distribution. Therefore, the quality of the powder sample can be measured with high accuracy.

【0042】また、請求項2記載の発明によれば、粒子
画像撮像部で粉体試料の粒子性状が捉えられ、その結果
に基づいて測定装置の分散器等を作動させて分散状態を
制御することができるため、粉体試料を測定に最適な分
散状態とすることができ、粉体試料の粒度分布や粒子性
状をより正確に捉えることができて、粉体試料の品質を
より高精度に測定することができる。
According to the second aspect of the present invention, the particle properties of the powder sample are detected by the particle image capturing unit, and the dispersion state is controlled by operating the disperser or the like of the measuring device based on the result. This allows the powder sample to be in the optimal dispersion state for measurement, and allows the particle size distribution and particle properties of the powder sample to be more accurately grasped, and the quality of the powder sample to be more accurate. Can be measured.

【0043】また、請求項3記載の発明によれば、請求
項1または2記載の発明の効果に加え、粒子画像撮像部
で粉体試料の粒子の凝集状態が捉えられるため、その結
果によって粉体試料の分散状態を制御して測定に最適な
状態とすることができ、粉体試料の品質をより一層高精
度に測定することができる等の効果を奏する。
According to the third aspect of the present invention, in addition to the effects of the first or second aspect, the particle image capturing section can capture the aggregation state of the particles of the powder sample. The dispersion state of the body sample can be controlled so as to be in an optimum state for measurement, and the quality of the powder sample can be measured with higher accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる粒度分布測定装置の一実施例を
示す基本構成図
FIG. 1 is a basic configuration diagram showing an embodiment of a particle size distribution measuring device according to the present invention.

【図2】同本発明を湿式系粒度分布測定装置に適用した
場合の基本ブロック図
FIG. 2 is a basic block diagram when the present invention is applied to a wet type particle size distribution analyzer.

【図3】同図2の測定場の概念を示す斜視図FIG. 3 is a perspective view showing the concept of the measurement field shown in FIG. 2;

【図4】同動作の一例を示すフローチャートFIG. 4 is a flowchart showing an example of the operation.

【図5】同その撮像画像のイメージ図と射影濃度分布図FIG. 5 is an image diagram and a projected density distribution diagram of the captured image.

【図6】同動作の他の例を示すフローチャートFIG. 6 is a flowchart showing another example of the operation.

【図7】同その撮像画像のイメージ図FIG. 7 is an image diagram of the captured image.

【符号の説明】[Explanation of symbols]

1 粒度分布測定装置 2 レーザ光源 3 集光レンズ 4 検出器 5 信号処理器 6 CPU 7 コンピュータ 8 カラーモニタ 9 粒子画像撮像部 10 ハロゲン光源 11 CCDカメラ 12 画像信号処理器 15 湿式系粒度分布測定装置 16 粒度分析計 17 試料循環器 18 測定場 21 分散器 S 粉体試料 DESCRIPTION OF SYMBOLS 1 Particle size distribution measuring device 2 Laser light source 3 Condensing lens 4 Detector 5 Signal processor 6 CPU 7 Computer 8 Color monitor 9 Particle image pickup part 10 Halogen light source 11 CCD camera 12 Image signal processor 15 Wet type particle size distribution measuring device 16 Particle size analyzer 17 Sample circulator 18 Measurement field 21 Disperser S Powder sample

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】粉体試料を測定場に供給しつつ、該測定場
を通過する粉体試料にレーザ光を照射して該レーザ光の
回折・散乱状態を検出し、この検出データをコンピュー
タで演算処理することによって粉体試料の粒度分布を測
定する粒度分布測定装置において、前記粒度分布測定装
置に光源とCCDカメラからなる粒子画像撮像部を一体
的に設け、該粒子画像撮像部で得られた画像データを前
記コンピュータで演算処理することによって、粉体試料
の粒子性状を測定することを特徴とする粒度分布測定装
置。
1. A powder sample is supplied to a measuring field, and a powder sample passing through the measuring field is irradiated with a laser beam to detect a diffraction / scattering state of the laser beam. In a particle size distribution measuring device that measures the particle size distribution of a powder sample by performing arithmetic processing, a particle image capturing unit including a light source and a CCD camera is integrally provided in the particle size distribution measuring device, and the particle image capturing unit is obtained by the particle image capturing unit. A particle size measurement device for measuring the particle properties of the powder sample by subjecting the processed image data to arithmetic processing by the computer.
【請求項2】粉体試料を測定場に供給しつつ、該測定場
を通過する粉体試料にレーザ光を照射して該レーザ光の
回折・散乱状態を検出し、この検出データをコンピュー
タで演算処理することによって粉体試料の粒度分布を測
定する粒度分布測定装置において、前記粒度分布測定装
置に光源とCCDカメラからなる粒子画像撮像部を一体
的に設け、該粒子画像撮像部で得られた画像データを前
記コンピュータで演算処理することによって粉体試料の
粒子性状を測定すると共に、該測定結果に基づいて前記
測定場に供給される粉体試料の分散状態を制御すること
を特徴とする粒度分布測定装置。
2. A laser beam is applied to a powder sample passing through the measurement field while the powder sample is being supplied to the measurement field to detect the diffraction / scattering state of the laser beam. In a particle size distribution measuring device that measures the particle size distribution of a powder sample by performing arithmetic processing, a particle image capturing unit including a light source and a CCD camera is integrally provided in the particle size distribution measuring device, and the particle image capturing unit is obtained by the particle image capturing unit. Calculating the particle properties of the powder sample by calculating the image data with the computer, and controlling the dispersion state of the powder sample supplied to the measurement site based on the measurement result. Particle size distribution measurement device.
【請求項3】前記粉体試料の粒子性状が、粉体試料の粒
子の凝集体の存在を測定することによって得られる凝集
状態であることを特徴とする請求項1または2記載の粒
度分布測定装置。
3. The particle size distribution measurement according to claim 1, wherein the particle properties of the powder sample are in an aggregated state obtained by measuring the presence of an aggregate of particles of the powder sample. apparatus.
JP10321191A 1998-11-12 1998-11-12 Grain size distribution measuring device Pending JP2000146817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10321191A JP2000146817A (en) 1998-11-12 1998-11-12 Grain size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10321191A JP2000146817A (en) 1998-11-12 1998-11-12 Grain size distribution measuring device

Publications (1)

Publication Number Publication Date
JP2000146817A true JP2000146817A (en) 2000-05-26

Family

ID=18129814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10321191A Pending JP2000146817A (en) 1998-11-12 1998-11-12 Grain size distribution measuring device

Country Status (1)

Country Link
JP (1) JP2000146817A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038541A (en) * 2004-07-26 2006-02-09 Tdk Corp Evaluation data forming method and evaluation method
JP2009008602A (en) * 2007-06-29 2009-01-15 Hokuto Denshi Kogyo Kk Detecting method and device for size of particle in liquid
EP2322911A1 (en) * 2009-11-13 2011-05-18 Bühler AG Device for determining particle sizes
WO2013190327A2 (en) 2012-06-22 2013-12-27 Malvern Instruments Limited Heterogeneous fluid sample characterization
US9897525B2 (en) 2015-05-01 2018-02-20 Malvern Instruments Ltd. Relating to particle characterisation
JP2018202575A (en) * 2017-06-08 2018-12-27 国立大学法人東北大学 Deformation device
US10509976B2 (en) 2012-06-22 2019-12-17 Malvern Panalytical Limited Heterogeneous fluid sample characterization
WO2020085152A1 (en) * 2018-10-23 2020-04-30 株式会社堀場製作所 Duplex particle measuring device
KR20200119200A (en) * 2019-04-09 2020-10-19 가부시끼가이샤 히다치 세이사꾸쇼 Particle size measurement apparatus and measurement method
KR102195337B1 (en) * 2019-08-28 2020-12-24 (주)싸이젠텍 Method and system for acquiring and analyzing diffraction signal using ccd camera for optical diffraction particle size analysis
JP2021032728A (en) * 2019-08-26 2021-03-01 株式会社東芝 Physical property measuring device
WO2021075309A1 (en) * 2019-10-15 2021-04-22 株式会社堀場製作所 Particle group characteristic measurement device, particle group characteristic measurement method, program for particle group characteristic measurement device, particle diameter distribution measurement device, and particle diameter distribution measurement method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038541A (en) * 2004-07-26 2006-02-09 Tdk Corp Evaluation data forming method and evaluation method
JP2009008602A (en) * 2007-06-29 2009-01-15 Hokuto Denshi Kogyo Kk Detecting method and device for size of particle in liquid
EP2322911A1 (en) * 2009-11-13 2011-05-18 Bühler AG Device for determining particle sizes
JP2013511031A (en) * 2009-11-13 2013-03-28 ビューラー・アクチエンゲゼルシャフト Equipment for determining particle size
KR101815327B1 (en) * 2009-11-13 2018-01-04 뷔흘러 에이지 Device for determining particle sizes
US8842267B2 (en) 2009-11-13 2014-09-23 Bühler AG Device for determining particle sizes
JP2015520397A (en) * 2012-06-22 2015-07-16 マルバーン インストゥルメンツ リミテッド Characterization of heterogeneous fluid samples
WO2013190327A2 (en) 2012-06-22 2013-12-27 Malvern Instruments Limited Heterogeneous fluid sample characterization
US10509976B2 (en) 2012-06-22 2019-12-17 Malvern Panalytical Limited Heterogeneous fluid sample characterization
EP2864760B1 (en) * 2012-06-22 2024-02-28 Malvern Panalytical Limited Heterogeneous fluid sample characterization
US9897525B2 (en) 2015-05-01 2018-02-20 Malvern Instruments Ltd. Relating to particle characterisation
USRE49651E1 (en) 2015-05-01 2023-09-12 Malvern Panalytical Limited Apparatus for characterizing particles and method for use in characterizing particles
JP2018202575A (en) * 2017-06-08 2018-12-27 国立大学法人東北大学 Deformation device
JP7081781B2 (en) 2017-06-08 2022-06-07 国立大学法人東北大学 Deformer
EP3839477A4 (en) * 2018-10-23 2022-05-25 Horiba, Ltd. Duplex particle measuring device
JPWO2020085152A1 (en) * 2018-10-23 2021-09-24 株式会社堀場製作所 Duplex particle measuring device
WO2020085152A1 (en) * 2018-10-23 2020-04-30 株式会社堀場製作所 Duplex particle measuring device
KR102333898B1 (en) * 2019-04-09 2021-12-01 가부시끼가이샤 히다치 세이사꾸쇼 Particle size measurement apparatus and measurement method
US11385156B2 (en) 2019-04-09 2022-07-12 Hitachi, Ltd. Particle size measuring apparatus and measuring method
KR20200119200A (en) * 2019-04-09 2020-10-19 가부시끼가이샤 히다치 세이사꾸쇼 Particle size measurement apparatus and measurement method
JP2021032728A (en) * 2019-08-26 2021-03-01 株式会社東芝 Physical property measuring device
JP7303066B2 (en) 2019-08-26 2023-07-04 株式会社東芝 Physical property measuring device
KR102195337B1 (en) * 2019-08-28 2020-12-24 (주)싸이젠텍 Method and system for acquiring and analyzing diffraction signal using ccd camera for optical diffraction particle size analysis
WO2021075309A1 (en) * 2019-10-15 2021-04-22 株式会社堀場製作所 Particle group characteristic measurement device, particle group characteristic measurement method, program for particle group characteristic measurement device, particle diameter distribution measurement device, and particle diameter distribution measurement method
EP4033221A4 (en) * 2019-10-15 2023-10-25 HORIBA, Ltd. Particle group characteristic measurement device, particle group characteristic measurement method, program for particle group characteristic measurement device, particle diameter distribution measurement device, and particle diameter distribution measurement method

Similar Documents

Publication Publication Date Title
JP2000146817A (en) Grain size distribution measuring device
JP5517000B2 (en) Particle size measuring device and particle size measuring method
JP2015520396A (en) Particle characterization
JP4898828B2 (en) Aggregation judgment method
JPH06109615A (en) Grain size distribution measuring device
JP4039565B2 (en) X-ray inspection apparatus, X-ray inspection method, and control program for X-ray inspection apparatus
JP2006189349A (en) Nondestructive defect inspection system
JP3580766B2 (en) Online image analyzer for liquid particles
JP4716055B2 (en) Laser diffraction / scattering particle size distribution analyzer
US8041086B2 (en) Method of detecting specific polymer crystal
JP2007256208A (en) Absorbance measuring instrument, and device for determining presence of specific substance
JP2636051B2 (en) Particle measurement method and device
JP2000002644A (en) Laser diffraction/scattering type grain size distribution- measuring device
JP2004117096A (en) Method and apparatus for measuring particle size distribution
US10041885B2 (en) Optical and chemical analytical systems and methods
JP4354121B2 (en) Dynamic light scattering particle size distribution analyzer
JPH11258144A (en) Particle image-analyzing apparatus
JP2669290B2 (en) Particle size distribution analyzer
JPH11337470A (en) Flow-type particle image analyzer
US20240192118A1 (en) Detection and analysis of particles suspended in fluid streams
JP7330869B2 (en) Automatic analysis method and automatic analysis device
JPH10267827A (en) Particle-aggregation measuring apparatus
JP2821200B2 (en) Particle measurement method and device
JPH0933441A (en) Method and device for judging reaction pattern
US8229196B2 (en) Method of detecting specific polymer crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060509