JP5703987B2 - Particle measuring device - Google Patents

Particle measuring device Download PDF

Info

Publication number
JP5703987B2
JP5703987B2 JP2011134208A JP2011134208A JP5703987B2 JP 5703987 B2 JP5703987 B2 JP 5703987B2 JP 2011134208 A JP2011134208 A JP 2011134208A JP 2011134208 A JP2011134208 A JP 2011134208A JP 5703987 B2 JP5703987 B2 JP 5703987B2
Authority
JP
Japan
Prior art keywords
particle
coarse
light
laser
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011134208A
Other languages
Japanese (ja)
Other versions
JP2013002947A (en
Inventor
和裕 小泉
和裕 小泉
雅哉 田原
雅哉 田原
貴之 中村
貴之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011134208A priority Critical patent/JP5703987B2/en
Publication of JP2013002947A publication Critical patent/JP2013002947A/en
Application granted granted Critical
Publication of JP5703987B2 publication Critical patent/JP5703987B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、クリーンルームや真空処理装置などの粉塵の発生状況を管理する必要のある空間における浮遊粒子の数量と大きさ(粒径)を計測するための装置に関する。   The present invention relates to an apparatus for measuring the quantity and size (particle size) of suspended particles in a space where it is necessary to manage the state of dust generation, such as in a clean room or a vacuum processing apparatus.

従来の粒子計測装置は、気体等の流体を当該計測装置の内部に吸引して外部に排気すると共に、内部を通流する流体に光源から出射されたレーザ光を照射し、この照射時に流体中に含まれる粒子での散乱光を受光素子で受光するように構成されている。そして、その散乱光に応じて受光素子から出力される電気信号に基づいて粒子の数量と大きさを演算(波高分析処理)によって求めている。
近年、半導体の微細化加工の進展に伴い、測定対象粒子サイズも小さくなり、高感度検出が可能な粒子計測装置が望まれるようになっている。散乱光検出方式の装置において高感度化を図るには、測定用のレーザ光の高出力化が必要である。
そこで、レーザ共振器の内部に粒子検出領域を設け、共振器内部の高い光パワー密度を有する光を用いて高感度検出を行う方法が採られるようになっている。
A conventional particle measuring apparatus sucks a fluid such as a gas into the measuring apparatus and exhausts it to the outside, and irradiates the fluid flowing through the inside with the laser light emitted from the light source. The light receiving element receives the scattered light from the particles contained in. Then, the quantity and size of the particles are obtained by calculation (wave height analysis process) based on the electrical signal output from the light receiving element according to the scattered light.
In recent years, with the progress of semiconductor miniaturization processing, the particle size to be measured has been reduced, and a particle measuring apparatus capable of highly sensitive detection has been desired. In order to achieve high sensitivity in a scattered light detection type apparatus, it is necessary to increase the output of laser light for measurement.
In view of this, a method has been adopted in which a particle detection region is provided inside the laser resonator and high sensitivity detection is performed using light having a high optical power density inside the resonator.

このような高感度な粒子計測装置として、例えば特許文献1に記載のものが知られている。
この粒子計測装置は、図4に示すように、光ポンプ源(レーザ励起光源)1、焦点装置(集光レンズ)2、平面ミラー3aとレーザ媒体4と凹面ミラー3bとで組んだ共振器を収容するレーザキャビティ(レーザ共振器)5、検出領域6、集光レンズ7、検出器8、及び信号プロセッサ9などから構成されている。
レーザキャビティ5内に配置されたレーザ媒体4は、レーザ励起光源1により端面励起されて、レーザキャビティ5内に光を供給する。レーザキャビティ5内に設けられた検出領域6に粒子源から粒子を含む流体を導入すると、流体は高い光パワー密度を有する光にさらされる。この流体に粒子が含まれる場合には、粒子での散乱光が発生するので、その散乱光を集光レンズ7で集光し検出器8で検出した後、信号プロセッサ9にて演算処理を行うことにより、0.05μm〜10μmといった微小粒子の数及び大きさを検知することが可能となる。
As such a highly sensitive particle measuring apparatus, for example, one described in Patent Document 1 is known.
As shown in FIG. 4, this particle measuring apparatus includes a resonator formed by an optical pump source (laser excitation light source) 1, a focusing device (condensing lens) 2, a plane mirror 3a, a laser medium 4, and a concave mirror 3b. It comprises a laser cavity (laser resonator) 5 to be accommodated, a detection region 6, a condenser lens 7, a detector 8, a signal processor 9, and the like.
The laser medium 4 disposed in the laser cavity 5 is end-face excited by the laser excitation light source 1 and supplies light into the laser cavity 5. When a fluid containing particles is introduced from a particle source into a detection region 6 provided in the laser cavity 5, the fluid is exposed to light having a high light power density. When the fluid contains particles, scattered light from the particles is generated. Therefore, after the scattered light is collected by the condenser lens 7 and detected by the detector 8, the signal processor 9 performs arithmetic processing. This makes it possible to detect the number and size of fine particles such as 0.05 μm to 10 μm.

特開平10−2856号公報(段落〔0029〕、図3参照)Japanese Patent Laid-Open No. 10-2856 (see paragraph [0029], FIG. 3)

上述のように、レーザキャビティ(レーザ共振器)の内部に被測定対象流体を導入する構成とすれば、高感度な粒子計測装置を実現することが可能である。
しかしながら、一般に、被測定対象流体には、0.1μmといった粒径の微小粒子以外にも、10μm以上の粗大粒子が含まれることが多い。これら粗大粒子を含む被測定対象流体をレーザキャビティ5の内部に導入すると、レーザキャビティ内部が短期間で汚染されてしまう。
As described above, if the measurement target fluid is introduced into the laser cavity (laser resonator), a highly sensitive particle measuring apparatus can be realized.
However, in general, the fluid to be measured often includes coarse particles of 10 μm or more in addition to fine particles having a particle size of 0.1 μm. When the fluid to be measured including these coarse particles is introduced into the laser cavity 5, the inside of the laser cavity is contaminated in a short period of time.

共振器の構成要素であるミラー3a,3bには、高い反射率が求められるが、粗大粒子がミラー部分に付着することによってミラー反射率が低下し、レーザキャビティ5内部の光量が低下する。これにより装置の粒子検出感度の低下を招くといった問題が発生する。ミラー3a,3bの汚れを除去するためには、レーザキャビティ5内部の洗浄のための定期的なメンテナンス作業が必要であるが、費用がかかるだけでなく、メンテナンス期間中はデータの取得ができないといった不都合が発生する。   The mirrors 3a and 3b that are constituent elements of the resonator are required to have a high reflectance. However, when the coarse particles adhere to the mirror portion, the mirror reflectance is lowered, and the amount of light inside the laser cavity 5 is lowered. This causes a problem that the particle detection sensitivity of the apparatus is lowered. In order to remove the dirt on the mirrors 3a and 3b, periodic maintenance work for cleaning the inside of the laser cavity 5 is necessary. However, this is not only expensive, but data cannot be acquired during the maintenance period. Inconvenience occurs.

なお、このようなミラー部分の汚れに起因する感度低下を防ぐためには、被測定対象流体(気流)の導入方法としてシースフロー方式を採用したり、又は、パージエアを常時流すといった対策も考えられるが、装置が複雑化し高価になってしまう。   In order to prevent such a decrease in sensitivity due to contamination of the mirror part, a measure such as adopting a sheath flow method as a method for introducing the fluid to be measured (air flow) or constantly flowing purge air can be considered. The device becomes complicated and expensive.

本発明は、上記の問題点に鑑みなされたもので、微小粒子から粗大粒子まで広範囲に渡って高感度な粒子計測を行うことができ、しかも、メンテナンスフリーで信頼性の高い粒子計測装置を提供することを目的とする。   The present invention has been made in view of the above problems, and can provide a particle measurement apparatus that can perform highly sensitive particle measurement over a wide range from fine particles to coarse particles, and is also maintenance-free and highly reliable. The purpose is to do.

請求項1の発明は、被測定対象空間から導入した流体を、予め設定された所定の粒子径を基準に微小粒子を含む微小粒子含有流体と粗大粒子を含む粗大粒子含有流体とに分別する粒子分級手段と、
前記微小粒子含有流体をレーザ共振器内部に設けられた第1の検出領域に流すと共に、
前記レーザ共振器内の光を微小粒子検出用の測定光として照射し、前記微小粒子含有流体中に含まれる微小粒子での散乱光を受光して検出信号を出力する微小粒子検出手段と、
前記粗大粒子含有流体を前記レーザ共振器の外部に設けられた第2の検出領域に流すと共に、前記レーザ共振器の出力側から外部へ出射されるレーザ光を粗大粒子検出用の測定光として照射し、前記粗大粒子含有流体中に含まれる粗大粒子での散乱光を受光して検出信号を出力する粗大粒子検出手段と、
前記微小粒子検出手段から出力される検出信号と前記粗大粒子検出手段から出力される検出信号とに基づいて測定結果を出力する演算処理手段と、
を備えることを特徴とする。
According to the first aspect of the present invention, the particles introduced from the space to be measured are classified into a fine particle-containing fluid containing fine particles and a coarse particle-containing fluid containing coarse particles based on a predetermined particle diameter set in advance. Classification means,
Flowing the microparticle-containing fluid through a first detection region provided inside the laser resonator;
A fine particle detecting means for irradiating the light in the laser resonator as measurement light for detecting fine particles, receiving scattered light from the fine particles contained in the fluid containing fine particles, and outputting a detection signal;
The coarse particle-containing fluid is allowed to flow to a second detection region provided outside the laser resonator, and laser light emitted from the output side of the laser resonator is irradiated as measurement light for detecting coarse particles. And coarse particle detection means for receiving scattered light from the coarse particles contained in the coarse particle-containing fluid and outputting a detection signal;
Arithmetic processing means for outputting a measurement result based on the detection signal output from the fine particle detection means and the detection signal output from the coarse particle detection means;
It is characterized by providing.

請求項2の発明は、請求項1に記載の粒子計測装置において、
前記微小粒子検出手段は、レーザ励起光源と、前記レーザ励起光源により励起されるレーザ結晶と、前記レーザ結晶の両側に配置されて該レーザ結晶と協働してレーザ共振器を構成するミラー部と、前記微小粒子検出用の測定光の光軸と交叉するように配置され、前記微小粒子での側方散乱光を受光する微小粒子検出用受光素子とを備え、
前記粗大粒子検出手段は、前記粗大粒子検出用の測定光の光軸と交叉するように配置され、前記粗大粒子での側方散乱光を受光する粗大粒子検出用受光素子を備え、
前記微小粒子検出手段と前記粗大粒子検出手段を、各測定光の光軸が一致するように並設してなる、ことを特徴とする。
The invention of claim 2 is the particle measuring apparatus according to claim 1,
The fine particle detection means includes a laser excitation light source, a laser crystal excited by the laser excitation light source, a mirror unit disposed on both sides of the laser crystal and constituting a laser resonator in cooperation with the laser crystal. A microparticle detection light-receiving element that is arranged so as to cross the optical axis of the measurement light for detecting the microparticles, and that receives side scattered light from the microparticles,
The coarse particle detection means is provided so as to intersect with the optical axis of the measurement light for coarse particle detection, and includes a coarse particle detection light receiving element that receives side scattered light from the coarse particles,
The fine particle detection means and the coarse particle detection means are arranged in parallel so that the optical axes of the respective measurement lights coincide with each other.

請求項3の発明は、請求項1または請求項2に記載の粒子計測装置において、
前記微小粒子含有流体を前記微小粒子検出手段の内部に導入し外部へ排出するための第1の吸引手段と、前記粗大粒子含有流体を粗大粒子検出手段の内部に導入し外部へ排出するための第2の吸引手段とを備える、ことを特徴とする。
The invention of claim 3 is the particle measuring apparatus according to claim 1 or 2,
A first suction means for introducing the fine particle-containing fluid into the fine particle detection means and discharging it to the outside; and a first suction means for introducing the coarse particle-containing fluid into the coarse particle detection means and discharging it to the outside. And a second suction means.

請求項4の発明は、請求項1乃至請求項3に記載の粒子測定装置において、前記粒子分級手段はバーチャルインパクタである、ことを特徴とする。   According to a fourth aspect of the present invention, in the particle measuring apparatus according to the first to third aspects, the particle classification means is a virtual impactor.

本発明によれば、検出手段の前段に粒子分級手段を設け、被測定対象流体を微小粒子含有流体と粗大粒子含有流体とに分別し、微小粒子含有流体をレーザ共振器内部の第1の検出領域に導入して高い光パワー密度を有する測定光を用い微小粒子の検出を行う一方、粗大粒子含有流体についてはレーザ共振器外部の第2の検出領域に導入して共振器から外部に出射されるレーザ光を測定光として用い粗大粒子の検出を行うようにしているので、微小粒子から粗大粒子まで高感度で計測を行うことができる。   According to the present invention, the particle classification means is provided in front of the detection means, the fluid to be measured is classified into the fluid containing the fine particles and the fluid containing the coarse particles, and the fluid containing the fine particles is first detected inside the laser resonator. Microparticles are detected using measurement light having a high optical power density introduced into the region, while coarse particle-containing fluid is introduced into the second detection region outside the laser resonator and emitted from the resonator to the outside. Therefore, the measurement of coarse particles can be performed with high sensitivity from fine particles to coarse particles.

また、レーザ共振器を構成するミラー部が粗大粒子で汚損されてしまうことがないので、測定光の光パワー密度が低下することもなく、メンテナンス作業を必要とせずに長期間に渡って信頼性の高い計測が可能になる。更に、単一の光源をもって微小粒子検出用の測定光と粗大粒子検出用の測定光を照射する構成としているので、安価な装置を提供することが出来る。   In addition, since the mirror part constituting the laser resonator is not contaminated with coarse particles, the optical power density of the measurement light does not decrease, and no long-term maintenance work is required. High measurement is possible. Furthermore, since the measurement light for detecting fine particles and the measurement light for detecting coarse particles are irradiated with a single light source, an inexpensive apparatus can be provided.

本発明の実施の形態に係る粒子計測装置の構成を示す図である。It is a figure which shows the structure of the particle | grain measuring apparatus which concerns on embodiment of this invention. 図1の粒子計測装置における微小粒子検出手段及び粗大粒子検出手段の詳細を示す図である。It is a figure which shows the detail of the fine particle detection means and the coarse particle detection means in the particle | grain measuring apparatus of FIG. 図1の粒子計測装置における粒子分級手段の詳細を示す図である。It is a figure which shows the detail of the particle classification means in the particle | grain measuring apparatus of FIG. 従来の粒子計測装置の概略を示す図である。It is a figure which shows the outline of the conventional particle | grain measuring apparatus.

以下、本発明の実施形態について、添付図面を参照して詳細に説明する。
図1は本発明の実施の形態に係る粒子計測装置の構成を示す図であり、図2は図1の粒子計測装置をA矢印方向からみた検出手段部分の詳細を示す図である。
図1に示す装置は、一般的にクリーンルームと呼ばれる清浄度を管理された空間内の粒子数および粒子径を計測する粒子計測装置100であって、装置筐体10内に、粒子分級手段20、微小粒子検出手段40、粗大粒子検手段50、第1の吸引手段60、および第2の吸引手段70を収納している。
粒子計測装置100は、筐体10の側壁に設けた孔11を貫通する配管12を介して、被測定対象空間から測定対象流体を吸引するようにして粒子分級手段20へ導入する。粒子分級手段20は、被測定対象空間から導入した流体を、予め設定された所定の粒子径を基準に微小粒子を含む微小粒子含有流体と粗大粒子を含む粗大粒子含有流体とに分別する機能をもつ。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a diagram showing a configuration of a particle measuring apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing details of a detection means portion when the particle measuring apparatus of FIG.
The apparatus shown in FIG. 1 is a particle measuring apparatus 100 that measures the number of particles and the particle diameter in a space whose cleanliness is generally managed, which is called a clean room. In the apparatus housing 10, a particle classification means 20, The fine particle detection means 40, the coarse particle detection means 50, the first suction means 60, and the second suction means 70 are accommodated.
The particle measuring apparatus 100 introduces the measurement target fluid from the measurement target space to the particle classification means 20 through the pipe 12 penetrating the hole 11 provided in the side wall of the housing 10. The particle classification means 20 has a function of classifying the fluid introduced from the measurement target space into a fine particle-containing fluid containing fine particles and a coarse particle-containing fluid containing coarse particles based on a predetermined particle diameter set in advance. Have.

ここで、図3に沿って粒子分級手段20の構造および動作を説明する。
粒子分級手段20は、筒体21の一方の壁面を貫通するように設けられた噴出ノズル22と、この噴出ノズル22に対向する位置に配置された対向ノズル23と、筒体21の周壁面から突出する排気管24から構成され、後述するポンプ等の吸引手段と協働し、測定対象流体(気体)をその内部に吸引し、分級して外部へ排出するものである。
Here, the structure and operation of the particle classification means 20 will be described with reference to FIG.
The particle classifying means 20 includes an ejection nozzle 22 provided so as to penetrate one wall surface of the cylindrical body 21, an opposing nozzle 23 arranged at a position facing the ejection nozzle 22, and a peripheral wall surface of the cylindrical body 21. It comprises a projecting exhaust pipe 24, cooperates with a suction means such as a pump, which will be described later, and sucks the fluid to be measured (gas) into the interior, classifies it, and discharges it to the outside.

噴出ノズル22の入口22aは図1の配管12に接続され、対向ノズル23の出口23bは図1の配管14に接続され、排気管24の出口24bは図1の配管13に接続されている。   The inlet 22a of the ejection nozzle 22 is connected to the pipe 12 of FIG. 1, the outlet 23b of the counter nozzle 23 is connected to the pipe 14 of FIG. 1, and the outlet 24b of the exhaust pipe 24 is connected to the pipe 13 of FIG.

また、微粒子検出手段40は下流側の配管15を介して第1の吸引手段60と接続され、粗大粒子検出手段50は下流側の配管16を介して第2の吸引手段70と接続されている。   The particulate detection means 40 is connected to the first suction means 60 via the downstream pipe 15, and the coarse particle detection means 50 is connected to the second suction means 70 via the downstream pipe 16. .

ここで、第1の吸引手段60および第2の吸引手段70が吸引動作を開始すると、配管12の吸引口から測定対象流体が粒子分級手段20に導入される。このとき、図3に示す気流Aの流速よりも気流Bの流速が小さくなるように、第1の吸引手段60および第2の吸引手段70による流体の吸引動作を制御する。   Here, when the first suction unit 60 and the second suction unit 70 start the suction operation, the measurement target fluid is introduced into the particle classification unit 20 from the suction port of the pipe 12. At this time, the fluid suction operation by the first suction unit 60 and the second suction unit 70 is controlled so that the flow rate of the air flow B is smaller than the flow rate of the air flow A shown in FIG.

これによって、吸引される流体中に含まれる大きな粒子(粗大粒子)は吸引時の気流の流れで加速され、慣性の法則にしたがって直進し気流Bの方向に流れて対向ノズル23の中に入る。一方、小さな粒子(微小粒子)は噴出ノズル22の出口22b付近の気流の流れに沿って流れるため、その大部分が気流Aの方向に流れる。この粒子の慣性を利用した分級方法は一般的にバーチャルインパクタと呼ばれ、目的とする粒子径で分級するためには、吸引する流量などをパラメータとする関数(数式1)に基づいてノズル径を求める必要がある。   As a result, large particles (coarse particles) contained in the fluid to be sucked are accelerated by the flow of the air flow at the time of suction, go straight in accordance with the law of inertia, flow in the direction of the air flow B, and enter the opposed nozzle 23. On the other hand, since small particles (microparticles) flow along the flow of the airflow near the outlet 22b of the ejection nozzle 22, most of them flow in the direction of the airflow A. This classification method using the inertia of the particles is generally called a virtual impactor, and in order to classify by the target particle diameter, the nozzle diameter is determined based on a function (Equation 1) using a suction flow rate as a parameter. Need to ask.

この数式1は一般式として知られている。   This Formula 1 is known as a general formula.

ここで、Dは噴出ノズル22のノズル径、d80は対向ノズル23で80%捕集可能な粒子径、Ccはすべり補正計数、ρρは測定対象粒子の密度、Qは粗大粒子用の第2の吸引手段70による流量、ηは気体の粘性係数、Stk80はストークス数(粒子径d80の粒子を80%捕集するときのストークス数、経験値により0.25と設定している)である。
例えば、1.0μm以上の粒子を粗大粒子、1.0μm未満の粒子を微小粒子と仮定して、第2の吸引手段70による吸引流量を2.83L/minとし、(数式1)を用いてノズル径を演算によって求めると、おおよそノズル径は0.6mmとなる。
Here, D 0 is the nozzle diameter of the ejection nozzle 22, d 80 is the particle diameter that can be collected by the opposed nozzle 23, Cc is the slip correction count, ρ ρ is the density of the particles to be measured, and Q 0 is for coarse particles second flow rate by the suction means 70, eta is the viscosity coefficient of the gas, Stk 80 Stokes number when collecting 80% of particles of Stokes number (particle diameter d 80, and set to 0.25 by experience Is).
For example, assuming that particles of 1.0 μm or more are coarse particles, and particles of less than 1.0 μm are fine particles, the suction flow rate by the second suction means 70 is 2.83 L / min, and (Formula 1) is used. When the nozzle diameter is obtained by calculation, the nozzle diameter is approximately 0.6 mm.

このようにノズル径および吸引流量が設定された粒子分級手段20によれば、噴出ノズル22の出口22bにおいて、噴出ノズル22の入口22aから吸引された粒子のうち、粒子径1.0μm以上の粗大粒子(1.0μmの粒子は80%)が気流Bに沿って流れ、1.0μm未満の微小粒子は気流Aに沿って流れることになるので、1.0μmを基準(しきい値)として粒子の分級を行うことが出来る。   Thus, according to the particle classification means 20 in which the nozzle diameter and the suction flow rate are set, the coarse particle having a particle diameter of 1.0 μm or more among the particles sucked from the inlet 22a of the ejection nozzle 22 at the outlet 22b of the ejection nozzle 22. Particles (80% of 1.0 μm particles) flow along the airflow B, and microparticles less than 1.0 μm flow along the airflow A. Therefore, the particles with 1.0 μm as a reference (threshold) Can be classified.

そして、排気管24の出口24bから排気された微小粒子を含む微小粒子含有流体は配管13を介して微小粒子検出手段40へ導かれ、対向ノズル23の出口23bから排気された粗大粒子含有流体は配管14を介して粗大粒子検出手段50へと導かれる。   The microparticle-containing fluid containing microparticles exhausted from the outlet 24b of the exhaust pipe 24 is guided to the microparticle detection means 40 via the pipe 13, and the coarse particle-containing fluid exhausted from the outlet 23b of the counter nozzle 23 is It is guided to the coarse particle detecting means 50 through the pipe 14.

次に、粒子計測装置100の測定動作について、微小粒子検出手段40及び粗大粒子検出手段50の詳細と併せて説明する。
まず、レーザキャビティ30に設けられた微粒子検出手段40について説明する。図2に示すように、レーザ励起光源41からの出射光は集光レンズ42で集光され、レーザ結晶43に照射される。レーザ結晶43は例えばNd:YVOといった結晶であって微粒子検出用の測定光46を励起する。測定光46はレーザ結晶43と対向する位置に配置された反射率が97.0%から99.9%となっている高反射率ミラー45で反射され、再度、レーザ結晶43に戻る。
レーザ結晶43の端面44には、この測定光46の光波長に対して高反射となるように誘電体多層膜からなるミラー膜が設けられており、測定光46は反射されて再度高反射率ミラー45に向かう。この光の多重反射の工程によってレーザ結晶43と高反射率ミラー45間は光学的共振器となる。
このレーザキャビティ30内の測定光46は非常に高い光パワー密度を有しており、例えば励起光源41の出力を数Wとした場合、測定光46の光パワーは100W以上となっている。
Next, the measurement operation of the particle measuring apparatus 100 will be described together with the details of the fine particle detection means 40 and the coarse particle detection means 50.
First, the particle detection means 40 provided in the laser cavity 30 will be described. As shown in FIG. 2, the light emitted from the laser excitation light source 41 is collected by the condenser lens 42 and irradiated to the laser crystal 43. The laser crystal 43 is a crystal such as Nd: YVO 4 and excites the measurement light 46 for detecting fine particles. The measurement light 46 is reflected by the high reflectivity mirror 45 arranged at a position facing the laser crystal 43 and having a reflectivity of 97.0% to 99.9%, and returns to the laser crystal 43 again.
On the end face 44 of the laser crystal 43, a mirror film made of a dielectric multilayer film is provided so as to be highly reflective with respect to the light wavelength of the measurement light 46, and the measurement light 46 is reflected and again has a high reflectance. Head to mirror 45. The optical crystal resonator is formed between the laser crystal 43 and the high reflectivity mirror 45 by the multiple reflection process of light.
The measurement light 46 in the laser cavity 30 has a very high optical power density. For example, when the output of the excitation light source 41 is several W, the optical power of the measurement light 46 is 100 W or more.

上述の粒子分級手段20によって分別された微小粒子を含む微小粒子含有流体は、測定光46の光軸上に設けられた第1の検出領域47に導入され、レーザキャビティ30内で測定光46が照射される。このとき、微小粒子含有流体中に含まれる微小粒子によって光散乱が発生する。この微小粒子での散乱光(側方散乱光)は、測定光46の光軸と交叉するように配置された集光レンズ48で受光素子49上に集光され、受光素子49で受光される。演算処理手段80は、受光素子49から出力される信号を増幅した後、微小粒子含有流体中に含まれる微粒子の大きさと数を演算する。
次に、粗大粒子検出手段50について説明する。
The microparticle-containing fluid containing the microparticles classified by the particle classification means 20 is introduced into the first detection region 47 provided on the optical axis of the measurement light 46, and the measurement light 46 is generated in the laser cavity 30. Irradiated. At this time, light scattering occurs due to the microparticles contained in the microparticle-containing fluid. The scattered light (side scattered light) from the fine particles is condensed on the light receiving element 49 by the condensing lens 48 arranged so as to cross the optical axis of the measuring light 46 and received by the light receiving element 49. . The arithmetic processing means 80 amplifies the signal output from the light receiving element 49 and then calculates the size and number of fine particles contained in the fluid containing fine particles.
Next, the coarse particle detection means 50 will be described.

粗大粒子検出手段50は微小粒子検出手段40と並設されており、レーザ共振器を構成する出力側の高反射率ミラー45から外部へ出射されるレーザ光(漏れ光)を粗大粒子検出用の測定光52として用いるものである。   The coarse particle detection means 50 is arranged in parallel with the fine particle detection means 40, and the laser beam (leakage light) emitted to the outside from the output-side high reflectivity mirror 45 constituting the laser resonator is used for coarse particle detection. This is used as measurement light 52.

高反射率ミラー45から出射される粗大粒子検出用の測定光52の強度は数10mWであり、レーザキャビティ30内の微小粒子検出用の測定光46の強度に比べれば小さいが、粗大粒子を検出するには十分な光量がある。   The intensity of the measurement light 52 for detecting coarse particles emitted from the high reflectivity mirror 45 is several tens of mW, which is smaller than the intensity of the measurement light 46 for detecting fine particles in the laser cavity 30, but detects coarse particles. There is enough light.

上述の粒子分級手段20によって分別された粗大粒子を含む粗大粒子含有流体は、測定光52の光軸上に設けられた第2の検出領域51に導入され、粗大粒子検出用の測定光52が照射される。このとき、粗大粒子含有流体中に含まれる粗大粒子によって光散乱が発生する。この粗大粒子での散乱光(側方散乱光)は、測定光52の光軸と交叉するように配置された集光レンズ53で受光素子54上に集光され、受光素子54で受光される。演算処理手段80は、受光素子54から出力される信号を増幅した後、粗大粒子含有流体中に含まれる粗大粒子の大きさと数を演算する。   The coarse particle-containing fluid containing coarse particles classified by the particle classification means 20 is introduced into the second detection region 51 provided on the optical axis of the measurement light 52, and the measurement light 52 for detecting coarse particles is used as the measurement light 52 for coarse particle detection. Irradiated. At this time, light scattering occurs due to the coarse particles contained in the coarse particle-containing fluid. The scattered light (side scattered light) from the coarse particles is condensed on the light receiving element 54 by the condensing lens 53 disposed so as to cross the optical axis of the measurement light 52 and received by the light receiving element 54. . The arithmetic processing unit 80 amplifies the signal output from the light receiving element 54 and then calculates the size and number of coarse particles contained in the coarse particle-containing fluid.

このような粒子計測装置100によれば、前段に粒子分級手段20を設け、被測定対象流体を微小粒子含有流体と粗大粒子含有流体とに分別し、微小粒子含有流体をレーザ共振器内部の第1の検出領域47に導入して高い光パワー密度を有する測定光46を用い微小粒子の検出を行う一方、粗大粒子含有流体についてはレーザ共振器外部の第2の検出領域52に導入して共振器から外部に出射されるレーザ光を測定光52として用い粗大粒子の検出を行うようにしているので、微小粒子から粗大粒子まで高感度で計測を行うことができる。   According to such a particle measuring apparatus 100, the particle classifying means 20 is provided in the preceding stage, the fluid to be measured is separated into the fluid containing the fine particles and the fluid containing the coarse particles, and the fluid containing the fine particles is separated from the fluid inside the laser resonator. The fine particles are detected using the measurement light 46 having a high optical power density introduced into one detection region 47, while the coarse particle-containing fluid is introduced into the second detection region 52 outside the laser resonator to resonate. Since coarse particles are detected by using laser light emitted from the vessel as measurement light 52, measurement can be performed with high sensitivity from fine particles to coarse particles.

また、レーザキャビティ30内のレーザ共振器を構成するミラー部分が粗大粒子で汚損されてしまうことがないので、微小粒子検出用の測定光46及び粗大粒子検出用の測定光52の光パワー密度が低下することもなく、メンテナンス作業を必要とせずに長期間に渡って信頼性の高い計測が可能になる。   Further, since the mirror portion constituting the laser resonator in the laser cavity 30 is not contaminated with coarse particles, the optical power density of the measurement light 46 for detecting fine particles and the measurement light 52 for detecting coarse particles is low. It is possible to perform highly reliable measurement over a long period of time without requiring any maintenance work.

20:粒子分級手段、30:レーザキャビティ、40:微小粒子検出手段、46:微小粒子検出用の測定光、47:第1の検出領域、50:粗大粒子検出手段、51:第2の検出領域、52:粗大粒子検出用の測定光、60:第1の吸引手段、70:第2の吸引手段、80:演算処理手段、100:粒子計測装置。
20: Particle classification means, 30: Laser cavity, 40: Fine particle detection means, 46: Measuring light for fine particle detection, 47: First detection area, 50: Coarse particle detection means, 51: Second detection area 52: measurement light for detecting coarse particles, 60: first suction means, 70: second suction means, 80: arithmetic processing means, 100: particle measuring device.

Claims (4)

被測定対象空間から導入した流体を、予め設定された所定の粒子径を基準に微小粒子を含む微小粒子含有流体と粗大粒子を含む粗大粒子含有流体とに分別する粒子分級手段と、
前記微小粒子含有流体をレーザ共振器内部に設けられた第1の検出領域に流すと共に、
前記レーザ共振器内の光を微小粒子検出用の測定光として照射し、前記微小粒子含有流体中に含まれる微小粒子での散乱光を受光して検出信号を出力する微小粒子検出手段と、
前記粗大粒子含有流体を前記レーザ共振器の外部に設けられた第2の検出領域に流すと共に、前記レーザ共振器の出力側から外部へ出射されるレーザ光を粗大粒子検出用の測定光として照射し、前記粗大粒子含有流体中に含まれる粗大粒子での散乱光を受光して検出信号を出力する粗大粒子検出手段と、
前記微小粒子検出手段から出力される検出信号と前記粗大粒子検出手段から出力される検出信号とに基づいて測定結果を出力する演算処理手段と、
を備えることを特徴とする粒子計測装置。
Particle classification means for classifying the fluid introduced from the measurement target space into a fine particle-containing fluid containing fine particles and a coarse particle-containing fluid containing coarse particles based on a predetermined particle diameter set in advance;
Flowing the microparticle-containing fluid through a first detection region provided inside the laser resonator;
A fine particle detecting means for irradiating the light in the laser resonator as measurement light for detecting fine particles, receiving scattered light from the fine particles contained in the fluid containing fine particles, and outputting a detection signal;
The coarse particle-containing fluid is allowed to flow to a second detection region provided outside the laser resonator, and laser light emitted from the output side of the laser resonator is irradiated as measurement light for detecting coarse particles. And coarse particle detection means for receiving scattered light from the coarse particles contained in the coarse particle-containing fluid and outputting a detection signal;
Arithmetic processing means for outputting a measurement result based on the detection signal output from the fine particle detection means and the detection signal output from the coarse particle detection means;
A particle measuring apparatus comprising:
請求項1に記載の粒子計測装置において、
前記微小粒子検出手段は、レーザ励起光源と、前記レーザ励起光源により励起されるレーザ結晶と、前記レーザ結晶の両側に配置されて該レーザ結晶と協働してレーザ共振器を構成するミラー部と、前記微小粒子検出用の測定光の光軸と交叉するように配置され、前記微小粒子での側方散乱光を受光する微小粒子検出用受光素子とを備え、
前記粗大粒子検出手段は、前記粗大粒子検出用の測定光の光軸と交叉するように配置され、前記粗大粒子での側方散乱光を受光する粗大粒子検出用受光素子を備え、
前記微小粒子検出手段と前記粗大粒子検出手段を、各測定光の光軸が一致するように並設してなる、ことを特徴とする粒子計測装置。
In the particle measuring device according to claim 1,
The fine particle detection means includes a laser excitation light source, a laser crystal excited by the laser excitation light source, a mirror unit disposed on both sides of the laser crystal and constituting a laser resonator in cooperation with the laser crystal. A microparticle detection light-receiving element that is arranged so as to cross the optical axis of the measurement light for detecting the microparticles, and that receives side scattered light from the microparticles,
The coarse particle detection means is provided so as to intersect with the optical axis of the measurement light for coarse particle detection, and includes a coarse particle detection light receiving element that receives side scattered light from the coarse particles,
The particle measuring apparatus, wherein the fine particle detecting means and the coarse particle detecting means are arranged in parallel so that the optical axes of the respective measuring lights coincide with each other.
請求項1または請求項2に記載の粒子計測装置において、
前記微小粒子含有流体を前記微小粒子検出手段の内部に導入し外部へ排出する第1の吸引手段と、前記粗大粒子含有流体を粗大粒子検出手段の内部に導入し外部へ排出する第2の吸引手段とを備える、ことを特徴とする粒子計測装置。
In the particle measuring device according to claim 1 or 2,
First suction means for introducing the fine particle-containing fluid into the fine particle detection means and discharging it to the outside, and second suction for introducing the coarse particle-containing fluid into the coarse particle detection means and discharging it to the outside And a particle measuring device.
請求項1乃至請求項3に記載の粒子計測装置において、前記粒子分級手段はバーチャルインパクタである、ことを特徴とする粒子計測装置。
4. The particle measuring apparatus according to claim 1, wherein the particle classifying means is a virtual impactor.
JP2011134208A 2011-06-16 2011-06-16 Particle measuring device Expired - Fee Related JP5703987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011134208A JP5703987B2 (en) 2011-06-16 2011-06-16 Particle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011134208A JP5703987B2 (en) 2011-06-16 2011-06-16 Particle measuring device

Publications (2)

Publication Number Publication Date
JP2013002947A JP2013002947A (en) 2013-01-07
JP5703987B2 true JP5703987B2 (en) 2015-04-22

Family

ID=47671669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134208A Expired - Fee Related JP5703987B2 (en) 2011-06-16 2011-06-16 Particle measuring device

Country Status (1)

Country Link
JP (1) JP5703987B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196805B (en) * 2013-04-02 2015-09-16 青岛众瑞智能仪器有限公司 A kind of optical devices detecting aerosol quality and concentration
KR102199814B1 (en) * 2014-02-27 2021-01-08 엘지전자 주식회사 Airborne microbial measurement apparatus and measurement method
CN104340410B (en) * 2014-08-29 2016-04-20 中国计量学院 A kind of solid aerosol is tested powder feeder unit and is supplied powder method
JP6674520B2 (en) * 2018-10-15 2020-04-01 東芝三菱電機産業システム株式会社 Particle manufacturing equipment
US11628596B2 (en) * 2019-10-31 2023-04-18 Precision Concrete Cutting, Inc. Concrete cutting dust abatement systems and methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127033A (en) * 1990-09-19 1992-04-28 Hitachi Ltd Particle counter
JP2002131214A (en) * 2000-10-26 2002-05-09 Rion Co Ltd Laser oscillator and light-scattering-type particle detector using the same
JP2002141587A (en) * 2000-11-02 2002-05-17 Rion Co Ltd Laser oscillator and light scattering particle detector comprising it
JP4180952B2 (en) * 2003-03-31 2008-11-12 エムエスピー・コーポレーション Wide range particle counter
US20070242269A1 (en) * 2004-03-06 2007-10-18 Michael Trainer Methods and apparatus for determining characteristics of particles

Also Published As

Publication number Publication date
JP2013002947A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP5703987B2 (en) Particle measuring device
CN106066294B (en) Particle sensor device
US10928293B2 (en) Detecting nanoparticles on production equipment and surfaces
JP5610167B2 (en) Two-dimensional optical imaging method and system for particle detection
JP4871868B2 (en) Pathogen and particulate detection system and detection method
CN102192898B (en) Smoke detector
JP6075979B2 (en) Particle counting system
US20200011779A1 (en) Highly integrated optical particle counter (opc)
JP2012513031A (en) Compact detector for simultaneous detection of particle size and fluorescence
JP2000506272A (en) Particle counter using solid-state laser with in-cavity view volume
JP2007057360A (en) Particle detector and particle detecting method used therein
JP2009276361A (en) Particle counter equipped with strapped laser diode
JP2004151103A (en) Low noise intracavity laser particle counter
KR101656033B1 (en) Particle number measurement method
JP6596987B2 (en) Particle measuring device
WO2007063862A1 (en) Particle counter and particle counting device having particle counter, and particle counting system and its use method
KR20060039415A (en) Particle counter
JP2003038163A (en) Microorganism detector
JP6932792B2 (en) High resolution surface particle detector
JP2012073070A (en) Fine particle measuring device
JP2014081330A (en) Fine particle detection device and fine particle detection method
JP2008039735A (en) Particle measuring apparatus
JP5141419B2 (en) Soot concentration measuring device
JPH0737937B2 (en) Particle detector by light scattering method
JPH0783830A (en) Pollen sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R150 Certificate of patent or registration of utility model

Ref document number: 5703987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees