JPH04127033A - Particle counter - Google Patents

Particle counter

Info

Publication number
JPH04127033A
JPH04127033A JP2247517A JP24751790A JPH04127033A JP H04127033 A JPH04127033 A JP H04127033A JP 2247517 A JP2247517 A JP 2247517A JP 24751790 A JP24751790 A JP 24751790A JP H04127033 A JPH04127033 A JP H04127033A
Authority
JP
Japan
Prior art keywords
measurement
laser
light intensity
light scattering
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2247517A
Other languages
Japanese (ja)
Inventor
Takeshi Nishitarumi
剛 西垂水
Ikumei Setsu
薛 育明
Tadataka Koga
古賀 正太佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2247517A priority Critical patent/JPH04127033A/en
Publication of JPH04127033A publication Critical patent/JPH04127033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable accurate measurement from fine to large particle size by a method wherein a light scattering system and a laser breakdown system are arranged simultaneously to measure the same sample simultaneously and both results of measurement are consolidated to output one result of measurement. CONSTITUTION:Controlled by a control section 15, a laser beam 2 emitted from a YAG laser 1 is focused into a sample cell 5 through a beam sampler 3 and a convex lens 4. Scattered light from particles in a light scattering measuring area is transmitted to a signal processing section 14 through a slit 8, a filter 9 and a photodetector 10. Emission from a plasma generated with a break down in a laser break down measuring area is transmitted to the processing section 14 through a slit 11, a filter 12 and a photodetector 13. A laser light as part of the beam 2 reflected by the sampler 3 impinges on a photodetector 7 to be transmitted to the processing section 14 as reference signal. At the processing section 14, a data measured is transmitted to a data processing section 16, where a particle density and a particle size distribution in a sample are calculated and the results are outputted to a printer 17.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶液中の粒子の大きさや数密度を測定する粒
子計数装置に係り、特に半導体工場等で使用される超純
水や薬液の測定に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a particle counting device that measures the size and number density of particles in a solution, and is particularly applicable to ultrapure water and chemical solutions used in semiconductor factories. Regarding measurement.

[従来の技術] レーザブレイクダウン方式により粒子計数については、
特願昭63−85094やジャパニーズ・ジャーナル・
オブ・フプライド・フィシイック22フ巻(1988)
 p p、 L 983〜985に論じられている。一
方、光散乱方式による粒子計数については、ぶんせき、
364 (1987)に詳しい。
[Conventional technology] Regarding particle counting using the laser breakdown method,
Patent application 1985-85094 and Japanese Journal
Of Hplyde Physiic Volume 22 (1988)
Discussed in p p, L 983-985. On the other hand, regarding particle counting using the light scattering method,
364 (1987) for details.

[発明が解決しようとする課題] 上記従来技術のレーザブレイクダウン法と光散乱法は、
それぞれに一長一短がある。
[Problem to be solved by the invention] The laser breakdown method and light scattering method of the above-mentioned prior art are as follows:
Each has its advantages and disadvantages.

レーザブレイクダウン法は、気泡の影響を受けにくく、
微小粒径(〜0.04 μm)まで、測定可能であるが
、ある程度粒径が大きくなると信号や飽和し始めるため
、粒径の大きい領域で正確な粒径を測定できない。一方
、光散乱法では、ある程度大きな粒径まで測定可能であ
るが、0.1 μm以下は測定できない。さらに、気泡
による設計数が避けられないという欠点がある。また、
レーザブレイクダウン法は、粒子の体積に比例した信号
を、光散乱法は粒子の表面積に比例した信号を、それぞ
れ出力するが、両者とも粒子の形状まで知ることはでき
ない。
Laser breakdown method is less affected by bubbles,
It is possible to measure particles down to minute particle diameters (~0.04 μm), but as the particle size increases to a certain extent, the signal begins to become saturated, making it impossible to accurately measure particle diameters in large particle size regions. On the other hand, with the light scattering method, it is possible to measure particle sizes up to a certain extent, but it is not possible to measure particles of 0.1 μm or less. Furthermore, there is a drawback that the design number due to bubbles is unavoidable. Also,
The laser breakdown method outputs a signal proportional to the volume of the particle, and the light scattering method outputs a signal proportional to the surface area of the particle, but neither of these methods can determine the shape of the particle.

本発明の目的は、(1)微小粒径から大粒径まで正確に
測定すること、(2)気泡による誤計数を防ぐこと、(
3)粒子の大まかな形状を知ることにある。
The objectives of the present invention are (1) to accurately measure particle sizes from minute to large, (2) to prevent miscounts due to air bubbles, and (
3) Knowing the rough shape of the particles.

[課題を解決するための手段] 前述のように、レーザブレイクダウン法と光散乱法は、
互いに相手の欠点を補う長所を有している。上記目的を
達成するには、同一試料をこの2方法で測定するように
構成すればよい。この構成として、第2図に示すように
(a)、(b)、(c)。
[Means for solving the problem] As mentioned above, the laser breakdown method and the light scattering method are
Each has strengths that compensate for the other's weaknesses. In order to achieve the above object, the same sample may be configured to be measured by these two methods. This configuration is shown in FIG. 2 (a), (b), and (c).

の3通りが考えられる。(a)の方法は、ひとつの試料
をレーザブレイクダウン法と光散乱法に分岐し、並列的
に測定するものである。この場合、それぞれの長所を生
かして、微小粒径から大粒径までの粒径を正確に測定で
きるが、気泡の誤計数の防止や、粒子の形状も知ること
まではできない。
There are three possible ways. In the method (a), one sample is measured by a laser breakdown method and a light scattering method in parallel. In this case, by taking advantage of the advantages of each method, it is possible to accurately measure particle sizes from microscopic to large, but it is not possible to prevent erroneous counting of bubbles or to know the shape of particles.

(b)の方法は、ひとつの試料を光散乱法、レーザブレ
イクダウンの順に流し測定するものである。
In the method (b), one sample is measured using a light scattering method and then a laser breakdown method.

この場合も(a)と同様の効果である。(c)の方法は
、光散乱法とレーザブレイクダウン法で、ひとつの測定
用セルを共有し、同一の試料を同時に両方法で測定する
ものである。この場合、試料中の1粒子より2種類の情
報を得ることができるため、微小粒径から大粒径までの
粒径の正確な測定、気泡の誤計数の防止、粒子の大まか
な形状を知ることが可能になる。具体的には、レーザブ
レイクダウン法で信号を検出し、光散乱法で検出しない
場合、これは、微小粒子であると判断する。
In this case as well, the same effect as in (a) is obtained. In the method (c), the light scattering method and the laser breakdown method share one measurement cell, and the same sample is measured by both methods at the same time. In this case, two types of information can be obtained from one particle in the sample, allowing accurate measurement of particle sizes from microscopic to large, preventing miscounting of air bubbles, and knowing the general shape of particles. becomes possible. Specifically, if a signal is detected by the laser breakdown method but not by the light scattering method, this is determined to be a microparticle.

また、レーザブレイクダウン法で信号を検出せず、光散
乱法で検出した場合、これは粒子ではなく気泡と判断す
る。さらに、両方法とも信号を検出した場合、比較的大
きな粒子と判断できる。また、両者の信号より、粒子の
体積と表面積の比が求まり、粒子の大まかな形状を知る
ことができる。
Furthermore, if a signal is not detected by the laser breakdown method but is detected by the light scattering method, it is determined that the signal is not a particle but a bubble. Furthermore, if a signal is detected using both methods, it can be determined that the particle is relatively large. Furthermore, from both signals, the ratio between the volume and surface area of the particle can be determined, and the rough shape of the particle can be determined.

セル共有化による同一試料同時測定の構成として、第3
図に示すように2通りが考えられる。第3図(a)のよ
うに、セル内の流路に沿って、レンズでレーザ光を収束
し、光強度の強い領域と比較的弱い領域を形成し、光強
度の強い領域でレーザブレイクダウン測定をし、それよ
り上流側の光強度の弱い領域で光散乱測定を行う。試料
の流れは層流とし、両者のサンプリングボリュームが同
じになるよう測定視野を設定し、試料の流速に応じて、
同じ試料を光散乱法、レーザブレイクダウン法の順に測
定するようレーザ光を入射する。
As a configuration for simultaneous measurement of the same sample by cell sharing, the third
As shown in the figure, two ways are possible. As shown in Figure 3(a), the laser beam is focused by a lens along the channel in the cell, forming regions with strong light intensity and regions with relatively weak light intensity, and causes laser breakdown in the region with strong light intensity. measurement, and perform light scattering measurements in an area upstream of the area where the light intensity is weak. The flow of the sample is laminar, and the measurement field of view is set so that the sampling volumes of both are the same.
Laser light is applied to the same sample to measure it using the light scattering method and then the laser breakdown method.

第3図(b)では、光強度の弱いレーザパルスと強いレ
ーザパルスをセル中に時間的に前後して入射することに
よって、レンズの焦点付近で、光強度の強い時間帯と弱
い時間帯を形成する。光強度の強い時間帯にレーザブレ
イクダウン測定をし、弱い時間帯に光散乱測定を行う。
In Fig. 3(b), by injecting a laser pulse with a weak light intensity and a laser pulse with a strong light intensity into the cell at different times, the time periods of high light intensity and the time periods of low light intensity can be differentiated near the focal point of the lens. Form. Laser breakdown measurements are performed during times when the light intensity is strong, and light scattering measurements are performed during times when the light intensity is weak.

両者のサンプリングボリュームが同じになるよう測定視
野を設定し、弱いレーザパルス、強いレーザパルスの順
に、試料の移動が無視できる位の短い間隔で、連続して
入射し、同じ試料を光散乱法、レーザブレイクダウン法
の順に測定する。
The measurement field of view is set so that both sampling volumes are the same, and a weak laser pulse and then a strong laser pulse are applied successively at short intervals such that sample movement can be ignored, and the same sample is subjected to light scattering method. Measurement is performed in the order of laser breakdown method.

[作用] レーザブレイクダウン法と光散乱法で同一の試料を測定
し、測定結果を統合することによって、微小粒径から大
粒径まで正確に測定できる。
[Operation] By measuring the same sample using the laser breakdown method and the light scattering method and integrating the measurement results, it is possible to accurately measure particle sizes from minute to large.

特に、両者で測定用セルを共用し、同一試料を同時に両
方法で測定することによって、試料より2種類の情報を
得ることができ、微粒小径から大粒径までの粒径の正確
な測定、気泡の設計数の防止、粒子の大まかな形状を知
ることが可能となる。
In particular, by sharing a measurement cell and measuring the same sample using both methods at the same time, two types of information can be obtained from the sample, allowing accurate measurement of particle sizes from small to large. It becomes possible to prevent the designed number of bubbles and to know the rough shape of particles.

レーザ光をレンズでセル内に収束することによって、空
間的に光強度の強い領域と弱い領域をつくることができ
る。また、光強度の強いレーザパルスと弱いレーザパル
スを時間的に前後してセル内に入射することによって、
時間的に光強度の強い時間帯を弱い時間帯を特定領域に
つくることができる。それぞれ、光強度の強い領域ある
いは時間帯で、レーザブレイクダウン測定をし、弱い領
域あるいは時間帯で光散乱測定を行うことによって、同
一試料を同時に測定できる。
By converging the laser light into the cell using a lens, it is possible to spatially create regions with strong light intensity and regions with weak light intensity. In addition, by injecting a laser pulse with a strong light intensity and a laser pulse with a weak light intensity into the cell at different times,
It is possible to create periods of high light intensity and periods of low light intensity in specific areas. The same sample can be measured simultaneously by performing laser breakdown measurement in a region or time period where the light intensity is strong and by performing light scattering measurement in a region or time period where the light intensity is weak.

[実施例] 以下、図面を参照しながら本発明を詳述する。[Example] Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例の全体構成を示す。FIG. 1 shows the overall configuration of an embodiment of the present invention.

YAGレーザ1は、制御部15により制御されており、
レーザビーム2を発生する。YAGレーザ1は、第2高
調波(波長532nm)のパルスレーザ光を発生する。
The YAG laser 1 is controlled by a control unit 15,
A laser beam 2 is generated. The YAG laser 1 generates a second harmonic (wavelength: 532 nm) pulsed laser light.

レーザビーム2は、石英等の平行平板からなるビームサ
ンプラー3により、その一部を反射される。ビームサン
プラー3を透過したレーザ光は、凸レンズ4により、試
料セル5内に収束される。光散乱測定領域26の粒子か
らの散乱光はスリット8、フィルタ9を経て光検知器1
0に達し信号として検出され、信号処理部14に伝達さ
れる。スリット8は、光散乱測定領域26以外からの散
乱光をカットするものである。フィルタ9は、532n
mを中心波長とする狭帯域干渉フィルタとし、試料媒質
のラマン光等を遮断する。光検知器10は、可視域に感
度をもつR928形(浜松フオトニクス製)とした。ま
た、レーザブレイクダウン測定領域27で、ブレイクダ
ウンが起ると、ブレイクダウンにより生じたプラズマか
らの発光は、スリット11、フィルタI2を経て、光検
知器13に達し、信号として検出され、信号処理部14
に伝達される。スリット11は、レーザブレイクダウン
測定領域27以外からの光を遮断するものであり、開口
幅、面積は、スリット8と同じとする。フィルタ12は
U−340(HOYA製)等のUV透過フィルタとした
。これは、プレイブダウン検出をプラズマから発生され
る紫外光を利用するものであり、試料からのレーザ散乱
光やラマン光を遮断するためである。光検知器13は、
紫外光のみに感度をもつR166形(浜松フオトニクス
製)とした。一方、ビームサンプラー3で反射されたレ
ーザビーム2の一部のレーザ光は、ピンフォトダイオー
ド等の高速の光検知器7に入射され、参照信号として信
号処理部14に伝達される。ここで測定する散乱光やプ
ラズマからの発光は、レーザ入射に同期して発生する数
十nsの高速パルスであるため、信号処理部14では、
高速のサンプルホールド回路を使用し、レーザ入射に同
期して信号を取込む方式としている。また、検知器7か
らの参照信号により、レーザ出力変動分を、信号処理部
14で補正するようにしている。信号処理部14は、測
定したデータをデータ処理部16へ伝達する。データ処
理部16は、これより試料中の粒子濃度や粒径分布を計
算し、結果をプリンタ17に出力する。制御部15は、
YAGレーザ1を制御し、レーザの状態をモニターしな
がら、レーザ発振トリガを出力する。また、制御部15
は、データ処理部16を制御し、測定全体を統合する。
A portion of the laser beam 2 is reflected by a beam sampler 3 made of a parallel flat plate made of quartz or the like. The laser beam transmitted through the beam sampler 3 is focused into the sample cell 5 by the convex lens 4. Scattered light from particles in the light scattering measurement area 26 passes through a slit 8 and a filter 9 to a photodetector 1.
When it reaches 0, it is detected as a signal and transmitted to the signal processing section 14. The slit 8 cuts off scattered light from areas other than the light scattering measurement area 26. Filter 9 is 532n
A narrow band interference filter with a center wavelength of m is used to block Raman light etc. from the sample medium. The photodetector 10 was an R928 type (manufactured by Hamamatsu Photonics) that is sensitive in the visible range. Furthermore, when breakdown occurs in the laser breakdown measurement region 27, the light emitted from the plasma generated by the breakdown passes through the slit 11 and the filter I2, reaches the photodetector 13, is detected as a signal, and is processed. Part 14
transmitted to. The slit 11 blocks light from other than the laser breakdown measurement region 27, and has the same opening width and area as the slit 8. The filter 12 was a UV transmission filter such as U-340 (manufactured by HOYA). This is because ultraviolet light generated from plasma is used for playback detection, and laser scattered light and Raman light from the sample are blocked. The photodetector 13 is
The R166 type (manufactured by Hamamatsu Photonics) is sensitive only to ultraviolet light. On the other hand, a part of the laser beam 2 reflected by the beam sampler 3 is incident on a high-speed photodetector 7 such as a pin photodiode, and is transmitted to the signal processing section 14 as a reference signal. Since the scattered light and the light emission from the plasma measured here are high-speed pulses of several tens of ns that are generated in synchronization with laser incidence, the signal processing unit 14
A high-speed sample-and-hold circuit is used to capture signals in synchronization with laser incidence. Further, the signal processing section 14 corrects the laser output fluctuation based on the reference signal from the detector 7. The signal processing section 14 transmits the measured data to the data processing section 16. The data processing unit 16 calculates the particle concentration and particle size distribution in the sample from this, and outputs the results to the printer 17. The control unit 15 is
The YAG laser 1 is controlled and a laser oscillation trigger is output while monitoring the state of the laser. In addition, the control unit 15
controls the data processing section 16 and integrates the entire measurement.

第1図に示すように、レーザブレイクダウン測定領域2
7を、レーザ光収束部の中央に設定し、また、光散乱測
定領域26は、収束部より50mm離れた位置で、試料
の流れの上流側に設定した。
As shown in Figure 1, laser breakdown measurement area 2
7 was set at the center of the laser beam convergence section, and the light scattering measurement region 26 was set at a position 50 mm away from the convergence section and on the upstream side of the flow of the sample.

試料セル5内の試料の流速は1000mm/ s e 
cとした。従って、光散乱測定領域26で測定された試
料は、50ms後には、レーザブレイクダウン測定領域
27に達する。そこで、レーザパルスの入射を20Hz
(周期20m5)とし、各レーザパルス入射毎に、両方
法で測定し同一試料を測定した前後のデータを対として
得るようにした。データ処理部16では、対のデータよ
り、レーザブレイクダウン法で信号を検出し、光散乱法
で検出しない場合、これは、0.1μm以下の微小粒子
とし、レーザブレイクダウン法の信号から粒径を求める
。次に、レーザブレイクダウン法で信号を検出せず、光
散乱法で検出した場合、これは粒子ではなく気泡を判断
する。さらに、両方法とも信号を検出した場合、0.1
μm以上の粒子と判断し、光散乱法による信号から粒径
を求める。また、この場合、両方法の信号の比より、粒
子の体積と表面積の比を求める。この比(体積/表面積
)が大きい場合、比較的球形に近い粒子、比が小さい場
合、平板的な粒子と推測できる。
The flow rate of the sample in the sample cell 5 is 1000 mm/s e
c. Therefore, the sample measured in the light scattering measurement area 26 reaches the laser breakdown measurement area 27 after 50 ms. Therefore, the incidence of the laser pulse was set to 20Hz.
(period: 20 m5), and for each laser pulse injection, both methods were used to obtain a pair of data before and after measuring the same sample. In the data processing unit 16, a signal is detected by the laser breakdown method from the paired data, and if it is not detected by the light scattering method, this is considered to be a microparticle of 0.1 μm or less, and the particle size is determined from the signal of the laser breakdown method. seek. Next, if the laser breakdown method does not detect a signal, but the light scattering method does, this indicates a bubble rather than a particle. Furthermore, if both methods detect a signal, 0.1
It is determined that the particles are larger than μm, and the particle size is determined from the signal obtained by the light scattering method. Furthermore, in this case, the ratio of the volume and surface area of the particle is determined from the ratio of the signals of both methods. If this ratio (volume/surface area) is large, it can be assumed that the particles are relatively close to spherical, and if the ratio is small, it can be assumed that the particles are tabular.

他の実施例を第4図に示す。YAGレーザ1より光強度
の弱いレーザパルス29を発生し、これより10μse
c後、YAGレーザビより光強度の強いレーザパルス2
8を発生し、ミラー31゜32を介して、同軸上に調整
し、レンズ4を通して、試料セル5内に収束する。レー
ザ収束部中央に、両方法に共通の測定領域30を設け、
それぞれの検知器10.13を対向して配置した。光強
度の弱いレーザパルス29に同期して、光散乱法の測定
をし、光強度の強いレーザパルス28に同期して、レー
ザブレイクダウン測定を行うようにし、このときの両者
の測定データを対とする。この一連の測定を20Hzで
実施した。試料セル5内での試料の流速を1000mm
 / s e cとし、強弱のレーザパルスの間隔は1
0μsecであるため、この間の試料の移動は0.OI
IMLl であり、両者の測定は、はとんど、同一の試
料に対して行なわれる。
Another embodiment is shown in FIG. A laser pulse 29 with a weaker light intensity is generated than the YAG laser 1, and from this a laser pulse 29 of 10 μsec
After c, laser pulse 2 with stronger light intensity than YAG laser beam
8 is generated, coaxially adjusted via mirrors 31 and 32, and focused into the sample cell 5 through the lens 4. A measurement area 30 common to both methods is provided in the center of the laser convergence part,
Each detector 10.13 was placed opposite. The light scattering method is measured in synchronization with the laser pulse 29 with a weak light intensity, and the laser breakdown measurement is performed in synchronization with the laser pulse 28 with a strong light intensity, and the measurement data of both at this time is compared. shall be. This series of measurements was performed at 20 Hz. The flow rate of the sample in the sample cell 5 was set to 1000 mm.
/sec, and the interval between strong and weak laser pulses is 1
Since it is 0 μsec, the movement of the sample during this time is 0. OI
IMLl, and both measurements are usually performed on the same sample.

〔発明の効果1 本発明によれば、光散乱法とレーザブレイクダウン法の
両方法で同一試料を同時に測定できるため、試料より2
種類の情報を得ることができ、微小粒径から大粒径まで
の粒径の正確な測定、気泡の誤料数の防止、粒子の大ま
かな形状を知ることができる。
[Effect of the invention 1] According to the present invention, since the same sample can be measured simultaneously using both the light scattering method and the laser breakdown method, two
It is possible to obtain information on the type of particles, accurately measure particle sizes from microscopic to large, prevent incorrect number of bubbles, and know the general shape of particles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で空間的な光強度の違いを利用
した測定法の構成図、第2図は同一試料を光散乱法及び
レーザブレイクダウン法の両方法で測定する場合で(a
)並列形、(b)縦続形、(c)セル共有形を示す図、
第3図はセル共有形の場合で(a)空間的な光強度の差
により測定する方法(b)時間的な光強度の差により測
定する方法を示す図、第4図は本発明の時間的な光強度
の違いを利用した測定法の構成図を示す。 1・・・YAGレーザ、1′・・・YAGレーザ、2・
・・レーザビーム、3・・・ビームサンプラー、4・・
・レンズ、5・・・試料セル、6・・・光ダンパー、7
・・光検知器、8・・・スリット、9・・・フィルタ、
lO・・・光検知器、■■・・・スリット、12・・・
フィルタ、13・・・光検知器、14・・・信号処理部
、15・・・制御部、16・・・データ処理部、17・
・・プリンタ、21・・・光散乱測定ユニット、22・
・・レーザブレイクダウン法測定ユニット、23・・・
光散乱/レーザブレイクダウン測定セル共有形測定ユニ
ット、26・・・光散乱測定領域、27・・・レーザブ
レイクダウン測定領域、28・・光強度の強いレーザパ
ルス、29・・・光強度の弱いレーザパルス、30・・
・セル共有形測定領域、31第 図 第3因 口==コー、73
Figure 1 is a configuration diagram of a measurement method using spatial differences in light intensity according to an embodiment of the present invention, and Figure 2 shows a case where the same sample is measured using both the light scattering method and the laser breakdown method ( a
) A diagram showing a parallel type, (b) a cascade type, and (c) a cell sharing type.
Figure 3 is a diagram showing (a) a method of measuring based on a spatial difference in light intensity, and (b) a method of measuring based on a temporal difference in light intensity in the case of a cell-sharing type. This figure shows a configuration diagram of a measurement method that utilizes differences in light intensity. 1...YAG laser, 1'...YAG laser, 2.
...Laser beam, 3...Beam sampler, 4...
・Lens, 5... Sample cell, 6... Optical damper, 7
...Photodetector, 8...Slit, 9...Filter,
lO...Photodetector, ■■...Slit, 12...
Filter, 13... Photodetector, 14... Signal processing section, 15... Control section, 16... Data processing section, 17.
...Printer, 21...Light scattering measurement unit, 22.
...Laser breakdown method measurement unit, 23...
Light scattering/laser breakdown measurement cell shared measurement unit, 26...Light scattering measurement area, 27...Laser breakdown measurement area, 28...Laser pulse with high light intensity, 29...Weak light intensity Laser pulse, 30...
・Cell-shared measurement area, 31 Figure 3, 73

Claims (1)

【特許請求の範囲】 1、溶液中の粒子の大きさや数密度を測定する粒子計数
装置において、光散乱方式とレーザブレイクダウン方式
を同時に備え、同一試料を同時に測定し、両者の測定結
果を統合して、ひとつの測定結果を出力することを特徴
とする粒子計数装置。 2、請求項第1項において、光散乱方式とレーザブレイ
クダウン方式は、それぞれ別々の測定用セルを備え、ひ
とつの試料をそれぞれの測定用セルへ分岐して、同時並
列的に測定することを特徴とする粒子計数装置。 3、請求項第1項において、光散乱方式とレーザブレイ
クダウン方式は、それぞれ別々の測定用セルを備え、ひ
とつの試料を、光散乱用セルからレーザブレイクダウン
用セルへ縦続的に流し測定することを特徴とする粒子計
数装置。 4、請求項第1項において、光散乱方式とレーザブレイ
クダウン方式は、1つの測定用セルを共有し、同一試料
を同時に測定することを特徴とする粒子計数装置。 5、請求項第4項において、測定用セル中に、レーザ光
を入射し、空間的に光強度の強い領域と弱い領域を形成
し、光強度の強い領域でレーザブレイクダウン測定をし
、弱い領域で光散乱測定を行うことを特徴とする粒子計
数装置。 6、請求項第4項において、測定用セル中にレーザ光を
入射し、特定領域で時間的に、光強度の強い時間帯と、
弱い時間帯を形成し、光強度の強い時間帯にレーザブレ
イクダウン測定をし、弱い時間帯で光散乱測定を行うこ
とを特徴とする粒子計数装置。 7、請求項第5項において、1本のレーザ光をレンズで
収束入射し、焦点付近の光強度の強い領域と、焦点から
離れた比較的光強度の弱い領域を形成することを特徴と
する粒子計数装置。 8、第5項において、複数のレーザ光を同軸あるいは直
交させて光強度の強い領域と弱い領域を形成する粒子計
数装置。 9、第6項において、光強度の強いパルスレーザ光を比
較的弱いパルスレーザ光を時間的に前後して、測定用セ
ル中に入射することによつて、特定領域で、光強度の強
い時間帯と弱い時間帯を形成する粒子計数装置。
[Claims] 1. A particle counting device that measures the size and number density of particles in a solution, which is equipped with a light scattering method and a laser breakdown method at the same time, measures the same sample at the same time, and integrates the measurement results of both. A particle counting device characterized by outputting a single measurement result. 2. In claim 1, the light scattering method and the laser breakdown method each have separate measurement cells, and one sample is branched to each measurement cell and measured simultaneously in parallel. Characteristic particle counting device. 3. In claim 1, the light scattering method and the laser breakdown method are each equipped with separate measurement cells, and one sample is sequentially flowed from the light scattering cell to the laser breakdown cell for measurement. A particle counting device characterized by: 4. The particle counting device according to claim 1, wherein the light scattering method and the laser breakdown method share one measurement cell and simultaneously measure the same sample. 5. In claim 4, a laser beam is input into the measurement cell to spatially form a region of high light intensity and a region of low light intensity, and a laser breakdown measurement is performed in the region of high light intensity. A particle counting device characterized by performing light scattering measurement in a region. 6. In claim 4, a laser beam is incident into the measurement cell, and a time period when the light intensity is high in a specific region,
A particle counting device characterized by forming a weak time period, performing laser breakdown measurement during the time period when the light intensity is strong, and performing light scattering measurement during the weak time period. 7. Claim 5 is characterized in that one laser beam is convergently incident through a lens to form a region of high light intensity near the focal point and a region of relatively low light intensity away from the focal point. Particle counting device. 8. A particle counting device according to item 5, in which a plurality of laser beams are coaxially or perpendicularly arranged to form a region of strong light intensity and a region of weak light intensity. 9. In Section 6, by inputting a pulsed laser beam with a strong light intensity and a relatively weak pulsed laser beam into the measurement cell at different times, the time when the light intensity is high in a specific area is determined. Particle counter forming bands and weak time zones.
JP2247517A 1990-09-19 1990-09-19 Particle counter Pending JPH04127033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2247517A JPH04127033A (en) 1990-09-19 1990-09-19 Particle counter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2247517A JPH04127033A (en) 1990-09-19 1990-09-19 Particle counter

Publications (1)

Publication Number Publication Date
JPH04127033A true JPH04127033A (en) 1992-04-28

Family

ID=17164664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2247517A Pending JPH04127033A (en) 1990-09-19 1990-09-19 Particle counter

Country Status (1)

Country Link
JP (1) JPH04127033A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186157A (en) * 1992-12-17 1994-07-08 Mitsubishi Electric Corp Device and method for fine particle analysis
JP2007225335A (en) * 2006-02-21 2007-09-06 Toribo Tex Kk Fine particle counter, fine particle counting method using the same, lubrication objective part diagnostic system provided therewith
JP2012073070A (en) * 2010-09-28 2012-04-12 Fuji Electric Co Ltd Fine particle measuring device
JP2013002947A (en) * 2011-06-16 2013-01-07 Fuji Electric Co Ltd Particle measuring device
WO2015012004A1 (en) * 2013-07-23 2015-01-29 ソニー株式会社 Particle analysis device and particle analysis method
WO2017183597A1 (en) * 2016-04-20 2017-10-26 三菱電機株式会社 Microbody detection device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186157A (en) * 1992-12-17 1994-07-08 Mitsubishi Electric Corp Device and method for fine particle analysis
JP2007225335A (en) * 2006-02-21 2007-09-06 Toribo Tex Kk Fine particle counter, fine particle counting method using the same, lubrication objective part diagnostic system provided therewith
JP4719587B2 (en) * 2006-02-21 2011-07-06 トライボテックス株式会社 Fine particle counter, fine particle counting method using the same, and lubrication target part diagnosis system including the same
JP2012073070A (en) * 2010-09-28 2012-04-12 Fuji Electric Co Ltd Fine particle measuring device
JP2013002947A (en) * 2011-06-16 2013-01-07 Fuji Electric Co Ltd Particle measuring device
WO2015012004A1 (en) * 2013-07-23 2015-01-29 ソニー株式会社 Particle analysis device and particle analysis method
JPWO2015012004A1 (en) * 2013-07-23 2017-03-02 ソニー株式会社 Particle analyzer and particle analysis method
US10031063B2 (en) 2013-07-23 2018-07-24 Sony Corporation Particle analysis apparatus and method for optically detecting particles
WO2017183597A1 (en) * 2016-04-20 2017-10-26 三菱電機株式会社 Microbody detection device

Similar Documents

Publication Publication Date Title
US4885473A (en) Method and apparatus for detecting particles in a fluid using a scanning beam
US5166537A (en) Particle analyzing method and device for realizing same
JP5531219B2 (en) System and method for real-time measurement of aerosol particle size and chemical composition
KR101857950B1 (en) High accuracy real-time particle counter
JP2010534847A (en) Analytical method and apparatus for analyzing chemical substances, biological substances and explosive substances floating in the air in real time
JPH02134540A (en) Fine particle measuring apparatus
KR20120013297A (en) Method and system for analysing solid particles in a medium
US5033851A (en) Light scattering method and apparatus for detecting particles in liquid sample
JP3102925B2 (en) Particle analyzer
CN108398421A (en) A kind of enhanced laser induced breakdown spectrograph of distinguishable carbon isotope
JPH04127033A (en) Particle counter
US4722602A (en) Apparatus and method for analyzing particles in a medium
KR101003023B1 (en) Nanoparticle sizing method using the frequency distribution curve of probe beam deflection signal magnitude generated by laser-induced breakdown
JPH0792077A (en) Grain analyzing device
US10371641B2 (en) Method and apparatus for measuring inelastic scattering
JP2002062249A (en) Method and device for measuring particle size of fine particulate in fluid
JPH0792076A (en) Grain analyzing device
JPS61288139A (en) Fine particle detecting device
JPH05340866A (en) Dust particle detector
JP2003315248A (en) Flow cytometer
JPH04204039A (en) Corpuscle measuring system
JPH06180280A (en) Particle counting method
JPH02128142A (en) Optical fine particle measuring apparatus
JPS61283848A (en) Flow site meter
JPH04110638A (en) Particle measuring apparatus