JPH02128142A - Optical fine particle measuring apparatus - Google Patents

Optical fine particle measuring apparatus

Info

Publication number
JPH02128142A
JPH02128142A JP63281572A JP28157288A JPH02128142A JP H02128142 A JPH02128142 A JP H02128142A JP 63281572 A JP63281572 A JP 63281572A JP 28157288 A JP28157288 A JP 28157288A JP H02128142 A JPH02128142 A JP H02128142A
Authority
JP
Japan
Prior art keywords
light
signal
particle size
measurement
flow cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63281572A
Other languages
Japanese (ja)
Other versions
JPH0718788B2 (en
Inventor
Yasushi Zaitsu
財津 靖史
Tokio Oodo
大戸 時喜雄
Mutsuhisa Hiraoka
睦久 平岡
Hiroshi Hoshikawa
星川 寛
Takeo Tanaka
田中 猛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63281572A priority Critical patent/JPH0718788B2/en
Publication of JPH02128142A publication Critical patent/JPH02128142A/en
Publication of JPH0718788B2 publication Critical patent/JPH0718788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure fine particles without causing lowering in grain size resolutions in a wide size range by projecting a measuring light to a flow cell made of a transparent material through which a fluid to be measured runs. CONSTITUTION:A first light receiving section 10 receives a transmission light 11 of a measuring light 6 transmitted through a flow cell 1 to output a first light reception signal 13a. A second light receiving section 16 receives a forward scattered light 17 caused by the irradiation of fine particles 2 in a fluid 3 to be measured in the flow cell 1 by the measuring light 6 and outputs a second light reception signal 19a corresponding to the results of light reception. A signal processing section 26 has signals 13a and 19a inputted thereinto and outputs a data signal 27 by a specified signal processing for the input signals. Then, since the signal 13a is a signal by a light shielding method while the signal 19a is a signal by a light scattering method, the number and a grain size distribution of the fine particles 2 can be measured by signals 15a and 15b with high grain size resolutions. This also enables measurement of the number and the grain size distribution of the fine particles 2 with high grain size resolutions by signals 24a and 24b.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微粒子を含む流体に光を投射した時に発生す
る光学的現象を検出し工前記微粒子の個数や粒径分布を
測定する微粒子測定装置、特に。
Detailed Description of the Invention [Industrial Application Field] The present invention is a particle measurement method that detects the optical phenomenon that occurs when light is projected onto a fluid containing particles and measures the number and size distribution of particles during processing. Equipment, especially.

測定可能な微粒子の最小粒径が小さく、かつ微粒子の広
い粒径範囲にわたつ1高い粒径分解能で測定を行うこと
ができる装置に関する。
The present invention relates to an apparatus that has a small minimum particle size of measurable particles and can perform measurements over a wide particle size range with a higher particle size resolution.

〔従来の技術〕[Conventional technology]

流・肋寸ろ流体中の微粒子の個数や粒径分布に対する測
定(以後、この測定な単忙微粒子の測定ということがあ
る。)を行うに当りCは、従来、光遮断法を採用した微
粒子測定装置と光散乱法を採用した微粒子測定装置とが
よく弔いらtt−(いる、そうし℃、前者の装fi1は
、微粒子を含む流動する被測定流体に測定光を投射し、
この測定光が被測定流体を透過し1出工きた透過光を受
光し工。
When measuring the number and particle size distribution of fine particles in a fluid (hereinafter, this measurement may also be referred to as the measurement of single particles), C is a conventional method for measuring fine particles using a light blocking method. A measuring device and a particle measuring device that employs a light scattering method are often used.
This measurement light passes through the fluid to be measured and the transmitted light is received and processed.

この受光光量に現れる。前記微粒子が測定光を遮断する
ことにもとづくパルス状の光量減少の程度とこの光景減
少の回数とから微粒子の粒径と個数とを測定するように
したもので、後者の装置は。
This appears in the amount of light received. The latter device measures the particle diameter and number of particles based on the degree of pulse-like light intensity reduction caused by the particles blocking the measurement light and the number of times this visual field decreases.

微粒子を含む流動する被測定流体に測定光を投射した時
に発生する該微粒子による測定光の散乱光を受光し1.
この受光光量におけろパルス状の光量増加の程度とこの
光量増加の回数とから微粒子の粒径と個数とを測定する
ようにしたものである。
1. Receiving the scattered light of the measurement light generated by the particles when the measurement light is projected onto the flowing fluid to be measured containing the particles;
The size and number of fine particles are measured from the degree of pulse-like increase in the amount of light received and the number of times the amount of light increases.

〔発明が解決しようとする課爬〕[The problem that the invention attempts to solve]

流動する被測定流体中の微粒子の測定を行う場合、従来
、上述1−た二種類の測定装置がよく用いらt′+−い
るが、光遮断法を採用した測定装置には。
When measuring particulates in a flowing fluid to be measured, conventionally, the two types of measuring devices mentioned above are often used.

微粒子の粒径が大きい場合、パルス状の光量減少の大き
さが微粒子の測定光に対する投影面積にほぼ比例するな
どの理由で、微粒子の粒径に対する分解能(以後、この
分解能を単に粒径分解能ということがある。)の高い、
*言すねばばらつきの少ない測定結果が得られる利点が
あるのに反しC。
When the particle size is large, the resolution of the particle size (hereinafter referred to simply as particle size resolution) is ) is high,
*Although it has the advantage of being able to obtain measurement results with less variation, C.

微粒子の粒径が1μm程度以下になると光の回折等の影
響が大きくなるので、測定感度すなわち所定の粒径分解
能で測定することのできる最小の微粒子粒径があまり小
さくならないという欠点がある。そうし工、また。光散
乱法を採用した測定装置には、He*Neレーザ、半導
レーザ、発光ダイオ、−ド等が出射する600〜8QQ
nm穆度の波長の光を測定光とし1用いた場合、0.3
〜0.5μm程度の微細な粒径の微粒子にまで測定感度
を有し工い2光遮断法を採用した測定装置によるよりも
小さい粒径の微粒子を測定し得ろ利点があろのに反し工
、微粒子の粒径がI Am程度以上になると光のミー散
乱現象のたぬに微粒子の粒径に対する分解能が低下する
という欠点がある。
When the particle size of the fine particles is about 1 μm or less, the influence of light diffraction etc. increases, so there is a drawback that the measurement sensitivity, that is, the minimum particle size that can be measured with a predetermined particle size resolution, does not become very small. Soukou, again. Measurement devices that use the light scattering method include He*Ne lasers, semiconductor lasers, light-emitting diodes, etc.
When using light with a wavelength of nm slenderness as measurement light, 0.3
Although this method has the advantage of being sensitive to particles with a particle size as small as ~0.5 μm and being able to measure particles with a smaller particle size than a measuring device that adopts the two-light blocking method, When the particle size of the fine particles exceeds about I Am, there is a drawback that the resolution of the particle size of the fine particles decreases due to the Mie scattering phenomenon of light.

本発明の目的は、光遮断法な用いた微粒子測定装置と光
散乱法を用いた微粒子測定装置とのそねぞttKおける
上述の欠点を互いに他の測定装置に利 おけろ次点で補うようにしc、0.3〜0.5μmの下
限粒径まで感度を有しかつこの下限粒径を下限値とする
広い粒径範囲にわたつ℃高い粒径分解能を有する微粒子
測定装置を得ることにある。
It is an object of the present invention to compensate for the above-mentioned drawbacks of a particle measuring device using a light blocking method and a particle measuring device using a light scattering method by applying each other to other measuring devices. To obtain a particulate measuring device that has sensitivity down to the lower limit particle size of 0.3 to 0.5 μm and has high particle size resolution over a wide particle size range with this lower limit particle size as the lower limit. be.

〔課題を解決てろたぬの手段〕[Rotanu's means of solving problems]

上記目的を達成するため9本発明によれば、被測定流体
が貫流する透明材料製ブローセルと、前記フローセル忙
測定光を投射する投光部と、前記フローセルを透過した
前記測定光の透過光な受光し1この受光結果に応じた第
1受光信号を出力する第1受光部と、前記フローセルに
おけろ前記被測定流体中の微粒子が前記測定光により照
射されることにより1前記微粒子で前記測定光が進行す
る向きのほぼ前方に向り一散乱される前方散乱光を受光
し−この受光結果に応じた第2受光信号を出力する第2
受光部と、前記第1及びm2受光信号が入力されこれら
の肉入力信号とつい℃所定の信号処理を行つ工その結果
に応じたデータ信号を出力する信号処理部とを備え、前
記データ信号にもとづき前記被測定流体における前記微
粒子の個数と前記微籾千〇粒径分布とを測定″′tろよ
う和光学的微粒子測定装置を構成するものとする。
In order to achieve the above object, the present invention includes a blow cell made of a transparent material through which a fluid to be measured flows, a light projecting section for projecting measurement light from the flow cell, and a transmission light of the measurement light transmitted through the flow cell. A first light receiving section that receives light and outputs a first light reception signal according to the result of the light reception; A second device receives forward scattered light that is scattered in a direction substantially in front of the direction in which the light travels, and outputs a second light reception signal in accordance with the result of this light reception.
a light receiving section; and a signal processing section to which the first and m2 light receiving signals are input, perform predetermined signal processing on these meat input signals, and output a data signal according to the result; Based on this, the number of fine particles in the fluid to be measured and the size distribution of fine rice grains are measured.

〔作用〕[Effect]

上記のように構成すると、第1受光信号が上述した光遮
断法にもとづく信号で、このため粒径1μm以上の微粒
子に対し−高い粒径分解能の測定結果を得ろことができ
ろ信号であり、また、第2受光信号が上述した光散乱法
にもとづく信号で。
With the above configuration, the first light reception signal is a signal based on the light blocking method described above, and is therefore a signal that allows measurement results with high particle size resolution to be obtained for fine particles with a particle size of 1 μm or more. Further, the second light reception signal is a signal based on the above-mentioned light scattering method.

このため0.3〜0.5μm程度の下限粒径から1μm
程度の粒径までの微粒子粒径の範囲で高い粒径分解能の
測定結果を得ろことができる信号であろので。
For this reason, from the lower limit particle size of about 0.3 to 0.5 μm to 1 μm
Because it is possible to obtain measurement results with high particle size resolution in the particle size range of fine particles up to a small particle size, it is possible to obtain a signal.

データ信号を0.3〜0.5μmの粒径を下限値とし1
1μmをはるかKこえろ広い粒径の範囲内で高い粒径分
解能を有する微粒子測定結果を表す信号とすることがで
きて、この結果、0.3〜0.5μmの下限粒径まで感
度を有しかつこの下限粒径を下限値とする広い粒径範囲
にトたつ1粒径分解能の低下を招くことなく微粒子の測
定を行うことができる微粒子測定装置が得らセろことだ
なる。
The data signal is set to a particle size of 0.3 to 0.5 μm as the lower limit.
It is possible to use a signal representing the result of fine particle measurement with high particle size resolution within a wide particle size range far beyond 1 μm, and as a result, it has sensitivity down to the lower limit particle size of 0.3 to 0.5 μm. Moreover, it is possible to obtain a particle measuring device that can measure particles over a wide particle size range with this lower limit particle size as the lower limit without causing a decrease in single particle size resolution.

〔実施例〕〔Example〕

第1図は本発明の一実施例の構成図、第2図は第1図に
おけろ要部の鉱大図である。第1図及び第2図においc
、1は微粒子2を含む被測定流体3が第1図の紙面に垂
直に貫流する断面正方形の試料流路4が設けらねた透明
材料製のフローセルで。このフローセルlは流路4の細
心に垂直な断面が流路4の軸心と同軸である図示した正
方形をなすように四角柱状に形成され工いろ。512フ
ローセル1の−[面ta<垂直に平行光束である測定光
6投射するようKした。光7鳳を出射する発光ダイオー
ドのような光源7と、光7鳳を集束し−C測定光6にす
る集束レンズ8と、光7mの強さを所定値に制御する光
源駆動回路9とからなる投光部、10はフローセルlを
透過した測定光6の透過光11を受光するようkした第
1受光部で。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a schematic diagram of the main parts of FIG. 1. Figures 1 and 2 c
, 1 is a flow cell made of a transparent material and provided with a sample channel 4 having a square cross section through which a fluid to be measured 3 containing fine particles 2 flows perpendicularly to the paper surface of FIG. This flow cell 1 is formed into a rectangular prism shape so that the vertical cross section of the flow path 4 is coaxial with the axis of the flow path 4, which is the square shown in the figure. 512 flow cell 1 so that the measurement light 6, which is a parallel light beam, is projected perpendicularly to the -[plane ta<. A light source 7 such as a light emitting diode that emits light 7 m, a focusing lens 8 that focuses the light 7 m into -C measurement light 6, and a light source drive circuit 9 that controls the intensity of the light 7 m to a predetermined value. 10 is a first light receiving section configured to receive the transmitted light 11 of the measurement light 6 transmitted through the flow cell I.

この受光部!Oは試料流路番を透過した透過光11のみ
を通過させ他の透過光tiを遮光するようにしたアパー
チャ12と、このアパーチャ12を通過した透過光11
を受光し−この受光量に応じた電流信号とし1の第1受
光信号13mを出力するようKしたホトダイオードのよ
うな第1受光素子13とで構成され1いる。この場合、
被測定流体3を測定光6における−様な光強度分布の部
分で照射するために、投光部5の光軸が試料流路4の軸
心またはその近傍を通るように投光部5とフローセルl
とが配設さt1″Cいt、また、アパーチャ12は上記
のように構成さtlKいるので受光信号t3gにおける
SN比の向上に効果的である。
This light receiving part! O is an aperture 12 that allows only the transmitted light 11 that has passed through the sample channel number to pass through and blocks other transmitted light ti, and the transmitted light 11 that has passed through this aperture 12.
A first light-receiving element 13 such as a photodiode is configured to receive light and output a first light-receiving signal 13m as a current signal corresponding to the amount of light received. in this case,
In order to irradiate the fluid to be measured 3 with a part of the measuring light 6 having a −-like light intensity distribution, the light projecting unit 5 and the light projecting unit 5 are arranged so that the optical axis of the light projecting unit 5 passes through the axis of the sample flow path 4 or its vicinity. flow cell l
Furthermore, since the aperture 12 is configured as described above, it is effective in improving the S/N ratio in the received light signal t3g.

!4は第1受光信号1311な電圧信号に変換し工さら
Kこの電圧信号を増幅し、しかる後、この増幅した電圧
信号における直流成分に応じた第1信号t4aと、増幅
した電圧信号から前記の直流成分を除いた信号、つまり
、微粒子2が測定光6を遮断することによつ1生じたパ
ルス波形を含む経時信号に対応した経時波形を有する第
2信号14bとを出力するようにしたgt信号変換部で
、前述した光源駆動回路9は第1信号14aが入力され
ることkよりtしかるべき操作量911を光源7に与え
″C,信号14aが表す光7aの強さを定値制御するよ
うに構成され1いる。ここ忙、信号14bが呈する一個
のパルス波形が一個の微粒子2に対応し工おり、また該
パルス波形の波高値が微粒子2の粒径に対応し1いるこ
とは、上述した所から明らかである。15&S第2信号
14bと第1測定条件信号25mとが入力さね1条件信
号25aによ′)″C指定された測定時間Tの間に入力
される信号14bKおけろパルス波形の個数を計数1”
c。
! 4 converts the first light reception signal 1311 into a voltage signal, amplifies this voltage signal, and then converts the first signal t4a corresponding to the DC component in this amplified voltage signal and the amplified voltage signal into the above-mentioned voltage signal. gt outputs a signal excluding the DC component, that is, a second signal 14b having a temporal waveform corresponding to a temporal signal including a pulse waveform generated by the particle 2 blocking the measurement light 6; In the signal converter, the light source drive circuit 9 described above receives the first signal 14a and applies an appropriate operation amount 911 to the light source 7 to control the intensity of the light 7a represented by the signal 14a at a fixed value. Here, one pulse waveform exhibited by the signal 14b corresponds to one particle 2, and the peak value of the pulse waveform corresponds to the particle size of the particle 2. It is clear from the above that the second signal 14b and the first measurement condition signal 25m are inputted during the specified measurement time T by the first condition signal 25a. Count the number of Kero pulse waveforms 1"
c.

時間Tの間に第1受光部10が検出する微粒子2の個数
に応じた第1個数倍号15aを出力すると共に、時間T
の間に信号14bに現れる前記パルス波形の波高値が条
件信号25aによりτ設定された複数個のレベル帯域の
うちのいずれのレベル帯域に属するかを判別しCは同一
のレベル帯域に属する上記パルスの個数を計数すること
によつC。
A first number multiple 15a corresponding to the number of particles 2 detected by the first light receiving section 10 during the time T is output, and
It is determined to which level band the peak value of the pulse waveform appearing in the signal 14b belongs to among the plurality of level bands set τ by the condition signal 25a, and C is the pulse that belongs to the same level band. By counting the number of C.

時間Tの間に第!受光部10が検出する微粒子2の粒径
分布を測定して、この測定結果に応じた第1粒径分布信
号15bを出力する第1計数部で。
No. during time T! A first counting section that measures the particle size distribution of the fine particles 2 detected by the light receiving section 10 and outputs a first particle size distribution signal 15b according to the measurement result.

この場合、計数部15は、信号14bに現れるパルスの
波高値が微粒子2の1〜30μmの範囲内の粒径に対応
し−いろ場合にのみ上述の信号15a。
In this case, the counting unit 15 outputs the above-mentioned signal 15a only when the peak value of the pulse appearing in the signal 14b corresponds to the particle size of the fine particles 2 within the range of 1 to 30 μm.

15bを出力する動作を行うように構成さt′t″Cい
る。
15b.

16tX、フローセル1におけろ被測定流体3中の微粒
子2が測定光6により照射されることにより工この微粒
子2で測定光6が進行する向きのほぼ前方に向り1散乱
される前方散乱光17を受光し1.この受光結果忙応じ
た電流信号である第2受光信号191を出力する第2受
光部で、この受光部16は、散乱光17のみを集光し工
透過光11を集光しないように中央部に貫通孔tSaを
設けたi光レンズ18と、レンズ18が集光した散乱光
17%’集束し1ホトダイオードのような第2受光素子
19に、入射させろようにした集束レンズ20と、入射
光量に応じた前述の第2受光信号19aを出力する第2
受光素子19と、アパーチャ21とで構成され1いる。
16tX, when the particles 2 in the fluid to be measured 3 in the flow cell 1 are irradiated with the measurement light 6, forward scattered light is scattered by the particles 2 in the flow cell 1 in a direction substantially in the direction in which the measurement light 6 travels. 17 and 1. The second light receiving section outputs a second light receiving signal 191 which is a current signal corresponding to the light receiving result. an i-light lens 18 provided with a through hole tSa, a focusing lens 20 configured to condense 17% of the scattered light condensed by the lens 18, and make it incident on a second light receiving element 19 such as a photodiode; a second light receiving signal 19a that outputs the second light reception signal 19a according to the second light reception signal 19a;
It consists of a light receiving element 19 and an aperture 21.

そうし″C,レンズ18の貫通孔18a内忙第1受光部
10が配置され工おり。
Then, the first light receiving section 10 is placed inside the through hole 18a of the lens 18.

また、アバー千ヤ21t)第2受光部16が光を受光し
得る領域(以後、この領域を受光領域ということがある
。)を限定するために設けられ工いろ。
In addition, Aba Chiya 21t) is provided to limit the area where the second light receiving section 16 can receive light (hereinafter, this area may be referred to as the light receiving area).

第2受光部16は上述のよう忙構成され工いろので、そ
の受光領域がレンズ18.20とアパーチャ21と受光
素子19の受光面!9bとで紡錘状に形成さtl″C第
2図に示した領域22のようKなり工いる。第2図にお
ける30は受光領域22の境界を形成する光線の光路で
ある。そうし1゜この場合、測定光6で照射された試料
流路40すべ1が受光領域22に含まねろように各部が
構成さFL工いるので、測定光6によつ1:微粒子2が
照射さnると、この微粒子2から出射される散乱光のう
ちの第1図に示したレンズ18に向う前方散乱光17が
すベニ受光素子19に入射することになる。つまり、1
M1図においCは、第2受光部16が検出する散乱光1
7の出射領域が測定光6により一照射される試料流路4
0部分忙一致し工いる。
Since the second light receiving section 16 has a busy structure as described above, its light receiving area is the light receiving surface of the lens 18, 20, the aperture 21, and the light receiving element 19! 9b and tl''C are formed in a spindle shape and are shaped like the area 22 shown in FIG. 2. Reference numeral 30 in FIG. In this case, each part is configured so that the sample channel 40 irradiated with the measurement light 6 is not included in the light receiving area 22, so if the measurement light 6 is irradiated with 1:fine particles 2, Of the scattered light emitted from the fine particles 2, the forward scattered light 17 directed toward the lens 18 shown in FIG.
In the M1 diagram, C is the scattered light 1 detected by the second light receiving section 16.
sample flow path 4 in which the emission area of 7 is irradiated with the measurement light 6;
0 part is busy.

そうし1.また、第1図においては第1受光部10が上
述したようKm成されτいる。したがりt。
That's it 1. In addition, in FIG. 1, the first light receiving section 10 is configured as Km and τ as described above. I want to.

この場合、第1受光slOが検出する透過光11の出射
領域と第2受光部16が検出する散乱光17の出射領域
とが一致し工いることになる。
In this case, the emission area of the transmitted light 11 detected by the first light receiving unit slO and the emission area of the scattered light 17 detected by the second light receiving section 16 are aligned.

23は第2受光信号19mが入力され、この信号19B
を1!圧信号に変換した後増幅し・c、Lかる後この増
幅した電圧信号におけろ直流成分を除去した信号に応じ
た経時信号23aを出力する第2信号変俟部、244’
!経時信号23aと第2測定条件信号25bとが入力さ
れ1条件信号25bにより工指定された測定時間Tの間
忙入力される信号238における。微粒子2による前方
散乱光17にもとづくパルス波形の個数を計数し21時
時間の間に第2受光部16が検出する微粒子2の個数に
応じた第2個数倍号24aを出力すると共K。
23 receives the second light reception signal 19m, and this signal 19B
1! A second signal changing section 244' that outputs a time-lapse signal 23a corresponding to a signal obtained by removing the DC component from the amplified voltage signal after converting it into a voltage signal and amplifying it.
! The elapsed time signal 23a and the second measurement condition signal 25b are input, and the signal 238 is inputted during the measurement time T specified by the first condition signal 25b. The number of pulse waveforms based on the forward scattered light 17 by the particles 2 is counted and a second number multiple 24a corresponding to the number of particles 2 detected by the second light receiving section 16 during the 21:00 time period is outputted.

時間Tの間に信号231に現れろ前記パルス波形の波高
値が条件信号25bKよつ℃設定された複数個のレベル
帯域のうちのいずれのレベル帯域に属するかを判別し′
Cは同一のレベル帯域VCI!!4する上記パルスの個
数を計数することKよつ″C,時間時間間に第2受光部
!6が検出する微粒子2の粒径分布を測定し′c&この
測定結果に応じた第2粒径分布信号24bを出力する第
2計数部で、この計数部24は、信号238に現れるパ
ルスの波高値が0.3〜1μmの範囲内の粒径に対応し
工いる場合にのみ上記の信号24a、24t)を出力す
る動作を行うように構成さt1’cいる。
It is determined to which level band the peak value of the pulse waveform appearing in the signal 231 during time T belongs to among a plurality of level bands set by the condition signal 25bK.
C is the same level band VCI! ! Counting the number of the above-mentioned pulses, measuring the particle size distribution of the fine particles 2 detected by the second light-receiving section 6 for a period of time, and determining the second particle size according to this measurement result. The second counting unit outputs the distribution signal 24b, and this counting unit 24 outputs the signal 24a only when the peak value of the pulse appearing in the signal 238 corresponds to a particle size within the range of 0.3 to 1 μm. , 24t).

25はキー操作等のしかるべき設定操作が加えられろこ
とによ′)″にの設定操作に応じた上述の第1測定東件
信号2511と第2測足条件信号25bとを出力するよ
うにした測定条件設定部で、この設定部25は、信号2
5aと25bとを出力することによつ一1第1及び第2
計数部15.24に同時に上述したそれぞれの計数動作
を開始させかつ同時にこれらの計数動作を停止させろよ
うに構成され1いる、26は第1及び第2信号変換部1
4、23と第1及び第2計数部15.24と測定条件設
定部25とからなる信号処理部、27は第1及び第2個
数倍号15!1.241と第1及び第2粒径分布信号1
5b、24bとからなるデータ信号で、信号処理部26
におい′Cは各部が上述のように構成され工いるので、
処理部26は第1及び第2受光信号13111 19m
が入力されこれらの入力信号につい工所定の信号処理を
行っ−その結果に応じたデータ信号27を出力するもの
であるということができる。そうしC,この場合。
25 is configured to output the above-mentioned first measurement condition signal 2511 and second measurement condition signal 25b according to the setting operation ')'', depending on the appropriate setting operation such as key operation. In the measurement condition setting section 25, this setting section 25
By outputting 5a and 25b, the first and second
The counting units 15 and 24 are configured to simultaneously start the above-mentioned respective counting operations and simultaneously stop these counting operations, and 26 denotes the first and second signal converters 1.
4, 23, a first and second counting section 15, a signal processing section 24 and a measurement condition setting section 25; Distribution signal 1
5b and 24b, the signal processing unit 26
Since each part of the odor 'C is constructed as described above,
The processing unit 26 receives the first and second light reception signals 13111 19m
It can be said that these input signals are inputted and subjected to predetermined signal processing, and a data signal 27 corresponding to the result is output. So C, in this case.

データ信号271Cもとづい1被測定流体3における微
粒子2の個数と粒径分布とを測定し得ろことが上述した
所から明らかである。28は第1図図示の各部からなる
光学的微粒子測定装置である。
It is clear from the foregoing that the number and particle size distribution of the particles 2 in the fluid to be measured 3 can be measured based on the data signal 271C. Reference numeral 28 denotes an optical particle measuring device consisting of the various parts shown in FIG.

第1図においCは微粒子測定装置28が上述のように構
成され2い1.かつ第1受光信号13aが光遮断法によ
る信号でまたwJ2受光信号19aが光散乱法による信
号であることは明らかであるから、信号15a、15b
Kより1〜30μmの粒径の微粒子2に対し1高い粒径
分解能で個数及び粒径分布を測定することができ、また
、信号24a、24bにより0.3〜1μmの粒径の微
粒子21/C対し1高い粒径分解能で個数及び粒径分布
を測定することができる。そうし′c、また。前述した
ようVC1受光部10が検出する透過光11の出射領域
と受光部16が検出する散乱光17の出射領域とは同じ
である。したがりt、測定装ft28は。
In FIG. 1, C indicates that the particle measuring device 28 is configured as described above. Also, it is clear that the first light reception signal 13a is a signal obtained by the light blocking method and the wJ2 light reception signal 19a is a signal obtained by the light scattering method, so the signals 15a and 15b
The number and particle size distribution of fine particles 2 with a particle size of 1 to 30 μm can be measured with a particle size resolution 1 higher than that of K, and the signals 24a and 24b can be used to measure the number and particle size distribution of fine particles 21/2 with a particle size of 0.3 to 1 μm. The number and particle size distribution can be measured with a particle size resolution that is 1 higher than that of C. Yes, again. As described above, the emission region of the transmitted light 11 detected by the VC1 light receiving section 10 and the emission region of the scattered light 17 detected by the light receiving section 16 are the same. The measurement equipment is ft28.

試料流路4中の被測定流体3に対し工、0.3μmとい
うような微細な下限粒径まで感度を有し、かつこの0.
3μmという下限粒径から30μmという上限粒径に至
ろ非常に広い粒径範囲忙わたりて粒径微粒 分解能の低下を招くことなく尋寺子2の測定を行うこと
ができろ光学的微粒子測定装置である。
It has sensitivity to the minimum particle size of 0.3 μm for the fluid 3 to be measured in the sample flow path 4, and has a sensitivity of 0.3 μm.
It is possible to measure Jinjiko 2 over a very wide range of particle sizes, from the lower limit particle size of 3 μm to the upper limit particle size of 30 μm, without causing a decrease in particle size resolution. be.

そうしC1さらに、6g3定装置28においCは。Then, C1, and C in the 6g3 constant device 28.

光散乱法による第2受光信号1911が前方散乱光17
によ−)工得られた信号となつ−い−c1前方散乱光な
用いると測定光6の光軸に対し1はぼ垂直な方向に出射
される側方散乱光を用いるよりも粒径分解能のよい微粒
子測定結果が得られるのが通例である。故に、このよう
な散乱光の種類の面でも、測定装置28には、第2受光
信号t9m<もとづく微粒子測定における粒径分解能が
向上する利点がある、 〔発明の効果〕 上述したように1本発明におい工は、被測定流体が貫流
イる透明材料製フローセルと、このフローセルに測定光
を投射する投光部と、フローセルを透過した測定光の透
過光を受光し1受光結果に応じた第1受光信号を出力す
る第1受光部と、フローセルにおける被測定流体中の微
粒子が測定光により照射さねろことによ−)1この微粒
子で測定光が進行イろ向きのほぼ前方に向り一散乱され
る前方散乱光を受光してこの受光結果和名じた第2受光
信号を出力する第2受光部と、第1及び第2受光信号が
入力さねこれらの肉入力信号につい2所定の信号処理を
行つ疋その結果に応じたデータ信号を出力する信号処理
部とを備え、このデータ信号にもとづき被測定流体にお
ける微粒子の個数と微粒子の粒径分布とを測定するよう
に光学的微粒子測定装置を構成した。
The second light reception signal 1911 obtained by the light scattering method is the forward scattered light 17.
Using the forward scattered light, the particle size resolution is better than when using the side scattered light emitted in a direction almost perpendicular to the optical axis of the measurement light 6. Generally, good particle measurement results can be obtained. Therefore, even in terms of the type of scattered light, the measuring device 28 has the advantage of improving the particle size resolution in particle measurement based on the second light reception signal t9m. [Effects of the Invention] As described above, one The odor sensor of the invention includes a flow cell made of a transparent material through which a fluid to be measured flows, a light projector that projects measurement light onto the flow cell, and a light projector that receives the transmitted light of the measurement light that has passed through the flow cell and responds to the result of the received light. 1) The first light receiving part that outputs the light reception signal and the particulates in the fluid to be measured in the flow cell are irradiated with the measuring light. A second light receiving section receives the forward scattered light and outputs a second light receiving signal as a result of this light reception, and a second light receiving section receives the first and second light receiving signals. A signal processing section that performs signal processing and outputs a data signal according to the result, and an optical particle sensor that measures the number of particles and the particle size distribution of the particles in the fluid to be measured based on this data signal. The measuring device was constructed.

このため、上記のように構成すると、第1受光信号が上
述した光遮断法にもとづく信号で、このため粒径1μm
以上の微粒子に対し−高い粒径分解能の測定結果を得る
ことができる信号であり。
Therefore, with the above configuration, the first light reception signal is a signal based on the light blocking method described above, and therefore the particle size is 1 μm.
It is a signal that allows measurement results with high particle size resolution to be obtained for fine particles of the above-mentioned size.

また、第2受光信号が上述した光散乱法、特に前方散乱
光を用いろ方法にもとづく信号で、このため0.3〜0
.5μm+1度の下限粒径から1μm程度の粒径までの
微粒子粒径の範囲で高い粒径分解能の測定結果を得ろこ
とができる信号であるので、データ信号を0.3〜0.
5μmの粒径を下限値とし11μrnytはろかKこえ
る広い粒径の範囲内で高い粒径分解能を有する微粒子測
定結果を表す信号とすることができC,この結果1本発
明にハ0.3〜0゜5μmの下限粒径まで感度を有しか
つこの下兆径を下限値とする広い粒径範囲にわたって粒
径分解能の低下を招くことなく微粒子の測定を行うこと
ができろ微粒子側に装置が得られる効果がある。
Further, the second light reception signal is a signal based on the above-mentioned light scattering method, particularly a method using forward scattered light, and therefore 0.3 to 0.
.. Since this is a signal that allows measurement results with high particle size resolution to be obtained in the particle size range from the lower limit particle size of 5 μm + 1 degree to a particle size of about 1 μm, the data signal can be adjusted to 0.3~0.
With a particle size of 5 μm as the lower limit, it is possible to obtain a signal representing the result of fine particle measurement with high particle size resolution within a wide particle size range exceeding 11 μrnyt, and as a result, 1. It has sensitivity down to the lower limit particle size of 0.5 μm and can measure fine particles over a wide particle size range with this lower limit as the lower limit without causing a decrease in particle size resolution. There are benefits to be gained.

、また1本発明では、第1受光信号が光遮断法にもとづ
く信号でありかつ第2受光信号が光散乱法にもとづく信
号であるから1両受光信号を用い1同時に同じ微粒子に
対する測定を行うよう廻信号処理部を構成すると、同時
疋二種類の測定原理にもとづ(微粒子測定結果が得られ
るので1本発明には、信号処理部をこのよう忙構成する
ことにより1被測定流体の調整が固着な場合や被測定流
体におけろ微粒子濃度が希薄な場合に信頼度の高い測定
結果が得ら4る効果がある。
In addition, in the present invention, since the first light reception signal is a signal based on the light blocking method and the second light reception signal is a signal based on the light scattering method, it is possible to use both light reception signals to simultaneously measure the same particle. By configuring the signal processing section, it is possible to simultaneously obtain two types of measurement results (particulate measurement results). This has the effect that highly reliable measurement results can be obtained when particles are stuck or when the concentration of particulates in the fluid to be measured is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一笑施例の構成図、第2図は第1図に
おけろ要部の拡大図である。 l・・・・・・フローセル、2・・・・・・微粒子、3
・・・・・・被測定流体、5・・・・・・投光部、6・
・・・・・測定光、  10・・・・・・第1受光部、
11・・・・・・透過光、13a・・・・・・11g1
受光信号、16第2受光部、  17・・・・・・前方
散乱光、19a・・・・・・第2受光信号、26・・・
・・・信号処理部、27:・・・・・・データ信号。 28・・・・・・光学的微粒子測定装置。 篤 凹
FIG. 1 is a block diagram of a simple embodiment of the present invention, and FIG. 2 is an enlarged view of the main parts of FIG. 1. l...flow cell, 2...fine particles, 3
....Fluid to be measured, 5.....Light emitter, 6.
...Measurement light, 10...First light receiving section,
11...Transmitted light, 13a...11g1
Light reception signal, 16 second light reception section, 17... forward scattered light, 19a... second light reception signal, 26...
... Signal processing section, 27: ... Data signal. 28...Optical particle measuring device. Atsushi

Claims (1)

【特許請求の範囲】[Claims] 1)被測定流体が貫流する透明材料製フローセルと、前
記フローセルに測定光を投射する投光部と、前記フロー
セルを透過した前記測定光の透過光を受光してこの受光
結果に応じた第1受光信号を出力する第1受光部と、前
記フローセルにおける前記被測定流体中の微粒子が前記
測定光により照射されることによって前記微粒子で前記
測定光が進行する向きのほぼ前方に向って散乱される前
方散乱光を受光してこの受光結果に応じた第2受光信号
を出力する第2受光部と、前記第1及び第2受光信号が
入力されこれらの両入力信号について所定の信号処理を
行つてその結果に応じたデータ信号を出力する信号処理
部とを備え、前記データ信号にもとづき前記被測定流体
における前記微粒子の個数と前記微粒子の粒径分布とを
測定することを特徴とする光学的微粒子測定装置。
1) A flow cell made of a transparent material through which a fluid to be measured flows, a light projecting section that projects measurement light onto the flow cell, and a first light projecting section that receives the transmitted light of the measurement light that has passed through the flow cell and responds to the result of this light reception. A first light receiving section that outputs a light reception signal, and particles in the fluid to be measured in the flow cell are irradiated with the measurement light, and are scattered by the particles substantially in the forward direction in the direction in which the measurement light travels. a second light receiving section that receives the forward scattered light and outputs a second light receiving signal according to the result of the light reception; and a second light receiving section that receives the first and second light receiving signals and performs predetermined signal processing on both of these input signals. and a signal processing unit that outputs a data signal according to the result, and measures the number of particles and the particle size distribution of the particles in the fluid to be measured based on the data signal. measuring device.
JP63281572A 1988-11-08 1988-11-08 Optical particle measuring device Expired - Lifetime JPH0718788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63281572A JPH0718788B2 (en) 1988-11-08 1988-11-08 Optical particle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63281572A JPH0718788B2 (en) 1988-11-08 1988-11-08 Optical particle measuring device

Publications (2)

Publication Number Publication Date
JPH02128142A true JPH02128142A (en) 1990-05-16
JPH0718788B2 JPH0718788B2 (en) 1995-03-06

Family

ID=17641052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63281572A Expired - Lifetime JPH0718788B2 (en) 1988-11-08 1988-11-08 Optical particle measuring device

Country Status (1)

Country Link
JP (1) JPH0718788B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090284A (en) * 2000-09-20 2002-03-27 Fuji Electric Co Ltd Method and equipment for measuring turbidity and microparticle
JP2020525800A (en) * 2017-07-05 2020-08-27 サウジ アラビアン オイル カンパニー Optical detection of black powder concentration in gas flow lines
CN111630365A (en) * 2018-02-27 2020-09-04 松下知识产权经营株式会社 Particle detection sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101997729B1 (en) * 2017-08-30 2019-07-08 한국광기술원 Apparatus and method for Measuring and Reducing Fine Dust

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511182A (en) * 1974-06-21 1976-01-07 Yamatake Honeywell Co Ltd KONDAKUEKINONODOSOKUTEISOCHI
JPS5386298A (en) * 1976-11-05 1978-07-29 Leeds & Northrup Co Measuring method and apparatus for volume and volumetric distribution of fine particles
JPS60161548A (en) * 1984-01-31 1985-08-23 Canon Inc Apparatus for measuring scattered light of flowing fine particulate material
JPS6349207A (en) * 1986-08-11 1988-03-02 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン Method of adjusting breakdown of oil-in-water type emulsion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511182A (en) * 1974-06-21 1976-01-07 Yamatake Honeywell Co Ltd KONDAKUEKINONODOSOKUTEISOCHI
JPS5386298A (en) * 1976-11-05 1978-07-29 Leeds & Northrup Co Measuring method and apparatus for volume and volumetric distribution of fine particles
JPS60161548A (en) * 1984-01-31 1985-08-23 Canon Inc Apparatus for measuring scattered light of flowing fine particulate material
JPS6349207A (en) * 1986-08-11 1988-03-02 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン Method of adjusting breakdown of oil-in-water type emulsion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090284A (en) * 2000-09-20 2002-03-27 Fuji Electric Co Ltd Method and equipment for measuring turbidity and microparticle
JP2020525800A (en) * 2017-07-05 2020-08-27 サウジ アラビアン オイル カンパニー Optical detection of black powder concentration in gas flow lines
CN111630365A (en) * 2018-02-27 2020-09-04 松下知识产权经营株式会社 Particle detection sensor

Also Published As

Publication number Publication date
JPH0718788B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
US5257087A (en) Method and apparatus for measuring particles in a fluid
US4885473A (en) Method and apparatus for detecting particles in a fluid using a scanning beam
JP2641927B2 (en) Particle measurement device
JPS6311838A (en) Granular size detector
DE3778253D1 (en) METHOD FOR CALIBRATING FLOW CYTOMETER DEVICES.
US4118625A (en) Nephelometer having pulsed energy source
US5185265A (en) Pulse modulation of the excitation light source of flow cytometers
US10768091B2 (en) Particle counting method and system
US4788443A (en) Apparatus for measuring particles in a fluid
JPH02128142A (en) Optical fine particle measuring apparatus
US6522405B2 (en) Method and apparatus for monitoring sub-micron particles
US5172004A (en) Method and apparatus for measuring particles in a fluid
Greated Measurement of turbulence statistics with a laser velocimeter
US3536898A (en) Detection device
JPH0560870A (en) Radiation detector
CN105115880B (en) High precision photoelectric dust granules detection device and detection method
JPH0611433A (en) Particulate measuring device and particulate sensing method
JP2003315248A (en) Flow cytometer
JPH07103878A (en) Method and apparatus for measuring pulse signal
JP3049926B2 (en) Particle size distribution analyzer
JPH0438279Y2 (en)
JPS59151039A (en) Optical scattering type particle counting device
JPH0226054Y2 (en)
JPH0749300A (en) Grain number measuring device
JP2002228574A (en) Particulate measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 14