JP3959680B2 - Etching method of aluminum electrolytic capacitor anode foil - Google Patents

Etching method of aluminum electrolytic capacitor anode foil Download PDF

Info

Publication number
JP3959680B2
JP3959680B2 JP2002118046A JP2002118046A JP3959680B2 JP 3959680 B2 JP3959680 B2 JP 3959680B2 JP 2002118046 A JP2002118046 A JP 2002118046A JP 2002118046 A JP2002118046 A JP 2002118046A JP 3959680 B2 JP3959680 B2 JP 3959680B2
Authority
JP
Japan
Prior art keywords
stage
pits
electrolytic capacitor
etching
aluminum electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002118046A
Other languages
Japanese (ja)
Other versions
JP2003318069A (en
Inventor
博司 岡崎
博宣 花本
滋朗 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi AIC Inc
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2002118046A priority Critical patent/JP3959680B2/en
Publication of JP2003318069A publication Critical patent/JP2003318069A/en
Application granted granted Critical
Publication of JP3959680B2 publication Critical patent/JP3959680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム電解コンデンサ用電極箔のエッチング方法に関するもので、特に160wV以上の中高圧用陽極箔の製造方法に関するものである。
【0002】
【従来の技術】
アルミニウム陽極箔はコンデンサの小形化をはかるために、有効表面積を拡大したものが使用され、その製造方法は、種々の研究がされているが、一般に、アルミニウム箔を電気的、電気化学的な電解工程によるエッチングによって、ピットと呼ばれるトンネル状の孔を形成し、電気的、電気化学的あるいは無電解にてエッチングしてピット孔を拡大するという工程が施されている。
実際の生産では、ピット形成からピット径拡大まで1回のエッチング工程でおこなうと工程途中の制御が難しので、アルミニウム箔を数種類の異なるエッチング槽に連続的に挿入し、給電ロールを介しての電流印加による電解エッチングによってピットを形成する段、電解あるいは無電解によってピット孔を拡大する段、最終洗浄する段等を複数段設けることにより製造されている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の方法では、電解エッチングによってピットを形成させていたため、生産能力を向上しようとすると、通電電流を大きくしなければならず、一定以上の電流は、発熱のため設備上印加できないこととなり、製造工程における単位時間、1台あたりの製造能力が制限されていた。さらに、流れる電流が多くなるとアルミ箔の幅方向で電流密度の大きさがばらつき、従って、均一にエッチング処理されず、エッチング倍率がばらつくという問題が発生しやすい。
この製造工程おいては、アルミニウム原箔から効率よく均一にピットを発生させることが、単位面積あたりの静電容量を高くする重要な点となり、また、製造装置1台あたりの生産能力を高めることが、近年強く要望されている低コスト化への重要な課題となる。
また、装置を新設する場合においては、製造装置の初期投資も、通電を必要とすることから、整流器など電装部への費用がかかり、製品の単価を引き上げる要因となっており、その後の運転費用についても、ピット形成工程における電気費用は必須となっていた。
近年、アルミニウム電解コンデンサの小形化および低コスト化が強く要望されており、これらの要望を満たすためには、このアルミニウム電解コンデンサに使用しているアルミニウム箔の実効表面積を効率よく向上させ小形化を促進し、さらに低コスト化には、製造装置1台あたりの生産能力を高めることが不可欠である。
【0004】
本発明は上記従来の問題点を解決するもので、アルミニウム電解コンデンサ用電極箔を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明は、少なくとも、自然酸化皮膜を除去する第1段階と、ピットを形成させる第2段階と、ピット孔を拡大させる第3段階とからなるエッチング処理により製造されるアルミニウム電解コンデンサ用陽極箔の多段製造方法において、ピットを発生させる少なくとも1段からなるピット形成工程のうち、少なくとも1段のエッチング液中にMg,Ti,V,Cr,Mn,Fe,Cu,Ge,Nb,Mo,Pd,Ag,In,Sn,Sb,W,Tl,Pbの各金属の、パルミチン酸やステアリン酸などの脂肪酸塩、オキシ硫酸塩、硫酸塩、硫酸アンモニウム塩、塩酸塩、硝酸塩、サリチル酸塩、モリブデン酸塩、乳酸塩、硫化物、プロポキシやペンチルオキシなどのアルコキシ誘導体のうち少なくとも1種類以上の金属化合物と塩素イオンを含ませることにより、電気的、電気化学的処理を施さず、ピット形成工程を無電解でし、表面積拡大をおこなうものである。
また、ピット形成工程における無電解化が可能となることで、完全なる無電解ではなく電流を印加する場合においても、電流が小さくても大電流を印加した場合と同様の効果が得られる。
本発明により、実用的に使用できるレベルを確保し、尚且つエッチング工程途中の制御を容易におこなうことが可能となり、160wV以上の中高圧領域における生産性向上と特性改善がはかれる。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
まず、アルミニウム箔は純度99.9%以上で、厚みが30μmから300μm程度の軟質アルミニウム箔を使用する。
エッチングとしては、まず、第1段階として、アルミニウム箔の表面に形成されている自然酸化被膜を除去するために、50℃〜90℃範囲の液温の塩酸や硫酸またはそれらの混酸等の酸性水溶液中に、100秒程度浸漬する。
次に、第2段階として、アルミニウム箔をピットと呼ばれるトンネル状の孔を形成するために、50℃〜90℃範囲の液温の塩酸や硫酸またはそれらの混酸等の酸性水溶液中に、Mg,Ti,V,Cr,Mn,Fe,Cu,Ge,Nb,Mo,Pd,Ag,In,Sn,Sb,W,Tl,Pbの各金属の、パルミチン酸やステアリン酸などの脂肪酸塩、オキシ硫酸塩、硫酸塩、硫酸アンモニウム塩、塩酸塩、硝酸塩、サリチル酸塩、モリブデン酸塩、乳酸塩、硫化物、プロポキシやペンチルオキシなどのアルコキシ誘導体などの金属化合物を添加したエッチング液に、50秒〜300秒程度浸漬する。金属化合物は単独でもよいし、複数添加してもよい。
また、このとき生産能力をより向上させるために、完全なる無電解ではなく電気的、電気化学的処理を施すために電流を印加してもよい。
次に、第3段階として、ピット孔を拡大するために、50℃〜90℃範囲の液温の塩酸や硫酸や硝酸またはそれらの混酸等の酸性水溶液中に、1分から10分程度浸漬する。
エッチングされた箔は洗浄の後、化成工程にて必要な耐電圧が得られる電圧で化成処理をおこなう。
【0007】
【実施例】
以下、本発明の実施例について説明する。
【0008】
〔実施例1〕純度99.99%、厚み110μmの軟質アルミニウム箔を85℃の酸性水溶液(塩酸10%、硫酸20%の水溶液)中に、120秒浸漬し、前段のエッチング処理をおこなった後、80℃の酸性水溶液(塩酸10%、硫酸40%の水溶液)中に、表1に示す金属化合物を添加して、箔を150秒浸漬し、無電解処理でピットを発生させ中段のエッチング処理をおこない、次に、80℃、5%の塩酸水溶液中に浸漬し、5分間浸漬してピット孔拡大の最終段のエッチング処理をおこなう。エッチング処理後の箔は、60℃の1mol/l硝酸水溶液で1分間洗浄後、90℃、12wt%のホウ酸水溶液にて300Vの化成処理をおこなった。
【0009】
〔実施例2〕純度99.99%、厚み110μm、幅500mmの軟質アルミニウム箔コイルを用い、従来の電極箔製造装置において、前段エッチング槽に85℃の酸性水溶液(塩酸10%、硫酸20%の水溶液)を、中段エッチング槽に表1に示す金属化合物を添加した80℃の酸性水溶液(塩酸10%、硫酸40%の水溶液)を、後段エッチング槽に、80℃、5%の塩酸水溶液を3l/minの補給量で補給し、前段、中段、後段槽における浸漬時間がそれぞれ、120秒、150秒、5分となるように、製造装置の箔速度を調整し、洗浄工程は従来装置の工程にて洗浄をおこない、通常の製造で実施される形態のエッチド箔を製造した。
製造したエッチド箔は、12wt%のホウ酸水溶液の化成工程にて400Vの化成処理をおこなった。
【0010】
〔従来例1〕純度99.99%、厚み110μmの軟質アルミニウム箔を85℃の酸性水溶液(塩酸10%、硫酸20%の水溶液)中に120秒浸漬し、上記の前段エッチング処理をおこなった後、80℃の酸性水溶液(塩酸10%、硫酸40%の水溶液)中に電流密度0.3A/cm2の直流を150秒印加して中段のエッチング処理をおこない、次に、80℃、5%の硝酸水溶液中に浸漬し、かつ電流密度0.5A/cm2の直流を200秒間印加して後段のエッチング処理をおこなう。エッチング処理後の箔は、60℃の1mol/l硝酸水溶液で1分間洗浄後、90℃ 12wt%のホウ酸水溶液にて300Vの化成処理をおこなった。
【0011】
〔従来例2〕純度99.99%、厚み110μm、幅500mmの軟質アルミニウム箔コイルを用い、電極箔製造装置において、前段エッチング槽に85℃の酸性水溶液(塩酸10%、硫酸20%の水溶液)を、中段エッチング槽に80℃の酸性水溶液(塩酸10%、硫酸40%の水溶液)を、後段エッチング槽に、80℃、5%の硝酸水溶液を、それぞれ、3l/minの補給量で補給し、前段、中段、後段槽における浸漬時間がそれぞれ、120秒、150秒、200秒となるよう、製造装置の箔速度を調整し、中段においては、電流密度0.3A/cm2の直流を、後段においては、電流密度0.5A/cm2の直流をそれぞれ印加し、ピット形成、ピット径拡大をおこなう。洗浄工程は従来装置の工程にて洗浄をおこなった。
製造したエッチド箔は、12wt%のホウ酸水溶液の化成工程にて400Vの化成処理をおこなった。
【0012】
【表1】

Figure 0003959680
上記した従来例および本発明の各実施例による箔を各試料について静電容量と静電容量のばらつきと折り曲げ強度(200g荷重、丸鉄芯に釣り下げ、その直径)を測定した結果を表2と3に示す。
【0013】
【表2】
Figure 0003959680
【0014】
【表3】
Figure 0003959680
【0015】
ピット形成工程を、エッチング液に金属化合物を1種以上添加した無電解工程でおこなっても、従来と比較し同等以上の特性が確保できる。これにより、従来の設備も大きな変更を必要とせず使用可能で、ピット形成工程にかかる電気代が削減され、さらに、新設の設備においても、ピット形成工程に必要な通電設備が必要でなくなる。
また、ピット形成工程における無電解化が可能となったことで、完全なる無電解ではなく電流を印加する場合においても、電流が小さくても大電流を印加した場合と同様の効果が得られることが示唆された。
また、無電解によるエッチングのため、アルミ箔の幅方向のばらつきはばらつきにくく、従って、エッチング倍率がばらつきにくく、均一にエッチング処理されやすい。
【0016】
【発明の効果】
以上のように、本発明のアルミニウム電解コンデンサ用陽極箔の製造方法によれば、エッチング液中に均一に溶解したこれらの金属化合物は、触媒として作用し、通電を必要とすることなく、また、小電流でもアルミニウムに効率よくピットを発生させるため、電極箔の表面積は拡大されて、その静電容量のアップをはかることができ、尚且つ、無電解のピット形成製造工程が可能となるため、生産性を向上させる際の電気的設備上の制約を考慮する必要がないため、生産能力を向上させることができる。また、従来の設備も大きな変更を必要とせず使用可能で、新設の設備においても、ピット形成工程に必要な通電設備が必要でなくなり、単位面積あたりの陽極箔製造にかかる費用を安価に抑えることができる。また、ピット形成工程における無電解化が可能となったことで、完全なる無電解ではなく電流を印加する場合においても、電流が小さくても大電流を印加した場合と同様の効果が得られることと、流れる電流がないか少ないので、アルミ箔の幅方向で電流密度の大きさのばらつきが抑えられる。従って、エッチング倍率のばらつきが少なく、均一にエッチング処理されやすい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an etching method for an electrode foil for an aluminum electrolytic capacitor, and more particularly to a method for producing a medium-high pressure anode foil of 160 wV or more.
[0002]
[Prior art]
In order to reduce the size of a capacitor, an aluminum anode foil having an enlarged effective surface area is used, and its manufacturing method has been studied in various ways. In general, an aluminum foil is electrically and electrochemically electrolyzed. A tunnel-like hole called a pit is formed by etching according to the process, and the process of enlarging the pit hole by etching electrically, electrochemically or electrolessly is performed.
In actual production, if one etching process is performed from pit formation to pit diameter enlargement, control during the process is difficult, so aluminum foil is continuously inserted into several different etching tanks, and the current through the feed roll It is manufactured by providing a plurality of stages, such as a stage for forming pits by electrolytic etching by application, a stage for expanding pit holes by electrolysis or electroless, a stage for final cleaning, and the like.
[0003]
[Problems to be solved by the invention]
However, in the conventional method, pits are formed by electrolytic etching. Therefore, in order to improve the production capacity, the energizing current must be increased, and a current exceeding a certain level cannot be applied to the equipment due to heat generation. The production capacity per unit time in the production process was limited. Furthermore, when the flowing current increases, the current density varies in the width direction of the aluminum foil. Therefore, the etching process is not uniformly performed, and the etching magnification is likely to vary.
In this manufacturing process, efficiently and uniformly generating pits from the aluminum foil is an important point for increasing the capacitance per unit area, and also increasing the production capacity per manufacturing device. However, this is an important issue for cost reduction that has been strongly demanded in recent years.
In addition, when a new device is installed, the initial investment of the manufacturing equipment also requires energization, which incurs costs for the electrical components such as rectifiers, which increases the unit price of the product. In addition, the electric cost in the pit formation process has become essential.
In recent years, there has been a strong demand for miniaturization and cost reduction of aluminum electrolytic capacitors. In order to satisfy these demands, the effective surface area of the aluminum foil used in the aluminum electrolytic capacitors is efficiently improved to reduce the size. In order to promote and further reduce the cost, it is essential to increase the production capacity per manufacturing apparatus.
[0004]
The present invention solves the above-mentioned conventional problems, and an object thereof is to provide an electrode foil for an aluminum electrolytic capacitor.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is manufactured by an etching process including at least a first stage for removing a natural oxide film, a second stage for forming pits, and a third stage for expanding pit holes. In the multi-stage manufacturing method for an anode foil for an aluminum electrolytic capacitor , Mg, Ti, V, Cr, Mn, Fe, Cu are contained in at least one stage of the pit forming process including at least one stage for generating pits. , Ge, Nb, Mo, Pd, Ag, In, Sn, Sb, W, Tl, Pb , fatty acid salts such as palmitic acid and stearic acid, oxysulfate, sulfate, ammonium sulfate, hydrochloride, At least one or more of alkoxy derivatives such as nitrate, salicylate, molybdate, lactate, sulfide, propoxy and pentyloxy By including the above metal compound and chlorine ions , the surface area is expanded without electrolysis or electrochemical treatment and by making the pit formation process electroless .
In addition, since the electroless formation in the pit formation process is possible, the same effect as when a large current is applied can be obtained even when a current is applied instead of a complete electroless process.
According to the present invention, a practically usable level can be ensured, and control in the middle of the etching process can be easily performed, and productivity and characteristics can be improved in a medium and high pressure region of 160 wV or higher.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
First, the aluminum foil is a soft aluminum foil having a purity of 99.9% or more and a thickness of about 30 μm to 300 μm.
As etching, first, as a first step, an acidic aqueous solution such as hydrochloric acid, sulfuric acid, or a mixed acid thereof having a liquid temperature in the range of 50 ° C. to 90 ° C. is used to remove the natural oxide film formed on the surface of the aluminum foil. Soak in for about 100 seconds.
Next, as a second step, in order to form tunnel-like holes called pits in the aluminum foil, Mg, in an acidic aqueous solution such as hydrochloric acid, sulfuric acid or a mixed acid thereof having a liquid temperature in the range of 50 ° C. to 90 ° C. Fatty acid salts such as palmitic acid and stearic acid, oxysulfuric acid of each metal of Ti, V, Cr, Mn, Fe, Cu, Ge, Nb, Mo, Pd, Ag, In, Sn, Sb, W, Tl, and Pb 50 seconds to 300 seconds in an etching solution to which a metal compound such as a salt, sulfate, ammonium sulfate, hydrochloride, nitrate, salicylate, molybdate, lactate, sulfide, alkoxy derivatives such as propoxy and pentyloxy is added Immerse to the extent. A metal compound may be individual and may add multiple.
At this time, in order to further improve the production capacity, an electric current may be applied to perform an electrical or electrochemical treatment instead of complete electroless.
Next, as a third stage, in order to enlarge the pit hole, the substrate is immersed in an acidic aqueous solution such as hydrochloric acid, sulfuric acid, nitric acid or a mixed acid thereof having a liquid temperature in the range of 50 to 90 ° C. for about 1 to 10 minutes.
The etched foil is subjected to a chemical conversion treatment after cleaning at a voltage at which a required withstand voltage is obtained in the chemical conversion step.
[0007]
【Example】
Examples of the present invention will be described below.
[0008]
[Example 1] A soft aluminum foil having a purity of 99.99% and a thickness of 110 μm was immersed in an acidic aqueous solution (aqueous solution of 10% hydrochloric acid and 20% sulfuric acid) at 85 ° C. for 120 seconds. Add the metal compounds shown in Table 1 in an acidic aqueous solution at 10 ° C (aqueous solution of 10% hydrochloric acid and 40% sulfuric acid), immerse the foil for 150 seconds, generate pits by electroless treatment, and perform the middle etching treatment Next, the substrate is immersed in a 5% hydrochloric acid aqueous solution at 80 ° C. and immersed for 5 minutes to perform the final etching process for expanding the pit holes. The foil after the etching treatment was washed with a 1 mol / l aqueous nitric acid solution at 60 ° C. for 1 minute, and then subjected to a chemical conversion treatment at 300 ° C. with a 12 wt% boric acid aqueous solution at 90 ° C.
[0009]
[Example 2] Using a soft aluminum foil coil with a purity of 99.99%, a thickness of 110μm, and a width of 500mm, an acidic aqueous solution of 85 ° C (aqueous solution of 10% hydrochloric acid and 20% sulfuric acid) was used in the former etching tank in a conventional electrode foil manufacturing apparatus. 80 ° C acidic aqueous solution (10% hydrochloric acid, 40% sulfuric acid aqueous solution) with the metal compound shown in Table 1 added to the middle etching tank, and 3 liter / min of 80 ° C, 5% hydrochloric acid aqueous solution to the latter etching tank. Adjust the foil speed of the production equipment so that the immersion time in the front, middle, and rear tanks is 120 seconds, 150 seconds, and 5 minutes, respectively, and the cleaning process is the process of the conventional equipment Cleaning was performed to produce an etched foil of the form that is implemented in normal production.
The manufactured etched foil was subjected to a chemical conversion treatment of 400 V in a chemical conversion process of a 12 wt% boric acid aqueous solution.
[0010]
[Conventional Example 1] A soft aluminum foil having a purity of 99.99% and a thickness of 110 μm was immersed in an acidic aqueous solution (85% hydrochloric acid, 20% sulfuric acid) for 120 seconds and subjected to the above-mentioned pre-etching treatment. Apply a direct current with a current density of 0.3 A / cm 2 for 150 seconds in an acidic aqueous solution at 10 ° C (aqueous solution of hydrochloric acid 10%, sulfuric acid 40%), and then perform the middle stage etching treatment, then 80 ° C, 5% nitric acid aqueous solution It is immersed in the substrate and a direct current having a current density of 0.5 A / cm 2 is applied for 200 seconds to perform the subsequent etching process. The foil after the etching treatment was washed with a 1 mol / l nitric acid aqueous solution at 60 ° C. for 1 minute, and then subjected to a chemical conversion treatment at 300 ° C. with a boric acid aqueous solution at 90 ° C. and 12 wt%.
[0011]
[Conventional example 2] Using an aluminum foil coil with a purity of 99.99%, a thickness of 110 μm, and a width of 500 mm, in an electrode foil manufacturing apparatus, an acidic aqueous solution (hydrochloric acid 10%, sulfuric acid 20% aqueous solution) at 85 ° C. A 80 ° C acidic aqueous solution (10% hydrochloric acid, 40% sulfuric acid aqueous solution) was supplied to the middle etching tank, and 80 ° C and 5% nitric acid aqueous solution was supplied to the latter etching tank at a replenishment rate of 3 l / min. The foil speed of the production apparatus was adjusted so that the immersion time in the middle and rear tanks was 120 seconds, 150 seconds, and 200 seconds, respectively.In the middle stage, a direct current with a current density of 0.3 A / cm2 was used. Applying direct current of current density 0.5A / cm2 respectively, pit formation and pit diameter expansion. The cleaning process was performed in the process of the conventional apparatus.
The manufactured etched foil was subjected to a chemical conversion treatment of 400 V in a chemical conversion process of a 12 wt% boric acid aqueous solution.
[0012]
[Table 1]
Figure 0003959680
Table 2 shows the results of measuring the capacitance and the variation in capacitance and the bending strength (200 g load, hanged down to a round iron core, the diameter) of the foils according to the above-described conventional examples and the embodiments of the present invention for each sample. And 3
[0013]
[Table 2]
Figure 0003959680
[0014]
[Table 3]
Figure 0003959680
[0015]
Even if the pit formation process is performed in an electroless process in which one or more metal compounds are added to the etching solution, the same or better characteristics can be ensured as compared with the prior art. As a result, the conventional equipment can be used without requiring major changes, and the electricity cost for the pit formation process is reduced. Furthermore, even in the newly installed equipment, the power supply equipment necessary for the pit formation process is not required.
In addition, since the electroless process in the pit formation process has become possible, the same effect as when a large current is applied can be obtained even when a current is applied rather than a complete electroless process. Was suggested.
In addition, because of electroless etching, variations in the width direction of the aluminum foil are unlikely to vary, and accordingly, the etching magnification is unlikely to vary and the etching process is easily performed uniformly.
[0016]
【The invention's effect】
As described above, according to the method for producing an anode foil for an aluminum electrolytic capacitor of the present invention, these metal compounds that are uniformly dissolved in an etching solution act as a catalyst without requiring energization, In order to efficiently generate pits in aluminum even with a small current, the surface area of the electrode foil can be increased, the capacitance can be increased, and an electroless pit formation manufacturing process becomes possible. Since it is not necessary to consider the restrictions on electrical facilities when improving productivity, the production capacity can be improved. In addition, the conventional equipment can be used without requiring major changes, and even in the newly installed equipment, the current-carrying equipment necessary for the pit formation process is no longer necessary, and the cost of manufacturing anode foil per unit area can be kept low. Can do. In addition, since the electroless process in the pit formation process has become possible, the same effect as when a large current is applied can be obtained even when a current is applied rather than a complete electroless process. Since there is little or no current flowing, variations in current density in the width direction of the aluminum foil can be suppressed. Accordingly, there is little variation in the etching magnification, and uniform etching processing is easy.

Claims (2)

少なくとも、自然酸化皮膜を除去する第1段階と、ピットを形成させる第2段階と、ピット孔を拡大させる第3段階とからなるエッチング処理により製造されるアルミニウム電解コンデンサ用陽極箔の多段製造方法において、ピットを発生させる少なくとも1段からなるピット形成工程のうち、少なくとも1段のエッチング液中にMg,Ti,V,Cr,Mn,Fe,Cu,Ge,Nb,Mo,Pd,Ag,In,Sn,Sb,W,Tl,Pbの各金属の、パルミチン酸やステアリン酸などの脂肪酸塩、オキシ硫酸塩、硫酸塩、硫酸アンモニウム塩、塩酸塩、硝酸塩、サリチル酸塩、モリブデン酸塩、乳酸塩、硫化物、プロポキシやペンチルオキシなどのアルコキシ誘導体のうち少なくとも1種類以上の金属化合物と塩素イオンを含ませることにより、電気的、電気化学的処理を施さず、無電解工程でピットを形成し、表面積拡大をおこなう、160wV以上のアルミニウム電解コンデンサ用陽極箔の製造方法。 In a multistage manufacturing method of an anode foil for an aluminum electrolytic capacitor manufactured by an etching process comprising at least a first stage for removing a natural oxide film, a second stage for forming pits, and a third stage for expanding pit holes In the pit forming process including at least one stage for generating pits , Mg, Ti, V, Cr, Mn, Fe, Cu, Ge, Nb, Mo, Pd, Ag, In are contained in at least one stage of etching solution. , Sn, Sb, W, Tl, Pb , fatty acid salts such as palmitic acid and stearic acid, oxysulfate, sulfate, ammonium sulfate, hydrochloride, nitrate, salicylate, molybdate, lactate, Including at least one metal compound and chloride ion among sulfides, alkoxy derivatives such as propoxy and pentyloxy Thus, a method for producing an anode foil for an aluminum electrolytic capacitor of 160 wV or more, in which pits are formed in an electroless process without increasing the surface area without performing electrical or electrochemical treatment. 少なくとも、自然酸化皮膜を除去する第1段階と、ピットを形成させる第2段階と、ピット孔を拡大させる第3段階とからなるエッチング処理により製造されるアルミニウム電解コンデンサ用陽極箔の多段製造方法において、ピットを発生と形成させる少なくとも1段からなるピット形成工程のうち、少なくとも1段のエッチング液中にMg,Ti,V,Cr,Mn,Fe,Cu,Ge,Nb,Mo,Pd,Ag,In,Sn,Sb,W,Tl,Pbの各金属の、パルミチン酸やステアリン酸などの脂肪酸塩、オキシ硫酸塩、硫酸塩、硫酸アンモニウム塩、塩酸塩、硝酸塩、サリチル酸塩、モリブデン酸塩、乳酸塩、硫化物、プロポキシやペンチルオキシなどのアルコキシ誘導体のうち少なくとも1種類以上の金属化合物と塩素イオンを含ませ、なおかつ電気的、電気化学的処理を併用してピットを形成し、表面積拡大をおこなう、160wV以上のアルミニウム電解コンデンサ用陽極箔の製造方法。 In a multistage manufacturing method of an anode foil for an aluminum electrolytic capacitor manufactured by an etching process comprising at least a first stage for removing a natural oxide film, a second stage for forming pits, and a third stage for expanding pit holes In the pit formation process consisting of at least one stage for generating and forming pits , Mg, Ti, V, Cr, Mn, Fe, Cu, Ge, Nb, Mo, Pd, Ag are contained in at least one stage of the etching solution. , In, Sn, Sb, W, Tl, Pb , fatty acid salts such as palmitic acid and stearic acid, oxysulfate, sulfate, ammonium sulfate, hydrochloride, nitrate, salicylate, molybdate, lactic acid It contains at least one metal compound and chloride ion among salts, sulfides, alkoxy derivatives such as propoxy and pentyloxy. In addition, a method for producing an anode foil for an aluminum electrolytic capacitor of 160 wV or higher, in which pits are formed by combining electrical and electrochemical treatment to increase the surface area.
JP2002118046A 2002-04-19 2002-04-19 Etching method of aluminum electrolytic capacitor anode foil Expired - Fee Related JP3959680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002118046A JP3959680B2 (en) 2002-04-19 2002-04-19 Etching method of aluminum electrolytic capacitor anode foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002118046A JP3959680B2 (en) 2002-04-19 2002-04-19 Etching method of aluminum electrolytic capacitor anode foil

Publications (2)

Publication Number Publication Date
JP2003318069A JP2003318069A (en) 2003-11-07
JP3959680B2 true JP3959680B2 (en) 2007-08-15

Family

ID=29535067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002118046A Expired - Fee Related JP3959680B2 (en) 2002-04-19 2002-04-19 Etching method of aluminum electrolytic capacitor anode foil

Country Status (1)

Country Link
JP (1) JP3959680B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4002291B2 (en) * 2005-08-29 2007-10-31 三菱アルミニウム株式会社 Pit generation etching method
CN101814378A (en) * 2010-04-16 2010-08-25 厦门大学 Method for preparing anodic composite film for aluminum electrolytic capacitor
WO2012063740A1 (en) * 2010-11-11 2012-05-18 メック株式会社 Method for producing positive electrode collector for nonaqueous electrolyte secondary batteries and method for producing positive electrode for nonaqueous electrolyte secondary batteries
JP6112608B2 (en) * 2013-10-18 2017-04-12 ニチコン株式会社 Method for producing electrode foil for electrolytic capacitor
CN108085721B (en) * 2017-12-18 2019-09-17 广西正润新材料科技有限公司 A kind of method and system of aluminium foil surface sol-gal process in-situ deposition tin nucleus

Also Published As

Publication number Publication date
JP2003318069A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
KR100371524B1 (en) Surface roughening treatment method of copper foil
KR20180108807A (en) METHOD FOR MANUFACTURING ALUMINUM PLATE
CN104357886A (en) Method for chemically depositing diffused tin-zinc crystal nucleus on surface of high-purity aluminum foil for medium/high-voltage positive electrode
JP3959680B2 (en) Etching method of aluminum electrolytic capacitor anode foil
WO2010079735A1 (en) Copper material for plating, process for producing copper material for plating, and process for producing copper-plated material
JP5613125B2 (en) Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity
JP2009170934A (en) Method of manufacturing aluminum foil for electrode of electrolytic capacitor
JP4428074B2 (en) Method and apparatus for manufacturing electrode foil for aluminum electrolytic capacitor
JPS5825218A (en) Method of producing low voltage electrolytic condenser electrode foil
JP3729013B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP3582451B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP4002291B2 (en) Pit generation etching method
JP4089333B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP4284874B2 (en) Method for producing anode foil for aluminum electrolytic capacitor
JP3498349B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP4428037B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPS63203800A (en) Electrode and its production
JP4758827B2 (en) Method for producing electrode foil for electrolytic capacitor
JP3496511B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
KR100232293B1 (en) Electrode manufacturing method for aluminum electrolytic condenser
JP4547918B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP5212268B2 (en) Method for producing porous valve metal anode body
JP3480164B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2004266024A (en) Aluminum electrode material for electrolytic capacitor and method of manufacturing the same
JP2020084263A (en) Method for manufacturing chromium plated component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070502

R150 Certificate of patent or registration of utility model

Ref document number: 3959680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees