JP3956291B2 - Semiconductor processing components - Google Patents

Semiconductor processing components Download PDF

Info

Publication number
JP3956291B2
JP3956291B2 JP2002272843A JP2002272843A JP3956291B2 JP 3956291 B2 JP3956291 B2 JP 3956291B2 JP 2002272843 A JP2002272843 A JP 2002272843A JP 2002272843 A JP2002272843 A JP 2002272843A JP 3956291 B2 JP3956291 B2 JP 3956291B2
Authority
JP
Japan
Prior art keywords
semiconductor processing
atomic
less
film
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002272843A
Other languages
Japanese (ja)
Other versions
JP2004111686A (en
Inventor
朋秀 大塚
剣輝 李
厚男 北澤
宏 伊東
雄史 堀内
修一 武田
浩昌 佐藤
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP2002272843A priority Critical patent/JP3956291B2/en
Publication of JP2004111686A publication Critical patent/JP2004111686A/en
Application granted granted Critical
Publication of JP3956291B2 publication Critical patent/JP3956291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、化学気相堆積(CVD)の際に付着する堆積物に対し付着保持性に優れた半導体処理用部材に関する。
【0002】
【従来の技術】
半導体製造工程では、シリコンウエハ表面に窒化珪素(Si34)やポリシリコン等の薄膜を形成するが、この薄膜形成には高純度膜を優れた段差被覆率(Step coverage)で形成できる低圧化学気相堆積装置(LPCVD装置)が一般に使用されている。
このLPCVD装置で用いられるウエハボート等の治具には、石英ガラス製の治具と共に炭化珪素(SiC)製治具が多く用いられている。特に、SiC製治具は、石英ガラス製治具に比べ耐熱サイクル特性、耐熱衝撃特性に優れており、高温で使用されるLPCVDには適している。
【0003】
また、炭化珪素(SiC)は石英ガラスに比べ、CVDにより形成されるSi34等の薄膜と熱膨張率が近いため、治具表面に形成されるCVD膜が剥がれにくく、薄膜剥離によるパーティクル汚染が生じ難いという利点がある。
このような炭化珪素(SiC)製治具を構成する部材としては、一般に、シリコン含浸炭化珪素(Si含浸SiC)等よりなる基体に金属不純物濃度の低い高純度の炭化珪素膜をCVD等により被覆した半導体処理用部材が用いられている。
【0004】
そしてまた、半導体処理用部材にあっては、半導体処理に使用する前に、炭化珪素膜表面に偏析又は付着した金属不純物等を除去するために、酸素ベークの乾式洗浄と酸洗浄の湿式洗浄とを組み合わせた洗浄を実施している(例えば、特開平11−240780号公報等)。
前記酸素ベークは膜表層の不純物を酸化する工程であり、不純物をトラップした酸化層を後の酸洗浄工程で溶解することにより、膜表面の純度を維持するものである。前記酸洗浄では、一般に、フッ酸が膜表面の酸化層除去に有効であるため、一般的に用いられている。
【0005】
しかしながら、近年、特にLPCVD工程に使用されるウエハボート等の治具において、該治具表面に付着形成されるSi34デポ膜が、同工程の比較的早期の段階で剥離し、パーティクル等を発生するという問題があった。
このような不都合を回避する手段として、従来、半導体処理用部材の表面粗さを荒くする手段が提案されている。
例えば、特開2000−327459号公報や特開2001−206771号公報において、LPCVD工程において堆積するシリコン(Si)膜やSi34膜との密着性(付着保持性)を向上させるために、半導体処理用部材の炭化珪素膜(SiC膜)表面の算術平均表面粗さ(Ra)を所定の範囲に特定することが提案されている。
【0006】
【発明が解決しようとする課題】
ところで、上記提案にしたがって、実際に半導体処理用部材の表面粗さを設定しても、必ずしも付着保持性が改善されないケースが存在することが判明した。
特に、CVD−SiCコーティングされた炭化珪素膜を有する半導体処理用部材において、デポ膜がSi34である場合、剥離改善効果がほとんど得られないことが判明した。
【0007】
前記した算術平均表面粗さRaは、大きなうねりを含んだ表面粗さである。この算術平均表面粗さRaでは、CVDコート前の基体の凹凸やCVD膜表面の大きな凹凸が主に反映される。
本発明者等らの実験によると、例え、表面粗さRaが3μm以上であっても、デポ膜の密着性(付着保持性)に対して劣位であるものが存在し、必ずしもRaが大きければデポ膜の密着性(付着保持性)に対して優位であるとは限らないことが確認された。
【0008】
本発明者等は上記知見のもとに、デポ膜の付着保持性に優れた半導体処理用部材の表面状態に付いて鋭意検討した結果、前記先行発明に規定した表面粗さとは異なる特定粗面状態の半導体処理用部材が、Si34デポ膜等の付着保持性に優れていることを見出し、またデポ膜の剥離が、半導体処理用部材の湿式洗浄に伴う表面の不純物濃度にも大きく影響されることを見出し、本発明を完成するに至った。また、特定不純物の濃度を所定値以下に制御するためには、洗浄液の種類及び濃度を特定し、さらに水洗条件を特定すべきことを見出し、洗浄方法にかかる本発明も完成するに至った。
【0009】
したがって、本発明の目的は、デポ膜等CVD堆積物の付着保持性に優れた半導体処理用部材を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するためになされた本発明は、半導体製造工程において用いられる半導体処理用部材において、表面の表面粗さが、表面粗さ測定機を用いた不感帯幅を0.3μmとし測定長を4mmとした際のピークカウント(Pc)で150/cm以上であることを特徴としている。
【0011】
この本発明にかかる半導体処理用部材は、その表面が特定の粗面状態にある点を特徴とするが、その表面状態は、長周期のうねりや大きな凹凸を強く反映するRaにより規定される状態とは異なり、周期が短い微細凹凸が密に分布する特定粗面状態を呈している。
この表面状態は、所定測定長内で、特定不感帯を越える凹凸数をカウントした、ANSI(米国規格協会)95規格のピークカウント(Pc)で特定されるものである。
【0012】
このピークカウントは、通常不感帯幅が0.1〜0.5μmでの表現も可能であるが、特に0.3μmとすることで、半導体処理用部材へのデポ膜の付着保持性に優れた粗面状態を特定することができる。
また、このピークカウントは、表面うねりや凹凸の大きさを測るRaと異なり、起伏の数をカウントするものである。不感帯幅を0.3μmとした際のPcは、微細な起伏の数を表しており、デポ膜との付着保持性が、振幅の大きな凹凸ではなく、高さ0.3μm程度の緻密な起伏によって決定されることを示している。
従って、半導体処理用部材表面の表面粗さの前記Pcを150(/cm)以上とすることで、デポ膜等CVD堆積物の優れた付着保持性が得られ、半導体処理装置のパーティクル汚染を顕著に防止することができる。なお、前記Pcは好ましくは300(/cm)以下である。この理由は、300(/cm)を超えるものを製作するためには、より高度な製造技術を要し、かつこれに見合うデポ膜等の付着保持力が得られ難く、工業上有効性が低いからである。
【0013】
本発明の半導体処理用部材は、反応焼結SiC(Si含浸SiC)、自焼結SiC、シリコン、黒鉛、ガラス状カーボン、石英、アルミナ、透過性アルミナ、AlN、シリコンあるいは窒化珪素いずれの材料からなってもよく、これらいずれかの表面に、CVD法、スパッタリング法、塗布法等各々方法で、SiC、ダイヤモンドあるいはAlNいずれかをコーティングしたものでもよい。
【0014】
本発明は、特には、表面に炭化珪素膜を有する部材に有効である。
すなわち、上記目的を達成するためになされた本発明は、基体表面に炭化珪素膜を形成した、もしくは、炭化珪素膜のみからなる半導体処理用部材において、前記炭化珪素膜表面の表面粗さが、表面粗さ測定機を用いた不感帯幅を0.3μmとし測定長を4mmとした際のピークカウント(Pc)が150/cm以上であることを特徴としている。
特に、基体表面に炭化珪素膜を形成した半導体処理用部材の場合には、前記ピークカウントの特定によれば、例えば、基体の表面粗さ(うねりや大きな凹凸)の影響をキャンセルすることができ、結果、優れたデポ膜の付着保持性を得ることができる。
【0015】
なお、上記2つの形態の本発明においては、いずれも中心線平均表面粗さRa(JIS B0601−1994)が、3μm以下が好ましく、より好ましくは1.5μm以下である。
これにより、半導体処理部材表面に付着するデポ膜等に熱応力の集中を招き易い深さ10μmを超えるような凹部が存在せず、緻密かつ微小な起伏(凹凸)のみからなる構造とすることができる。
このことは、デポ膜等CVD堆積物は、初期堆積時においては緻密かつ微小な凹凸面に堆積するため足つきが良くなり、またこの初期堆積体がフラットに堆積するため熱応力の集中する部分がなく、よって堆積物が剥がれ難くなるものと推測される。
【0016】
ここで、前記表面が、X線光電子分光分析でのフッ素元素量が0.3atomic%以下、有機系窒素量が0.7atomic%以下、炭化水素成分量が29atomic%以下で、かつ有機系CO量が4atomic%以下であることが望ましい。
また、前記炭化珪素膜表面が、X線光電子分光分析でのフッ素元素量が0.3atomic%以下、有機系窒素量が0.7atomic%以下、炭化水素成分量が29atomic%以下で、かつ有機系CO量が4atomic%以下であることが望ましい。
【0017】
この本発明にかかる半導体処理用部材は、その(炭化珪素膜)表面に、X線光電子分光分析(XPS:X-ray Photoelectron Spectroscopy)によって検出されるフッ素や炭化水素や、特に、CO、C−N、C=O、COO等の有機不純物がそれぞれ本発明で規定した値以下で、フッ素や有機不純物が非常に少ない清浄な表面状態にある点を特徴とする。このような清浄な表面状態とすることによって、優れたデポ膜の付着保持性を得ることができる。
【0018】
通常、Si含浸SiC製の半導体処理用部材の表面はもちろん、例えば、CVD−SiCコーティングを施した半導体処理用部材の表面においても、XPS分析によれば、Si、C以外にかなりの量のフッ素、炭化水素、CO(エーテル・水酸基)、C−N(アミン)、C=O(カルボルニル基)、COO(エステル・カルボキシル基)等の有機不純物が検出される。またこれら不純物は、前記CVD−SiC表面とSi34デポ膜との間に介在して、両界面間の付着力を著しく弱める作用をする。
したがって、特に、本発明の基体表面に炭化珪素膜を形成した、もしくは炭化珪素膜のみからなる半導体処理用部材においては、前記炭化珪素膜表面の表面粗さが、表面粗さ測定機を用いた不感帯幅を0.3μmとし測定長を4mmとした際のピークカウントで150/cm以上であり、かつ前記炭化珪素膜表面が、X線光電子分光分析でのフッ素元素量が0.3atomic%以下、有機系窒素量が0.7atomic%以下、炭化水素成分量が29atomic%以下で、かつ有機系CO量が4atomic%以下であることが好ましい。
これによって、デポ膜等CVD堆積物の付着保持性がより優れたものとなり、結果、LPCVD装置等の半導体処理装置におけるパーティクル汚染の問題が生じ難いという利点が得られる。
なお、この発明においても、前述と同じ理由から前記ピークカウントは300/cm以下であることが好ましく、また表面粗さRaは3μm以下(より好ましくは1.5μm以下)が好ましい。
【0020】
【発明の実施の形態】
以下に、本発明の一実施形態にかかる炭化珪素膜を有する半導体処理用部材及び半導体処理用部材の洗浄方法を図面に基づいて具体的に説明する。
なお、図1は本発明の半導体処理用部材の表面を、表面粗さ測定機(ミツトヨ製小形表面粗さ測定機サーフテストSJ−301)で測定した時の表面起伏状態を示す粗さ曲線図であり、図2は比較例の半導体処理用部材の表面を、表面粗さ測定機(ミツトヨ製小形表面粗さ測定機サーフテストSJ−301)で測定した時の表面起伏状態を示す粗さ曲線図であり、図3は従来のCVD−SiCコートした表面を測定した粗さ曲線図であり、図4は、ピークアカウントの測定法を説明するための模式的粗さ曲線図である。
【0021】
この半導体処理用部材は、例えば、LPCVD装置で使用されるウエハボート等の半導体処理治具の構成部材であって、炭化珪素膜表面を有し、かつ、その表面粗さが、不感帯幅を0.3μmとし、測定長を4mmとした際のピークカウント(Pc)で150/cm以上にある特定粗面状態のものである。
【0022】
ここで、半導体処理部材の炭化珪素膜表面の起伏状態を規定するピークカウント(Pc)は、ANSI(American National Standards Institute:米国規格協会)95に基づきカウントする。
具体的には、図4に示すように、表面粗さ測定機で測定した起伏曲線の平均線に平行でしかも平均線から+、−(上下)に等しく離れた2本の線分を測定曲線(粗さ曲線 SIGN() )に重ね、その部分を超えて+側に飛び出た部分を山、−側に飛び出た部分を谷とする。また、不感帯を越えて現れる一対の山部と谷部がある時、直前にある平均線との交点位置がその山谷の開始位置とし、その山谷の直前の山谷の終わりの位置となる。
【0023】
この山・谷の一周期分を凹凸の間隔とし、この算術平均を、凹凸の平均間隔(Sm)とする。
【0024】
【数1】

Figure 0003956291
【0025】
ANSIでは評価長さ(4mm)全体からSmを求める。
【0026】
そして、ピークカウント(Pc)は、前記凹凸の平均間隔(Sm)の逆数を云う。
Pc=単位長さ/Sm(単位長さ=1cm)
即ち、
【0027】
【数2】
Figure 0003956291
【0028】
このようにして測定したピークカウント(Pc)が、150/cm未満の表面状態にある半導体処理用部材では、微細起伏の密度が疎で、平滑面であるか、または、大きいうねり状の凹凸を含む面となるため、Si34等のデポ膜の付着保持性が良好であるとは言えない。一方、ピークカウント(Pc)が300/cmを超える表面状態では、微細起伏の密度が大きい過ぎて、このような表面状態は形成が困難であると共に、膜付着保持性も若干の低下傾向を示す。
【0029】
前記したように、この半導体処理用部材にあっては、ピークカウント(Pc)が150/cm以上とするためには、キャリアガス(H2)中でのSiCl4及びC38等のSiC原料ガスの濃度を従来に比べ低くし、かつ従来に比べ高い温度でCVDコーティングすればよい。
このピークカウントによれば、基体の表面粗さの影響をキャンセルすることができるため、デポ膜の付着保持性に優れた特定粗面状態を規定することができる。
【0030】
このピークカウントは、通常不感帯幅が0.1〜0.5μmでの表現も可能であるが、特に0.3μmとすることで、半導体処理用部材へのデポ膜の付着保持性に優れた粗面状態を特定することができる。
また、このピークカウントは、表面うねりや凹凸の大きさを測るRaと異なり、起伏の数をカウントするものである。不感帯幅を0.3μmとした際のPcは、微細な起伏の数を表しており、デポ膜との付着保持性が、振幅の大きな凹凸ではなく、高さ0.3μm程度の緻密な起伏によって決定されることを示している。
従って、半導体処理用部材表面の表面粗さの前記Pcを150(/cm)以上とすることで、デポ膜等CVD堆積物の優れた付着保持性が得られ、半導体処理装置のパーティクル汚染を顕著に防止することができる。
なお、前記したようにPcは好ましくは300(/cm)以下である。この理由は、300(/cm)を超えるものを製作するためには、より高度な製造技術を要し、かつこれに見合うデポ膜等の付着保持力が得られ難く、工業上有効性が低いからである。
【0031】
上記表面状態の半導体処理部材は、例えば、Si含浸SiC等の基体面に、CVD法によりCVD−SiC膜を形成する際の処理条件(キャリアガス濃度、流速、反応原料ガス組成、温度等CVD反応速度制御条件等)を適宜調節することにより達成することができる。また、CVD法によりCVD−SiC膜を形成した後、表面研磨することによっても、形成することができる。
更に、反応焼結SiC(Si含浸SiC)、自焼結SiC、シリコン、黒鉛、ガラス状カーボン、石英、アルミナ、透過性アルミナ、AlN、シリコンあるいは窒化珪素いずれの材料からなってもよく、これらいずれかの表面に、CVD法、スパッタリング法、塗布法等各々方法で、SiC、ダイヤモンドあるいはAlNいずれかをコーティングしたものでもよい。
この半導体処理部材は、特に、基体表面に炭化珪素膜を形成した、もしくは炭化珪素膜のみからなる半導体処理用部材が好ましい。
また、この半導体処理用部材は、例えば、サセプター、ウエハボート、ボート用リング、ボート用プレート、プロセスチューブあるいはプレートホルダに用いることができる。
【0032】
次に、本発明にかかる第二実施形態について説明する。
この実施形態にかかる半導体処理用部材は、その炭化珪素膜表面に、X線光電子分光分析(XPS:X-ray Photoelectron Spectroscopy)によって検出されるフッ素元素量が0.3atomic%以下、有機系窒素量が0.7atomic%以下、炭化水素成分量が29atomic%以下で、かつ有機系CO量が4atomic%以下に形成されている。
【0033】
このXPSによる上記部材表面に存在するフッ素、有機系不純物の帰属は下記要領で決定される。
即ち、上記部材表面をワイドスキャンした図5(a)及び、そのC1s及びSi2pピーク部分を拡大した図5(b)、(c)に示されているように、F1sピークのケミカルシフトからF元素は主としてSi−F結合のものと判断され、N1sピークは同様にアミン、アミド結合等の有機系窒素に帰属される成分と判定される。
【0034】
また、C1sのピーク分割結果から、Si−Cに帰属されるC成分が主体だが、他に多くの炭化水素成分(CHx)及び微量のCO(エーテル、水酸基)、C−N(アミン)、C=O(カルボニル基)COO(エステル、カルボキシル基)等が存在することが認められる。
また、Si2pピークの分割結果から、Si−Cに帰属される主成分結合の他にSiOx(x≦2)の存在が確認できる。
【0035】
そして、上記のような不純物は、前記CVD−SiC表面とSi34デポ膜との間に介在して両界面間の付着力を著しく弱める作用をする。
この不純物が、洗浄後も表面に付着残留するメカニズムを、F元素の場合を例に、図6に基づいて説明する。
このF元素の表面付着は、酸素ベーク後の酸洗浄時に反応(SiO2+6HF=H2SiF6+2H2O)によるHFの消耗に関係しているものと推測され、図6にその残留態様を模式的に示したように、F-がSiF6 2-より酸洗時にSiC膜表面に吸着しやすいか、水洗時にSiC表面から脱離しにくいため、乾燥後相当の量のF-が残され、SiC結晶中のSiと結合してSi−F成分として検出されるものと推定される。
【0036】
この表面でのフッ素(F元素)量が0.3atomic%を上回ると、半導体処理部材表面と該デポ膜界面との密着性(付着保持性)が次第に低下し、その増加に伴いSi34デポ膜の早期離脱傾向が顕著になる。
また、炭化水素成分が、CHx量として29atomic%を上回るか、COとC=O、COOなど有機系CO量が4atomic%、有機窒素系N元素が0.7atomic%を越える場合にも、前記F元素と同様の理由でデポ膜界面との密着性(付着保持性)が低下し、好ましくない。
また、長期使用された部材の炭化珪素膜にSiCを再コートする際にも密着性(付着保持性)に劣り層間剥離を生じやすい。
【0037】
前記部材の炭化珪素膜表面は、前記した第一の実施形態で規定した特定表面構造を有し、かつ、この実施形態で規定した清浄化面であることが特に好ましい。
即ち、炭化珪素膜表面の表面粗さが、表面粗さ測定機を用いた不感帯幅を0.3μmとし測定長を4mmとした際のピークカウント(Pc)で150/cm以上であり、かつ、前記炭化珪素膜表面が、X線光電子分光分析でのフッ素元素量が0.3atomic%以下、有機系窒素量が0.7atomic%以下、炭化水素成分量が29atomic%以下で、かつ有機系CO量が4atomic%以下であることが望ましい。
【0038】
前記した清浄化された炭化珪素膜表面は、下記に述べる本発明の方法により容易に達成できる。
即ち、半導体処理用部材の炭化珪素膜表面を、酸素ベーキング処理とフッ硝酸洗浄液処理との乾・湿洗浄の組合せにより清浄化するに際し、前記フッ硝酸洗浄液としてフッ化水素が4.5mol%以下、硝酸が1mol%以上の混酸液を用い、かつ、酸洗浄した後に、30分以上温純水シャワーリングにより水洗する。
この工程をなすことにより、デポ膜等化学気相堆積物に対し付着保持性に優れた、清浄化された炭化珪素膜表面を有する半導体処理用部材を得ることができる。
【0039】
前記した洗浄方法において、前記フッ硝酸洗浄で用いる混酸液でのフッ化水素濃度を4.5mol%以下とする理由は、前記フッ素残留量を0.3atomic%以下とするためであり、これを上回ると良好な膜付着保持性を保持できない。
また、混酸液で硝酸濃度を1mol%以上とする理由は、硝酸添加により有機成分の除去効果が向上するためである。
【0040】
但し、硝酸のモル濃度をあまり高くなり過ぎると、有機成分除去能力の大きな向上はもはやなく、環境への負担が増大し、コスト高の原因となるため、硝酸のモル濃度は、1〜4mol%が特に好ましい。
また、酸洗浄後30分以上温純水シャワーリングにより水洗するが、これは有機成分除去に有効であるためである。
【0041】
尚、上記第一、第二の実施形態にあっては炭化珪素膜表面を有する半導体処理用部材を例にとって説明したが、炭化珪素膜のみからなる半導体処理部材であっても良く、また半導体処理用基体の表面自体が、前記した特定構造のものであっても良い。
また、また半導体処理用部材の基体の表面自体が、前記した特定構造のものに、前記洗浄方法を適用し、デポ膜等化学気相堆積物に対し付着保持性に優れた、清浄化された表面を有する半導体処理用部材を得ることができる。
【0042】
【実施例】
以下、本発明を実施例に基づき更に詳細に説明する。但し、本発明は下記実施例に何ら制限されるものでない。
「実験例1」
平均粒径25μmの第1のSiC粉末60重量部と平均粒径が1μmの第2のSiC粉末40重量部と、さらに平均粒径が0.1μmの炭素粉末を外割で5重量部とを混合し、これに有機結合剤を加えて造粒、成形し、1800℃で焼成した各部材を組立てた後、シリコンを含浸(反応焼結)し、機械加工を施すことで反応焼結SiCからなる8インチウエハ用縦型ボートを製作した。
【0043】
この縦型ボートをCVD炉内に配置した後、SiCl4とC38とH2を3:1:60の流量で流し、圧力30Torr、温度1200℃でSiC膜を表面に形成した(実施例1)。
また、上記実施例1と同様に製作した8インチウエハ用縦型ボートをCVD炉内に配置した後、SiCl4とC38とH2を3:1:20の流量で流し、圧力20Torr、温度1100℃でSiC膜を表面に形成した(比較例1)。
また、上記実施例1と同様に製作した8インチウエハ用縦型ボートに#46のSiC粉を用いてブラスト処理し、洗浄後上記比較例1と同条件にてSiC膜を表面に形成した(従来例)。
【0044】
上記実施例1、比較例1及び従来例の8インチウエハ用縦型ボートのウエハ支持棒側壁表面を表面粗さ測定機(ミツトヨ製小形表面粗さ測定機サーフテストSJ−301)を用い、不感帯幅を0.3μmとし、測定長を4mmとし測定を行った。得られた粗さ曲線を各々図1(実施例1)、2(比較例1)及び3(従来例)に示す。また、これらの表面粗さRa及びピークカウント(Pc)を表1に示す。
また、これらの8インチウエハ用縦型ボートを各々LPCVD装置内に配置し、複数のシリコン単結晶を載置した後、一回の堆積膜厚が2000Åとなる条件下でSiNを堆積させる工程において、一つのウエハ上の粒径0.3μm以上のパーティクル数が50個/[8インチウエハ]を超えるまでの工程回数を測定した。その結果を表1に示す。
【0045】
【表1】
Figure 0003956291
【0046】
これらより、従来の縦型ボートの如く、Pcが150/cm未満の場合には、例え、Raを3μm以上の凹凸を付したものであっても、SiN膜の付着保持が十分ではなく、パーティクル発生に問題があることが確認された。
【0047】
「実験例2」
表面粗さ測定機(ミツトヨ製小形表面粗さ測定機サーフテストSJ−301)を用いた測定で、不感帯幅を0.3μm、測定長4mmでのピークカウント(Pc)数が種々の値を有するCVD−SiC膜被覆Si−含浸SiC基体からなる盤状(φ200×2mm)試料を、CVDを行う際に、原料ガスのSiCl4及びC38とキャリアガスH2の供給量及び設定温度を調整することで製作した。
各々、LPCVD装置内でこれらの下方に8インチのシリコン単結晶ウエハを配置し、一回の堆積膜厚が1500Åとなる条件下でSiNを堆積させる工程を10回繰り返した。この時の、シリコン単結晶ウエハ上の粒径0.1μm以上のパーティクル数を測定した。その結果を表2に示す。
【0048】
【表2】
Figure 0003956291
【0049】
この結果より、半導体処理用部材の表面粗さを、表面粗さ測定機を用いた不感帯幅を0.3μmとし測定長を4mmとした際のピークカウント(Pc)で150/cm以上とすることで、SiNのデポ膜の優れた付着保持性が得られ、半導体処理装置のパーティクル汚染を顕著に防止できることが確認された。
【0050】
「実験例3」
ベーキング処理後の表面状態が、表面粗さ測定機(ミツトヨ製小形表面粗さ測定機サーフテストSJ−301)による測定で、不感帯幅0.3μmのピークカウント(Pc)数が150〜300の値を有するCVD−SiC膜被覆Si−含浸SiC基体からなる試料を準備し、この表面を夫々表6に示した条件で酸洗浄(実施例及び比較例の一部は温純水シャワリングを含む)した。そして、表面残査と有機成分量をXPSによって測定した。その結果を表3に示す。
【0051】
【表3】
Figure 0003956291
【0052】
尚、上記洗浄処理後の試料を、実験例1で用いたLPCVD装置により同条件下でSiNを堆積させたところ、試料No.1〜No.3では8インチウエハ上のパーティクル数がいずれも102オーダーであったが、試料No.4〜No.6では何れも103を超えるパーティクル数であった。
【0053】
【発明の効果】
本発明の半導体処理用部材は、表面の表面粗さが、表面粗さ測定機を用いた不感帯幅を0.3μmとし測定長を4mmとした際のピークカウント(Pc)で150/cm以上であるため、CVD堆積物の付着保持性に優れている。
また、本発明の半導体処理用部材は、XPS分析でのF元素や有機不純物濃度が特定値以下の清浄化された表面を有するため、CVD堆積物の付着保持性に優れている。
更に、本発明の洗浄方法によれば、半導体処理用部材の表面に上記不純物の介在がない清浄な表面を確保できると共に、その表面粗度を好適状態に保持できる。
【図面の簡単な説明】
【図1】図1は、本発明にかかる半導体処理用部材の表面(実施例1)を、表面粗さ測定機で測定した、表面起伏状態を示した粗さ曲線図である。
【図2】図2は、比較例1にかかる半導体処理用部材の表面を、表面粗さ測定機で測定した、表面起伏状態を示した粗さ曲線図である。
【図3】図3は、従来例にかかる半導体処理用部材の表面を、表面粗さ測定機で測定した、表面起伏状態を示した粗さ曲線図である。
【図4】図4は、ピークアカウントの測定法を説明するための線図である。
【図5】図5は、XPS分析におけるワイドスキャン(a)、C1sピーク(b)、Si2pピーク(c)の各測定線図である。
【図6】図6は、不純物が洗浄後も部材表面に付着残留するメカニズムを、F元素を例に説明した模式図である。[0001]
BACKGROUND OF THE INVENTION
The present invention has excellent adhesion retention with respect to deposits deposited during chemical vapor deposition (CVD).The present invention relates to a semiconductor processing member.
[0002]
[Prior art]
In the semiconductor manufacturing process, silicon nitride (SiThreeNFourIn general, a low-pressure chemical vapor deposition apparatus (LPCVD apparatus) capable of forming a high-purity film with excellent step coverage is generally used for forming the thin film.
As jigs such as wafer boats used in this LPCVD apparatus, silicon carbide (SiC) jigs are often used together with quartz glass jigs. In particular, SiC jigs are superior in heat cycle characteristics and thermal shock characteristics compared to quartz glass jigs, and are suitable for LPCVD used at high temperatures.
[0003]
Silicon carbide (SiC) is formed by CVD as compared with quartz glass.ThreeNFourSince the thermal expansion coefficient is close to that of a thin film such as the above, there is an advantage that the CVD film formed on the jig surface is not easily peeled off, and particle contamination due to thin film peeling is less likely to occur.
As a member constituting such a silicon carbide (SiC) jig, a substrate made of silicon-impregnated silicon carbide (Si-impregnated SiC) or the like is generally coated with a high-purity silicon carbide film having a low metal impurity concentration by CVD or the like. The processed semiconductor processing member is used.
[0004]
In addition, in the semiconductor processing member, in order to remove metal impurities and the like segregated or adhered to the surface of the silicon carbide film before use in the semiconductor processing, dry cleaning of oxygen baking and wet cleaning of acid cleaning are performed. (For example, Japanese Patent Application Laid-Open No. 11-240780).
The oxygen baking is a step of oxidizing impurities on the surface layer of the film, and the purity of the film surface is maintained by dissolving the oxide layer trapped with impurities in a later acid cleaning step. In the acid cleaning, hydrofluoric acid is generally used because it is effective for removing an oxide layer on the film surface.
[0005]
However, in recent years, especially in jigs such as wafer boats used in the LPCVD process, Si formed on the jig surface is formed.ThreeNFourThere has been a problem that the deposition film peels off at a relatively early stage of the process and generates particles and the like.
As means for avoiding such inconvenience, conventionally, means for increasing the surface roughness of the semiconductor processing member has been proposed.
For example, in Japanese Patent Application Laid-Open Nos. 2000-327459 and 2001-206771, a silicon (Si) film or Si deposited in the LPCVD process is used.ThreeNFourIn order to improve the adhesion (adhesion retention) with the film, it has been proposed to specify the arithmetic average surface roughness (Ra) of the silicon carbide film (SiC film) surface of the semiconductor processing member within a predetermined range. Yes.
[0006]
[Problems to be solved by the invention]
By the way, according to the above proposal, it has been found that there are cases where the adhesion retention is not necessarily improved even if the surface roughness of the semiconductor processing member is actually set.
In particular, in a semiconductor processing member having a CVD-SiC coated silicon carbide film, the deposition film is Si.ThreeNFourWhen it is, it turned out that the peeling improvement effect is hardly acquired.
[0007]
The arithmetic average surface roughness Ra described above is a surface roughness including large waviness. The arithmetic average surface roughness Ra mainly reflects the unevenness of the substrate before the CVD coating and the large unevenness of the CVD film surface.
According to the experiments by the present inventors, even if the surface roughness Ra is 3 μm or more, there are some inferior to the adhesion (adhesion retention) of the deposit film, and if Ra is not necessarily large, It was confirmed that it is not necessarily superior to the adhesion (adhesion retention) of the deposition film.
[0008]
Based on the above knowledge, the present inventors have intensively studied the surface state of the semiconductor processing member having excellent adhesion of the deposition film, and as a result, the specific rough surface different from the surface roughness defined in the preceding invention. The semiconductor processing member in the state is SiThreeNFourThe present invention is completed by finding that it has excellent adhesion retention of a deposition film and the like, and that the delamination of the deposition film is greatly affected by the surface impurity concentration accompanying wet cleaning of the semiconductor processing member. It came to. Moreover, in order to control the density | concentration of a specific impurity below to a predetermined value, it discovered that the kind and density | concentration of a washing | cleaning liquid should be specified, and also should specify water washing conditions, and came to complete this invention concerning the washing | cleaning method.
[0009]
Therefore, the object of the present invention is excellent in adhesion retention of CVD deposits such as deposition films.The object is to provide a semiconductor processing member.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is directed to a semiconductor processing member used in a semiconductor manufacturing process, wherein the surface roughness of the surface is a dead zone width of 0.3 μm using a surface roughness measuring machine, and the measurement length is The peak count (Pc) at 4 mm is 150 / cm or more.
[0011]
The semiconductor processing member according to the present invention is characterized in that its surface is in a specific rough surface state, but the surface state is a state defined by Ra that strongly reflects long-period waviness and large irregularities. In contrast to this, a specific rough surface state in which fine irregularities having a short period are densely distributed is exhibited.
This surface state is specified by a peak count (Pc) of ANSI (American Standards Association) 95 standard in which the number of irregularities exceeding a specific dead zone is counted within a predetermined measurement length.
[0012]
This peak count can usually be expressed with a dead band width of 0.1 to 0.5 μm. However, by setting the peak count to 0.3 μm, it is possible to obtain a rough deposit having excellent deposit film adhesion to a semiconductor processing member. The surface state can be specified.
Further, this peak count is to count the number of undulations, unlike Ra which measures the size of surface waviness and unevenness. Pc when the dead zone width is 0.3 μm represents the number of fine undulations, and the adhesion retention with the deposition film is not due to unevenness with a large amplitude, but due to dense undulations with a height of about 0.3 μm. Indicates that it will be decided.
Therefore, by setting the Pc of the surface roughness of the semiconductor processing member surface to 150 (/ cm) or more, excellent adhesion retention of CVD deposits such as deposition films can be obtained, and particle contamination of the semiconductor processing apparatus is remarkable. Can be prevented. The Pc is preferably 300 (/ cm) or less. This is because, in order to produce a product exceeding 300 (/ cm), it requires a more advanced manufacturing technique, and it is difficult to obtain adhesion holding force such as a deposition film corresponding to this, and industrial effectiveness is low. Because.
[0013]
The semiconductor processing member of the present invention is made of any material such as reaction sintered SiC (Si impregnated SiC), self-sintered SiC, silicon, graphite, glassy carbon, quartz, alumina, permeable alumina, AlN, silicon or silicon nitride. Any one of these surfaces may be coated with either SiC, diamond or AlN by a CVD method, a sputtering method, a coating method or the like.
[0014]
The present invention is particularly effective for a member having a silicon carbide film on the surface.
That is, the present invention made in order to achieve the above object, in a semiconductor processing member having a silicon carbide film formed on a substrate surface or consisting only of a silicon carbide film, has a surface roughness on the surface of the silicon carbide film. The peak count (Pc) when the dead zone width using a surface roughness measuring machine is 0.3 μm and the measurement length is 4 mm is 150 / cm or more.
In particular, in the case of a semiconductor processing member in which a silicon carbide film is formed on the surface of the substrate, for example, the influence of the surface roughness (waviness or large unevenness) of the substrate can be canceled by specifying the peak count. As a result, it is possible to obtain excellent deposit retention of the deposition film.
[0015]
In the present invention of the above two forms, the center line average surface roughness Ra (JIS B0601-1994) is preferably 3 μm or less, more preferably 1.5 μm or less.
As a result, the deposition film or the like that adheres to the surface of the semiconductor processing member does not have a recess exceeding a depth of 10 μm, which tends to cause thermal stress concentration, and has a structure consisting only of dense and minute undulations (irregularities). it can.
This is because CVD deposits such as deposition films are deposited on dense and minute uneven surfaces at the initial deposition, and the initial deposits are deposited flat. Therefore, it is estimated that the deposit is difficult to peel off.
[0016]
Here, the surface has a fluorine element amount of 0.3 atomic% or less, an organic nitrogen amount of 0.7 atomic% or less, a hydrocarbon component amount of 29 atomic% or less, and an organic CO amount in X-ray photoelectron spectroscopy. Is desirably 4 atomic% or less.
Further, the surface of the silicon carbide film has a fluorine element amount of 0.3 atomic% or less, an organic nitrogen amount of 0.7 atomic% or less, a hydrocarbon component amount of 29 atomic% or less in an X-ray photoelectron spectroscopic analysis, and an organic system. The CO amount is desirably 4 atomic% or less.
[0017]
The member for semiconductor processing according to the present invention has, on its (silicon carbide film) surface, fluorine and hydrocarbons detected by X-ray photoelectron spectroscopy (XPS), especially CO, C- The organic impurities such as N, C═O, and COO are not more than the values specified in the present invention, respectively, and are in a clean surface state with very few fluorine and organic impurities. By setting it as such a clean surface state, the outstanding retention property of the deposition film can be obtained.
[0018]
In general, not only the surface of a semiconductor processing member made of Si-impregnated SiC but also the surface of a semiconductor processing member coated with a CVD-SiC coating, according to XPS analysis, a considerable amount of fluorine other than Si and C is used. Organic impurities such as hydrocarbon, CO (ether / hydroxyl group), C—N (amine), C═O (carbonyl group), and COO (ester / carboxyl group) are detected. Moreover, these impurities are the CVD-SiC surface and Si.ThreeNFourIt intervenes between the deposition films and acts to significantly weaken the adhesion between both interfaces.
Accordingly, in particular, in a semiconductor processing member in which a silicon carbide film is formed on the surface of the substrate of the present invention or is made only of a silicon carbide film, the surface roughness of the silicon carbide film surface is measured using a surface roughness measuring machine. When the dead zone width is 0.3 μm and the measurement length is 4 mm, the peak count is 150 / cm or more, and the surface of the silicon carbide film has a fluorine element amount of 0.3 atomic% or less in X-ray photoelectron spectroscopy, It is preferable that the amount of organic nitrogen is 0.7 atomic% or less, the amount of hydrocarbon components is 29 atomic% or less, and the amount of organic CO is 4 atomic% or less.
As a result, the adhesion retention of CVD deposits such as deposition films is further improved, and as a result, there is an advantage that the problem of particle contamination in a semiconductor processing apparatus such as an LPCVD apparatus hardly occurs.
In the present invention, the peak count is preferably 300 / cm or less for the same reason as described above, and the surface roughness Ra is preferably 3 μm or less (more preferably 1.5 μm or less).
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a semiconductor processing member having a silicon carbide film according to an embodiment of the present invention and a method for cleaning the semiconductor processing member will be specifically described with reference to the drawings.
FIG. 1 is a roughness curve diagram showing the surface undulation state when the surface of the semiconductor processing member of the present invention is measured by a surface roughness measuring machine (Small Surface Roughness Measuring Machine Surf Test SJ-301 manufactured by Mitutoyo). FIG. 2 is a roughness curve showing the surface undulation state when the surface of the semiconductor processing member of the comparative example is measured with a surface roughness measuring machine (Small Surface Roughness Measuring Machine Surf Test SJ-301 manufactured by Mitutoyo). FIG. 3 is a roughness curve diagram obtained by measuring a conventional CVD-SiC-coated surface, and FIG. 4 is a schematic roughness curve diagram for explaining a peak account measurement method.
[0021]
This semiconductor processing member is, for example, a constituent member of a semiconductor processing jig such as a wafer boat used in an LPCVD apparatus, and has a silicon carbide film surface, and the surface roughness has a dead band width of 0. .3 μm and a specific rough surface having a peak count (Pc) of 150 / cm or more when the measurement length is 4 mm.
[0022]
Here, the peak count (Pc) that defines the undulation state of the silicon carbide film surface of the semiconductor processing member is counted based on ANSI (American National Standards Institute) 95.
Specifically, as shown in FIG. 4, two line segments that are parallel to the average line of the undulation curve measured with a surface roughness measuring instrument and that are equally separated from the average line by + and − (up and down) are measured curves. Overlaid on (roughness curve SIGN ()), the portion that protrudes to the + side beyond that portion is defined as a peak, and the portion that protrudes to the − side is defined as a valley. In addition, when there is a pair of peaks and valleys that appear beyond the dead zone, the position of the intersection with the average line immediately before is the start position of the peak and the end of the peak immediately before the peak.
[0023]
One cycle of the peaks and valleys is defined as the unevenness interval, and the arithmetic average is defined as the unevenness average interval (Sm).
[0024]
[Expression 1]
Figure 0003956291
[0025]
In ANSI, Sm is obtained from the entire evaluation length (4 mm).
[0026]
The peak count (Pc) is the reciprocal of the average interval (Sm) of the irregularities.
Pc = unit length / Sm (unit length = 1 cm)
That is,
[0027]
[Expression 2]
Figure 0003956291
[0028]
In a semiconductor processing member having a surface state with a peak count (Pc) measured in this manner of less than 150 / cm, the density of fine undulations is sparse and the surface is smooth or has large undulations. Si to be includedThreeNFourIt cannot be said that the adhesion retention of the deposition film such as is good. On the other hand, in the surface state where the peak count (Pc) exceeds 300 / cm, the density of fine undulations is too large, and it is difficult to form such a surface state, and the film adhesion retention tends to slightly decrease. .
[0029]
As described above, in this semiconductor processing member, in order to set the peak count (Pc) to 150 / cm or more, the carrier gas (H2SiClFourAnd CThreeH8The concentration of the SiC source gas, such as the above, may be lower than that of the prior art and the CVD coating may be performed at a temperature higher than that of the prior art.
According to this peak count, the influence of the surface roughness of the substrate can be canceled, so that a specific rough surface state excellent in deposition film retention can be defined.
[0030]
This peak count can usually be expressed with a dead band width of 0.1 to 0.5 μm. However, by setting the peak count to 0.3 μm, it is possible to obtain a rough deposit having excellent deposit film adhesion to a semiconductor processing member. The surface state can be specified.
Further, this peak count is to count the number of undulations, unlike Ra which measures the size of surface waviness and unevenness. Pc when the dead zone width is 0.3 μm represents the number of fine undulations, and the adhesion retention with the deposition film is not due to unevenness with large amplitude, but due to dense undulations with a height of about 0.3 μm. Indicates that it will be decided.
Therefore, by setting the Pc of the surface roughness of the semiconductor processing member surface to 150 (/ cm) or more, excellent adhesion retention of CVD deposits such as deposition films can be obtained, and particle contamination of the semiconductor processing apparatus is remarkable. Can be prevented.
As described above, Pc is preferably 300 (/ cm) or less. This is because, in order to produce a product exceeding 300 (/ cm), it requires a more advanced manufacturing technique, and it is difficult to obtain adhesion holding force such as a deposition film corresponding to this, and industrial effectiveness is low. Because.
[0031]
The above-described semiconductor processing member in the surface state is, for example, processing conditions (carrier gas concentration, flow rate, reaction raw material gas composition, temperature, etc., CVD reaction) when a CVD-SiC film is formed on a substrate surface such as Si-impregnated SiC by a CVD method. This can be achieved by appropriately adjusting the speed control conditions and the like. It can also be formed by surface polishing after forming a CVD-SiC film by the CVD method.
Furthermore, it may be made of any material of reaction sintered SiC (Si impregnated SiC), self-sintered SiC, silicon, graphite, glassy carbon, quartz, alumina, permeable alumina, AlN, silicon, or silicon nitride. Such a surface may be coated with either SiC, diamond, or AlN by a CVD method, a sputtering method, a coating method, or the like.
In particular, the semiconductor processing member is preferably a semiconductor processing member in which a silicon carbide film is formed on the surface of the substrate or only the silicon carbide film is formed.
The semiconductor processing member can be used for, for example, a susceptor, a wafer boat, a boat ring, a boat plate, a process tube, or a plate holder.
[0032]
Next, a second embodiment according to the present invention will be described.
In the semiconductor processing member according to this embodiment, the amount of fluorine element detected by X-ray photoelectron spectroscopy (XPS) is 0.3 atomic% or less on the silicon carbide film surface, and the amount of organic nitrogen Is 0.7 atomic% or less, the amount of hydrocarbon components is 29 atomic% or less, and the amount of organic CO is 4 atomic% or less.
[0033]
The attribution of fluorine and organic impurities existing on the surface of the member by XPS is determined as follows.
That is, as shown in FIG. 5A in which the surface of the member is scanned wide and in FIGS. 5B and 5C in which the C1s and Si2p peak portions are enlarged, the F element is determined from the chemical shift of the F1s peak. Are mainly determined to be Si—F bonds, and the N1s peak is similarly determined to be a component attributed to organic nitrogen such as amine and amide bonds.
[0034]
The C1s peak split results show that the C component is mainly attributed to Si-C, but there are many other hydrocarbon components (CHx) and trace amounts of CO (ether, hydroxyl group), CN (amine), C It is recognized that ═O (carbonyl group) COO (ester, carboxyl group) and the like are present.
Further, from the result of dividing the Si2p peak, it is possible to confirm the presence of SiOx (x ≦ 2) in addition to the main component bond attributed to Si—C.
[0035]
The impurities as described above are formed on the CVD-SiC surface and Si.ThreeNFourIt intervenes between the deposition films and acts to remarkably weaken the adhesion between both interfaces.
The mechanism by which these impurities adhere and remain on the surface even after cleaning will be described with reference to FIG.
The surface adhesion of this F element reacts during acid cleaning after oxygen baking (SiO 22+ 6HF = H2SiF6+ 2H2It is presumed to be related to the consumption of HF by O), and as shown schematically in FIG.-Is SiF6 2-Since it is more likely to be adsorbed on the SiC film surface during pickling or difficult to desorb from the SiC surface during water washing, a considerable amount of F after drying-Is presumed to be detected as an Si-F component by combining with Si in the SiC crystal.
[0036]
When the amount of fluorine (F element) on the surface exceeds 0.3 atomic%, the adhesion (adhesion retention) between the surface of the semiconductor processing member and the deposition film interface gradually decreases, and Si Si increases with the increase.ThreeNFourThe tendency of early withdrawal of the deposition film becomes significant.
Also, when the hydrocarbon component exceeds 29 atomic% as CHx, or when the organic CO amount such as CO and C = O, COO is 4 atomic% and the organic nitrogen N element exceeds 0.7 atomic%, the F For the same reason as the element, the adhesion (adhesion retention) with the deposition film interface decreases, which is not preferable.
Further, even when SiC is recoated on a silicon carbide film of a member that has been used for a long time, adhesion (adhesion retention) is poor and delamination tends to occur.
[0037]
It is particularly preferable that the surface of the silicon carbide film of the member has the specific surface structure defined in the first embodiment described above, and is a cleaned surface defined in this embodiment.
That is, the surface roughness of the silicon carbide film surface is 150 / cm or more in peak count (Pc) when the dead zone width using a surface roughness measuring machine is 0.3 μm and the measurement length is 4 mm, and The surface of the silicon carbide film has a fluorine element amount of 0.3 atomic% or less, an organic nitrogen amount of 0.7 atomic% or less, a hydrocarbon component amount of 29 atomic% or less, and an organic CO amount in X-ray photoelectron spectroscopy. Is desirably 4 atomic% or less.
[0038]
The cleaned silicon carbide film surface can be easily achieved by the method of the present invention described below.
That is, when the silicon carbide film surface of the semiconductor processing member is cleaned by a combination of dry and wet cleaning of oxygen baking treatment and hydrofluoric acid cleaning liquid treatment, hydrogen fluoride is 4.5 mol% or less as the hydrofluoric acid cleaning liquid, A mixed acid solution containing nitric acid of 1 mol% or more is used, and after acid cleaning, it is washed with warm pure water showering for 30 minutes or more.
By performing this step, a semiconductor processing member having a cleaned silicon carbide film surface having excellent adhesion retention to chemical vapor deposition such as a deposition film can be obtained.
[0039]
In the cleaning method described above, the reason why the hydrogen fluoride concentration in the mixed acid solution used in the cleaning with hydrofluoric acid is 4.5 mol% or less is to make the residual amount of fluorine 0.3 atomic% or less, which exceeds this And good film adhesion retention cannot be maintained.
The reason why the concentration of nitric acid in the mixed acid solution is 1 mol% or more is that the removal effect of organic components is improved by adding nitric acid.
[0040]
However, if the molar concentration of nitric acid is too high, the organic component removal ability is no longer greatly improved, increasing the burden on the environment and increasing costs. Therefore, the molar concentration of nitric acid is 1 to 4 mol%. Is particularly preferred.
Moreover, although it wash | cleans with warm pure water showering for 30 minutes or more after acid washing | cleaning, this is because it is effective for organic component removal.
[0041]
In the first and second embodiments, the semiconductor processing member having the silicon carbide film surface has been described as an example. However, the semiconductor processing member may be formed of only a silicon carbide film. The surface of the substrate for use itself may have the specific structure described above.
In addition, the surface of the substrate of the semiconductor processing member itself has been cleaned by applying the cleaning method to the specific structure described above, and having excellent adhesion retention to chemical vapor deposition such as a deposition film. A semiconductor processing member having a surface can be obtained.
[0042]
【Example】
Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples.
"Experiment 1"
60 parts by weight of first SiC powder having an average particle diameter of 25 μm, 40 parts by weight of second SiC powder having an average particle diameter of 1 μm, and 5 parts by weight of carbon powder having an average particle diameter of 0.1 μm After mixing, adding organic binder to this, granulating, forming, and assembling each member fired at 1800 ° C, it is impregnated with silicon (reactive sintering) and machined to produce reactive sintered SiC. A vertical boat for 8-inch wafers was manufactured.
[0043]
After this vertical boat is placed in a CVD furnace, SiClFourAnd CThreeH8And H2Was flown at a flow rate of 3: 1: 60, and a SiC film was formed on the surface at a pressure of 30 Torr and a temperature of 1200 ° C. (Example 1).
In addition, after placing an 8-inch wafer vertical boat manufactured in the same manner as in Example 1 above in a CVD furnace, SiClFourAnd CThreeH8And H2Was flown at a flow rate of 3: 1: 20, and a SiC film was formed on the surface at a pressure of 20 Torr and a temperature of 1100 ° C. (Comparative Example 1).
A vertical boat for 8-inch wafers manufactured in the same manner as in Example 1 was blasted using # 46 SiC powder, and after cleaning, a SiC film was formed on the surface under the same conditions as in Comparative Example 1 ( Conventional example).
[0044]
Using the surface roughness measuring machine (Mitutoyo Small Surface Roughness Measuring Machine Surf Test SJ-301) on the surface of the side wall of the wafer support rod of the vertical boat for 8-inch wafers of Example 1, Comparative Example 1 and Conventional Example, the dead zone The measurement was performed with a width of 0.3 μm and a measurement length of 4 mm. The obtained roughness curves are shown in FIG. 1 (Example 1), 2 (Comparative Example 1) and 3 (Conventional Example), respectively. In addition, Table 1 shows the surface roughness Ra and the peak count (Pc).
In addition, in the process of depositing SiN under the condition that a single deposited film thickness is 2000 mm after each of these 8-inch wafer vertical boats is placed in an LPCVD apparatus and a plurality of silicon single crystals are placed thereon. The number of steps until the number of particles having a particle diameter of 0.3 μm or more on one wafer exceeded 50 / [8 inch wafer] was measured. The results are shown in Table 1.
[0045]
[Table 1]
Figure 0003956291
[0046]
From these, when Pc is less than 150 / cm as in a conventional vertical boat, even if Ra is provided with unevenness of 3 μm or more, the adhesion and retention of the SiN film is not sufficient, and the particles It was confirmed that there was a problem with the occurrence.
[0047]
"Experimental example 2"
In measurement using a surface roughness measuring machine (Surface Test SJ-301, a small surface roughness measuring machine manufactured by Mitutoyo), the dead band width is 0.3 μm, and the peak count (Pc) number at a measuring length of 4 mm has various values. When a CVD method is performed on a plate-like (φ200 × 2 mm) sample comprising a CVD-SiC film-coated Si-impregnated SiC substrate, the raw material gas SiClFourAnd CThreeH8And carrier gas H2It was manufactured by adjusting the supply amount and the set temperature.
In each of the LPCVD apparatuses, an 8-inch silicon single crystal wafer was placed below them, and the process of depositing SiN under the condition that the deposited film thickness was 1500 mm was repeated 10 times. At this time, the number of particles having a particle diameter of 0.1 μm or more on the silicon single crystal wafer was measured. The results are shown in Table 2.
[0048]
[Table 2]
Figure 0003956291
[0049]
From this result, the surface roughness of the semiconductor processing member should be 150 / cm or more in peak count (Pc) when the dead zone width using a surface roughness measuring machine is 0.3 μm and the measurement length is 4 mm. Thus, it was confirmed that excellent adhesion retention of the SiN deposition film was obtained and particle contamination of the semiconductor processing apparatus could be remarkably prevented.
[0050]
"Experiment 3"
The surface condition after baking treatment is a value of 150 to 300 peak counts (Pc) with a dead zone width of 0.3 μm as measured by a surface roughness measuring machine (Surface Test SJ-301, a small surface roughness measuring machine manufactured by Mitutoyo). A sample comprising a Si-impregnated SiC substrate coated with a CVD-SiC film having a surface was prepared, and this surface was subjected to acid cleaning under the conditions shown in Table 6 (some examples and comparative examples included warm pure water showering). And the surface residue and the amount of organic components were measured by XPS. The results are shown in Table 3.
[0051]
[Table 3]
Figure 0003956291
[0052]
In addition, when SiN was deposited on the sample after the above-described cleaning treatment under the same conditions using the LPCVD apparatus used in Experimental Example 1, the sample No. 1-No. 3, the number of particles on an 8-inch wafer is 102Although it was an order, sample no. 4-No. 6 is 10ThreeThe number of particles exceeded.
[0053]
【The invention's effect】
The semiconductor processing member of the present invention has a surface roughness of 150 / cm or more in peak count (Pc) when the dead zone width using a surface roughness measuring machine is 0.3 μm and the measurement length is 4 mm. Therefore, it is excellent in adhesion retention of CVD deposits.
Moreover, since the member for semiconductor processing of this invention has the cleaned surface whose F element and organic impurity density | concentration in XPS analysis is below a specific value, it is excellent in the adhesion retention of CVD deposit.
Furthermore, according to the cleaning method of the present invention, a clean surface free from the inclusion of the impurities can be secured on the surface of the semiconductor processing member, and the surface roughness can be maintained in a suitable state.
[Brief description of the drawings]
FIG. 1 is a roughness curve diagram showing a surface undulation state in which the surface (Example 1) of a semiconductor processing member according to the present invention was measured with a surface roughness measuring machine.
FIG. 2 is a roughness curve diagram showing a surface undulation state in which the surface of a semiconductor processing member according to Comparative Example 1 was measured with a surface roughness measuring machine.
FIG. 3 is a roughness curve diagram showing a surface undulation state in which the surface of a semiconductor processing member according to a conventional example is measured with a surface roughness measuring machine.
FIG. 4 is a diagram for explaining a method of measuring a peak account.
FIG. 5 is a measurement diagram of wide scan (a), C1s peak (b), and Si2p peak (c) in XPS analysis.
FIG. 6 is a schematic diagram illustrating the mechanism by which impurities adhere to and remain on the surface of a member even after cleaning, taking F element as an example.

Claims (2)

半導体製造工程において用いられる半導体処理用部材において、
表面の表面粗さが、表面粗さ測定機を用いた不感帯幅を0.3μmとし測定長を4mmとした際のピークカウント(Pc)で150/cm以上であって、
前記表面が、X線光電子分光分析でのフッ素元素量が0.3atomic%以下、有機系窒素量が0.7atomic%以下、炭化水素成分量が29atomic%以下で、かつ有機系CO量が4atomic%以下であることを特徴とする半導体処理用部材。
In the semiconductor processing member used in the semiconductor manufacturing process,
The surface roughness of the surface is 150 / cm or more in peak count (Pc) when the dead zone width using a surface roughness measuring machine is 0.3 μm and the measurement length is 4 mm,
The surface has a fluorine element amount of 0.3 atomic% or less, an organic nitrogen amount of 0.7 atomic% or less, a hydrocarbon component amount of 29 atomic% or less, and an organic CO amount of 4 atomic% in X-ray photoelectron spectroscopy. The member for semiconductor processing characterized by the following.
半導体製造工程において用いられる半導体処理用部材の基体表面に炭化珪素膜を形成した、もしくは炭化珪素膜のみからなる半導体処理用部材において、
前記炭化珪素膜表面の表面粗さが、表面粗さ測定機を用いた不感帯幅を0.3μmとし、測定長を4mmとした際のピークカウント(Pc)で150/cm以上であって、
前記炭化珪素膜表面が、X線光電子分光分析でのフッ素元素量が0.3atomic%以下、有機系窒素量が0.7atomic%以下、炭化水素成分量が29atomic%以下で、かつ有機系CO量が4atomic%以下であることを特徴とする半導体処理用部材。
In a semiconductor processing member in which a silicon carbide film is formed on a substrate surface of a semiconductor processing member used in a semiconductor manufacturing process or consisting only of a silicon carbide film,
The surface roughness of the silicon carbide film surface is 150 / cm or more in peak count (Pc) when the dead zone width using a surface roughness measuring machine is 0.3 μm and the measurement length is 4 mm,
The surface of the silicon carbide film has a fluorine element amount of 0.3 atomic% or less, an organic nitrogen amount of 0.7 atomic% or less, a hydrocarbon component amount of 29 atomic% or less, and an organic CO amount in X-ray photoelectron spectroscopy. Is a member for semiconductor processing, characterized by being 4 atomic% or less.
JP2002272843A 2002-09-19 2002-09-19 Semiconductor processing components Expired - Fee Related JP3956291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002272843A JP3956291B2 (en) 2002-09-19 2002-09-19 Semiconductor processing components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002272843A JP3956291B2 (en) 2002-09-19 2002-09-19 Semiconductor processing components

Publications (2)

Publication Number Publication Date
JP2004111686A JP2004111686A (en) 2004-04-08
JP3956291B2 true JP3956291B2 (en) 2007-08-08

Family

ID=32269761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002272843A Expired - Fee Related JP3956291B2 (en) 2002-09-19 2002-09-19 Semiconductor processing components

Country Status (1)

Country Link
JP (1) JP3956291B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194042B2 (en) 2009-10-14 2015-11-24 Asahi Glass Company, Limited Jig for semiconductor production and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4812675B2 (en) * 2007-03-30 2011-11-09 コバレントマテリアル株式会社 Vertical wafer boat
WO2013065666A1 (en) * 2011-10-31 2013-05-10 京セラ株式会社 Gas nozzle, plasma device using same, and method for manufacturing gas nozzle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2549030B2 (en) * 1991-03-29 1996-10-30 東芝セラミックス株式会社 Semiconductor processing member and method of manufacturing the same
JPH05326482A (en) * 1992-05-18 1993-12-10 Nec Yamagata Ltd Purifying method for manufacturing jig of semiconductor device
JP3547810B2 (en) * 1994-09-30 2004-07-28 東芝セラミックス株式会社 Wafer mounting boat and vapor phase growth apparatus using the same
JPH09162146A (en) * 1995-12-08 1997-06-20 Sumitomo Metal Ind Ltd Cleaning method of jig for semiconductor
JPH118216A (en) * 1997-06-16 1999-01-12 Toshiba Ceramics Co Ltd Method of cleaning semiconductor manufacturing member
JPH11157989A (en) * 1997-11-25 1999-06-15 Toyo Tanso Kk Susceptor for gas phase growth and its production
JP3568773B2 (en) * 1998-03-18 2004-09-22 東芝セラミックス株式会社 Components for semiconductor manufacturing equipment
JP2000327459A (en) * 1999-05-26 2000-11-28 Asahi Glass Co Ltd Silicon carbide jig for low pressure cvd and its production
JP4294176B2 (en) * 1999-09-13 2009-07-08 株式会社山形信越石英 Method for cleaning quartz articles with a grained surface
JP2002231791A (en) * 2001-01-30 2002-08-16 Toshiba Ceramics Co Ltd Member for heat-treating semiconductor and its transfer method
JP2002261074A (en) * 2001-02-28 2002-09-13 Orc Mfg Co Ltd Method and apparatus for processing semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194042B2 (en) 2009-10-14 2015-11-24 Asahi Glass Company, Limited Jig for semiconductor production and method for producing same

Also Published As

Publication number Publication date
JP2004111686A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP4278441B2 (en) Semiconductor wafer processing components
JPH104083A (en) Anticorrosive material for semiconductor fabrication
JP3494554B2 (en) Jig for semiconductor and manufacturing method thereof
JP6232680B2 (en) How to clean the susceptor
EP1314188A2 (en) Process for cleaning ceramic articles
JP3956291B2 (en) Semiconductor processing components
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JP3094312B2 (en) Susceptor
TWI284632B (en) Silica glass jig for semiconductor industry and method of manufacturing the same
JP4437365B2 (en) Silica glass jig for semiconductor industry and manufacturing method thereof
JP5652402B2 (en) Semiconductor manufacturing jig and manufacturing method thereof
JP2002222803A (en) Corrosion resistant member for manufacturing semiconductor
JPWO2004051724A1 (en) Silica glass jig used in the process of manufacturing a semiconductor and its manufacturing method
JP2001089198A (en) Silica glass jig for semiconductor device and method for producing the same jig
JP2001284275A (en) Member for cvd-silicon carbide film covered semiconductor heat treatment
JP2002252179A (en) Method of cleaning tube for heat treatment of semiconductor substrate, and metallic contamination getter substrate, and regenerative metal contamination getter substrate
JP3473654B2 (en) Method for manufacturing semiconductor mirror-surface wafer
JP4556090B2 (en) Member for silicon carbide semiconductor manufacturing apparatus and method for manufacturing the same
JPH08102443A (en) Semiconductor wafer support base and vapor growth device
JP2004143583A (en) Quartz glass component, method for producing the same, and apparatus using the same
JP4539794B2 (en) Silica glass jig for semiconductor industry and manufacturing method thereof
JP5876259B2 (en) Method for manufacturing member covered with aluminum nitride film
JP2003277933A (en) Method of purifying silicon carbide-coated member
TW476986B (en) Process for cleaning ceramic articles
JP2000109989A (en) Inner wall protective member of plasma treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070426

R150 Certificate of patent or registration of utility model

Ref document number: 3956291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20071106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees