JP4437365B2 - Silica glass jig for semiconductor industry and manufacturing method thereof - Google Patents

Silica glass jig for semiconductor industry and manufacturing method thereof Download PDF

Info

Publication number
JP4437365B2
JP4437365B2 JP2000296756A JP2000296756A JP4437365B2 JP 4437365 B2 JP4437365 B2 JP 4437365B2 JP 2000296756 A JP2000296756 A JP 2000296756A JP 2000296756 A JP2000296756 A JP 2000296756A JP 4437365 B2 JP4437365 B2 JP 4437365B2
Authority
JP
Japan
Prior art keywords
silica glass
mass
jig
semiconductor industry
glass jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000296756A
Other languages
Japanese (ja)
Other versions
JP2002110554A (en
Inventor
徹 瀬川
龍弘 佐藤
洋一郎 丸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2000296756A priority Critical patent/JP4437365B2/en
Priority to PCT/JP2001/007634 priority patent/WO2002027771A1/en
Priority to KR1020027006564A priority patent/KR100547743B1/en
Priority to TW090122360A priority patent/TWI284632B/en
Priority to EP01122851A priority patent/EP1193327B1/en
Priority to DE60107035T priority patent/DE60107035T2/en
Priority to US09/962,918 priority patent/US20020078886A1/en
Publication of JP2002110554A publication Critical patent/JP2002110554A/en
Priority to US10/664,272 priority patent/US20040050102A1/en
Application granted granted Critical
Publication of JP4437365B2 publication Critical patent/JP4437365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、半導体工業用シリカガラス治具、特に表面に突起が分布する半導体工業用シリカガラス治具およびその製造方法に関する。
【0002】
【従来の技術】
従来、半導体素子の製造において、基板上に酸化けい素、窒化けい素またはポリシリコン等の被膜材料からなる被膜を形成することが行われているが、その際、被覆材料が基板の上にとどまらず被覆のための反応室やその中に配備する部材(以下、反応室や部材を単に治具という)の表面にも堆積する。治具が石英ガラスからなる場合、被覆材料が一定の厚さ以上になると治具と被覆材料との熱膨張率差により応力が発生し剥離或はパーティクルとなって半導体素子を汚染することが起こる。特に高温のCVD法で被膜を形成する場合、剥離傾向は一段と増す。そのため治具を一定時間使用したのち洗浄するのが一般的であるが、洗浄には時間がかかる上に工程数が増し製造コストを高いものにする。そこで、治具表面に凹凸を設けることで被膜の剥離を低減する方法が提案された。この凹凸の形成には二酸化ケイ素微粒子、炭素微粒子、セラミック微粒子を吹き付ける乾式サンドブラスト法、ダイヤモンド砥粒を用いる研削法或はスラリー状の遊離砥粒を用いるウエットブラスト法等の機械的加工法や、特定の処理溶液で処理する化学的加工法等が用いられるが、機械的加工法では、治具表面に形成した凹凸と供にマイクロクラックを持った層が形成され、その深さが100μmmに達することがある。このような深いマイクロクラックが発生すると、その中に半導体素子を汚染する物質が取り込まれ、半導体素子を汚染したり、或はマイクロクラックが破壊開始クラックとなり治具の強度を低下し使用寿命を短いものにする等の欠点があった。さらに、前記マイクロクラックの発生は洗浄時に治具表面の凹凸を変え、同一条件での気相反応ができず、安定な被膜の形成を困難にする。この問題を解決するため例えば特開平10−59744号公報では、機械加工したのち、3〜20質量%のフッ化水素を含有するフッ化水素酸でエッチング処理し、マイクロクラックを開放しているが、この方法では滑らかなディンプル状の凹凸になり、細かい凹凸がなくなるため、最近の高度化した半導体素子で要求するレベルの均質な被膜の形成を困難にしている。
【0003】
また、シリカガラス治具表面の凹凸の形成を化学的加工法で行った場合、確かにマイクロクラックの発生がなく汚染物質による半導体素子の汚染が少なくなる上に、治具の凹凸の変化も少なく均一な気相反応ができ均質な被膜ができるが、治具表面の凹凸が大きくなると、例えばRa=3以上の粗さにすると、凸の頂部や凹の底部に平滑な部分が存在するようになり、この平滑部に被覆材料が付着し、付着した被覆材料と治具との熱膨張率差から治具にクラックが発生し、それがパーティクルの発生源となる等の問題があった。
【0004】
【発明が解決しようとする課題】
こうした現状に鑑み、本発明者等は鋭意研究した結果、前記化学的加工法が治具表面にマイクロクラックを発生させない上に、治具の凹凸の変化も少ないことから、この化学的加工法を改良することににより優れた石英ガラス治具が得られるとの考えに基づきさらに研究を行ったところ、化学的加工法で先ず比較的大きな切頭ピラミッド状の突出物を形成し、その上にさらに小突起物を形成することで、被膜の剥離が一段と低減し、治具と被覆材料との熱膨張率差によるクラックの発生も極めて少なく、治具の洗浄回数を減らすことができる石英ガラス治具が得られることを見出して、本発明を完成したものである。すなわち
【0005】
本発明は、被膜の剥離が少なくパーティクルの発生による半導体素子の汚染がなく洗浄回数を減らずことができる上に、クラックの発生が少なく使用寿命の長い半導体工業用シリカガラス治具を提供することを目的とする。
【0006】
また、本発明は、上記半導体工業用シリカガラス治具の簡便な製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成する本発明は、半導体工業で使用するシリカガラス治具において、前記治具表面に切頭ピラミッド形状の突出構造体と、その間の凹部を有し、それらの上に小突起物が均一に分布することを特徴とする半導体工業用シリカガラス治具及びその製造方法に係る。
【0008】
本発明の半導体工業用シリカガラス治具は、例えば炉芯管、ウェーハ載置用ボート等、半導体工業で使用される治具であり、その治具表面には切頭ピラミッド形状の突出構造体と、その間の凹部の平坦部にさらに小突起物が均一に分布する治具である。前記突出構造体はその底部の最大幅が70〜1000μm、底部から頂部までの高さが10〜100μmの範囲にあるのがよい。突出構造体の底部最大幅が70μm未満では面粗さが小さく、厚い被膜形成時の効果が十分でなく、底部の最大幅が1000μmを超える大きさの構造体の形成は技術的に困難である。また、突出構造体の高さが10μm未満では凹凸が浅く剥離防止が十分でなく、100μmを超える高さの突出構造体の形成は困難である。
【0009】
突出構造体とその側面及び突出構造体の間の凹部の平坦部に形成される小突起物はその底部の最大幅が50μm以下、底部から頂部までの高さが10μm未満であるのがよい。小突起物の最大幅が50μmを超えては平坦部が残り、クラックやパーティクルが発生し易い。本発明の半導体工業用シリカガラス治具は、前記表面構造を有することから、治具と堆積被膜との熱膨張率差によるクラックの発生を低減でき、治具に堆積した被膜の剥離が少なく厚い膜を付けられた治具の洗浄回数も少なくできる。さらに、凹凸が化学的加工法で形成されることから、マイクロクラック層の発生による不純物の取り込みがなく、またマイクロクラックに起因する強度不足や洗浄による面状態の変化もなく、気相反応を安定にでき均質な被膜を形成することができる。
【0010】
本発明の半導体工業用シリカガラス治具の製造方法は、まずシリカガラス治具をフッ化水素、フッ化アンモニウム及び有機酸を含有する第1の処理液に浸漬し、次いで前記処理液より有機酸の比率が多い第2の処理液に少なくとも1回浸漬して、治具表面に切頭ピラミッド形状の突出構造体と、その間の凹部を形成するとともに、それらの上に小突起物を均一に分布する。使用する第1の処理液中のフッ化水素の含有量は15〜50質量%、フッ化アンモニウムの含有量は6〜30質量%及び有機酸の含有量は40〜50質量%の範囲がよい。また、第2の処理液中のフッ化水素の含有量は5〜20質量%、フッ化アンモニウムの含有量は6〜30質量%及び有機酸の含有量は40〜70質量%の範囲で、第1の処理液より有機酸の含有量が多い範囲が選ばれる。
【0011】
上記第1の処理液中のフッ化アンモニウムの含有量が6質量%未満では、フッ化水素によるエッチングが起こるにとどまり凹凸の形成がなく、フッ化アンモニウムが30質量%を超えても凹凸の形成効果は同じで、コスト高となり実用的でない。また、有機酸の含有量が20質量%未満では有機酸の含有効果が少なく、50質量%を超えると、突出構造体が小さくなり過ぎ、厚膜形成時の効果が十分でない。さらに、第2の処理液中のフッ化アンモニウムの含有量が6未満では、フッ化水素によるエッチングが起こるにとどまり凹凸の形成がなく、また、有機酸の含有量が40質量%未満では突起物が大きくなり過ぎ、70質量%を超える処理液の調製は困難である。有機酸としては、特に水溶性の有機カルボン酸がよく、具体的には蟻酸、酢酸、プロピオン酸等が挙げられるが、中でも、水への溶解度が高く、かつ安価である酢酸が好適である。
【0012】
【発明の実施の形態】
次に本発明の実施例について述べるがこれによって本発明はなんら限定されるものではない。
【0013】
【実施例】
実施例1
CVD用の炉芯管をフッ化水素30質量%、フッ化アンモニウム10質量%及び酢酸35質量%の処理液槽に1時間間浸し、底部の最大幅が300μm、底部から頂部までの高さが30μmの切頭ピラミッド状の突出構造体と、その間の凹部が平坦部を有する炉芯管を得た。突出構造体の寸法は、前記処理した炉芯管の走査電子顕微鏡写真を図1のように撮り、それぞれの突出構造体の底部の最大幅、底部から頂部までの高さを求め、平均値として表わしたものである。この処理済炉芯管を粗さ計で測定したところ、平均粗さRaは3μmであった。前記の炉芯管をさらにフッ酸15質量%、フッ化アンモニウム15質量%、酢酸50質量%の処理液に浸漬した。得られた炉芯管の表面を走査電子顕微鏡でみたところ図2に示すように底部の最大幅が15μm、底部から頂部までの高さが2μmの小突起物が均一に分布していた。この炉芯管の平均粗さRaは3.5μmで全体が不透明であった。前記炉芯管を用いてシリコンウェーハのポリシリコン膜の形成をCVD法で行った。炉芯管にポリシリコン膜が30μm付着するまで使用したが、パーティクルの発生がなくシリコンウェーハを高い歩留で処理できた。また、使用後のポリシリコン膜付炉芯管にはクラックの発生がなく、膜の剥がれもなかった。
【0014】
比較例1
実施例1において、炉芯管の化学的加工を第一の処理液の処理にとどめ、その炉芯管を用いて、シリコンウェーハにCVD法でポリシリコン膜を25μm付ける処理を行った。炉芯管にはクラックが多く入り、一部に膜剥離がみられた。
【0015】
比較例2
実施例1の炉芯管を第2の処理液を用いた化学的加工を行った。表面の平均粗さRaは1μmであった。この炉芯管を用いて、シリコンウェーハのポリシリコン膜をCVD法で30μm付ける処理を行ったところ、炉芯管にポリシリコン膜の付着が25μmを超えるとパーティクルの発生が多くなり、また、使用後の炉芯管にはクラックの発生があった。
【0016】
【発明の効果】
本発明の半導体シリカガラス治具は、その表面が切頭ピラミッド形状の突出構造体と、その間の凹部に小突起物が均一に分布した構造を有し、半導体素子のCVD法による成膜においてもクラックの発生が少なく被膜の剥離によるパーティクルの発生が少ない上に、洗浄間隔を長くしても半導体素子を汚染することがない。前記シリカガラス治具は、特定の濃度のフッ化水素、フッ化アンモニウム及び有機酸を含有する処理液で少なくとも2回処理することで容易に製造でき、その工業的価値は高いものがある。
【図面の簡単な説明】
【図1】第1の処理液で処理したシリカガラス治具表面の走査電子顕微鏡による100倍の写真である。
【図2】第1及び第2の処理液で処理したシリカガラス治具表面の走査電子顕微鏡による100倍の写真である。
[0001]
[Industrial application fields]
The present invention relates to a silica glass jig for semiconductor industry, and more particularly to a silica glass jig for semiconductor industry in which protrusions are distributed on the surface and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, in the manufacture of semiconductor devices, a film made of a film material such as silicon oxide, silicon nitride, or polysilicon is formed on a substrate. However, the coating material stays on the substrate. It is also deposited on the surface of the reaction chamber for coating and the members disposed therein (hereinafter, the reaction chamber and members are simply referred to as jigs). When the jig is made of quartz glass, if the coating material exceeds a certain thickness, stress is generated due to the difference in thermal expansion coefficient between the jig and the coating material, and peeling or particles may contaminate the semiconductor element. . In particular, when a film is formed by a high-temperature CVD method, the tendency to peel off further increases. For this reason, cleaning is generally performed after the jig has been used for a certain period of time. However, cleaning takes time, and the number of steps increases, resulting in a high manufacturing cost. In view of this, a method for reducing the peeling of the film by providing irregularities on the jig surface has been proposed. For the formation of these irregularities, mechanical processing methods such as dry sand blasting method in which silicon dioxide fine particles, carbon fine particles, ceramic fine particles are sprayed, grinding method using diamond abrasive grains or wet blasting method using slurry-like free abrasive grains, etc. are specified. A chemical processing method or the like that is treated with the above processing solution is used, but in the mechanical processing method, a layer having microcracks is formed together with the unevenness formed on the surface of the jig, and the depth reaches 100 μm. There is. When such a deep microcrack occurs, a substance that contaminates the semiconductor element is taken into the microcrack, and the semiconductor element is contaminated, or the microcrack becomes a fracture start crack, reducing the strength of the jig and shortening the service life. There were drawbacks such as making things. Furthermore, the occurrence of the microcracks changes the unevenness of the jig surface during cleaning, making it impossible to perform a gas phase reaction under the same conditions, making it difficult to form a stable film. In order to solve this problem, for example, in Japanese Patent Application Laid-Open No. 10-59744, after machining, the microcracks are released by etching with hydrofluoric acid containing 3 to 20% by mass of hydrogen fluoride. In this method, smooth dimple-like irregularities are formed, and fine irregularities are eliminated, so that it is difficult to form a uniform coating film at a level required by recent advanced semiconductor elements.
[0003]
In addition, when the formation of irregularities on the surface of a silica glass jig is performed by a chemical processing method, the occurrence of microcracks certainly does not occur, the contamination of semiconductor elements due to contaminants is reduced, and the irregularities of the jig are also reduced. Uniform gas phase reaction is possible and a uniform film can be formed. However, when the unevenness of the jig surface becomes large, for example, when Ra = 3 or more, there is a smooth portion at the top of the convex or the bottom of the concave. Thus, there is a problem that the coating material adheres to the smooth portion, and a crack is generated in the jig due to a difference in thermal expansion coefficient between the attached coating material and the jig, which becomes a generation source of particles.
[0004]
[Problems to be solved by the invention]
In view of such a current situation, the present inventors have conducted intensive research, and as a result, the chemical processing method does not generate microcracks on the jig surface, and the unevenness of the jig is small. Based on the idea that an improved quartz glass jig can be obtained by improvement, a relatively large truncated pyramid-shaped protrusion was first formed by a chemical processing method, and further on that By forming small protrusions, the peeling of the film is further reduced, the occurrence of cracks due to the difference in thermal expansion coefficient between the jig and the coating material is extremely small, and the number of times the jig is cleaned can be reduced. And the present invention has been completed. That is, [0005]
The present invention provides a silica glass jig for the semiconductor industry with less peeling of the coating film, less contamination of the semiconductor element due to generation of particles and less frequency of cleaning, and less generation of cracks and longer service life. With the goal.
[0006]
Another object of the present invention is to provide a simple method for producing the silica glass jig for the semiconductor industry.
[0007]
[Means for Solving the Problems]
The present invention that achieves the above object is a silica glass jig used in the semiconductor industry, having a truncated pyramid-shaped protruding structure on the surface of the jig, and a recess therebetween, and a small protrusion on them. The present invention relates to a silica glass jig for semiconductor industry, which is uniformly distributed, and a method for manufacturing the same.
[0008]
The silica glass jig for the semiconductor industry of the present invention is a jig used in the semiconductor industry such as a furnace core tube, a wafer mounting boat, etc., and a truncated pyramid-shaped protruding structure on the jig surface , A jig in which small protrusions are evenly distributed on the flat portion of the recess between them. The protruding structure may have a maximum width at the bottom of 70 to 1000 μm and a height from the bottom to the top of 10 to 100 μm. If the bottom maximum width of the protruding structure is less than 70 μm, the surface roughness is small, the effect at the time of forming a thick film is not sufficient, and it is technically difficult to form a structure having a maximum width exceeding 1000 μm. . Further, if the height of the protruding structure is less than 10 μm, the unevenness is shallow and the prevention of peeling is not sufficient, and it is difficult to form the protruding structure having a height exceeding 100 μm.
[0009]
The small protrusion formed on the protruding structure and the flat portion of the concave portion between the side surface and the protruding structure may have a maximum width of the bottom of 50 μm or less and a height from the bottom to the top of less than 10 μm. If the maximum width of the small protrusion exceeds 50 μm, a flat portion remains and cracks and particles are likely to occur. Since the silica glass jig for semiconductor industry of the present invention has the above-mentioned surface structure, it is possible to reduce the generation of cracks due to the difference in thermal expansion coefficient between the jig and the deposited film, and the coating deposited on the jig is less peeled and thick. The number of cleaning of the jig with the film attached can be reduced. In addition, since the irregularities are formed by chemical processing methods, there is no uptake of impurities due to the generation of microcrack layers, and there is no lack of strength due to microcracks, and there is no change in surface state due to cleaning, which stabilizes gas phase reactions. And a uniform film can be formed.
[0010]
In the method for producing a silica glass jig for semiconductor industry according to the present invention, the silica glass jig is first immersed in a first treatment liquid containing hydrogen fluoride, ammonium fluoride and an organic acid, and then an organic acid is added from the treatment liquid. Is immersed at least once in the second treatment liquid with a high ratio of the above, forming a truncated pyramid-shaped projecting structure on the jig surface and a recess therebetween, and uniformly distributing the small projections on them. To do. The content of hydrogen fluoride in the first treatment liquid to be used is 15 to 50% by mass, the content of ammonium fluoride is 6 to 30% by mass, and the content of organic acid is preferably 40 to 50% by mass. . Moreover, the content of hydrogen fluoride in the second treatment liquid is 5 to 20% by mass, the content of ammonium fluoride is 6 to 30% by mass, and the content of organic acid is in the range of 40 to 70% by mass. A range in which the content of the organic acid is higher than that of the first treatment liquid is selected.
[0011]
When the content of ammonium fluoride in the first treatment liquid is less than 6% by mass, etching with hydrogen fluoride occurs and no irregularities are formed. Even when ammonium fluoride exceeds 30% by mass, irregularities are formed. The effect is the same, it is expensive and not practical. Moreover, when the content of the organic acid is less than 20% by mass, the effect of containing the organic acid is small. When the content exceeds 50% by mass, the protruding structure becomes too small, and the effect at the time of forming the thick film is not sufficient. Furthermore, when the content of ammonium fluoride in the second treatment liquid is less than 6, etching with hydrogen fluoride occurs and no irregularities are formed, and when the content of organic acid is less than 40% by mass, protrusions are formed. Is too large, and it is difficult to prepare a treatment liquid exceeding 70% by mass. The organic acid is particularly preferably a water-soluble organic carboxylic acid, and specifically includes formic acid, acetic acid, propionic acid, etc. Among them, acetic acid having high solubility in water and being inexpensive is preferable.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, examples of the present invention will be described, but the present invention is not limited thereto.
[0013]
【Example】
Example 1
The furnace core tube for CVD is immersed in a treatment liquid bath of 30% by mass of hydrogen fluoride, 10% by mass of ammonium fluoride and 35% by mass of acetic acid for 1 hour, the maximum width at the bottom is 300 μm, and the height from the bottom to the top is A 30 μm truncated pyramid-shaped projecting structure and a furnace core tube having a flat portion between the concave portions therebetween were obtained. As for the dimensions of the protruding structure, the scanning electron micrograph of the processed furnace core tube is taken as shown in FIG. 1, the maximum width of the bottom of each protruding structure, the height from the bottom to the top, and the average value. It is a representation. When this treated furnace core tube was measured with a roughness meter, the average roughness Ra was 3 μm. The furnace core tube was further immersed in a treatment solution of 15% by mass of hydrofluoric acid, 15% by mass of ammonium fluoride, and 50% by mass of acetic acid. When the surface of the obtained furnace core tube was observed with a scanning electron microscope, as shown in FIG. 2, small protrusions having a maximum width of 15 μm at the bottom and a height of 2 μm from the bottom to the top were uniformly distributed. The average roughness Ra of the furnace core tube was 3.5 μm and the whole was opaque. The polysilicon film of the silicon wafer was formed by the CVD method using the furnace core tube. Although it was used until the polysilicon film adhered to the furnace core tube to a thickness of 30 μm, there was no generation of particles and the silicon wafer could be processed with a high yield. Further, the furnace core tube with a polysilicon film after use had no cracks and the film was not peeled off.
[0014]
Comparative Example 1
In Example 1, the chemical processing of the furnace core tube was limited to the processing of the first treatment liquid, and the furnace core tube was used to perform a process of applying a polysilicon film to a silicon wafer by 25 μm by the CVD method. Many cracks were found in the furnace core tube, and film peeling was observed in part.
[0015]
Comparative Example 2
The furnace core tube of Example 1 was chemically processed using the second treatment liquid. The average roughness Ra of the surface was 1 μm. Using this furnace core tube, a process of attaching a polysilicon film of a silicon wafer to 30 μm by the CVD method was carried out. If the polysilicon film adhered to the furnace core pipe exceeded 25 μm, the generation of particles increased, Later furnace core tubes had cracks.
[0016]
【The invention's effect】
The semiconductor silica glass jig of the present invention has a structure in which the surface thereof has a truncated pyramid-shaped protruding structure and a structure in which small protrusions are uniformly distributed in the recesses between them. The generation of cracks and the generation of particles due to peeling of the coating are small, and the semiconductor element is not contaminated even if the cleaning interval is increased. The silica glass jig can be easily manufactured by treating at least twice with a treatment liquid containing hydrogen fluoride, ammonium fluoride and an organic acid having specific concentrations, and has a high industrial value.
[Brief description of the drawings]
FIG. 1 is a 100 × photograph of a surface of a silica glass jig treated with a first treatment liquid, taken with a scanning electron microscope.
FIG. 2 is a 100 × photograph of the surface of a silica glass jig treated with first and second treatment liquids, taken with a scanning electron microscope.

Claims (5)

表面に切頭ピラミッド形状の突出構造体と、その間に凹部を有し、それらの上に小突起物が均一に分布する半導体工業で使用するシリカガラス治具において、前記切頭ピラミッド形状の突出構造体の底部の最大幅が70〜1000μm、底部から突出構造体の頂部までの高さが10〜100μmで、かつ突出構造体と、その間の凹部に均一に分布する小突起物の底部の最大幅が1〜50μm、底部から頂部までの高さが0.1〜10μmであることを特徴とする半導体工業用シリカガラス治具。 In a silica glass jig used in the semiconductor industry having a truncated pyramid-shaped protruding structure on the surface and concave portions therebetween, and small protrusions uniformly distributed thereon, the truncated pyramid-shaped protruding structure The maximum width of the bottom of the body is 70 to 1000 μm, the height from the bottom to the top of the protruding structure is 10 to 100 μm, and the maximum width of the bottom of the small protrusions uniformly distributed in the protruding structure and the recesses between them 1 to 50 μm, and the height from the bottom to the top is 0.1 to 10 μm. 半導体工業用シリカガラス治具表面の平均粗さRaが1〜10μmの範囲にあることを特徴とする請求項1記載の半導体工業用シリカガラス治具。2. The silica glass jig for semiconductor industry according to claim 1, wherein the average roughness Ra of the surface of the silica glass jig for semiconductor industry is in the range of 1 to 10 [mu] m. シリカガラス治具をフッ化水素、フッ化アンモニウム及び有機酸を含有する第1の処理液に浸漬したのち、この第1の処理液より有機酸の含有量が多い第2の処理液に少なくとも1回浸漬することを特徴とする請求項1又は2記載の半導体工業用シリカガラス治具の製造方法。After immersing the silica glass jig in the first treatment liquid containing hydrogen fluoride, ammonium fluoride, and organic acid, at least one second treatment liquid having a higher content of organic acid than the first treatment liquid is used. The method for producing a silica glass jig for semiconductor industry according to claim 1 or 2, wherein the method is immersed once. 第1の処理液がフッ化水素15〜50質量%、フッ化アンモニウム6〜30質量%及び有機酸が30〜50質量%を含有する水溶液であり、第2の処理液がフッ化水素5〜20質量%、フッ化アンモニウム6〜30質量%及び有機酸40〜70質量%を含有する処理液であることを特徴とする請求項3記載の半導体工業用シリカガラス治具の製造方法。The first treatment liquid is an aqueous solution containing 15 to 50% by mass of hydrogen fluoride, 6 to 30% by mass of ammonium fluoride, and 30 to 50% by mass of an organic acid, and the second treatment liquid is 5 to 5% of hydrogen fluoride. 4. The process for producing a silica glass jig for semiconductor industry according to claim 3, wherein the treatment liquid contains 20% by mass, ammonium fluoride 6-30% by mass and organic acid 40-70% by mass. 有機酸が酢酸であることを特徴とする請求項3又は4記載の半導体工業用シリカガラス治具の製造方法。The method for producing a silica glass jig for semiconductor industry according to claim 3 or 4, wherein the organic acid is acetic acid.
JP2000296756A 2000-09-28 2000-09-28 Silica glass jig for semiconductor industry and manufacturing method thereof Expired - Lifetime JP4437365B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000296756A JP4437365B2 (en) 2000-09-28 2000-09-28 Silica glass jig for semiconductor industry and manufacturing method thereof
PCT/JP2001/007634 WO2002027771A1 (en) 2000-09-28 2001-09-04 Semiconductor industry-use silica glass jig and production method therefor
KR1020027006564A KR100547743B1 (en) 2000-09-28 2001-09-04 Silica Glass Jig for Semiconductor Industry and Manufacturing Method Thereof
TW090122360A TWI284632B (en) 2000-09-28 2001-09-10 Silica glass jig for semiconductor industry and method of manufacturing the same
EP01122851A EP1193327B1 (en) 2000-09-28 2001-09-24 Silica glass apparatus for semiconductor industry and method for producing the same
DE60107035T DE60107035T2 (en) 2000-09-28 2001-09-24 Quartz glass devices for the semiconductor industry and process for their manufacture
US09/962,918 US20020078886A1 (en) 2000-09-28 2001-09-25 Silica glass jig for semiconductor industry and method for producing the same
US10/664,272 US20040050102A1 (en) 2000-09-28 2003-09-15 Silica glass jig for semiconductor industry and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000296756A JP4437365B2 (en) 2000-09-28 2000-09-28 Silica glass jig for semiconductor industry and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002110554A JP2002110554A (en) 2002-04-12
JP4437365B2 true JP4437365B2 (en) 2010-03-24

Family

ID=18778982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000296756A Expired - Lifetime JP4437365B2 (en) 2000-09-28 2000-09-28 Silica glass jig for semiconductor industry and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4437365B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220111262A (en) 2019-12-04 2022-08-09 신에쯔 세끼에이 가부시키가이샤 How to make quartz glass

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5132859B2 (en) 2001-08-24 2013-01-30 ステラケミファ株式会社 Micro-processed surface treatment liquid for glass substrates with multiple components
JP4813400B2 (en) * 2007-02-28 2011-11-09 信越石英株式会社 Method for etching quartz glass member
JP2008208008A (en) * 2007-02-28 2008-09-11 Shinetsu Quartz Prod Co Ltd Etching method of quartz glass member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220111262A (en) 2019-12-04 2022-08-09 신에쯔 세끼에이 가부시키가이샤 How to make quartz glass

Also Published As

Publication number Publication date
JP2002110554A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
EP1737026B1 (en) Method of surface treating III-V semiconductor compound based substrates and method of manufacturing III-V compound semiconductors
KR100284105B1 (en) Jig for semiconductor and method of manufacturing thereof
WO2006071535A2 (en) Silicon electrode assembly surface decontamination by acidic solution
US6825123B2 (en) Method for treating semiconductor processing components and components formed thereby
JP4437365B2 (en) Silica glass jig for semiconductor industry and manufacturing method thereof
KR100547743B1 (en) Silica Glass Jig for Semiconductor Industry and Manufacturing Method Thereof
JP2010042991A (en) Silica glass jig used in process for manufacturing semiconductor
JP4539794B2 (en) Silica glass jig for semiconductor industry and manufacturing method thereof
JP3824299B2 (en) Frost treatment liquid and frost treatment method on quartz glass surface
KR20050001332A (en) Process for the wet-chemical surface treatment of a semiconductor wafer
JP2001089198A (en) Silica glass jig for semiconductor device and method for producing the same jig
JP3956291B2 (en) Semiconductor processing components
JP2002252179A (en) Method of cleaning tube for heat treatment of semiconductor substrate, and metallic contamination getter substrate, and regenerative metal contamination getter substrate
JP2007063070A (en) Method for manufacturing plasma-resistant yttria sintered compact
JP3262696B2 (en) Silica glass member having glassy carbon coating
JP2000016821A (en) Production of jig for processing semiconductor wafer and jig
JP2003257960A (en) Jig for heat treatment of semiconductor
JPH11158628A (en) Ceramic stock for coating forming and etching device
JPH10194876A (en) Production of jig for semiconductor
US6458707B1 (en) Tool for semiconductor manufacturing apparatus and method for using the same
US20040023510A1 (en) Method for producing a quartz glass tank for use in ultrasonic cleaning used for fabricating semiconductor and quartz glass tank obtainable from that method
JP2003292330A (en) Quartz glass for heat treatment of semiconductor
JPH10245266A (en) Purification of silicon carbide-based molded product
JP2004299964A (en) Silicon-impregnated silicon carbide member and surface treatment method of the same
JP2004238262A (en) Surface treatment method of quartz glass member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4437365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250