JPH10245266A - Purification of silicon carbide-based molded product - Google Patents

Purification of silicon carbide-based molded product

Info

Publication number
JPH10245266A
JPH10245266A JP9050036A JP5003697A JPH10245266A JP H10245266 A JPH10245266 A JP H10245266A JP 9050036 A JP9050036 A JP 9050036A JP 5003697 A JP5003697 A JP 5003697A JP H10245266 A JPH10245266 A JP H10245266A
Authority
JP
Japan
Prior art keywords
sic
membrane
molded product
silicon carbide
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9050036A
Other languages
Japanese (ja)
Inventor
Hideki Kiku
秀樹 喜久
Akira Nogami
暁 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP9050036A priority Critical patent/JPH10245266A/en
Publication of JPH10245266A publication Critical patent/JPH10245266A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently remove impurities in a molded product without causing the deterioration in strength of the molded product itself according to a simple method by forming an Si membrane on the surface of a silicon carbide-based molded product according to a chemical vapor deposition(CVD) method, then heat-treating the formed membrane, diffusing and adsorbing the impurities into the Si membrane and removing the whole membrane by an etching method. SOLUTION: The surface of a silicon carbide-based molded product having the surface comprising silicon carbide is coated with an Si membrane according the a CVD method and the formed membrane is then heat-treated at >=1,000 deg.C for several to some ten hr to diffuse and adsorb impurities in the interior of the molded product into the Si membrane. The whole Si membrane into which the impurities are diffused and adsorbed is subsequently removed by a dry or a wet etching method. A mixed gas containing a halogen is preferably used as a washing medium in the dry etching method and a solution containing the halogen is preferably used as a washing medium in the wet etching method. The silicon carbide-based molded product obtained by the method is suitably used as a constituent member for producing semiconductors.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造用構成
部材として好適な炭化ケイ素質成形体の内部の不純物を
簡単な方法で且つ成形体自体の強度低下をきたすことな
く効率よく除去し、該成形体の純度を高め得る方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing impurities inside a silicon carbide molded article suitable as a component for manufacturing semiconductors by a simple method and efficiently without lowering the strength of the molded article itself. The present invention relates to a method for increasing the purity of a molded article.

【0002】[0002]

【従来の技術】半導体製造用の炉心管を初めライナーや
ボート等の構成部材には、一般に軽量高強度、耐熱性、
耐食性等の特性に優れた炭化ケイ素成形体(以下「Si
C成形体」という。)が使用されている。しかしなが
ら、SiC成形体は一般に気孔率が高く、石英ガラス製
の半導体製造用構成部材に比べて内部に保持される不純
物の量が非常に多いため、特別の配慮なしにそのまま半
導体製造用構成部材に適用すると、半導体製造時にその
内部に保持された不純物が外部に拡散して半導体を汚染
する欠点がある。
2. Description of the Related Art In general, lightweight, high-strength, heat-resistant materials such as core tubes for semiconductor manufacturing, liners, boats, and other components are commonly used.
A silicon carbide molded body (hereinafter referred to as “Si
It is referred to as "C molded body". ) Is used. However, the SiC molded body generally has a high porosity, and the amount of impurities retained therein is much larger than that of a quartz glass-made semiconductor manufacturing component. If it is applied, there is a disadvantage that impurities retained inside the semiconductor during manufacturing thereof diffuse to the outside and contaminate the semiconductor.

【0003】そこで、このような欠点を改善するため
に、種々の提案がなされている。提案の方向は二つに大
別することができる。一つは、半導体製造時に構成部材
たる炭化ケイ素成形体から不純物ができだけ拡散しない
ようにする手段であり、他の一つは、半導体製造前に予
め構成部材たる炭化ケイ素成形体から不純物を除去し、
高純度化しておく手段である。
Therefore, various proposals have been made in order to improve such disadvantages. The direction of the proposal can be broadly divided into two. One is a means for preventing impurities from diffusing as much as possible from the silicon carbide molded body as a constituent member during semiconductor production, and the other is a means for removing impurities from the silicon carbide molded body as a constituent member before semiconductor production. And
It is a means to keep high purity.

【0004】[0004]

【発明が解決しようとする課題】前者の手段として、例
えば特許第2548949号公報に開示されているよう
に、SiC成形体(基体)の表面にシリカ膜とCVD−
SiCコート膜を積層形成した半導体製造用構成部材が
提案されている。しかし、基体とシリカ膜とCVD−S
iCコート膜それぞれの熱膨張係数がわずかに異なるた
め、しかもその熱膨張係数差そのものにもバラツキがあ
るという事情もあって、半導体製造時のヒートサイクル
を受ける間にSiC成形体(基体)からシリカ膜やCV
D−SiCコート膜が不定期に剥離し易いという問題が
ある。もちろん、一旦剥離が生じると、半導体は汚染さ
れ、構成部材としての寿命はそれで終わりということに
なる。このような事態の発生は、最終的に半導体製品の
生産性の低下につながり、生産コストの上昇につなが
る。
As the former means, for example, as disclosed in Japanese Patent No. 2548949, a silica film and a CVD-film are formed on the surface of a SiC molded body (substrate).
There has been proposed a constituent member for semiconductor manufacturing in which a SiC coat film is formed by lamination. However, the substrate, the silica film and the CVD-S
Due to the fact that the thermal expansion coefficients of the iC coat films are slightly different, and the thermal expansion coefficient difference itself varies, the silica is removed from the SiC molded body (substrate) during the heat cycle during semiconductor manufacturing. Membrane and CV
There is a problem that the D-SiC coat film is easily peeled irregularly. Of course, once delamination occurs, the semiconductor is contaminated and the life of the component ends there. The occurrence of such a situation ultimately leads to a decrease in the productivity of the semiconductor product and an increase in the production cost.

【0005】後者の手段としては、さらに湿式洗浄法と
乾式洗浄法に大別できる。湿式洗浄法は、不純物の中で
も主としてアルカリ等をHF−HNO3 処理によってか
なり除去できるものの、Fe等の重金属を除去するのは
極めて困難である。その上、洗浄工程が非常に多く、煩
雑な作業を要するという欠点がある。
[0005] The latter means can be broadly divided into a wet cleaning method and a dry cleaning method. In the wet cleaning method, although alkalis and the like among impurities can be largely removed by HF-HNO 3 treatment, it is extremely difficult to remove heavy metals such as Fe. In addition, there are drawbacks in that the number of cleaning steps is very large and complicated work is required.

【0006】一方、乾式洗浄法は、工程数が少なく、ま
たFe等の不純物の除去効率も良くなるが、これはあく
までも基体の表面近傍の不純物の除去効率について言え
ることであって、内部に保持された不純物の除去効率は
非常に悪いため、半導体製造時にやはり不純物が拡散
し、半導体の汚染が生じる。また、SiC成形体(基
体)の内部の不純物まで除去しようとすれば、高温のハ
ロゲンガスを非常に長時間流し続けなければならない
が、それでは基体自体が侵され、その強度が低下するた
め、構成部材としての寿命が短くなるという問題があ
る。また、非常に不経済でもある。
On the other hand, the dry cleaning method requires a small number of steps and improves the efficiency of removing impurities such as Fe. However, this can only be said as to the efficiency of removing impurities in the vicinity of the surface of the substrate, and the internal cleaning method is employed. Since the efficiency of removing the impurities is very poor, the impurities are also diffused during the manufacture of the semiconductor, and the semiconductor is contaminated. In addition, in order to remove impurities inside the SiC molded body (substrate), a high-temperature halogen gas must be kept flowing for a very long time. However, the substrate itself is attacked and its strength is reduced. There is a problem that the life as a member is shortened. It is also very uneconomical.

【0007】本発明は、上記の事情に鑑みてなされたも
のであり、その目的とするところは、半導体製造用構成
部材として好適なSiC質成形体の内部の不純物を簡単
な方法で且つ成形体自体の強度低下をきたすことなく事
前に効率よく除去し、しかも半導体レベルに見合うレベ
ルの程度に高純度化されたSiC質成形体からなる構成
部材を使用することで半導体製造の生産性及び経済性を
高め得る技術を提供する点にある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to remove impurities inside a SiC-based molded body suitable as a component for manufacturing a semiconductor by a simple method and with a compact. Productivity and economics of semiconductor manufacturing by using a component made of a SiC-based molded body that is efficiently removed beforehand without lowering its strength and that is highly purified to a level commensurate with the semiconductor level. The point is to provide technology that can enhance

【0008】[0008]

【課題を解決するための手段】上記目的を達成し得た本
発明のうち、請求項1記載の発明の純化方法は、表面が
SiCからなるSiC質成形体の表面にCVD法により
Si膜をコーティングした後熱処理して前記成形体又は
黒鉛体の内部の不純物をSi膜の中に拡散吸着させ、こ
の拡散吸着したSi膜全体を乾式又は湿式エッチング法
により除去することを特徴とする。これにより、簡単な
工程で且つSiC質成形体自体の強度低下をきたすこと
なく非常に効率よく不純物を除去することができるた
め、半導体製造用構成部材として好適な超高純度の製品
SiC質成形体を得ることができる。また、熱処理条件
を適宜変更することにより、SiC質成形体内部の不純
物が表面のSi膜へ拡散し吸着する速度や量を変更する
ことができるので、種々の高純度レベルの製品SiC質
成形体を得ることも可能である。本発明でいうSiC質
成形体とは、例えば炭化ケイ素のみからなるSiC成形
体、表面を炭化ケイ素で被覆した炭素材(黒鉛材を含
む)や窒化ケイ素、窒化ホウ素等のセラミックが例示で
きる。
According to the present invention, which has attained the above objects, the present invention provides a purification method in which a Si film is formed on a surface of a SiC material formed of SiC by a CVD method. After coating, heat treatment is performed to diffuse and adsorb impurities inside the compact or graphite body into the Si film, and the whole of the diffused and adsorbed Si film is removed by a dry or wet etching method. As a result, impurities can be removed very efficiently in a simple process and without lowering the strength of the SiC-based molded body itself, so that an ultra-high-purity product SiC-based molded body suitable as a component for semiconductor manufacturing. Can be obtained. In addition, by appropriately changing the heat treatment conditions, it is possible to change the speed and amount of the impurities inside the SiC-based molded body that are diffused and adsorbed to the Si film on the surface. It is also possible to get Examples of the SiC-based molded body in the present invention include a SiC molded body composed of only silicon carbide, a carbon material (including graphite material) whose surface is coated with silicon carbide, and ceramics such as silicon nitride and boron nitride.

【0009】また、請求項2記載の発明は、請求項1記
載の発明の構成のうち、乾式エッチング法における洗浄
媒体がハロゲンを含む混合ガスであることを特徴とす
る。これにより、請求項1記載の発明の効果を有効に発
揮させつつ、純化方法としてを一層汎用性のあるものと
することができる。ハロゲンを含むガスとしては、例え
ば、HCl(塩化水素)、Cl2 (塩素)、HF(フッ
化水素)等が例示できる。また、ハロゲンを含まないH
2 SO4 (硫酸)、HNO3 (硝酸)、H2 2(過酸
化水素)、NH3 (アンモニア)等も使用できるだけで
なく、上記ハロゲンを含むガスと混合して使用すること
もできる。
According to a second aspect of the present invention, in the configuration of the first aspect, the cleaning medium in the dry etching method is a mixed gas containing halogen. This makes it possible to make the purifying method more versatile while effectively exhibiting the effect of the invention described in claim 1. Examples of the gas containing halogen include, for example, HCl (hydrogen chloride), Cl 2 (chlorine), and HF (hydrogen fluoride). In addition, H containing no halogen
Not only can 2 SO 4 (sulfuric acid), HNO 3 (nitric acid), H 2 O 2 (hydrogen peroxide), NH 3 (ammonia) and the like be used, but also a mixture with the halogen-containing gas.

【0010】さらに、請求項3記載の発明は、請求項1
記載の発明の構成のうち、湿式エッチング法における洗
浄媒体がハロゲンを含む溶液であることを特徴とする。
これにより、請求項1記載の発明の効果を有効に発揮さ
せつつ、純化方法としてを一層経済的で汎用性のあるも
のとすることができる。
[0010] Further, the invention according to claim 3 is based on claim 1.
In the structure of the invention described above, the cleaning medium in the wet etching method is a solution containing halogen.
This makes it possible to make the purifying method more economical and more versatile while effectively exhibiting the effects of the first aspect of the present invention.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しつつ説明する。図1は、本発明に係るSiC質
成形体の純化方法を示す概略系統図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic system diagram showing a method for purifying a SiC-based compact according to the present invention.

【0012】図1において、高純度黒鉛材料からなる所
定寸法の板材(基材)1を、図に現れていない高純度黒
鉛材料のバルク体から切り出し、これをCVR処理部2
へ導く。CVR処理部2では、基材1に、ケイ酸、又は
これにさらに炭素、ケイ素及び炭化ケイ素の少なくとも
1種を共存させて加熱してSiOガスを発生せしめ、こ
のSiOガスと基材1とを反応せしめることにより、1
00%SiC化した多孔質のCVR−SiC成形体を得
る。
In FIG. 1, a plate material (base material) 1 of a predetermined size made of a high-purity graphite material is cut out from a bulk body of a high-purity graphite material not shown in the figure, and this is cut out by a CVR processing unit 2.
Lead to. In the CVR treatment section 2, the substrate 1 is heated in the presence of silicic acid or at least one of carbon, silicon and silicon carbide to generate a SiO gas, and the SiO gas and the substrate 1 are combined. By reacting, 1
A porous CVR-SiC molded body converted to 00% SiC is obtained.

【0013】次に、得られたCVR−SiC成形体を厚
み調整部3に導いた後、厚み方向の切削加工を行って、
目的製品の厚みとなるように調整した後、この厚み調整
後のSiC成形体をCVD処理部4に導く。CVD処理
部4では、通常のCVD法に従い、SiC成形体の表面
に高純度のSi膜を所定の厚みだけコーティングする。
Next, after leading the obtained CVR-SiC molded body to the thickness adjusting unit 3, cutting in the thickness direction is performed.
After the thickness of the target product is adjusted, the SiC molded body after the thickness adjustment is guided to the CVD processing unit 4. In the CVD processing unit 4, the surface of the SiC molded body is coated with a high-purity Si film by a predetermined thickness according to a normal CVD method.

【0014】次に、Si膜のコーティングを終えたSi
C成形体を熱処理部5に導いた後、通常1000℃以上
の温度で数時間〜十数時間の熱処理を行って、SiC成
形体内に含まれている不純物を十分に拡散させ、表面の
Si膜内に吸着させる。熱処理を終えたSiC成形体を
洗浄部6に導き、乾式エッチング法又は湿式エッチング
法を実施して、SiC成形体の表面のSi膜(不純物を
吸着したSi膜)を除去し、非常に純化されたSiC成
形体7が得られる。
Next, the Si film coated with the Si film is finished.
After guiding the C-shaped body to the heat treatment part 5, heat treatment is usually performed at a temperature of 1000 ° C. or more for several hours to several tens of hours to sufficiently diffuse impurities contained in the SiC body and form a Si film on the surface. Adsorb inside. The heat-treated SiC molded body is guided to the cleaning unit 6 and subjected to a dry etching method or a wet etching method to remove a Si film (an Si film to which impurities are adsorbed) on the surface of the SiC molded body and to be highly purified. The obtained SiC molded body 7 is obtained.

【0015】乾式エッチングを行う場合は、塩素、フッ
素などのハロゲン元素を含むガス(Cl2 ,HCl,H
F,NF3 ,ClF3 など)を用いるのが好ましい。例
えば塩化水素と水素の加熱混合ガスをSiC成形体の表
面に対して所定時間吹きつける手段が有効である。ま
た、湿式エッチングを行う場合も、基本的にはハロゲン
を含む溶液を用いるのが好ましく、例えばフッ酸及び硝
酸の混合水溶液でSiC成形体の表面を洗浄し、さらに
純水で洗浄する手段が有効である。
When dry etching is performed, a gas containing a halogen element such as chlorine or fluorine (Cl 2 , HCl, H
F, NF 3 , ClF 3 and the like are preferably used. For example, means for spraying a heated mixed gas of hydrogen chloride and hydrogen against the surface of the SiC molded body for a predetermined time is effective. Also in the case of performing wet etching, it is basically preferable to use a solution containing halogen. For example, it is effective to wash the surface of the SiC molded body with a mixed aqueous solution of hydrofluoric acid and nitric acid and further wash with pure water. It is.

【0016】上記の純化工程では、従来の乾式洗浄法と
異なり、加熱ハロゲンガスを使用する段階では、SiC
成形体内部に存在していた不純物をすべて表面側の高純
度Si膜に吸着されている状態にある。従って、加熱ハ
ロゲンガスを比較的短時間使用するだけでSi膜を除去
できるので、結果としてSiC成形体自体の強度低下を
きたすことなく極めて高純度の製品SiC成形体を得る
ことができる。
In the above-described purification step, unlike the conventional dry cleaning method, the step of using a heated halogen gas involves the step of using SiC.
All of the impurities existing inside the molded body are adsorbed on the high-purity Si film on the surface side. Therefore, since the Si film can be removed only by using the heated halogen gas for a relatively short time, it is possible to obtain an extremely high-purity product SiC molded product without reducing the strength of the SiC molded product itself.

【0017】また、上記の純化工程の熱処理部5におい
て熱処理条件を適宜変更することにより、SiC成形体
内部の不純物の拡散吸着の速度や量を変更することがで
きるので、種々の純度レベルの製品SiC成形体を得る
ことも可能である。従って、適用しようとする半導体製
造用構成部材として求められる半導体レベルに見合うレ
ベル程度に純化されたSiC成形体を提供することがで
き、ひいては半導体製造の生産性及び経済性の改善に寄
与することができる。
In addition, by appropriately changing the heat treatment conditions in the heat treatment section 5 in the above-mentioned purification step, the speed and amount of diffusion and adsorption of impurities inside the SiC compact can be changed. It is also possible to obtain a SiC compact. Therefore, it is possible to provide a SiC molded product purified to a level corresponding to a semiconductor level required as a component for semiconductor manufacturing to be applied, and to contribute to improvement in productivity and economy of semiconductor manufacturing. it can.

【0018】[0018]

【発明の効果】本発明のうち請求項1記載の発明は、以
上の様に構成されるが、要は予めSiC質成形体の内部
の不純物をすべて表面部に集めておき、不純物の集中し
た表面部を比較的短時間で取り除くようにしたものであ
る。従って、簡単な工程で且つSiC成形体自体の強度
低下をきたすことなく非常に効率よく不純物を除去する
ことができるため、半導体製造用構成部材として好適な
超高純度の製品SiC質成形体を得ることができる。
The invention according to claim 1 of the present invention is constituted as described above, but the point is that all the impurities inside the SiC-based molded body are previously collected on the surface portion, and the impurities are concentrated. The surface portion is removed in a relatively short time. Therefore, impurities can be removed very efficiently in a simple process and without lowering the strength of the SiC molded product itself, so that an ultra-high-purity product SiC-based molded product suitable as a semiconductor manufacturing component is obtained. be able to.

【0019】また、本発明の純化方法によれば、熱処理
条件を適宜変更することにより、SiC質成形体内部の
不純物が表面のSi膜へ拡散し吸着する速度や量を変更
することができるので、種々の高純度レベルの製品Si
C質成形体を得ることも可能である。従って、適用しよ
うとする半導体製造用構成部材として求められる半導体
レベルに見合うレベル程度に高純度化されたSiC質成
形体を提供することができ、ひいては半導体製造の生産
性及び経済性の改善に寄与することができる。
Further, according to the purification method of the present invention, by appropriately changing the heat treatment conditions, it is possible to change the speed and the amount of the impurities inside the SiC-based molded body that are diffused and adsorbed to the Si film on the surface. , Various high purity products Si
It is also possible to obtain a C-shaped molded body. Therefore, it is possible to provide a SiC-based molded body that is highly purified to a level corresponding to a semiconductor level required as a constituent member for semiconductor manufacturing to be applied, thereby contributing to improvement in productivity and economy of semiconductor manufacturing. can do.

【0020】また、請求項2記載の発明は、ハロゲンを
含むガスを使用して乾式エッチングするものであり、こ
れにより請求項1記載の発明の純化方法を一層汎用性の
あるものとすることができる。さらに、請求項3記載の
発明は、湿式エッチング法における洗浄媒体が、ハロゲ
ンを含む溶液を使用して湿式エッチングするものであ
り、これにより請求項1記載の発明の純化方法を一層経
済的で汎用性のあるものとすることができる。
Further, in the invention according to claim 2, dry etching is performed using a gas containing halogen, thereby making the purification method according to claim 1 more versatile. it can. Further, in the invention according to claim 3, the cleaning medium in the wet etching method is wet-etched using a solution containing halogen, whereby the purification method of the invention according to claim 1 is more economical and versatile. It can be sexual.

【0021】[0021]

【実施例】【Example】

(実施例1)高純度黒鉛材料(東洋炭素(株)製)から
なるバルク体からφ200mm×t3mmの円板を切り
出し、この円板に対して、まずCVR処理を行って10
0%SiC化した多孔質のSiC円板を得た。次に、こ
のSiC円板に対して厚み方向のみの切削加工を行っ
て、厚みtを0.485mmに調整した。次に、この厚
み調整後のSiC円板に対し、CVD処理を行ってその
表面に高純度のSi膜を40μmの厚みでコーティング
した。この後、1300℃で10時間の熱処理を行い、
SiC円板内に含まれている不純物を十分拡散させてS
i膜内に吸着した。そして、最後に、SiC円板の表面
(Si膜面)に対して塩化水素と水素の1300℃加熱
混合ガスを1時間吹きつけて洗浄(エッチング)処理す
ることにより、Si膜を除去し、ダミーウェハの基材を
得た。このダミーウェハ基材の表面の不純物の分析値
(測定No. )を表1に示す。また、このダミーウェハ
基材に対し、さらにCVD処理を行って、表面にSiC
膜を120μmだけ被覆させた後、このダミーウェハに
ついて窒素と酸素の1200℃加熱混合ガス下での熱処
理を行い、表面に100〜200Åの酸化膜を生成させ
たものについてライフタイムの測定を行った。ライフタ
イムは2000(μs)であった。
(Example 1) A disk having a diameter of 200 mm x t3 mm was cut out from a bulk body made of a high-purity graphite material (manufactured by Toyo Tanso Co., Ltd.).
A porous SiC disc converted to 0% SiC was obtained. Next, this SiC disk was cut only in the thickness direction to adjust the thickness t to 0.485 mm. Next, the SiC disk after the thickness adjustment was subjected to a CVD process to coat the surface thereof with a high-purity Si film having a thickness of 40 μm. Thereafter, heat treatment is performed at 1300 ° C. for 10 hours,
The impurities contained in the SiC disk are sufficiently diffused to form S
Adsorbed in i-membrane. Finally, the surface of the SiC disk (the surface of the Si film) is cleaned (etched) by spraying a heated mixed gas of hydrogen chloride and hydrogen at 1300 ° C. for one hour to remove the Si film, thereby removing the dummy wafer. Was obtained. Table 1 shows the analysis values (measurement numbers) of impurities on the surface of the dummy wafer base material. Further, the dummy wafer base material is further subjected to a CVD process so that
After coating the film with a thickness of 120 μm, the dummy wafer was subjected to a heat treatment under a mixed gas of 1200 ° C. and heated to produce an oxide film of 100 to 200 ° on the surface, and the lifetime was measured. The life time was 2000 (μs).

【0022】(実施例2)実施例1で得られた、CVD
処理後のSi膜被覆円板を同様に熱処理した後、SiC
円板の表面をフッ酸及び硝酸の混合水溶液で1時間洗浄
(エッチング)処理することにより、Si膜を除去した
後、ダミーウェハの基材を得た。このダミーウェハ基材
の表面の不純物の分析値(測定No. )を表1に併せて
示す。また、このダミーウェハ基材に対し、さらにCV
D処理を行って、表面にSiC膜を120μmだけ被覆
させた後、このダミーウェハについても、同様の熱処理
を行って、酸化膜を生成したものについて、ライフタイ
ムを測定した。この結果は、2000(μs)であっ
た。
(Example 2) CVD obtained in Example 1
After heat-treating the treated Si film-coated disk in the same manner,
The surface of the disk was washed (etched) with a mixed aqueous solution of hydrofluoric acid and nitric acid for 1 hour to remove the Si film, and then a dummy wafer base material was obtained. The analysis values (measurement numbers) of impurities on the surface of the dummy wafer base material are also shown in Table 1. In addition, CV is further applied to the dummy wafer base material.
After performing the D process to cover the surface with the SiC film by 120 μm, the same heat treatment was performed on the dummy wafer, and the lifetime of the dummy wafer was measured. The result was 2000 (μs).

【0023】(比較例1)実施例1と同様のCVR処理
を行って得られた厚みが0.485mmのSiC円板に
対して、実施例1と同様のドライエッチング処理を施し
た。まず、この時点でのSiC円板表面の不純物の分析
値(測定No. )を表1に併せて示す。この後、ひき続
きCVD処理により表面に120μmの厚み分だけSi
Cコーティングを施したダミーウェハを得、このダミー
ウェハについて実施例1と同様の熱処理を行って酸化膜
を生成したものについてライフタイムを測定した。ライ
フタイムは1000(μs)であった。また、ダミーウ
ェハ表面のSiC膜には剥離箇所が見られた。
Comparative Example 1 A SiC disk having a thickness of 0.485 mm obtained by performing the same CVR treatment as in Example 1 was subjected to the same dry etching treatment as in Example 1. First, the analytical values (measurement Nos.) Of impurities on the surface of the SiC disk at this time are also shown in Table 1. After that, the surface is continuously coated with Si by a thickness of 120 μm by the CVD process.
A dummy wafer coated with C was obtained, and the dummy wafer was subjected to the same heat treatment as in Example 1 to produce an oxide film, and the lifetime was measured. The life time was 1000 (μs). In addition, peeled portions were observed in the SiC film on the surface of the dummy wafer.

【0024】(実施例3及び比較例2)実施例1と同一
純度レベルの高純度黒鉛製円板(φ200mm×t0.
485mm)をCVD処理して表面にSiCコーティン
グを120μmの厚みで生成した。まず、この時点での
SiC円板表面の不純物の分析値(測定No. )を表1
に併せて示す(比較例2)。ひき続き、得られたSiC
被覆円板に対し、さらにCVD処理を行ってその表面
に、つまりSiC被覆層のさらにその上に高純度のSi
膜を40μmの厚みでコーティングした。この後、実施
例1と同様の熱処理を行い、SiC被覆層内に含まれて
いる不純物を十分拡散させてSi膜内に吸着した。次
に、そのSi膜面に対して実施例1と同様のドライエッ
チング処理をすることにより、Si膜を除去し、ダミー
ウェハを得た。このダミーウェハの表面の不純物の分析
値(測定No. )を表1に併せて示す。また、このダミ
ーウェハについて実施例1と同様の熱処理を行って酸化
膜を生成させたものについてライフタイムを測定した。
ライフタイムは2000(μs)であった(実施例
3)。
Example 3 and Comparative Example 2 A high-purity graphite disc (φ200 mm × t0.
485 mm) to produce a SiC coating on the surface with a thickness of 120 μm. First, the analysis values (measurement Nos.) Of impurities on the surface of the SiC disk at this time are shown in Table 1.
(Comparative Example 2). Continued, obtained SiC
The coated disk is further subjected to a CVD process to provide high-purity Si on its surface, that is, on the SiC coating layer.
The membrane was coated at a thickness of 40 μm. Thereafter, the same heat treatment as in Example 1 was performed to sufficiently diffuse the impurities contained in the SiC coating layer and to adsorb them in the Si film. Next, the surface of the Si film was subjected to the same dry etching treatment as in Example 1 to remove the Si film and obtain a dummy wafer. Table 1 also shows the analysis values (measurement numbers) of impurities on the surface of the dummy wafer. The lifetime of the dummy wafer was measured by performing the same heat treatment as in Example 1 to form an oxide film.
The life time was 2000 (μs) (Example 3).

【0025】[0025]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るSiC質成形体の純化方法を示す
概略系統図である。
FIG. 1 is a schematic system diagram showing a method for purifying a SiC-based compact according to the present invention.

【符号の説明】[Explanation of symbols]

1 高純度黒鉛製板材(基材) 2 CVR処理部 3 厚み調整部 4 CVD処理部 5 熱処理部 6 洗浄部 7 製品SiC質成形体 DESCRIPTION OF SYMBOLS 1 High purity graphite board material (base material) 2 CVR processing part 3 Thickness adjustment part 4 CVD processing part 5 Heat treatment part 6 Cleaning part 7 Product SiC material molding

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面が炭化ケイ素からなる炭化ケイ素質
成形体の表面に、CVD法によりSi膜をコーティング
した後熱処理して前記成形体の内部の不純物をSi膜の
中に拡散吸着させ、該拡散吸着したSi膜全体を乾式又
は湿式エッチング法により除去することを特徴とする炭
化ケイ素質成形体の純化方法。
An Si film is coated on a surface of a silicon carbide molded body made of silicon carbide by a CVD method, and then heat-treated to diffuse and adsorb impurities inside the molded body into the Si film. A method for purifying a silicon carbide-based molded body, wherein the whole of a diffusion-adsorbed Si film is removed by a dry or wet etching method.
【請求項2】 前記乾式エッチング法における洗浄媒体
が、ハロゲンを含むガスである請求項1記載の炭化ケイ
素質成形体の純化方法。
2. The method according to claim 1, wherein the cleaning medium in the dry etching method is a gas containing halogen.
【請求項3】 前記湿式エッチング法における洗浄媒体
が、ハロゲンを含む溶液である請求項1記載の炭化ケイ
素質成形体の純化方法。
3. The method according to claim 1, wherein the cleaning medium in the wet etching method is a solution containing halogen.
JP9050036A 1997-03-05 1997-03-05 Purification of silicon carbide-based molded product Pending JPH10245266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9050036A JPH10245266A (en) 1997-03-05 1997-03-05 Purification of silicon carbide-based molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9050036A JPH10245266A (en) 1997-03-05 1997-03-05 Purification of silicon carbide-based molded product

Publications (1)

Publication Number Publication Date
JPH10245266A true JPH10245266A (en) 1998-09-14

Family

ID=12847783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9050036A Pending JPH10245266A (en) 1997-03-05 1997-03-05 Purification of silicon carbide-based molded product

Country Status (1)

Country Link
JP (1) JPH10245266A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022875A1 (en) * 2004-07-27 2006-03-02 Memc Electronic Materials, Inc. Method for purifying silicon carbide structures
JP2013118376A (en) * 2007-12-20 2013-06-13 Coors Tek Inc Method for treating semiconductor processing components and components formed thereby

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022875A1 (en) * 2004-07-27 2006-03-02 Memc Electronic Materials, Inc. Method for purifying silicon carbide structures
JP2008508176A (en) * 2004-07-27 2008-03-21 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Method for purifying silicon carbide structure
US7696103B2 (en) 2004-07-27 2010-04-13 Memc Electronic Materials, Inc. Method for purifying silicon carbide coated structures
EP2199267A1 (en) * 2004-07-27 2010-06-23 MEMC Electronic Materials, Inc. Silicon carbide structur
US7888685B2 (en) 2004-07-27 2011-02-15 Memc Electronic Materials, Inc. High purity silicon carbide structures
JP2013118376A (en) * 2007-12-20 2013-06-13 Coors Tek Inc Method for treating semiconductor processing components and components formed thereby

Similar Documents

Publication Publication Date Title
CN100575311C (en) The method of purifying silicon carbide structures
US7053411B2 (en) Method for treating semiconductor processing components and components formed thereby
KR102017138B1 (en) Method for Recycling of SiC Product and Recycled SiC Product
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JPH10245266A (en) Purification of silicon carbide-based molded product
EP1748968A2 (en) Heat treating silicon carbide articles
JP4437365B2 (en) Silica glass jig for semiconductor industry and manufacturing method thereof
JPS63129633A (en) Surface treatment for semiconductor
JPH0753242A (en) Method for oxynitriding quartz glass and surface treatment
JP2009161858A (en) CORROSION RESISTANT CVD-SiC COATING MATERIAL, AND FIXTURE FOR CVD SYSTEM
JPH11130451A (en) Quartz glass jig for semiconductor heat treatment apparatus
JPH11283924A (en) Semiconductor wafer manufacture
JP2007063070A (en) Method for manufacturing plasma-resistant yttria sintered compact
JP4539794B2 (en) Silica glass jig for semiconductor industry and manufacturing method thereof
JP4556090B2 (en) Member for silicon carbide semiconductor manufacturing apparatus and method for manufacturing the same
KR100304338B1 (en) Quartz glass jig for heat-treating semiconductor, and process for producing the same
JP5890232B2 (en) Method for manufacturing silicon carbide member
JP2003277933A (en) Method of purifying silicon carbide-coated member
JPH09162146A (en) Cleaning method of jig for semiconductor
JPH0472727A (en) Gas cleaning process
JPH05243169A (en) Semiconductor device jig and manufacture thereof
JPS6296349A (en) Quartz glass reaction tube for heat-treatment of semiconductor
JP2000164568A (en) Manufacture of plasma etching electrode
JP2003100693A (en) Purifying method of silicon member
JPH1097960A (en) Silicon carbide deposited dummy wafer