JP4539794B2 - Silica glass jig for semiconductor industry and manufacturing method thereof - Google Patents
Silica glass jig for semiconductor industry and manufacturing method thereof Download PDFInfo
- Publication number
- JP4539794B2 JP4539794B2 JP2000296733A JP2000296733A JP4539794B2 JP 4539794 B2 JP4539794 B2 JP 4539794B2 JP 2000296733 A JP2000296733 A JP 2000296733A JP 2000296733 A JP2000296733 A JP 2000296733A JP 4539794 B2 JP4539794 B2 JP 4539794B2
- Authority
- JP
- Japan
- Prior art keywords
- silica glass
- jig
- glass jig
- semiconductor industry
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Glass Melting And Manufacturing (AREA)
- Surface Treatment Of Glass (AREA)
- Chemical Vapour Deposition (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、半導体工業用シリカガラス治具、特に表面に小突起が均一に分布する半導体工業用シリカガラス治具およびその製造方法に関する。
【0002】
【従来の技術】
従来、半導体素子の製造にはシリカガラス製の治具が使用され、例えばLPCVD(Low Pressure Chemical Vapor Deposition)法で半導体素子上にポリシリコン膜を成長させる際、石英ガラス治具に多数の凹凸を設けてあるのが効果的である。この凹凸により石英ガラス治具表面に堆積したポリシリコン膜と治具との熱膨張率差による応力の発生が低減し、膜剥離、クラックの発生が防止できる。前記凹凸の形成には機械的加工が用いられるが、この機械的加工では治具表面に形成した凹凸面の下にマイクロクラックを持った層が形成され、その深さが100μmに達することがある。このような深いクラックが発生すると、その中に半導体素子を汚染する物質が取り込まれ、半導体素子の熱処理時に揮発して汚染することがある。そのため、半導体素子の処理の初期段階においてプロセスを半導体素子なしでしばらく運転したのち処理することが行われる。また、前記クラックは治具の破壊開始クラックとなり治具の強度を低下させ使用寿命を短いものにするとともに、治具の洗浄又はクリーニング時に治具の凹凸を変え、表面状態に変化が起こり、均一な気相反応が行えない等の欠点があった。この欠点を解決するため、例えば特開平10−59744号公報では、機械的加工した治具を、3〜20質量%のフッ化水素を含有するフッ化水素酸でエッチング処理し、マイクロクラックを開放させ、マイクロクラックフリーの面にすることが提案されているが、この方法で処理された治具は、凹凸が大きくなりすり鉢状の凹部ができ、細かい凹凸が減少し半導体素子の処理治具としては満足できるものではなかった。
【0003】
また、シリカガラス治具表面の凹凸を機械的加工でなく化学的処理で形成する方法が、例えば特開平11−106225号等で提案されている。この化学的処理では治具にマイクロクラックが入らず、クラック内からの汚染物質による半導体素子の汚染がなく、また治具の洗浄時の凹凸の変化もほとんどなく、均一な化学反応ができるが、大きな凹凸、例えばRa=3以上の粗さにすると、凸の斜面や凹の底部に平滑な部分が存在するようになり、この平滑部にポリシリコンが付着し、付着したポリシリコン膜と治具との熱膨張率差から治具にクラックが発生し、パーティクルとなって半導体素子に悪影響を及ぼし歩留を低下させるなどの問題があった。
【0004】
【発明が解決しようとする課題】
こうした現状に鑑み、本発明者等は鋭意研究を重ねた結果、機械的に粗面加工したシリカガラス治具を特定の水溶液で処理することで、マイクロクラックが開放され汚染物質の取り込みがなく、かつ治具表面には小突起が均一に多数分布することで、治具とポリシリコン膜等の付着膜との熱膨張率差によるクラックの発生がないシリカガラス治具が得られることを見出し、本発明を完成したものである。すなわち
【0005】
本発明は、使用時に半導体素子を汚染する不純物の発生がなく、かつクラックの発生もない半導体工業用シリカガラス治具を提供することを目的とする。
【0006】
また、本発明は、上記半導体工業用シリカガラス治具の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成する本発明は、半導体工業用シリカガラス治具において、表面に幅20〜300μmのエクボ状の凹部が多数存在し、20〜300μmの間隔で幅0.5〜50μmの溝があり、これらの溝間及び溝内に幅1〜50μm、高さ0.1〜10μmの小突起が均一に分布することを特徴とする半導体工業用シリカガラス治具及びその製造方法に係る。
【0008】
本発明の半導体工業用シリカガラス治具は、例えば炉芯管、ウェーハ載置用ボート等、半導体工業で使用される治具であり、このシリカガラス治具の表面にはその一部又は全部に幅20〜300μmのエクボ状の凹部が多数存在し、20〜300μmの間隔で幅0.5〜50μmの溝があり、これらの溝間及び溝内に幅1〜50μm、高さ0.1〜10μmの小突起が均一に分布する治具である。前記構造を有することで本発明の半導体工業用シリカガラス治具はパーティクルや不純物の発生が少なく、表面の高い清浄度が維持できシリカガラスのバルクとしての高純度の性能が十分に発揮できる。本発明のシリカガラス治具は、その表面に例えばポリシリコン膜が堆積しても、前記小突起により熱膨張率差に基づく応力が緩和され、治具にクラックが発生しにくく治具寿命が長くなる。前記溝は、機械的加工の際に発生した深いマイクロクラックが開放された部分であり、その幅は0.5〜50μmの範囲にあるのがよく、幅が0.5μm未満ではマイクロクラックの広がりが充分でなく、不純物元素の残留が起こり、溝幅が50μmを超える処理では表面のエッチングオフされる量が多く寸法精度に狂いが生じる。また、溝間は、機械的加工手段により変わるが、20〜300μmの範囲内にあるのがよい。この溝間にはさらにエクボ状の凹部があり、その幅は20〜300μmの範囲にある。そして、これらの溝間及び溝内に小突起が均一に分布している。その大きさは処理に用いる処理液によるが、幅が1〜50μm、高さが0.1〜10μmの範囲にあるのがよい。小突起が前記範囲未満では、堆積する膜の熱応力の緩和が十分でなくクラックが発生することがあり、前記範囲を超えると平滑な部分が残る。前記処理液としてはフッ化水素10〜30質量%、フッ化アンモニウム5〜30質量%、有機カルボン酸を45〜70質量%を含有し、残部が水の処理液がよい。この有機カルボン酸を含有することで、前記範囲の小突起が均一に、かつ容易に形成できる。前記有機カルボン酸としては、蟻酸、酢酸、プロピオン酸等の水溶性有機カルボン酸が挙げられ、特に酢酸が水への溶解度が高く、かつ安価であることから好適である。
【0009】
本発明の製造方法としては、まずシリカガラス治具の表面を上述のとおり機械的加工で粗面化するが、その機械的加工法としては二酸化ケイ素微粒子、炭素微粒子、セラミック微粒子を吹き付けるサンドブラスト法やダイヤモンド砥粒を用いる研削法、スラリー状の遊離砥粒を用いるウエットブラスト法が挙げられる。好ましくはサンドブラストがよい。このサンドブラストでは治具表面からのガラス粉の剥ぎ取りが容易である上に、クーラント液のマイクロクラックへのしみ込みがない。次いで、機械的加工ののち洗浄して付着したパーティクルを取り除き、フッ化水素10〜30質量%、フッ化アンモニウム5〜30質量%を含有し、残部が水の処理液、好ましくはさらに有機カルボン酸を45〜70質量%の範囲で含有する処理液に繰り返し浸漬し、マイクロクラックを開放し幅が0.5〜50μmの多数の溝とするとともに、溝間にエクボ状の幅20〜300μmの凹部を形成し、これらの溝間及び溝内に幅1〜50μm、高さ0.1〜10μmの小突起を均一に分布させる。処理液に含有する有機カルボン酸の量が45質量%未満では、小突起が大きくなり均一な分布が困難になり、有機カルボン酸の量が70質量%を超えると小突起が小さくなり効果が達成できない。また、処理液中のフッ化アンモニウムの含有量が5質量%未満では、フッ化水素によるエッチングが起こるにとどまり、フッ化アンモニウムが30質量%を超えても凹凸は30質量%程度のものしかできず、コスト高となり実用的でない。
【0010】
【発明の実施の形態】
次に本発明の実施例について述べるがこれによって本発明はなんら限定されるものではない。
【0011】
【実施例】
実施例1
炭化けい素研磨材(320番)を用いてLPCVD用の炉芯管の内面に圧縮空気で研磨剤を吹き付けてサンドブラスト加工した。表面粗さRaは3μmであった。この炉芯管をフッ化水素15質量%、フッ化アンモニウム15質量%及び酢酸50質量%の処理液槽に1時間浸し、処理後の炉芯管を走査電子顕微鏡でみたところ図1に示すように多数の小突起かみられた。また、マイクロクラックも開口し幅1μm程度の溝が多くみられた。この炉芯管を用いてシリコンウェーハにポリシリコン膜を形成するCVD工程を行った。炉芯管にポリシリコン膜が30μm付着するまで使用したが、パーティクルの発生は少なくシリコンウェーハの歩留率は高かった。また、使用後のポリシリコン膜付炉芯管にクラックの発生がなく、膜の剥がれもなかった。
【0012】
比較例1
実施例1と同様にサンドブラスト加工した炉芯管を用いて、実施例1と同様にシリコンウェーハにポリシリコン膜を形成するCVD工程を行った。CVD処理の開始後パーティクルの発生が多く、しばらくウェーハの処理ができなかった。その後、炉芯管にポリシリコン膜が30μm付着するまで使用したところ、若干のクラックの発生があったが、膜の剥がれはなかった。
【0013】
比較例2
実施例1のサンドブラスト加工をした炉芯管を20質量%のフッ化水素でエッチング処理を1時間行った。得られた治具の表面粗さRaは7μmであった。その表面を走査電子顕微鏡でみたところ図2に示すように滑らかなえくぼ状(すりばち状)の凹部が多数みられた。この炉芯管を用いて実施例1と同様にCVD処理を行った。治具にポリシリコン膜が15μm付着したところで、パーティクルの発生量が増え処理が困難となった。また、使用後の治具にはクラックが多くみられ、ポリシリコン膜の一部に剥がれもみられた。
【0014】
【発明の効果】
本発明の半導体シリカガラス治具は、その表面に幅20〜300μmのエクボ状の凹部が多数存在し、20〜300μmの間隔で幅0.5〜50μmの溝があり、これらの溝間及び溝内に幅1〜50μm、高さ0.1〜10μmの小突起が均一に分布することで使用中に例えばポリシリコン膜等のパーティクルの発生が低減し、またクラックの発生も少なく治具を寿命長く使用できる。前記シリカガラス治具は、従来使用されている機械的加工による粗面化に続く、特定の濃度のフッ化水素、フッ化アンモニウムを含有する処理液で処理するという簡便な方法で製造でき、その工業的価値は高いものがある。
【図面の簡単な説明】
【図1】本発明のシリカガラス治具表面の走査電子顕微鏡による100倍の写真である。
【図2】従来のサンドブラストにフッ化水素エッチング処理したシリカガラス治具表面の走査電子顕微鏡による100倍の写真である。[0001]
[Industrial application fields]
The present invention relates to a silica glass jig for the semiconductor industry, and more particularly to a silica glass jig for the semiconductor industry in which small protrusions are uniformly distributed on the surface and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, a jig made of silica glass has been used for manufacturing a semiconductor element. For example, when a polysilicon film is grown on a semiconductor element by LPCVD (Low Pressure Chemical Vapor Deposition) method, many irregularities are formed on the quartz glass jig. It is effective that it is provided. Due to this unevenness, the generation of stress due to the difference in thermal expansion coefficient between the polysilicon film deposited on the surface of the quartz glass jig and the jig is reduced, and film peeling and cracking can be prevented. A mechanical process is used to form the unevenness. In this mechanical process, a layer having microcracks is formed below the uneven surface formed on the jig surface, and the depth may reach 100 μm. . When such a deep crack occurs, a substance that contaminates the semiconductor element may be taken into the crack, and may volatilize and contaminate the semiconductor element during heat treatment. Therefore, in the initial stage of processing of the semiconductor element, the process is performed after operating for a while without the semiconductor element. In addition, the crack becomes a crack starting crack of the jig, lowers the strength of the jig and shortens the service life, changes the unevenness of the jig during cleaning or cleaning of the jig, and changes the surface state, resulting in uniform There were drawbacks such as inability to perform a proper gas phase reaction. In order to solve this drawback, for example, in Japanese Patent Laid-Open No. 10-59744, a mechanically processed jig is etched with hydrofluoric acid containing 3 to 20% by mass of hydrogen fluoride to open microcracks. It has been proposed to make a microcrack-free surface, but the jig processed by this method has a large concavo-convex shape to form a mortar-shaped concave portion, which reduces the fine concavo-convex shape and is used as a semiconductor device processing jig. Was not satisfactory.
[0003]
Further, a method for forming irregularities on the surface of a silica glass jig by chemical treatment instead of mechanical processing is proposed in, for example, Japanese Patent Application Laid-Open No. 11-106225. In this chemical treatment, there is no microcrack in the jig, there is no contamination of the semiconductor element due to contaminants from inside the crack, and there is almost no change in unevenness when cleaning the jig, but a uniform chemical reaction can be performed, When the roughness is large, for example, Ra = 3 or more, a smooth portion exists on the convex slope or the bottom of the concave, and polysilicon adheres to the smooth portion, and the attached polysilicon film and jig Cracks were generated in the jig due to the difference in thermal expansion coefficient, resulting in particles that adversely affected the semiconductor element and reduced yield.
[0004]
[Problems to be solved by the invention]
In view of such a current situation, the present inventors have conducted extensive research, and as a result of treating the silica glass jig mechanically roughened with a specific aqueous solution, the microcracks are released and there is no uptake of contaminants. And by finding that a large number of small protrusions are uniformly distributed on the jig surface, it is found that a silica glass jig free from cracks due to a difference in thermal expansion coefficient between the jig and an adhesion film such as a polysilicon film can be obtained. The present invention has been completed. That is, [0005]
An object of the present invention is to provide a silica glass jig for the semiconductor industry that does not generate impurities that contaminate semiconductor elements during use and that does not generate cracks.
[0006]
Moreover, this invention aims at providing the manufacturing method of the said silica glass jig | tool for semiconductor industries.
[0007]
[Means for Solving the Problems]
In the silica glass jig for semiconductor industry, the present invention that achieves the above-mentioned object has a large number of concave parts having a width of 20 to 300 μm on the surface and grooves having a width of 0.5 to 50 μm at intervals of 20 to 300 μm. In addition, the present invention relates to a silica glass jig for semiconductor industry, characterized in that small protrusions having a width of 1 to 50 μm and a height of 0.1 to 10 μm are uniformly distributed between and within the grooves, and a method for manufacturing the same.
[0008]
The silica glass jig for the semiconductor industry of the present invention is a jig used in the semiconductor industry such as a furnace core tube, a wafer mounting boat, and the like. There are a number of concave parts of 20 to 300 μm in width and there are grooves with a width of 0.5 to 50 μm at intervals of 20 to 300 μm. Between these grooves and within the grooves, a width of 1 to 50 μm and a height of 0.1 to A jig in which small protrusions of 10 μm are uniformly distributed. By having the said structure, the silica glass jig | tool for semiconductor industries of this invention has few generation | occurrence | production of a particle | grain and an impurity, can maintain the high cleanliness of the surface, and can fully exhibit the high purity performance as a bulk of silica glass. In the silica glass jig of the present invention, even if a polysilicon film, for example, is deposited on the surface thereof, the stress based on the difference in thermal expansion coefficient is relieved by the small protrusions, and the jig does not easily crack and has a long jig life. Become. The groove is a portion where a deep microcrack generated during mechanical processing is opened, and the width should be in the range of 0.5 to 50 μm. If the width is less than 0.5 μm, the microcrack spreads. However, the impurity element remains, and in the process where the groove width exceeds 50 μm, the amount of etching off of the surface is large and the dimensional accuracy is deviated. Moreover, although it changes with mechanical processing means between grooves, it is good to exist in the range of 20-300 micrometers. Between these grooves, there is a further concave portion in the shape of an elbow, and its width is in the range of 20 to 300 μm. The small protrusions are uniformly distributed between and within the grooves. Although the magnitude | size is based on the process liquid used for a process, it is good for a width | variety to exist in the range of 1-50 micrometers and height in 0.1-10 micrometers. If the small protrusion is less than the above range, the thermal stress of the deposited film is not sufficiently relaxed and cracks may occur. If the small protrusion is exceeded, a smooth portion remains. The treatment liquid contains 10 to 30% by mass of hydrogen fluoride, 5 to 30% by mass of ammonium fluoride, 45 to 70% by mass of organic carboxylic acid, and the remainder is preferably a treatment liquid of water . By containing this organic carboxylic acid, the small protrusions in the above range can be formed uniformly and easily. Examples of the organic carboxylic acid include water-soluble organic carboxylic acids such as formic acid, acetic acid, and propionic acid. Acetic acid is particularly preferable because it has high solubility in water and is inexpensive.
[0009]
As the production method of the present invention, the surface of the silica glass jig is first roughened by mechanical processing as described above. As the mechanical processing method, sand blasting method in which silicon dioxide fine particles, carbon fine particles, ceramic fine particles are sprayed, Examples thereof include a grinding method using diamond abrasive grains and a wet blasting method using slurry-like free abrasive grains. Sandblasting is preferable. In this sandblasting, the glass powder can be easily peeled off from the jig surface, and the coolant does not penetrate into the microcracks. Next, the particles adhered by washing after mechanical processing are removed, and 10 to 30% by mass of hydrogen fluoride and 5 to 30% by mass of ammonium fluoride are contained, and the balance is a treatment solution of water, preferably further organic carboxylic acid Is repeatedly dipped in a treatment solution containing 45 to 70% by mass to release a microcrack to form a large number of grooves with a width of 0.5 to 50 μm, and between the grooves, a concave portion with an exotic width of 20 to 300 μm. The small protrusions having a width of 1 to 50 μm and a height of 0.1 to 10 μm are uniformly distributed between and in the grooves. When the amount of the organic carboxylic acid contained in the treatment liquid is less than 45% by mass, the small protrusions become large and uniform distribution becomes difficult. When the amount of the organic carboxylic acid exceeds 70% by mass, the small protrusions become small and the effect is achieved. Can not. In addition, when the content of ammonium fluoride in the treatment liquid is less than 5% by mass, etching with hydrogen fluoride only occurs. Even when the amount of ammonium fluoride exceeds 30% by mass, the unevenness can be only about 30% by mass. It is expensive and not practical.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, examples of the present invention will be described, but the present invention is not limited thereto.
[0011]
【Example】
Example 1
A silicon carbide abrasive (No. 320) was used for sandblasting by blowing an abrasive with compressed air onto the inner surface of the LPCVD furnace core tube. The surface roughness Ra was 3 μm. This furnace core tube was immersed in a treatment liquid bath of 15% by mass of hydrogen fluoride, 15% by mass of ammonium fluoride and 50% by mass of acetic acid for 1 hour, and the furnace core tube after treatment was viewed with a scanning electron microscope, as shown in FIG. There were many small protrusions. Also, microcracks were opened and many grooves with a width of about 1 μm were observed. A CVD process for forming a polysilicon film on a silicon wafer was performed using this furnace core tube. It was used until the polysilicon film adhered to the furnace core tube, but the generation of particles was small and the yield rate of silicon wafers was high. Moreover, there was no crack in the furnace core tube with a polysilicon film after use, and no film was peeled off.
[0012]
Comparative Example 1
A CVD process for forming a polysilicon film on a silicon wafer was performed in the same manner as in Example 1 using a furnace core tube that had been sandblasted in the same manner as in Example 1. Many particles were generated after the start of the CVD process, and the wafer could not be processed for a while. Then, when it was used until the polysilicon film adhered to the furnace core tube, some cracks were generated, but the film was not peeled off.
[0013]
Comparative Example 2
The furnace core tube subjected to sandblasting in Example 1 was etched with 20% by mass of hydrogen fluoride for 1 hour. The surface roughness Ra of the obtained jig was 7 μm. When the surface was observed with a scanning electron microscope, a number of smooth, concave (slip-like) concave portions were seen as shown in FIG. Using this furnace core tube, a CVD process was performed in the same manner as in Example 1. When the polysilicon film adhered to the jig at 15 μm, the amount of particles generated increased and the treatment became difficult. Moreover, many cracks were seen in the jig after use, and peeling was also seen in a part of the polysilicon film.
[0014]
【The invention's effect】
The semiconductor silica glass jig of the present invention has a large number of concave parts having a width of 20 to 300 μm on its surface, and grooves having a width of 0.5 to 50 μm at intervals of 20 to 300 μm. Small protrusions with a width of 1 to 50 μm and a height of 0.1 to 10 μm are evenly distributed inside, reducing the generation of particles such as polysilicon film during use, and reducing the generation of cracks, resulting in a long tool life. Can be used for a long time. The silica glass jig can be manufactured by a simple method of treating with a treatment liquid containing a specific concentration of hydrogen fluoride or ammonium fluoride, followed by roughening by mechanical processing that has been conventionally used. Some industrial values are high.
[Brief description of the drawings]
FIG. 1 is a 100 × photograph of the surface of a silica glass jig according to the present invention, taken with a scanning electron microscope.
FIG. 2 is a 100 × photograph taken by a scanning electron microscope of the surface of a silica glass jig obtained by subjecting conventional sandblasting to hydrogen fluoride etching.
Claims (4)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000296733A JP4539794B2 (en) | 2000-09-28 | 2000-09-28 | Silica glass jig for semiconductor industry and manufacturing method thereof |
KR1020027006564A KR100547743B1 (en) | 2000-09-28 | 2001-09-04 | Silica Glass Jig for Semiconductor Industry and Manufacturing Method Thereof |
PCT/JP2001/007634 WO2002027771A1 (en) | 2000-09-28 | 2001-09-04 | Semiconductor industry-use silica glass jig and production method therefor |
TW090122360A TWI284632B (en) | 2000-09-28 | 2001-09-10 | Silica glass jig for semiconductor industry and method of manufacturing the same |
DE60107035T DE60107035T2 (en) | 2000-09-28 | 2001-09-24 | Quartz glass devices for the semiconductor industry and process for their manufacture |
EP01122851A EP1193327B1 (en) | 2000-09-28 | 2001-09-24 | Silica glass apparatus for semiconductor industry and method for producing the same |
US09/962,918 US20020078886A1 (en) | 2000-09-28 | 2001-09-25 | Silica glass jig for semiconductor industry and method for producing the same |
US10/664,272 US20040050102A1 (en) | 2000-09-28 | 2003-09-15 | Silica glass jig for semiconductor industry and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000296733A JP4539794B2 (en) | 2000-09-28 | 2000-09-28 | Silica glass jig for semiconductor industry and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002104843A JP2002104843A (en) | 2002-04-10 |
JP4539794B2 true JP4539794B2 (en) | 2010-09-08 |
Family
ID=18778959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000296733A Expired - Lifetime JP4539794B2 (en) | 2000-09-28 | 2000-09-28 | Silica glass jig for semiconductor industry and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4539794B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013191768A (en) * | 2012-03-14 | 2013-09-26 | Sharp Corp | Deposition device, deposition method, and semiconductor element |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07267679A (en) * | 1994-03-31 | 1995-10-17 | Shinetsu Quartz Prod Co Ltd | Surface treating solution for quartz glass and method for using the same solution |
JPH1059744A (en) * | 1996-08-20 | 1998-03-03 | Shinetsu Quartz Prod Co Ltd | Silica glass article having matte surface for semiconductor industry and its production |
JPH10167760A (en) * | 1996-12-04 | 1998-06-23 | Shinetsu Quartz Prod Co Ltd | Silica glass vessel for dry etching and its production, and dry-etching device equipped with the silica glass vessel |
JPH10273339A (en) * | 1997-03-27 | 1998-10-13 | Shinetsu Quartz Prod Co Ltd | Silica glass member for use in production of semiconductor |
JPH11130451A (en) * | 1997-10-31 | 1999-05-18 | Shinetsu Quartz Prod Co Ltd | Quartz glass jig for semiconductor heat treatment apparatus |
-
2000
- 2000-09-28 JP JP2000296733A patent/JP4539794B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07267679A (en) * | 1994-03-31 | 1995-10-17 | Shinetsu Quartz Prod Co Ltd | Surface treating solution for quartz glass and method for using the same solution |
JPH1059744A (en) * | 1996-08-20 | 1998-03-03 | Shinetsu Quartz Prod Co Ltd | Silica glass article having matte surface for semiconductor industry and its production |
JPH10167760A (en) * | 1996-12-04 | 1998-06-23 | Shinetsu Quartz Prod Co Ltd | Silica glass vessel for dry etching and its production, and dry-etching device equipped with the silica glass vessel |
JPH10273339A (en) * | 1997-03-27 | 1998-10-13 | Shinetsu Quartz Prod Co Ltd | Silica glass member for use in production of semiconductor |
JPH11130451A (en) * | 1997-10-31 | 1999-05-18 | Shinetsu Quartz Prod Co Ltd | Quartz glass jig for semiconductor heat treatment apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2002104843A (en) | 2002-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7250114B2 (en) | Methods of finishing quartz glass surfaces and components made by the methods | |
KR100625928B1 (en) | Method and apparatus for processing semiconductor substrates | |
US6825123B2 (en) | Method for treating semiconductor processing components and components formed thereby | |
KR100284105B1 (en) | Jig for semiconductor and method of manufacturing thereof | |
CN1716522A (en) | A method for the treatment of a surface of a metal-carbide substrate as well as such a metal-carbide substrate | |
KR102017138B1 (en) | Method for Recycling of SiC Product and Recycled SiC Product | |
EP1193327B1 (en) | Silica glass apparatus for semiconductor industry and method for producing the same | |
JPH08188408A (en) | Silicon carbide molded product by chemical vapor deposition and its production | |
JP3540936B2 (en) | Vacuum container | |
KR100633966B1 (en) | Component of glass-like carbon for cvd apparatus and process for production thereof | |
JP4539794B2 (en) | Silica glass jig for semiconductor industry and manufacturing method thereof | |
JP4437365B2 (en) | Silica glass jig for semiconductor industry and manufacturing method thereof | |
JPH11157989A (en) | Susceptor for gas phase growth and its production | |
JPH1059744A (en) | Silica glass article having matte surface for semiconductor industry and its production | |
JP2007063070A (en) | Method for manufacturing plasma-resistant yttria sintered compact | |
WO2004051724A1 (en) | Silica glass jig used in process for manufacturing semiconductor and method of manufacturing silica glass jig | |
JPH11130451A (en) | Quartz glass jig for semiconductor heat treatment apparatus | |
JP3956291B2 (en) | Semiconductor processing components | |
JP4058893B2 (en) | Silicon boat manufacturing method and silicon boat | |
JP4275767B2 (en) | Method for manufacturing silicon carbide dummy wafer | |
JP2003257960A (en) | Jig for heat treatment of semiconductor | |
JPH11189471A (en) | Roll made of vitrified carbon, its production, plasma generator, its chamber inner wall protecting member, protection of the chamber inner wall and plasma treatment | |
US6458707B1 (en) | Tool for semiconductor manufacturing apparatus and method for using the same | |
JPH10245266A (en) | Purification of silicon carbide-based molded product | |
JP2000243706A (en) | Forming method of cvd film and dummy wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100210 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100326 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100615 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100615 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4539794 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130702 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |