KR20220111262A - How to make quartz glass - Google Patents
How to make quartz glass Download PDFInfo
- Publication number
- KR20220111262A KR20220111262A KR1020227018045A KR20227018045A KR20220111262A KR 20220111262 A KR20220111262 A KR 20220111262A KR 1020227018045 A KR1020227018045 A KR 1020227018045A KR 20227018045 A KR20227018045 A KR 20227018045A KR 20220111262 A KR20220111262 A KR 20220111262A
- Authority
- KR
- South Korea
- Prior art keywords
- surface treatment
- quartz glass
- solvent component
- glass
- quartz
- Prior art date
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 108
- 238000004381 surface treatment Methods 0.000 claims abstract description 145
- 238000004519 manufacturing process Methods 0.000 claims abstract description 50
- 239000007788 liquid Substances 0.000 claims abstract description 42
- 239000002904 solvent Substances 0.000 claims abstract description 34
- 230000003746 surface roughness Effects 0.000 claims abstract description 29
- 239000011521 glass Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims description 55
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 239000010453 quartz Substances 0.000 claims description 27
- 239000004065 semiconductor Substances 0.000 claims description 27
- 229910017855 NH 4 F Inorganic materials 0.000 claims description 5
- 239000003595 mist Substances 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 65
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 22
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 12
- 239000013081 microcrystal Substances 0.000 description 12
- 238000005530 etching Methods 0.000 description 6
- 210000005239 tubule Anatomy 0.000 description 5
- 238000001035 drying Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000005488 sandblasting Methods 0.000 description 3
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- -1 ammonium silicate Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000011043 treated quartz Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C15/00—Surface treatment of glass, not in the form of fibres or filaments, by etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2201/00—Glass compositions
- C03C2201/02—Pure silica glass, e.g. pure fused quartz
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Surface Treatment Of Glass (AREA)
- Glass Melting And Manufacturing (AREA)
Abstract
본 발명은 표면처리액을 사용해 석영 유리의 표면처리를 행하여, 유리 표면에 요철을 가지는 석영 유리의 제조 방법에 있어서, 상기 표면처리액에 의한 표면처리에 관여하지 않는 용매 성분을, 미리 석영 유리의 표면에 접촉시켜 두고, 이어서, 상기 용매 성분이 건조되지 않은 동안에, 상기 표면처리액에 의한 표면처리를 행함으로써, 유리 표면에 표면 거칠기(Ra)가 1.5∼3.5㎛인 요철을 형성하도록 한 석영 유리의 제조 방법을 제공한다. 본 발명의 제조 방법에 의하면, 마이크로 크랙이 존재하지 않는 표면처리액에 의한 표면처리에 의해 요철을 형성하는 공정에 있어서, 표면 거칠기(Ra)를 1.5∼3.5㎛의 범위의 요철을 가지는 석영 유리를 제조할 수 있고, 표면처리액의 농도를 변화시킬 필요가 없어, 비교적 간편하며 경제적이다. The present invention relates to a method for producing a quartz glass having irregularities on the surface of the glass by performing a surface treatment of the quartz glass using a surface treatment solution. Quartz glass with a surface roughness (Ra) of 1.5 to 3.5 µm is formed on the surface of the glass by being brought into contact with the surface and then subjected to a surface treatment with the surface treatment liquid while the solvent component is not dried. It provides a manufacturing method of According to the manufacturing method of the present invention, in the step of forming irregularities by surface treatment with a surface treatment solution in which microcracks do not exist, quartz glass having a surface roughness (Ra) in the range of 1.5 to 3.5 µm is produced. It can be manufactured and there is no need to change the concentration of the surface treatment solution, so it is relatively simple and economical.
Description
본 발명은 석영 유리의 표면에 원하는 표면 거칠기(Ra)를 가지는 요철을 형성한 석영 유리의 제조 방법에 관한 것으로, 특히, 반도체 소자 제조에 있어서의 CVD 공정 등의 성막 프로세스에서 사용되는 석영 세관(細管) 등의 석영 유리 지그의 제조 방법에 관한 것이다. The present invention relates to a method for manufacturing a quartz glass in which irregularities having a desired surface roughness (Ra) are formed on the surface of the quartz glass. ) relates to a method for manufacturing a quartz glass jig, such as.
석영 유리는 고순도이며, 내화학약품성이 우수한 점에서, 종래부터, 반도체 처리용, 광학용, 이화학기기용, 장식용 등의 재료로서 사용되고 있다. 이들 석영 유리 가공품은 사용 목적에 따라 그 표면에 각종의 요철 가공이 시행되는 일이 있다. 특히, 반도체 프로세스에서 사용하는 노심관의 내면에 요철을 형성함으로써, LPCVD(저압 화학증착) 처리에 있어서의 폴리실리콘막 등의 박리를 방지하고, 웨이퍼의 열처리 시에 발생하는 파티클을 방지하는 것이다. Since quartz glass is highly purified and has excellent chemical resistance, it has been conventionally used as a material for semiconductor processing, optics, physicochemical equipment, decoration, and the like. These quartz glass products may be subjected to various concavo-convex processing on their surfaces depending on the intended use. In particular, by forming irregularities on the inner surface of a core tube used in a semiconductor process, peeling of the polysilicon film or the like in the LPCVD (low pressure chemical vapor deposition) process is prevented, and particles generated during the heat treatment of the wafer are prevented.
상기의 석영 유리 표면에 요철 가공을 시행하는 방법으로서는 샌드 블라스트 처리나 HF/CH3COOH/NH4F의 혼합액(표면처리액)에 의한 표면처리가 알려져 있다. 상기의 샌드 블라스트 처리는 표면에 기계적 파괴를 수반하는 가공 방법이며, 이 때문에 석영 유리 표면에는 마이크로 크랙이 존재하고, 그 마이크로 크랙의 존재가 파티클 등의 발생의 요인이 되는 경우도 있어, 반드시 유효하다고는 할 수 없다. 또, 표면처리액에 의한 표면처리에 의한 표면 요철 가공에서는, 상기와 같은 마이크로 크랙은 존재하지 않으므로 반도체 프로세스에서의 사용에 적합하다고 하여 오래 채용되어 왔다. 또, 반도체 프로세스에 있어서, 석영 유리 표면으로부터 폴리실리콘막의 박리를 방지(이하, 「막벗겨짐 방지」라고도 한다.)하기 위해서는, 표면 거칠기가 거친 편이 막벗겨짐이 일어나기 어려운 것이 일반적으로 알려져 있다. As a method of applying the uneven processing to the surface of the quartz glass, a sand blasting treatment or a surface treatment with a mixed solution of HF/CH 3 COOH/NH 4 F (surface treatment solution) is known. The above sandblasting treatment is a processing method involving mechanical destruction on the surface, and for this reason, microcracks exist on the surface of the quartz glass, and the presence of microcracks may cause the generation of particles, etc. can't In addition, in the surface asperity processing by surface treatment with a surface treatment liquid, since microcracks as described above do not exist, they have been adopted for a long time because they are suitable for use in a semiconductor process. Moreover, in a semiconductor process, in order to prevent peeling of a polysilicon film from a quartz glass surface (hereinafter also referred to as "film peeling prevention"), it is generally known that the rough surface roughness makes peeling less likely.
그러나, 석영 유리의 표면처리액에 의한 표면처리 방법에서는, 샌드 블라스트 처리와 같은 기계적 파괴를 수반하는 가공 방법에 비교하여 표면 거칠기의 편차나 컨트롤이 어렵다고 하는 문제가 있다. 특히, 반도체 제조에 있어서의 성막 프로세스에서 사용하는 석영 세관을 표면처리액에 의해 표면 처리를 행하는 경우, 그 표면의 요철 표면 거칠기는 Ra가 1㎛ 전후라고 하는 값이다. 또, 반도체 소자 제조에 있어서의 CVD 공정에서 사용하는 석영 세관과 같이 곡률이 큰 표면의 경우, 요철 형성의 핵이 되는 미세결정이 많이 발생하거나, 또는 미세결정끼리의 간극이 작아지는 경향이 있다고 생각된다. 이 때문에 반도체 프로세스에 있어서의 막벗겨짐 방지로서의 요철이라고 하는 관점에서는 표면 거칠기(Ra)가 1㎛ 이내에서는 막의 두께에 비교하여 요철이 충분한 기능이라고는 할 수 없어 효과로서는 불충분하다. 따라서, 막벗겨짐 방지를 위한 요철의 수치 설정으로서는 표면 거칠기(Ra)가 1.5∼3.5㎛ 정도인 것이 바람직하다. However, the surface treatment method using a surface treatment liquid for quartz glass has a problem in that it is difficult to control the variation or control of the surface roughness compared to a processing method involving mechanical destruction such as sand blasting. In particular, when a quartz tubule used in a film formation process in semiconductor manufacturing is subjected to surface treatment with a surface treatment solution, the surface roughness of the surface concavo-convex is a value such that Ra is around 1 µm. In addition, in the case of a surface with a large curvature, such as a quartz tube used in a CVD process in semiconductor device manufacturing, it is thought that a large number of microcrystals that serve as nuclei for the formation of irregularities tend to occur or the gaps between microcrystals tend to be small. do. For this reason, from a viewpoint of unevenness|corrugation as film peeling prevention in a semiconductor process, if the surface roughness Ra is less than 1 micrometer, compared with the thickness of a film|membrane, the unevenness|corrugation cannot be said to be a sufficient function, and it is insufficient as an effect. Therefore, it is preferable that the surface roughness (Ra) is about 1.5 to 3.5 µm as the numerical setting of the unevenness for preventing the film peeling off.
또, 특허문헌 1(일본 특허 제4455018호 공보)에 제안되어 있는 바와 같이, 표면처리액의 농도를 변화시킴으로써, 석영 유리의 표면에 있어서의 표면 거칠기(Ra)의 컨트롤을 행하는 것은 가능하다. 그러나, 이 방법에서는, 그때마다, 표면처리액의 농도를 변화시킬 필요가 있어, 러닝 코스트가 증가하고, 리드 타임도 길어진다고 하는 문제가 있었다. 즉 표면처리액에 의한 표면처리 때마다 농도 변경을 위해 표면처리액을 교환하지 않으면 안 되어 번잡하고 또한 비용 상승이 되어버린다. Further, as proposed in Patent Document 1 (Japanese Patent No. 4455018), it is possible to control the surface roughness Ra on the surface of the quartz glass by changing the concentration of the surface treatment liquid. However, in this method, it is necessary to change the density|concentration of the surface treatment liquid each time, and there exists a problem that a running cost increases and the lead time also increases. That is, each time the surface treatment is performed with the surface treatment liquid, the surface treatment liquid must be replaced in order to change the concentration, which is complicated and increases the cost.
그 밖에, 석영 유리의 표면에 있어서의 표면 거칠기(Ra)에 관한 기술에 대해서는, 하기의 특허문헌 2∼3 등을 들 수 있다. In addition, the following patent documents 2-3 etc. are mentioned about the technique regarding the surface roughness (Ra) in the surface of quartz glass.
본 발명은 상기 사정을 감안한 것으로, 석영 유리를 표면처리하는 표면처리액을 사용하여 석영 유리 표면에 요철을 형성할 때, 비교적 간이한 방법으로 상기 유리 표면의 요철의 표면 거칠기(Ra)을 컨트롤할 수 있는 석영 유리의 제조 방법을 제공하는 것을 목적으로 한다. The present invention has been made in view of the above circumstances, and when the surface treatment liquid for surface treatment of quartz glass is used to form irregularities on the surface of the quartz glass, it is possible to control the surface roughness (Ra) of the irregularities on the surface of the glass in a relatively simple way. An object of the present invention is to provide a method for producing a quartz glass that can be used.
본 발명자들은 상기 목적을 달성하기 위해 예의 연구를 거듭한 결과, 마이크로 크랙이 존재하지 않는 표면처리액에 의한 표면처리에 의한 요철 형성에 있어서, 특히 반도체 프로세스에 사용하는 석영 세관의 표면 요철의 표면 거칠기(Ra)를 1.5∼3.5㎛의 범위로 실현하기 위한 처리 수단으로서, 석영 유리를 표면처리액에 의해 표면처리하기 전에 순수 등의 액 처리에 관여하지 않는 용매 성분을 상기 석영 유리 표면에 접촉시켜 두고, 그 용매가 건조되지 않은 동안에, 상기 표면처리액에 의한 표면처리를 행함으로써, 표면 거칠기가 비교적 거친 요철을 석영 유리 표면에 형성할 수 있는 것을 발견하고, 본 발명을 이루게 된 것이다. The present inventors have conducted intensive research to achieve the above object. As a result, in the formation of irregularities by surface treatment with a surface treatment solution having no microcracks, in particular, the surface roughness of the surface irregularities of quartz tubules used in semiconductor processes. As a treatment means for realizing (Ra) in the range of 1.5 to 3.5 μm, a solvent component not involved in liquid treatment, such as pure water, is brought into contact with the quartz glass surface before the quartz glass is surface treated with a surface treatment liquid. , found that irregularities with relatively coarse surface roughness can be formed on the surface of quartz glass by performing the surface treatment with the surface treatment liquid while the solvent is not dried, and the present invention has been accomplished.
본 발명의 제조 방법은 석영 유리를 표면처리액에 의해 표면처리하기 전에 순수 등의 액 처리에 관여하지 않는 용매 성분을 상기 석영 유리 표면에 접촉시키는 것이며, 그 후, 표면처리액에 의해 표면처리가 행해진다. 그때의 석영 유리의 표면에 있어서의 작용 또는 메커니즘에 대해서는 확실하지 않지만, 대략 이하가 추찰된다. In the manufacturing method of the present invention, a solvent component not involved in liquid treatment, such as pure water, is brought into contact with the surface of the quartz glass before surface treatment of the quartz glass with the surface treatment liquid, and then the surface treatment is performed with the surface treatment liquid. is done Although it is not certain about the action|action or mechanism in the surface of the quartz glass at that time, the following is approximated.
예를 들면, 표면처리액으로서 HF와 NH4F를 포함하는 혼합액을 사용한 경우, 통상, 석영 유리를 에칭하면 석영 유리와 혼합액과의 반응에 의해 규불화암모늄(NH4)2SiF6(미세결정)이 생성된다. 이 규불화암모늄이 석영 유리의 표면에 미세결정이 석출되어 성장한다고 하고 있다. 석영 유리의 표면의 미세결정이 석출한 부위는 불산에 의한 에칭이 방해되기 때문에, 석영 유리의 표면의 일부가 에칭의 진행이 늦어지게 되어, 불균일하게 에칭이 진행됨으로써, 석영 유리의 표면에 요철이 생기는 것으로 추찰된다. 또, 일단 미세결정이 석출되면, 그 후는 새롭게 석출되는 미세결정도 있지만, 이미 석출해 있는 미세결정이 성장해 가는 것으로 추찰된다. 이 미세결정이 결정으로 성장하여 유리 표면을 덮으면, 이 유리 표면 전체가 동일하게 에칭이 방해되기 때문에, 이것 이후는, 에칭의 차이가 생기지 않는다. 이에 대해, 본 발명의 제조 방법에서는, 석영 유리의 표면의 일부에 수분(미소한 물방울)이 존재하는 것이며, 그 부위는 표면처리액이 직접 유리 표면에 접촉하지 않게 되고, 따라서, 미세결정도 이 단계에서는 석출되지 않게 된다. 또, 석영 유리의 표면에 존재하는 수분은 표면처리액의 양과 비교하면 충분히 소량이기 때문에, 수분은 표면처리액과 혼합되고, 수분이 존재하고 있던 유리 표면도 결국은 표면처리액과 접촉하게 된다. 그러나, 수분이 없는 유리 표면에서는, 이미 미세결정이 석출해 있는 부위가 있다. 이미 미세결정이 석출해 있는 부위에 재결정이 진행되므로, 수분이 존재하고 있던 유리 표면에서는 새롭게 미세결정이 석출하기 어려운 것으로 추찰되고, HF에 의한 에칭만이 진행하게 된다. 따라서, 본 발명에서는, 수분이 표면처리액과 혼합할 때까지의 시간은 이 수분의 존재에 의해 표면처리액에 의한 요철 형성을 저해한다고 생각되며, 그 결과, 표면 거칠기가 비교적 거친 요철을 석영 유리 표면에 형성할 수 있는 것으로 생각된다. For example, when a mixed solution containing HF and NH 4 F is used as the surface treatment solution, ammonium silicate (NH 4 ) 2 SiF 6 (microcrystals ) is created. It is said that this ammonium silicate precipitates and grows on the surface of the quartz glass. Since the etching by hydrofluoric acid is hindered in the part where the microcrystals on the surface of the quartz glass are deposited, the etching process is delayed for a part of the surface of the quartz glass, and the etching proceeds unevenly, so that the surface of the quartz glass is uneven. It is presumed to occur In addition, once microcrystals are precipitated, there are microcrystals that are newly precipitated thereafter, but it is presumed that the microcrystals already precipitated grow. When these microcrystals grow into crystals and cover the glass surface, etching is equally prevented on the entire glass surface, so there is no difference in etching after this. On the other hand, in the manufacturing method of the present invention, moisture (fine water droplets) is present on a part of the surface of the quartz glass, and the surface treatment liquid does not directly contact the glass surface in that part, and therefore, the microcrystals are also No precipitation at this stage. In addition, since the amount of water present on the surface of the quartz glass is sufficiently small compared to the amount of the surface treatment liquid, the water mixes with the surface treatment liquid, and the glass surface on which the water was present also comes into contact with the surface treatment liquid. However, on the surface of the glass without water, there are areas where microcrystals have already been deposited. Since recrystallization proceeds in the portion where microcrystals have already been deposited, it is assumed that it is difficult to newly precipitate microcrystals on the surface of the glass where moisture is present, and only etching with HF proceeds. Therefore, in the present invention, it is considered that the time until the moisture is mixed with the surface treatment liquid inhibits the formation of irregularities by the surface treatment liquid due to the presence of this moisture, and as a result, it is considered that the surface roughness is relatively rough on the quartz glass. It is thought that it can form on the surface.
따라서, 본 발명은 하기의 석영 유리의 제조 방법을 제공한다. Accordingly, the present invention provides the following method for producing quartz glass.
1. 표면처리액을 사용해 석영 유리의 표면처리를 행하여, 유리 표면에 요철을 가지는 석영 유리의 제조 방법에 있어서, 상기 표면처리액에 의한 표면처리에 관여하지 않는 용매 성분을 미리 석영 유리의 표면에 접촉시켜 두고, 이어서, 상기 용매 성분이 건조되지 않은 동안에, 상기 표면처리액에 의한 표면처리를 행함으로써, 유리 표면에 표면 거칠기(Ra)가 1.5∼3.5㎛인 요철을 형성하는 것을 특징으로 하는 석영 유리의 제조 방법.1. A method for producing a quartz glass having irregularities on the surface of the glass by performing a surface treatment of the quartz glass using a surface treatment solution, wherein a solvent component not involved in the surface treatment by the surface treatment solution is previously applied to the surface of the quartz glass Quartz characterized in that the surface is subjected to surface treatment with the surface treatment solution while the solvent component is not dried, thereby forming irregularities with a surface roughness (Ra) of 1.5 to 3.5 µm on the glass surface. A method of manufacturing glass.
2. 상기 표면처리에 관여하지 않는 용매 성분이 물 또는 순수인 상기 1 기재의 석영 유리의 제조 방법.2. The method for producing a quartz glass according to 1 above, wherein the solvent component not involved in the surface treatment is water or pure water.
3. 상기 표면처리에 관여하지 않는 용매 성분을 석영 유리의 표면에 접촉시키는 방법이 용매 성분을 석영 유리 표면에 흘려보내는 방법, 분무기로 용매 성분을 분사하는 방법, 또는 용매 성분의 미스트를 발생시키거나 혹은 용매 성분에 의한 습도가 70% 이상의 상태에서 석영 유리의 표면에 접촉시키는 방법인 상기 1 또는 2 기재의 석영 유리의 제조 방법.3. The method of bringing the solvent component not involved in the surface treatment into contact with the surface of the quartz glass is a method of flowing the solvent component onto the surface of the quartz glass, a method of spraying the solvent component with a sprayer, or generating mist of the solvent component or or the method for producing a quartz glass according to 1 or 2 above, wherein the method is a method of contacting the surface of the quartz glass with a humidity of 70% or more by a solvent component.
4. 석영 유리의 표면처리액의 성분이 HF, NH4F, 아세트산을 포함하는 혼합산인 상기 1∼3 중 어느 하나에 기재된 석영 유리의 제조 방법.4. The method for producing a quartz glass according to any one of 1 to 3, wherein a component of the quartz glass surface treatment liquid is a mixed acid containing HF, NH 4 F and acetic acid.
5. 상기 제조 방법에 의해 제조되는 석영 유리가 반도체 제조에 있어서의 성막 프로세스에서 사용되는 석영 유리 지그인 상기 1∼4 중 어느 하나에 기재된 석영 유리의 제조 방법.5. The method for producing a quartz glass according to any one of 1 to 4, wherein the quartz glass produced by the production method is a quartz glass jig used in a film forming process in semiconductor production.
6. 상기 석영 유리 지그가 내경 4.0∼100.0mm 및 외경 8.0∼106.0mm의 석영 세관인 상기 5 기재의 석영 유리의 제조 방법.6. The method for producing quartz glass according to item 5 above, wherein the quartz glass jig is a quartz tube having an inner diameter of 4.0 to 100.0 mm and an outer diameter of 8.0 to 106.0 mm.
본 발명의 유리 표면의 제조 방법에 의하면, 마이크로 크랙이 존재하지 않는 표면처리액에 의한 표면처리에 의해 요철을 형성하는 공정에 있어서, 표면 거칠기(Ra)를 1.5∼3.5㎛의 범위의 요철을 가지는 석영 유리를 제조할 수 있고, 표면처리액의 농도를 변화시킬 필요가 없어, 비교적 간편하며 경제적인 제조 방법이다. According to the method for manufacturing a glass surface of the present invention, in the step of forming the unevenness by surface treatment with a surface treatment solution in which microcracks do not exist, the surface roughness (Ra) having unevenness in the range of 1.5 to 3.5 μm It is a relatively simple and economical manufacturing method because quartz glass can be manufactured and there is no need to change the concentration of the surface treatment solution.
도 1은 실시예 1∼7 및 비교예 1∼7에서 표면처리한 석영 세관에 있어서, 각 예의 유리 표면의 표면 거칠기(평균Ra)를 나타내는 그래프이다. Fig. 1 is a graph showing the surface roughness (average Ra) of the glass surface of the quartz tubules surface-treated in Examples 1 to 7 and Comparative Examples 1 to 7;
(발명을 실시하기 위한 형태)(Form for implementing the invention)
이하, 본 발명에 대해 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
본 발명은 표면에 원하는 표면 거칠기(Ra)의 요철을 가지는 석영 유리의 제조 방법이며, 표면처리액을 사용하여 석영 유리의 표면처리를 행하는 것이다. The present invention is a method for manufacturing a quartz glass having a surface roughness of a desired surface roughness (Ra), and a surface treatment of the quartz glass is performed using a surface treatment solution.
표면에 요철을 형성하는 처리를 행하지 않는 석영 유리로서는 천연 석영 및 합성 석영을 들 수 있고, 그 사용 목적 등에 따라 적당하게 시판품을 사용할 수 있고, 특히, 반도체 제조 프로세스용의 천연 석영 유리가 적합하게 채용된다. 예를 들면, 「HERALUX-LA」(상품명, 신에츠세키에이(주)제) 및 「HERALUX-E-LA」(상품명, 신에츠세키에이(주)제)를 채용할 수 있다. Natural quartz and synthetic quartz are mentioned as quartz glass which is not subjected to a treatment for forming irregularities on the surface, and commercially available products can be used suitably according to the purpose of use thereof. In particular, natural quartz glass for semiconductor manufacturing processes is suitably employed. do. For example, "HERALUX-LA" (trade name, manufactured by Shin-Etsu Sekiei Co., Ltd.) and "HERALUX-E-LA" (trade name, manufactured by Shin-Etsu Sekiei Co., Ltd.) are employable, for example.
본 발명에서는, 표면처리액에 의한 표면처리에 관여하지 않는 용매 성분을 미리 석영 유리의 표면에 접촉시키는 공정을 포함한다. In the present invention, a step of contacting the surface of the quartz glass with a solvent component not involved in the surface treatment with the surface treatment liquid in advance is included.
표면처리액에 의한 표면처리에 관여하지 않는 용매 성분으로서는 후술하는 표면처리액의 각 성분과 화학 반응하여 결정이 생성되지 않는 용매 성분이며, 특별히 제한되는 것은 아니고, 예를 들면, 물, 순수, 에탄올 등을 들 수 있고, 특히, 물 또는 순수를 채용하는 것이 바람직하다. The solvent component not involved in the surface treatment with the surface treatment solution is a solvent component that does not chemically react with each component of the surface treatment solution to be described later to form crystals, and is not particularly limited, for example, water, pure water, ethanol etc. are mentioned, In particular, it is preferable to employ|adopt water or pure water.
상기의 용매 성분을 석영 유리의 표면에 접촉시키는 방법에 대해서는, 예를 들면, 용매 성분을 석영 유리 표면에 흘려보내는 방법, 용매 성분을 분무기로 분사하는 방법, 또는 용매 성분의 미스트를 발생시키거나 혹은 용매 성분에 의한 습도가 70% 이상의 상태에서 석영 유리의 표면에 접촉시키는 방법 등을 들 수 있다. Regarding the method of bringing the solvent component into contact with the surface of the quartz glass, for example, a method of flowing the solvent component onto the surface of the quartz glass, a method of spraying the solvent component with a sprayer, or generating a mist of the solvent component or and a method of contacting the surface of the quartz glass with the humidity of the solvent component of 70% or more.
상기 방법에 의해 상기의 용매 성분이 대상이 되는 석영 유리의 표면에 존재하는 것, 또는 이 석영 유리의 표면이 용매 성분으로 젖은 상태가 되어 있으면 된다. 또, 사용하는 용매 성분의 종류나 특성에 따라 이 용매 성분이 건조하지 않도록 적당하게 온도나 습도 등의 환경 조건을 선정할 수도 있지만, 통상, 온도는 상온(15∼25℃)이며, 습도는 특별히 한정되지 않는다. 상기 용매 성분을 고습도 상태에서 석영 유리 표면에 접촉시키는 방법으로서는 습도 75% 이상, 또한 상온(15℃∼25℃)의 환경하에서, 30분 이상 유지시킨 후에 행하는 것이 바람직하다. According to the above method, the solvent component may exist on the surface of the target quartz glass, or the surface of the quartz glass may be wet with the solvent component. In addition, depending on the type and characteristics of the solvent component to be used, environmental conditions such as temperature and humidity may be appropriately selected so that the solvent component does not dry out. Usually, the temperature is room temperature (15 to 25° C.), and the humidity is particularly not limited As a method of bringing the solvent component into contact with the surface of the quartz glass in a high humidity state, it is preferable to carry out after maintaining it for 30 minutes or more in an environment with a humidity of 75% or more and room temperature (15°C to 25°C).
다음에 대상이 되는 석영 유리의 표면에 대하여, 용매 성분이 건조되지 않은 동안에 표면처리액에 의한 표면처리를 행한다. Next, the surface of the target quartz glass is subjected to surface treatment with a surface treatment solution while the solvent component is not dried.
상기 표면처리액으로서는, 종래부터 사용되고 있는 것과 사용할 수 있고, 구체적으로는, 불화수소(HF)와 불화암모늄(NH4F)을 포함하는 표면처리액(약액)을 적합하게 사용할 수 있다. 특히, 불화수소 10∼50질량%, 불화 암모늄 6∼30질량% 및 유기산 30∼60질량%를 함유하는 수용액이 적합하게 사용된다. 유기산으로서는 특별히 한정되지 않지만, 예를 들면, 아세트산, 포름산, 프로피온산 등이 바람직하다. 또, 상기 표면처리액을 사용할 때의 액온은 15∼25℃인 것이 적합하다. As the surface treatment liquid, those conventionally used can be used, and specifically, a surface treatment liquid (chemical liquid) containing hydrogen fluoride (HF) and ammonium fluoride (NH 4 F) can be suitably used. In particular, the aqueous solution containing 10-50 mass % of hydrogen fluoride, 6-30 mass % of ammonium fluoride, and 30-60 mass % of organic acids is used suitably. Although it does not specifically limit as an organic acid, For example, acetic acid, formic acid, propionic acid, etc. are preferable. Moreover, it is suitable that the liquid temperature at the time of using the said surface treatment liquid is 15-25 degreeC.
또한, 상기 표면처리액에 의한 수단은 프로스트법이라 불리는 화학적 처리 방법에 의해, 석영 유리의 표면을 미세하고 또한 매끄러운 요철을 가지는 면, 즉 마이크로 크랙을 수반하지 않는 미세한 요철이 형성된 면으로 가공하는 것이며, 종래부터 알려져 있는 것이다. In addition, the means with the surface treatment solution is to process the surface of the quartz glass into a surface with fine and smooth unevenness, that is, a surface on which fine unevenness without microcracks is formed, by a chemical treatment method called the Frost method. , which has been known in the past.
본 발명에서는, 상기한 일련의 공정을 가짐으로써, 유리 표면에 표면 거칠기(Ra)가 1.5∼3.5㎛인 요철을 형성한 석영 유리를 얻을 수 있다. 유리 표면의 표면 거칠기(Ra)의 바람직한 값은 사용 목적에 따라 적당하게 선정되는 것이며, 예를 들면, 반도체 제조에 있어서 성막 프로세스에서 사용되는 석영 세관에서는, 유리 표면 거칠기(Ra) 1.5∼3.0㎛가 적합하다. 또한, 상기의 표면 거칠기(Ra)는 JIS B0601(2001년)에서 정의하는 산술평균 높이(Ra)이며, 표면 거칠기 측정기 등의 시판품의 측정기기에 의해 측정할 수 있다. In the present invention, by having the above-described series of steps, it is possible to obtain a quartz glass in which irregularities having a surface roughness (Ra) of 1.5 to 3.5 µm are formed on the glass surface. A preferable value of the surface roughness (Ra) of the glass surface is appropriately selected according to the purpose of use. For example, in a quartz tube used in a film forming process in semiconductor manufacturing, the glass surface roughness (Ra) is 1.5 to 3.0 µm. Suitable. In addition, said surface roughness (Ra) is an arithmetic mean height (Ra) defined by JIS B0601 (2001), and can measure with commercially available measuring instruments, such as a surface roughness measuring instrument.
상기 제조 방법에 의해 얻어진 특정 표면 거칠기(Ra)를 가지는 요철이 형성된 석영 유리에 대해서는, 예를 들면, 반도체 제조에 있어서 성막 프로세스에서 사용되는 석영 유리 지그(튜브, 노심관, 보트 등), 특히, 내경 4.0∼100.0mm 및 외경 8.0∼106.0mm의 석영 세관에 유용하다. For the quartz glass with irregularities formed with a specific surface roughness (Ra) obtained by the above manufacturing method, for example, a quartz glass jig (tube, core tube, boat, etc.) used in a film forming process in semiconductor manufacturing, in particular, It is useful for quartz tubes with an inner diameter of 4.0 to 100.0 mm and an outer diameter of 8.0 to 106.0 mm.
실시예Example
이하, 실시예와 비교예를 제시하여, 본 발명을 구체적으로 설명하지만, 본 발명은 하기의 실시예에 제한되는 것은 아니다. Hereinafter, the present invention will be described in detail by giving examples and comparative examples, but the present invention is not limited to the following examples.
[실시예 1][Example 1]
반도체 제조에 있어서 성막 프로세스에서 사용되는 외경 8mm, 내경 4mm의 석영 세관(시판품명 「석영제 가스 공급관」)(이하, 동일)을 순수로 내면 및 외면을 린싱하고, 표면처리액(약액)조에 들어가기 직전까지, 분무기로 순수를 분사하고, 그 직후에, 표면처리액에 의한 표면처리를 행했다. 이때의, 표면처리액의 농도는 HF 농도 14.9wt%, 아세트산 농도 48.3wt%, 액온 22.8℃이다. 이 조건하에서 표면처리액에 의한 표면처리를 행했다. 이 표면처리된 석영 세관의 표면 거칠기(Ra)를 미츠토요사제의 소형 표면 거칠기 측정기 「서프 테스트 SJ-310」(이하, 동일)에 의해 계측한 바, Ra 최대가 1.92㎛, Ra 최소 1.56㎛, 및 Ra 평균이 1.78㎛가 되어, 비교예 1의 상태보다도, Ra의 평균값을 약 3.3배 높게 하는 것이 가능하게 되었다. Rinse the inner and outer surfaces of a quartz tube with an outer diameter of 8 mm and an inner diameter of 4 mm (commercial product name "quartz gas supply pipe") (hereinafter the same) used in the film formation process in semiconductor manufacturing with pure water, and enter the surface treatment liquid (chemical liquid) bath Until just before, pure water was sprayed with a sprayer, and immediately after that, the surface treatment was performed with a surface treatment liquid. At this time, the concentration of the surface treatment solution was HF concentration of 14.9 wt%, acetic acid concentration of 48.3 wt%, and the solution temperature was 22.8°C. Surface treatment with a surface treatment solution was performed under these conditions. The surface roughness (Ra) of this surface-treated quartz tubule was measured with a small surface roughness measuring instrument "SURF TEST SJ-310" (hereinafter the same) manufactured by Mitsutoyo Co., Ltd. and Ra average was 1.78 µm, making it possible to increase the average value of Ra by about 3.3 times as compared to the state of Comparative Example 1.
[실시예 2][Example 2]
반도체 제조에 있어서 성막 프로세스에서 사용되는 외경 12.7mm, 내경 8.7mm의 석영 세관을, 순수조에 침지하고, 표면처리액조에 들어가기 직전까지 분무기로 순수를 분사하고, 그 직후에, 표면처리액에 의한 표면처리를 행했다. 이때의, 표면처리액의 농도는 HF 농도 14.8wt%, 아세트산 농도 49.1wt%, 액온 24.4℃이다. 이 조건하에서 표면처리액에 의한 표면처리를 행한 바, Ra 최대가 2.13㎛, Ra 최소 1.69㎛, 및 Ra 평균이 2.01㎛가 되어, 비교예 2의 상태보다도, Ra의 평균값을 3.2배 높게 하는 것이 가능하게 되었다. A quartz tube having an outer diameter of 12.7 mm and an inner diameter of 8.7 mm used in the film formation process in semiconductor manufacturing is immersed in a pure water tank, and pure water is sprayed with a sprayer until just before entering the surface treatment liquid tank, and immediately after that, the surface with the surface treatment liquid processing was performed. At this time, the concentration of the surface treatment solution was HF concentration of 14.8 wt%, acetic acid concentration of 49.1 wt%, and the solution temperature was 24.4 °C. When the surface treatment was performed with the surface treatment solution under these conditions, the maximum Ra was 2.13 µm, the minimum Ra was 1.69 µm, and the average Ra was 2.01 µm. made possible
[실시예 3][Example 3]
반도체 제조에 있어서 성막 프로세스에서 사용되는 외경 24.0mm, 내경 20.0mm의 석영 세관을, 순수를 담은 초음파 세정기에 침지시키고, 표면처리액조에 들어가기 직전까지 분무기로 순수를 분사하고, 그 직후에, 표면처리액에 의한 표면처리를 행했다. 이때의, 표면처리액의 농도는 HF 농도 14.8wt%, 아세트산 농도 48.4wt%, 액온 21.3℃이다. 이 조건하에서 표면처리액에 의한 표면처리를 행한 바, Ra 최대가 2.29㎛, Ra 최소 1.62㎛, 및 Ra 평균이 1.94㎛가 되어, 비교예 3의 상태보다도, Ra의 평균값을 약 3.5배 높게 하는 것이 가능하게 되었다. A quartz tube having an outer diameter of 24.0 mm and an inner diameter of 20.0 mm used in the film forming process in semiconductor manufacturing is immersed in an ultrasonic cleaner containing pure water, and pure water is sprayed with a sprayer until just before entering the surface treatment liquid bath, and immediately after that, the surface treatment Surface treatment with a liquid was performed. At this time, the concentration of the surface treatment solution was HF concentration of 14.8 wt%, acetic acid concentration of 48.4 wt%, and the solution temperature was 21.3°C. When the surface treatment was performed with a surface treatment solution under these conditions, the maximum Ra was 2.29 µm, the minimum Ra was 1.62 µm, and the average Ra was 1.94 µm. thing became possible.
[실시예 4][Example 4]
반도체 제조에 있어서 성막 프로세스에서 사용되는 외경 106.0mm, 내경 100.0mm의 석영 세관을, 순수를 담은 순수조에 침지시키고, 표면처리액조에 들어가기 직전까지, 분무기로 순수를 분사하고, 그 직후에, 표면처리액에 의한 표면처리를 행했다. 이때의, 표면처리액의 농도는 HF 농도 14.9wt%, 아세트산 농도 48.3wt%, 액온 23.8℃이다. 이 조건하에서 표면처리액에 의한 표면처리를 행한 바, Ra 최대가 1.94㎛, Ra 최소 1.50㎛ 및 Ra 평균이 1.73㎛가 되어, 비교예 4의 상태보다도, Ra의 평균값을 약 3.2배 높게 하는 것이 가능하게 되었다. A quartz tube having an outer diameter of 106.0 mm and an inner diameter of 100.0 mm used in the film formation process in semiconductor manufacturing is immersed in a pure water tank containing pure water, and pure water is sprayed with a sprayer until just before entering the surface treatment liquid bath, and immediately after that, the surface treatment Surface treatment with a liquid was performed. At this time, the concentration of the surface treatment solution was HF concentration of 14.9 wt%, acetic acid concentration of 48.3 wt%, and the solution temperature was 23.8°C. When the surface treatment was performed with a surface treatment solution under these conditions, the maximum Ra was 1.94 µm, the minimum Ra was 1.50 µm, and the average Ra was 1.73 µm. made possible
[실시예 5][Example 5]
반도체 제조에 있어서 성막 프로세스에서 사용되는 외경 282.0mm, 내경 275.0mm의 석영관을, 순수로, 내면 및 외면을 린싱하고, 표면처리액조에 들어가기 직전까지, 분무기로 순수를 분사하고, 그 직후에, 표면처리액에 의한 표면처리를 행했다. 이때의, 표면처리액의 농도는 HF 농도 14.8wt%, 아세트산 농도 48.4wt%, 액온 21.3℃이다. 이 조건하에서 표면처리액에 의한 표면처리를 행한 바, Ra 최대가 2.86㎛, Ra 최소 1.46㎛ 및 Ra 평균이 2.12㎛가 되어, 비교예 5의 상태보다도, Ra의 평균값을 약 1.6배 높게 하는 것이 가능하게 되었다. A quartz tube having an outer diameter of 282.0 mm and an inner diameter of 275.0 mm used in the film formation process in semiconductor manufacturing is rinsed with pure water, the inner and outer surfaces, and pure water is sprayed with a sprayer until just before entering the surface treatment liquid bath, and immediately thereafter, The surface treatment was performed with a surface treatment solution. At this time, the concentration of the surface treatment solution was HF concentration of 14.8 wt%, acetic acid concentration of 48.4 wt%, and the solution temperature was 21.3°C. When the surface treatment was performed with the surface treatment solution under these conditions, the maximum Ra was 2.86 µm, the minimum Ra was 1.46 µm, and the average Ra was 2.12 µm. made possible
[실시예 6][Example 6]
반도체 제조에 있어서 성막 프로세스에서 사용되는 외경 434.0mm, 내경 422.0mm의 석영관을, 순수로, 내면 및 외면을 린싱하고, 표면처리액조에 들어가기 직전까지, 분무기로 순수를 분사하고, 그 직후에, 표면처리액에 의한 표면처리를 행했다. 이때의, 표면처리액의 농도는 HF 농도 14.8wt%, 아세트산 농도 48.4wt%, 액온 21.3℃이다. 이 조건하에서 표면처리액에 의한 표면처리를 행한 바, Ra 최대가 3.54㎛, Ra 최소 1.97㎛ 및 Ra 평균이 2.47㎛가 되어, 비교예 6의 상태보다도, Ra의 평균값을 약 1.5배 높게 하는 것이 가능하게 되었다. A quartz tube having an outer diameter of 434.0 mm and an inner diameter of 422.0 mm used in the film formation process in semiconductor manufacturing is rinsed with pure water, the inner and outer surfaces, and pure water is sprayed with a sprayer until just before entering the surface treatment liquid bath, and immediately thereafter, The surface treatment was performed with a surface treatment solution. At this time, the concentration of the surface treatment solution was HF concentration of 14.8 wt%, acetic acid concentration of 48.4 wt%, and the solution temperature was 21.3°C. When the surface treatment was performed with a surface treatment solution under these conditions, the maximum Ra was 3.54 µm, the minimum Ra was 1.97 µm, and the average Ra was 2.47 µm. It became possible.
[실시예 7][Example 7]
반도체 제조에 있어서 성막 프로세스에서 사용되는 외경 12.7mm, 내경 8.7mm의 석영 세관을, 가습기를 사용하여 순수로 가습한 용기 내에 보관하고, 용기 내의 온도 22.5℃, 습도 70∼75%(고습도)의 상태에서 30분 유지했다. 고습도 용기로부터 취출하고, 표면처리액에 의한 표면처리를 행했다. 이때의, 표면처리액의 농도는 HF 농도 14.5wt%, 아세트산 농도 48.8wt%, 액온 20.3℃이다. 이 조건하에서 표면처리액에 의한 표면처리를 행한 바, Ra 최대가 2.34㎛, Ra 최소 2.01㎛ 및 Ra 평균이 2.17㎛가 되어, 비교예 7의 상태보다도, Ra의 평균값을 약 3.4배 높게 하는 것이 가능하게 되었다. A quartz tube having an outer diameter of 12.7 mm and an inner diameter of 8.7 mm used in the film forming process in semiconductor manufacturing is stored in a container humidified with pure water using a humidifier, and the temperature in the container is 22.5° C., and the humidity is 70 to 75% (high humidity). kept for 30 minutes at It took out from the high-humidity container, and surface-treated with the surface treatment liquid. At this time, the concentration of the surface treatment solution was HF concentration of 14.5 wt%, acetic acid concentration of 48.8 wt%, and the solution temperature was 20.3°C. When the surface treatment was performed with a surface treatment solution under these conditions, the maximum Ra was 2.34 µm, the minimum Ra was 2.01 µm, and the average Ra was 2.17 µm. made possible
[비교예 1][Comparative Example 1]
반도체 제조에 있어서 성막 프로세스에서 사용되는 외경 8mm, 내경 4mm의 석영 세관을, 충분하게 건조시킨 후에, 표면처리액에 의한 표면처리를 행했다. 이때의, 표면처리액의 농도는 HF 농도 14.7wt%, 아세트산 농도 48.5wt%, 액온 22.0℃이다. 이 조건하에서 표면처리액에 의한 표면처리를 행한 바, Ra 최대가 0.69㎛, Ra 최소 0.34㎛ 및 Ra 평균이 0.54㎛가 되었다. After drying sufficiently, the quartz tube having an outer diameter of 8 mm and an inner diameter of 4 mm used in the film formation process in semiconductor manufacturing was subjected to surface treatment with a surface treatment solution. At this time, the concentration of the surface treatment solution was HF concentration of 14.7 wt%, acetic acid concentration of 48.5 wt%, and the solution temperature was 22.0 °C. When the surface treatment was performed with a surface treatment solution under these conditions, the maximum Ra was 0.69 µm, the minimum Ra was 0.34 µm, and the average Ra was 0.54 µm.
[비교예 2][Comparative Example 2]
반도체 제조에 있어서 성막 프로세스에서 사용되는 외경 12.7mm, 내경 8.7mm의 석영 세관을, 충분하게 건조시킨 후에, 표면처리액에 의한 표면처리를 행했다. 이때의, 표면처리액의 농도는 HF 농도 14.8wt%, 아세트산 농도 48.3wt%, 액온 23.2℃이다. 이 조건하에서 표면처리액에 의한 표면처리를 행한 바, Ra 최대가 1.27㎛, Ra 최소 0.38㎛ 및 Ra 평균이 0.65㎛가 되었다. After drying sufficiently, the quartz tube having an outer diameter of 12.7 mm and an inner diameter of 8.7 mm used in the film formation process in semiconductor manufacturing was subjected to surface treatment with a surface treatment solution. At this time, the concentration of the surface treatment solution was HF concentration of 14.8 wt%, acetic acid concentration of 48.3 wt%, and the solution temperature was 23.2°C. When the surface treatment was performed with a surface treatment solution under these conditions, the maximum Ra was 1.27 µm, the minimum Ra was 0.38 µm, and the average Ra was 0.65 µm.
[비교예 3][Comparative Example 3]
반도체 제조에 있어서 성막 프로세스에서 사용되는 외경 24.0mm, 내경 20.0mm의 석영 세관을, 충분하게 건조시킨 후에, 표면처리액에 의한 표면처리를 행했다. 이때의, 표면처리액의 농도는 HF 농도 14.9wt%, 아세트산 농도 48.5wt%, 액온 21.3℃이다. 이 조건하에서 표면처리액에 의한 표면처리를 행한 바, Ra 최대가 1.03㎛, Ra 최소 0.38㎛ 및 Ra 평균이 0.56㎛가 되었다. After drying sufficiently, the quartz tube having an outer diameter of 24.0 mm and an inner diameter of 20.0 mm used in the film formation process in semiconductor manufacturing was subjected to surface treatment with a surface treatment solution. At this time, the concentration of the surface treatment solution was HF concentration of 14.9 wt%, acetic acid concentration of 48.5 wt%, and the solution temperature was 21.3°C. When the surface treatment was performed with a surface treatment solution under these conditions, the maximum Ra was 1.03 µm, the minimum Ra was 0.38 µm, and the average Ra was 0.56 µm.
[비교예 4][Comparative Example 4]
반도체 제조에 있어서 성막 프로세스에서 사용되는 외경 106.0mm, 내경 100.0mm의 석영 세관을, 충분하게 건조시킨 후에, 표면처리액에 의한 표면처리를 행했다. 이때의, 표면처리액의 농도는 HF 농도 14.8wt%, 아세트산 농도 48.4wt%, 액온 21.3℃이다. 이 조건하에서 표면처리액에 의한 표면처리를 행한 바, Ra 최대가 0.89㎛, Ra 최소 0.35㎛ 및 Ra 평균이 0.55㎛가 되었다. After drying sufficiently, the quartz tube having an outer diameter of 106.0 mm and an inner diameter of 100.0 mm used in the film forming process in semiconductor manufacturing was subjected to surface treatment with a surface treatment solution. At this time, the concentration of the surface treatment solution was HF concentration of 14.8 wt%, acetic acid concentration of 48.4 wt%, and the solution temperature was 21.3°C. When the surface treatment was performed with a surface treatment solution under these conditions, the maximum Ra was 0.89 µm, the minimum Ra was 0.35 µm, and the average Ra was 0.55 µm.
[비교예 5][Comparative Example 5]
반도체 제조에 있어서 성막 프로세스에서 사용되는 외경 282.0mm, 내경 275.0mm의 석영관을, 충분하게 건조시킨 후에, 표면처리액에 의한 표면처리를 행했다. 이때의, 표면처리액의 농도는 HF 농도 14.9wt%, 아세트산 농도 48.5wt%, 액온 21.3℃이다. 이 조건하에서 표면처리액에 의한 표면처리를 행한 바, Ra 최대가 1.96㎛, Ra 최소 0.52㎛ 및 Ra 평균이 1.30㎛가 되었다. A quartz tube having an outer diameter of 282.0 mm and an inner diameter of 275.0 mm used in the film formation process in semiconductor manufacturing was sufficiently dried and then subjected to surface treatment with a surface treatment solution. At this time, the concentration of the surface treatment solution was HF concentration of 14.9 wt%, acetic acid concentration of 48.5 wt%, and the solution temperature was 21.3°C. When the surface treatment was performed with a surface treatment solution under these conditions, the maximum Ra was 1.96 µm, the minimum Ra was 0.52 µm, and the average Ra was 1.30 µm.
[비교예 6][Comparative Example 6]
반도체 제조에 있어서 성막 프로세스에서 사용되는 외경 434.0mm, 내경 422.0mm의 석영관을, 충분하게 건조시킨 후에, 표면처리액에 의한 표면처리를 행했다. 이때의, 표면처리액의 농도는 HF 농도 14.9wt%, 아세트산 농도 48.5wt%, 액온 21.3℃이다. 이 조건하에서 표면처리액에 의한 표면처리를 행한 바, Ra 최대가 2.76㎛, Ra 최소 0.50㎛ 및 Ra 평균이 1.61㎛가 되었다. A quartz tube having an outer diameter of 434.0 mm and an inner diameter of 422.0 mm used in the film formation process in semiconductor manufacturing was sufficiently dried and then subjected to surface treatment with a surface treatment solution. At this time, the concentration of the surface treatment solution was HF concentration of 14.9 wt%, acetic acid concentration of 48.5 wt%, and the solution temperature was 21.3°C. When the surface treatment was performed with a surface treatment solution under these conditions, the maximum Ra was 2.76 µm, the minimum Ra was 0.50 µm, and the average Ra was 1.61 µm.
[비교예 7][Comparative Example 7]
반도체 제조에 있어서 성막 프로세스에서 사용되는 외경 12.7mm, 내경 8.7mm의 석영 세관을, 실온 21.3℃, 습도 50∼60%의 환경하에서 충분하게 건조시킨 후에, 표면처리액에 의한 표면처리를 행했다. 이때의, 표면처리액의 농도는 HF 농도 14.5wt%, 아세트산 농도 48.7wt%, 액온 20.5℃이다. 이 조건하에서 표면처리액에 의한 표면처리를 행한 바, Ra 최대가 1.31㎛, Ra 최소 0.31㎛ 및 Ra 평균이 0.63㎛가 되었다. A quartz tube having an outer diameter of 12.7 mm and an inner diameter of 8.7 mm used in the film forming process in semiconductor manufacturing was sufficiently dried in an environment of room temperature 21.3° C. and humidity of 50 to 60%, and then surface treated with a surface treatment solution. At this time, the concentration of the surface treatment solution was HF concentration of 14.5 wt%, acetic acid concentration of 48.7 wt%, and the solution temperature was 20.5°C. When the surface treatment was performed with a surface treatment solution under these conditions, the maximum Ra was 1.31 µm, the minimum Ra was 0.31 µm, and the average Ra was 0.63 µm.
실시예 1∼7 및 비교예 1∼7의 각 조건값을 정리하면 하기 표 1에 나타내는 바와 같다. 또, 실시예 1∼7 및 비교예 1∼7에서 표면처리한 석영 세관의 표면 거칠기(Ra)를 나타내는 그래프를 도 1에 나타냈다. The condition values of Examples 1 to 7 and Comparative Examples 1 to 7 are summarized in Table 1 below. Also, graphs showing the surface roughness (Ra) of the quartz tubules surface-treated in Examples 1 to 7 and Comparative Examples 1 to 7 are shown in FIG. 1 .
Claims (6)
상기 표면처리액에 의한 표면처리에 관여하지 않는 용매 성분을, 미리 석영 유리의 표면에 접촉시켜 두고, 이어서, 상기 용매 성분이 건조되지 않은 동안에, 상기 표면처리액에 의한 표면처리를 행함으로써, 유리 표면에 표면 거칠기(Ra)가 1.5∼3.5㎛인 요철을 형성하는 것을 특징으로 하는 석영 유리의 제조 방법.A method for producing a quartz glass having irregularities on the surface of the glass by performing a surface treatment of the quartz glass using a surface treatment solution, the method comprising:
A solvent component not involved in the surface treatment with the surface treatment liquid is brought into contact with the surface of the quartz glass in advance, and then, while the solvent component is not dried, the surface treatment is performed with the surface treatment liquid to obtain glass, A method for producing a quartz glass, comprising forming irregularities having a surface roughness (Ra) of 1.5 to 3.5 µm on the surface.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2019-219798 | 2019-12-04 | ||
JP2019219798 | 2019-12-04 | ||
PCT/JP2020/044809 WO2021112113A1 (en) | 2019-12-04 | 2020-12-02 | Method for producing quartz glass |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220111262A true KR20220111262A (en) | 2022-08-09 |
Family
ID=76221640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227018045A KR20220111262A (en) | 2019-12-04 | 2020-12-02 | How to make quartz glass |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2021112113A1 (en) |
KR (1) | KR20220111262A (en) |
CN (1) | CN115023411A (en) |
TW (1) | TW202126599A (en) |
WO (1) | WO2021112113A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022270576A1 (en) * | 2021-06-25 | 2022-12-29 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4437365B2 (en) | 2000-09-28 | 2010-03-24 | 信越石英株式会社 | Silica glass jig for semiconductor industry and manufacturing method thereof |
JP4455018B2 (en) | 2003-11-11 | 2010-04-21 | 信越石英株式会社 | Frost treatment method for glass product surface |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3117611B2 (en) * | 1994-03-31 | 2000-12-18 | 信越石英株式会社 | Quartz glass surface processing method |
JP4367816B2 (en) * | 2000-05-19 | 2009-11-18 | 信越石英株式会社 | Surface treatment method for quartz glass |
JP4428687B2 (en) * | 2003-06-11 | 2010-03-10 | 信越石英株式会社 | Quartz glass tube for lamp and laser excitation / amplification unit |
US7592063B2 (en) * | 2006-09-05 | 2009-09-22 | Asahi Glass Company, Limited | Quartz glass substrate and process for its production |
JP2008208008A (en) * | 2007-02-28 | 2008-09-11 | Shinetsu Quartz Prod Co Ltd | Etching method of quartz glass member |
JP5260026B2 (en) * | 2007-10-23 | 2013-08-14 | 東ソー・クォーツ株式会社 | Method for manufacturing tubular quartz glass jig |
JP2017154906A (en) * | 2016-02-29 | 2017-09-07 | 株式会社Nsc | Glass surface treatment apparatus |
-
2020
- 2020-12-02 KR KR1020227018045A patent/KR20220111262A/en not_active Application Discontinuation
- 2020-12-02 CN CN202080083942.4A patent/CN115023411A/en active Pending
- 2020-12-02 WO PCT/JP2020/044809 patent/WO2021112113A1/en active Application Filing
- 2020-12-02 JP JP2021562679A patent/JPWO2021112113A1/ja active Pending
- 2020-12-03 TW TW109142566A patent/TW202126599A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4437365B2 (en) | 2000-09-28 | 2010-03-24 | 信越石英株式会社 | Silica glass jig for semiconductor industry and manufacturing method thereof |
JP4455018B2 (en) | 2003-11-11 | 2010-04-21 | 信越石英株式会社 | Frost treatment method for glass product surface |
Also Published As
Publication number | Publication date |
---|---|
WO2021112113A1 (en) | 2021-06-10 |
TW202126599A (en) | 2021-07-16 |
CN115023411A (en) | 2022-09-06 |
JPWO2021112113A1 (en) | 2021-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240043983A1 (en) | Yttrium-based sprayed coating and making method | |
JP5855644B2 (en) | Coating method for gas supply system | |
KR101451425B1 (en) | Surface modification method for self cleaning property of aluminium material | |
US8734907B2 (en) | Coating of shield surfaces in deposition systems | |
KR20220111262A (en) | How to make quartz glass | |
US5807416A (en) | Silica glass member with glassy carbon coating method for producing the same | |
CN108063087B (en) | A kind of SiC substrate gentle slope lithographic method that angle is controllable | |
US5362330A (en) | Process for the emission-free, in particular CFC-free, cleaning of precision optics or optical element groups | |
KR100354600B1 (en) | Process for treating a semiconductor substrate | |
CN103021817A (en) | Method of cleaning after wet etching | |
TWI679702B (en) | Chamber component for use in processing chamber and method of treating chamber component | |
JP4431564B2 (en) | Carbon nanotube wiring board and manufacturing method thereof | |
US20020078886A1 (en) | Silica glass jig for semiconductor industry and method for producing the same | |
CN103871843A (en) | Method for overcoming defects caused by chemical acid fluid cleaning process | |
JP6583505B2 (en) | Method for producing yttrium-based thermal spray coating | |
CN101134202A (en) | Automatic determination method of the cleaning course end for the reaction boiler tube | |
KR101460438B1 (en) | Method of treating a surface of aluminum | |
JPH11106225A (en) | Quartz glass having depressions and projections on surface and its production | |
US8398779B2 (en) | Non destructive selective deposition removal of non-metallic deposits from aluminum containing substrates | |
KR100387900B1 (en) | cleanning method of thin layer process device and this layer process device adopting the same | |
JP2001300454A (en) | Method for treating surface of substrate | |
KR20210009154A (en) | Batch type substrate processing apparatus and method for operating the same | |
JPH06346255A (en) | Treatment of surface of stainless steel | |
US6528341B1 (en) | Method of forming a sion antireflection film which is noncontaminating with respect to deep-uv photoresists | |
JP2002071926A (en) | Lattice pattern forming method on glass substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal |