JP4367816B2 - Surface treatment method for quartz glass - Google Patents

Surface treatment method for quartz glass Download PDF

Info

Publication number
JP4367816B2
JP4367816B2 JP2000148550A JP2000148550A JP4367816B2 JP 4367816 B2 JP4367816 B2 JP 4367816B2 JP 2000148550 A JP2000148550 A JP 2000148550A JP 2000148550 A JP2000148550 A JP 2000148550A JP 4367816 B2 JP4367816 B2 JP 4367816B2
Authority
JP
Japan
Prior art keywords
quartz glass
acid
surface treatment
weight
glass surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000148550A
Other languages
Japanese (ja)
Other versions
JP2001335342A (en
Inventor
洋一郎 丸子
徹 瀬川
龍弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2000148550A priority Critical patent/JP4367816B2/en
Priority to PCT/EP2001/005685 priority patent/WO2001090015A1/en
Publication of JP2001335342A publication Critical patent/JP2001335342A/en
Application granted granted Critical
Publication of JP4367816B2 publication Critical patent/JP4367816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/008Other surface treatment of glass not in the form of fibres or filaments comprising a lixiviation step
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石英ガラス製品、例えば、半導体製造用石英ガラス治具(チューブ、炉心管、ボート等)の表面に凹凸を形成するための石英ガラス表面理方法に関する。
【0002】
【関連技術】
ガラス製品、特に石英ガラス製品は、高純度・耐熱性・耐化学薬品性に優れ、近年は半導体製造用治具、例えばチューブ、炉心管、ボート等として広く用いられている。
【0003】
しかしながら、石英ガラス製品の問題点として次の点が指摘されている。▲1▼赤外線等による輻射熱が石英治具を伝搬しその端部のシール部材や連結用の有機物材料を劣化させる(特公平8−24109号公報)。▲2▼LPCVD(Low Pressure Chemical Vapor Deposition)法によるポリシリコン膜成長時に炉心管内表面に堆積が起こり、それがウェーハの熱処理時に剥離する(実開昭61−88233号公報)。▲3▼熱処理時に石英ガラスボートとウェーハの融着がおこる(特開平1−170019号公報)。
【0004】
これらの問題点の改善策としては、石英ガラス製品の表面に凹凸を設けることが行われる。この石英ガラス製品の表面に凹凸をつけることにより、▲1▼熱の遮断効果、▲2▼熱処理時のパーティクル防止(剥離を防ぐ)及び▲3▼熱処理時のボートとウェーハの融着防止という効果を期待することができ、上記した石英ガラス製品の問題点を解消することが可能となる。
【0005】
石英ガラス製品の表面の凹凸の形成にはサンドブラスト法と化学的薬液処理法がある。一般的には機械的に表面を破壊する技術であるサンドブラスト法が用いられている。このサンドブラスト法による表面処理は、従来から石英ガラス製品の表面に凹凸な粗面を作る技術として、薬液処理法よりもむしろ一般的な技術として存在していた。
【0006】
このサンドブラスト法の問題点は、表面の凹凸面にマイクロクラック(〜Max100μm)ができ、石英ガラス製品にダメージを加えることになることである。つまり、マイクロクラックが生成すると、▲1▼マイクロクラックに汚染物質が入り、▲2▼マイクロクラックによるガラスの強度劣化、及び▲3▼サンドブラスト処理後のフッ酸エッチングによる寸法精度のずれ、という不都合が生じてしまう。
【0007】
一方、薬液による表面処理は、従来から石英ガラス表面に凹凸な粗面を作る技術として知られている。例えば、フッ化水素とフッ化アンモニウムと酢酸と水の混合溶液で処理する方法が提案されている(特開平7−267679号公報)。
【0008】
フロスト加工(つや消加工)の原理については、「ガラスの辞典」(作花済夫編集、30頁、朝倉書店1985年発行)に次のように説明されている。フッ酸にフッ化アンモニウム(NH4F)を加えた腐食液でガラスをエッチングすると、
【0009】
【化1】
SiO2+4HF→SiF4+2H2
2NH4F+SiF4→(NH42SiF6
【0010】
の反応によりケイフッ化アンモニウムが生成し、ガラス表面に沈殿するので、フッ酸による浸食が妨げられる。これとフッ酸の浸食の重畳により凹凸ができる。
【0011】
この薬液処理法としては、次のような態様のものが知られている。▲1▼フッ化水素、フッ化アンモニウム、純水と処理剤(酢酸、燐酸、塩酸、硫酸又はギ酸)を混合した薬液を用いてガラス表面に凹凸を形成する(特開平7−172866号公報)。▲2▼フッ化水素、フッ化アンモニウム、純水、硝酸の混合溶液を処理液として、ガラス表面に鱗模様を形成する(特開平2−80351号公報)。▲3▼従来から石英ガラス表面に凹凸な粗面を作る技術として、フッ化水素とフッ化アンモニウムと酢酸と水の混合溶液で処理することは存在する(特開平7−267679号公報)。
【0012】
【発明が解決しようとする課題】
薬液処理法は、半導体工業で必要とされる凹凸を作るのに最適であるが、薬液の種類によっては、しばしばガラス表面に凹凸のムラができる、つまり、面粗さにムラができるという問題がある。例えば、フッ化水素、フッ化アンモニウムと純水を混合した薬液では表面の凹凸にムラができ、また、フッ化水素、フッ化アンモニウムと純水、無機酸(硝酸、燐酸、硫酸、塩酸など)を混合した薬液でも表面の凹凸にむらができるが、酢酸添加による改善方法はむらのない凹凸面形成に効果あることが知られている(特開平7−267679号公報)。
【0013】
しかし、酢酸は揮発し易く、経過時間とともに蒸発するために、酢酸を使用する際には経時的な濃度管理が必要となるなど、その濃度管理が難しい。さらに具体的に言えば、薬液の使用回数を重ねるうちに処理ガラスの表面粗さが粗くなり、そのため、表面粗さを薬液作成当初の濃度に保つため、酢酸の経時的な補充が必要になってくる。
【0014】
また、酢酸は刺激性の臭気を放つため、周辺環境に対する影響が大きく、実際の現場においてスクラバーなどの付帯設備が必要となり、設備面でのコストがそれだけアップしてしまう。さらに、酢酸は液体であるが、凝固点が17℃と高く、冬季には凝固して氷酢酸となり、扱いにくいなどの難点を有している。
【0015】
そこで本発明者は、上記のような欠点がなく、かつムラのない均一な凹凸を作ることのできる新規な薬液を開発すべく鋭意研究を重ねたところ、この目的を達成するためには、フッ化水素、フッ化アンモニウム、純水の存在比だけでは不十分であり、酢酸を添加することにより、改善は見られるという知見を得た。しかし、酢酸は、上述したように、揮発し易く、刺激臭をもつ等の難点を有している。
【0016】
本発明者は、フッ化水素、フッ化アンモニウム、純水に何を添加すれば石英ガラス表面にむらなく凹凸をつけることができるかについてさらに研究を重ねた結果、薬液成分として、フッ化水素、フッ化アンモニウム、純水にカルボキシル基をもつ親水性の有機酸を添加した薬液を用いることによって上記したような従来の薬液の有する欠点がなく、かつムラのない均一な凹凸を作ることができることを見出した。
【0017】
本発明は、ムラのない均一な凹凸を作ることができ、刺激臭がなく、濃度管理が容易で冬季の扱いも簡易な石英ガラス表面処理液を用いることによってムラのない均一な凹凸を効率よく作ることができるようにした石英ガラス表面処理方法を提供することを目的とする。
【0018】
【課題を解決するための手段】
上記課題を解決するために、本発明の石英ガラス表面処理方法の第1の態様は、石英ガラス表面処理液を用いて石英ガラスの表面に凹凸を形成するために処理する石英ガラスの表面処理方法であって、前記石英ガラス表面処理液が、フッ化水素とフッ化アンモニウムと炭素を3〜7個有する親水性カルボン酸の1種類又は2種類以上と、とを、5〜40重量%:5〜40重量%:10〜60重量%:10〜50重量%の割合で混合してなるものであり、かつ前記石英ガラス表面処理液で処理された石英ガラス表面の表面粗さ(Ra)が0.1μm<Ra<2.0μmであり、かつ最大粗さ(Rmax)が1μm<Rmax<20μmであることを特徴とする。上記親水性カルボン酸としては、アクリル酸、プロピオン酸、メタクリル酸、安息香酸、乳酸、クロトン酸などをあげることができる。
【0019】
炭素8個以上になると、親水基のカルボキシル基に比べて、疎水基であるアルキル基に占める割合が大きくなり、分子全体として疎水性が強くなり、フッ化水素、フッ化アンモニウム、水と混ざり合わなくなり薬液として十分な効果を発揮できない。
【0020】
また、炭素2個以下のカルボン酸は、ギ酸と酢酸など限られたものであり、これは過去の研究ですでに検討され、ギ酸ではムラができ、酢酸は揮発し易く、濃度管理が難しいなどの問題点を有している。
【0021】
本発明の石英ガラス表面処理方法の第2の態様は、石英ガラス表面処理液を用いて石英ガラスの表面に凹凸を形成するために処理する石英ガラスの表面処理方法であって、前記石英ガラス表面処理液が、フッ化水素と、フッ化アンモニウムと、カルボキシル基を2個又は3個有する親水性カルボン酸の1種類又は2種類以上と、水とを、5〜40重量%:5〜40重量%:10〜60重量%:10〜50重量%の割合で混合してなるものであり、かつ前記石英ガラス表面処理液で処理された石英ガラス表面の表面粗さ(Ra)が0.1μm<Ra<2.0μmであり、かつ最大粗さ(Rmax)が1μm<Rmax<20μmであることを特徴とする。上記親水性カルボン酸としては、シュウ酸、コハク酸、アジピン酸、マレイン酸、フマル酸、リンゴ酸、酒石酸、クエン酸、マロン酸、シトラコン酸などをあげることができる。
【0022】
カルボキシル基4個以上の化学物質は、実在する物質の大部分が高分子化合物などであり、親水性をもつ物質はほとんど存在しない。よってこの種のカルボン酸はフッ化水素、フッ化アンモニウム、水と混ざり合わなくなり、薬液として十分な効果を発揮できない。カルボキシル基1個の化学物質としては、上述したギ酸、酢酸やアクリル酸、プロピオン酸、メタクリル酸、安息香酸、乳酸、クロトン酸などがあるが、上述したように本発明の第1の態様に含まれる好適な親水性カルボン酸と第1の態様に含まれない不適当な親水性カルボン酸とが存在する。
【0023】
本発明の石英ガラス表面処理方法の第3の態様は、石英ガラス表面処理液を用いて石英ガラスの表面に凹凸を形成するために処理する石英ガラスの表面処理方法であって、前記石英ガラス表面処理液が、フッ化水素と、フッ化アンモニウムと、親水性カルボン酸と、水とを、5〜40重量%:5〜40重量%:10〜60重量%:10〜50重量%の割合で混合してなるものであり、前記親水性カルボン酸が、プロピオン酸、アクリル酸、メタクリル酸、安息香酸、乳酸、シュウ酸、コハク酸、アジピン酸、マレイン酸、フマル酸、リンゴ酸、酒石酸、クエン酸からなる群から選択された1種類又は2種類以上の親水性カルボン酸であり、かつ前記石英ガラス表面処理液で処理された石英ガラス表面の表面粗さ(Ra)が0.1μm<Ra<2.0μmであり、かつ最大粗さ(Rmax)が1μm<Rmax<20μmであることを特徴とする。
【0024】
本発明方法に用いられる石英ガラス表面処理液の組成範囲は、フッ化水素(HF):5〜40重量%、フッ化アンモニウム(NH4F):5〜40重量%、親水性カルボン酸:10〜60重量%及び水(H2O):10〜50重量%が好適である。
【0025】
本発明の石英ガラスの表面処理方法は、上記した石英ガラス表面処理液を用いて石英ガラスの表面を処理することを特徴とする。具体的には、当該石英ガラス表面処理液に石英ガラス製品浸漬し、静置で処理する方法である。
【0026】
本発明の石英ガラスの表面処理方法は、石英ガラス製品のみならず、あらゆるガラス製品の化学的薬液処理に対して有効である。
【0027】
【実施例】
以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。
【0028】
(実施例1〜13)
フッ化水素、フッ化アンモニウム、純水、及び表1に示した各種親水性カルボン酸を混合し、石英ガラス表面処理液を得た。当該処理液の組成は、フッ化水素:25重量%、フッ化アンモニウム:25重量%、純水:25重量%、親水性カルボン酸:25重量%である。塩ビ製の300×300×100mmの恒温槽に上記処理液7000mlを満たし、20℃に保つように設定した。この処理液中に半導体工業用透明石英ガラスHERALUX−LA(商品名、信越石英株式会社製)、製品サイズ□100×100×5tmmの石英ガラス板を静置により2時間浸漬した。浸漬後、純水にて洗浄し、石英ガラス表面の表面粗さを測定した。また、石英ガラス表面の観察も行った。石英ガラス板の処理は、上記石英ガラス表面処理液作成後の最初(1回目)の処理及び30回目の2回の処理に関して、各々について下記するように表面粗さ及び添加した酸の濃度を測定し、表面観察も行った。各評価項目についての評価の結果は、1回目について表1に、30回目について表2に示した。
【0029】
表面粗さ:Ra及びRmaxの測定
表面粗さ計〔サーフコム300B((株)東京精密製)〕を用い、処理後の石英ガラスの表面粗さを測定した。測定は石英ガラス表面で3回行った。表1及び表2にはその平均値を示す。
【0030】
添加した親水性カルボン酸の濃度の測定
イオン交換クロマトグラフィー〔DX−300(Dionex製)〕によって測定した。表1には1回目処理後の酸濃度及び表2には30回目処理後の酸濃度をそれぞれ示した。
【0031】
表面観察
目視によって観察し、表1には1回目処理後及び表2には30回目処理後の表面状態の観察結果を示した。
【0032】
(比較例1)
プロピオン酸の代わりに酢酸を用いた以外は実施例1と同様に石英ガラス板の処理を行い、その結果を表1及び表2に示した。
【0033】
(比較例2)
プロピオン酸の代わりにギ酸を用いた以外は実施例1と同様に石英ガラス板の処理を行い、その結果を表1及び表2に示した。
【0034】
(比較例3)
プロピオン酸の代わりにフタル酸を用いた以外は実施例1と同様に石英ガラス板の処理を行い、その結果を表1及び表2に示した。
【0035】
(比較例4)
プロピオン酸の代わりにパルミチン酸を用いた以外は実施例1と同様に石英ガラス板の処理を行い、その結果を表1及び表2に示した。
【0036】
(比較例5)
プロピオン酸の代わりにステアリン酸を用いた以外は実施例1と同様に石英ガラス板の処理を行い、その結果を表1及び表2に示した。
【0037】
(比較例6)
プロピオン酸の代わりにオレイン酸を用いた以外は実施例1と同様に石英ガラス板の処理を行い、その結果を表1及び表2に示した。
【0038】
(比較例7)
プロピオン酸の代わりに硝酸を用いた以外は実施例1と同様に石英ガラス板の処理を行い、その結果を表1及び表2に示した。
【0039】
(比較例8)
プロピオン酸の代わりに燐酸を用いた以外は実施例1と同様に石英ガラス板の処理を行い、その結果を表1及び表2に示した。
【0040】
(比較例9)
プロピオン酸の代わりに硫酸を用いた以外は実施例1と同様に石英ガラス板の処理を行い、その結果を表1及び表2に示した。
【0041】
(比較例10)
プロピオン酸の代わりに塩酸を用いた以外は実施例1と同様に石英ガラス板の処理を行い、その結果を表1及び表2に示した。
【0042】
(比較例11)
プロピオン酸を添加しないこと以外は実施例1と同様に石英ガラス板の処理を行い、その結果を表1及び表2に示した。
【0043】
(比較例12)
表面に凹凸の形成の処理を行わないHERALUX−LA(商品名、信越石英株式会社製)、製品サイズ□100×100×5tmmの石英ガラスについて、実施例1と同様の評価項目についてその表面の評価を行い、結果を表1(1回目)及び表2(30回目)に示した。
【0044】
【表1】

Figure 0004367816
【0045】
【表2】
Figure 0004367816
【0046】
表1及び表2の結果から明らかなごとく、実施例1〜13の親水性のカルボン酸を添加した処理液を用いて、石英ガラス表面処理を行った場合、1回目でも30回目においてもむらのない又はむらの少ない、具体的には、表面粗さ0.1μm<Ra<2.0μm及び1μm<Rmax<20μmの凹凸面が形成されることがわかった。また、30回処理後においても、添加した酸の濃度は大幅に低下することはなく、特別の濃度管理を行わなくても多数回の処理が行えることが確認できた。
【0047】
比較例1の酢酸を添加した処理液を用いて、石英ガラスの表面処理を行った場合、1回目においては、実施例1〜13の場合と同様にむらのない又はむらの少ない、具体的には、表面粗さ0.1μm<Ra<2.0μm及び1μm<Rmax<20μmの凹凸面が形成されるが、30回目においては、酢酸濃度は11%までに減少し、処理表面に透明な部分が目立ち、凹凸面として不十分な仕上がりであり、また、表面粗さについても、Ra>2μm、Rmax>20μmとなった。
【0048】
比較例2のギ酸を添加した処理液を用いて、石英ガラスの表面処理を行った場合、1回目においては白さにむらがあり、30回目においては表面に透明な部分が目立ち、凹凸面として不十分な仕上がりであり、また、表面粗さについても、1回目及び30回目共にRa>2μm、Rmax>20μmとなった。
【0049】
比較例3〜6の疎水性のカルボン酸を添加した処理液を用いて、石英ガラスの表面処理を行った場合、1回目でも30回目においても、表面に透明な部分が目立ち、凹凸面として不十分な仕上がりであり、また、表面粗さについても、1回目及び30回目共にRa>2μm、Rmax>20μmとなった。
【0050】
比較例7〜10の無機酸を添加した処理液を用いて、石英ガラス表面処理を行った場合、1回目でも30回目においても白さにむらがあり、凹凸面として不十分な仕上がりであり、また、表面粗さについても、1回目及び30回目共にRa>2μm、Rmax>20μmとなった。
【0051】
比較例11は、カルボン酸を用いず、フッ化水素とフッ化アンモニウムと水の混合溶液で処理を行った場合、1回目でも30回目においても白さにむらがあり、凹凸面として不十分な仕上がりであり、また、表面粗さについても、1回目及び30回目共にRa>2μm、Rmax>20μmとなった。
【0052】
比較例12は、表面処理を行わない石英ガラスで、表面が透明で凹凸になっていないし、表面粗さもRa<0.1μm、Rmax<1μmとなっていた。
【0053】
【発明の効果】
以上述べたごとく、本石英ガラス表面処理液によれば、石英ガラス表面にムラのない均一な凹凸面を形成することができ、かつ刺激臭がなく、濃度管理が容易で冬季の扱いも簡単であるという大きな効果が達成される。
【0054】
また、本発明の石英ガラス表面処理方法によれば、上記した石英ガラス表面処理液を用いることによって石英ガラス表面にムラのない均一な凹凸面を効果的に形成することができるという効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention is a quartz glass product, for example, a semiconductor manufacturing quartz glass jig (tube, core tube, a boat, etc.) related to the quartz glass surface treatment method for forming irregularities on the surface of the.
[0002]
[Related technologies]
Glass products, particularly quartz glass products, are excellent in high purity, heat resistance, and chemical resistance, and have been widely used in recent years as semiconductor manufacturing jigs such as tubes, furnace tubes, boats, and the like.
[0003]
However, the following points have been pointed out as problems with quartz glass products. {Circle around (1)} Radiant heat from infrared rays or the like propagates through the quartz jig and degrades the sealing member at the end and the organic material for connection (Japanese Patent Publication No. 8-24109). {Circle around (2)} Deposition occurs on the inner surface of the furnace tube during the growth of the polysilicon film by LPCVD (Low Pressure Chemical Vapor Deposition) method, and it is peeled off during the heat treatment of the wafer (Japanese Utility Model Publication No. 61-88233). (3) The quartz glass boat and the wafer are fused during the heat treatment (Japanese Patent Laid-Open No. 1-170019).
[0004]
As an improvement measure for these problems, the surface of the quartz glass product is provided with irregularities. By providing irregularities on the surface of this quartz glass product, (1) heat blocking effect, (2) particle prevention during heat treatment (preventing peeling), and (3) boat and wafer fusion prevention during heat treatment Therefore, it is possible to eliminate the problems of the quartz glass product described above.
[0005]
There are two methods for forming irregularities on the surface of quartz glass products: sandblasting and chemical treatment. In general, a sand blast method, which is a technique for mechanically breaking the surface, is used. The surface treatment by the sand blast method has conventionally existed as a general technique rather than a chemical treatment method as a technique for producing an uneven rough surface on the surface of a quartz glass product.
[0006]
The problem with this sandblasting method is that microcracks (up to 100 μm) are formed on the irregular surface of the surface, which damages the quartz glass product. In other words, when microcracks are generated, (1) contaminants enter the microcracks, (2) strength deterioration of the glass due to microcracks, and (3) dimensional accuracy deviation due to hydrofluoric acid etching after sandblasting. It will occur.
[0007]
On the other hand, surface treatment with a chemical solution has been conventionally known as a technique for forming an uneven rough surface on a quartz glass surface. For example, a method of treating with a mixed solution of hydrogen fluoride, ammonium fluoride, acetic acid and water has been proposed (Japanese Patent Laid-Open No. 7-267679).
[0008]
The principle of frost processing (matte processing) is explained in “Glass Dictionary” (edited by Sakuo Sakuo, p. 30, published by Asakura Shoten in 1985) as follows. Etching glass with a corrosive solution containing ammonium fluoride (NH 4 F) in hydrofluoric acid,
[0009]
[Chemical 1]
SiO 2 + 4HF → SiF 4 + 2H 2 O
2NH 4 F + SiF 4 → (NH 4 ) 2 SiF 6
[0010]
As a result of this reaction, ammonium silicofluoride is produced and precipitated on the glass surface, thus preventing erosion by hydrofluoric acid. Unevenness is formed by superimposing this and erosion of hydrofluoric acid.
[0011]
As this chemical treatment method, the following modes are known. (1) Unevenness is formed on the glass surface using a chemical solution in which hydrogen fluoride, ammonium fluoride, pure water and a treatment agent (acetic acid, phosphoric acid, hydrochloric acid, sulfuric acid or formic acid) are mixed (Japanese Patent Laid-Open No. 7-172866) . {Circle around (2)} A scale pattern is formed on the glass surface using a mixed solution of hydrogen fluoride, ammonium fluoride, pure water and nitric acid (Japanese Patent Laid-Open No. 2-80351). {Circle around (3)} Conventionally, treatment with a mixed solution of hydrogen fluoride, ammonium fluoride, acetic acid and water exists as a technique for producing a rough surface on the surface of quartz glass (Japanese Patent Laid-Open No. 7-267679).
[0012]
[Problems to be solved by the invention]
The chemical treatment method is optimal for creating the unevenness required in the semiconductor industry, but depending on the type of chemical, the glass surface often has unevenness, that is, the surface roughness may be uneven. is there. For example, a chemical solution that is a mixture of hydrogen fluoride, ammonium fluoride and pure water has uneven surface irregularities. Also, hydrogen fluoride, ammonium fluoride and pure water, inorganic acids (nitric acid, phosphoric acid, sulfuric acid, hydrochloric acid, etc.) It is known that unevenness on the surface can be uneven even with a chemical solution mixed with the above, but the improvement method by addition of acetic acid is effective in forming an uneven surface with no unevenness (Japanese Patent Laid-Open No. 7-267679).
[0013]
However, since acetic acid is easily volatilized and evaporates with the passage of time, it is difficult to control the concentration of acetic acid. More specifically, the surface roughness of the treated glass becomes rougher as the number of times the chemical solution is used, and therefore it is necessary to replenish acetic acid over time in order to maintain the surface roughness at the original concentration of the chemical solution. Come.
[0014]
In addition, acetic acid gives off an irritating odor, so it has a great influence on the surrounding environment, and ancillary equipment such as a scrubber is required at the actual site, which increases the cost in terms of equipment. Furthermore, although acetic acid is a liquid, its freezing point is as high as 17 ° C., and it is difficult to handle since it solidifies into glacial acetic acid in winter.
[0015]
Therefore, the present inventor conducted intensive research to develop a new chemical solution that does not have the above-described drawbacks and can create uniform unevenness without unevenness. It was found that the abundance ratio of hydrogen fluoride, ammonium fluoride, and pure water alone is not sufficient, and that improvement can be seen by adding acetic acid. However, as described above, acetic acid is difficult to volatilize and has a drawback of having an irritating odor.
[0016]
The present inventor has conducted further research on what can be added to hydrogen fluoride, ammonium fluoride, and pure water to uniformly provide irregularities on the quartz glass surface, and as a result, hydrogen fluoride, By using a chemical solution obtained by adding a hydrophilic organic acid having a carboxyl group to ammonium fluoride or pure water, there is no defect of the conventional chemical solution as described above, and uniform unevenness can be made without unevenness. I found it.
[0017]
The present invention can create uniform unevenness without unevenness, efficiently produce uniform unevenness without unevenness by using a quartz glass surface treatment liquid that has no irritating odor, easy concentration control, and easy handling in winter. and to provide a surface treatment method of the quartz glass to be able to make.
[0018]
[Means for Solving the Problems]
In order to solve the above problems, a first aspect of the method of surface treatment of the silica glass of the present invention, the surface treatment of the quartz glass to be processed to form an uneven surface of the quartz glass by using a quartz glass surface treating solution a method, the quartz glass surface treatment liquid, hydrogen fluoride and, and ammonium fluoride, and one or more kinds of hydrophilic carboxylic acid having 3 to 7 carbon, and water, from 5 to 40 Surface roughness of the quartz glass surface ( 5% to 40% by weight: 10 to 60% by weight: 10 to 50% by weight) , and the surface roughness of the quartz glass treated with the quartz glass surface treatment liquid ( Ra) is 0.1 μm <Ra <2.0 μm, and the maximum roughness (Rmax) is 1 μm <Rmax <20 μm . Examples of the hydrophilic carboxylic acid include acrylic acid, propionic acid, methacrylic acid, benzoic acid, lactic acid, and crotonic acid.
[0019]
When the number of carbon atoms is 8 or more, the proportion of the hydrophobic alkyl group is larger than that of the carboxyl group of the hydrophilic group, and the hydrophobicity of the whole molecule becomes stronger, and it mixes with hydrogen fluoride, ammonium fluoride, and water. It cannot be used as a chemical solution.
[0020]
In addition, carboxylic acids with 2 or less carbons are limited to formic acid and acetic acid, which have already been studied in past research, formic acid is uneven, acetic acid is volatile, and concentration control is difficult. Have the following problems.
[0021]
A second aspect of the method of surface treatment of the silica glass of the present invention is a surface treatment method of the quartz glass to be processed to form an uneven surface of the quartz glass by using a quartz glass surface treating solution, the quartz glass The surface treatment solution contains hydrogen fluoride, ammonium fluoride, one or more hydrophilic carboxylic acids having two or three carboxyl groups, and water in an amount of 5 to 40% by weight: 5 to 40%. The surface roughness (Ra) of the quartz glass surface, which is mixed at a ratio of wt%: 10-60 wt%: 10-50 wt% and treated with the quartz glass surface treatment solution, is 0.1 μm. <Ra <2.0 μm and the maximum roughness (Rmax) is 1 μm <Rmax <20 μm . Examples of the hydrophilic carboxylic acid include oxalic acid, succinic acid, adipic acid, maleic acid, fumaric acid, malic acid, tartaric acid, citric acid, malonic acid, citraconic acid and the like.
[0022]
Most of the chemical substances having four or more carboxyl groups are high-molecular compounds and the like, and there are almost no hydrophilic substances. Therefore, this kind of carboxylic acid does not mix with hydrogen fluoride, ammonium fluoride, and water, and cannot exhibit a sufficient effect as a chemical solution. Examples of the chemical substance having one carboxyl group include formic acid, acetic acid, acrylic acid, propionic acid, methacrylic acid, benzoic acid, lactic acid, and crotonic acid, which are included in the first aspect of the present invention as described above. There are suitable hydrophilic carboxylic acids that are suitable and unsuitable hydrophilic carboxylic acids not included in the first embodiment.
[0023]
A third aspect of the method of surface treatment of the silica glass of the present invention is a surface treatment method of the quartz glass to be processed to form an uneven surface of the quartz glass by using a quartz glass surface treating solution, the quartz glass The surface treatment liquid contains hydrogen fluoride, ammonium fluoride, hydrophilic carboxylic acid, and water in a ratio of 5 to 40% by weight: 5 to 40% by weight: 10 to 60% by weight: 10 to 50% by weight. The hydrophilic carboxylic acid is propionic acid, acrylic acid, methacrylic acid, benzoic acid, lactic acid, oxalic acid, succinic acid, adipic acid, maleic acid, fumaric acid, malic acid, tartaric acid, is one or more kinds of hydrophilic carboxylic acid selected from the group consisting of citric acid, and the surface roughness of the quartz glass surface treatment solution treated quartz glass (Ra) of the surface is 0.1 [mu] m <Ra A 2.0 .mu.m, and a maximum roughness (Rmax) is characterized in that it is a 1μm <Rmax <20μm.
[0024]
The composition range of the quartz glass surface treatment solution used in the method of the present invention is as follows: hydrogen fluoride (HF): 5 to 40% by weight, ammonium fluoride (NH4F): 5 to 40% by weight, hydrophilic carboxylic acid: 10 to 60 % By weight and water (H2O): 10-50% by weight are preferred.
[0025]
The quartz glass surface treatment method of the present invention is characterized in that the surface of the quartz glass is treated using the quartz glass surface treatment liquid described above. Specifically, it is a method of immersing a quartz glass product in the quartz glass surface treatment liquid and treating it by standing.
[0026]
The surface treatment method for quartz glass according to the present invention is effective not only for quartz glass products but also for chemical chemical treatment of all glass products.
[0027]
【Example】
The present invention will be described more specifically with reference to the following examples. However, it is needless to say that these examples are shown by way of illustration and should not be construed in a limited manner.
[0028]
(Examples 1 to 13)
Hydrogen fluoride, ammonium fluoride, pure water, and various hydrophilic carboxylic acids shown in Table 1 were mixed to obtain a quartz glass surface treatment solution. The composition of the treatment liquid is hydrogen fluoride: 25% by weight, ammonium fluoride: 25% by weight, pure water: 25% by weight, and hydrophilic carboxylic acid: 25% by weight. A 300 × 300 × 100 mm thermostatic bath made of polyvinyl chloride was filled with 7000 ml of the treatment liquid and set to be kept at 20 ° C. A transparent quartz glass HEALUX-LA (trade name, manufactured by Shin-Etsu Quartz Co., Ltd.) for semiconductor industry, a quartz glass plate having a product size □ 100 × 100 × 5 tmm was immersed in this treatment solution for 2 hours. After immersion, the substrate was washed with pure water, and the surface roughness of the quartz glass surface was measured. The quartz glass surface was also observed. For the treatment of the quartz glass plate, the surface roughness and the concentration of the added acid were measured for each of the first treatment (first time) and the 30th treatment after the preparation of the quartz glass surface treatment solution as described below. The surface was also observed. The evaluation results for each evaluation item are shown in Table 1 for the first time and in Table 2 for the 30th time.
[0029]
Surface roughness: measurement of Ra and Rmax The surface roughness of the quartz glass after the treatment was measured using a surface roughness meter [Surfcom 300B (manufactured by Tokyo Seimitsu Co., Ltd.)]. The measurement was performed 3 times on the quartz glass surface. Tables 1 and 2 show the average values.
[0030]
Measurement of concentration of added hydrophilic carboxylic acid Measured by ion exchange chromatography [DX-300 (manufactured by Dionex)]. Table 1 shows the acid concentration after the first treatment, and Table 2 shows the acid concentration after the 30th treatment.
[0031]
Surface observation Observed visually, Table 1 shows the observation results of the surface state after the first treatment and Table 2 after the 30th treatment.
[0032]
(Comparative Example 1)
The quartz glass plate was treated in the same manner as in Example 1 except that acetic acid was used instead of propionic acid, and the results are shown in Tables 1 and 2.
[0033]
(Comparative Example 2)
The quartz glass plate was treated in the same manner as in Example 1 except that formic acid was used instead of propionic acid, and the results are shown in Tables 1 and 2.
[0034]
(Comparative Example 3)
The quartz glass plate was treated in the same manner as in Example 1 except that phthalic acid was used instead of propionic acid, and the results are shown in Tables 1 and 2.
[0035]
(Comparative Example 4)
The quartz glass plate was treated in the same manner as in Example 1 except that palmitic acid was used instead of propionic acid, and the results are shown in Tables 1 and 2.
[0036]
(Comparative Example 5)
The quartz glass plate was treated in the same manner as in Example 1 except that stearic acid was used instead of propionic acid, and the results are shown in Tables 1 and 2.
[0037]
(Comparative Example 6)
The quartz glass plate was treated in the same manner as in Example 1 except that oleic acid was used instead of propionic acid, and the results are shown in Tables 1 and 2.
[0038]
(Comparative Example 7)
The quartz glass plate was treated in the same manner as in Example 1 except that nitric acid was used instead of propionic acid, and the results are shown in Tables 1 and 2.
[0039]
(Comparative Example 8)
The quartz glass plate was treated in the same manner as in Example 1 except that phosphoric acid was used instead of propionic acid, and the results are shown in Tables 1 and 2.
[0040]
(Comparative Example 9)
The quartz glass plate was treated in the same manner as in Example 1 except that sulfuric acid was used in place of propionic acid, and the results are shown in Tables 1 and 2.
[0041]
(Comparative Example 10)
The quartz glass plate was treated in the same manner as in Example 1 except that hydrochloric acid was used instead of propionic acid, and the results are shown in Tables 1 and 2.
[0042]
(Comparative Example 11)
The quartz glass plate was treated in the same manner as in Example 1 except that propionic acid was not added, and the results are shown in Tables 1 and 2.
[0043]
(Comparative Example 12)
HERALUX-LA (trade name, manufactured by Shin-Etsu Quartz Co., Ltd.), which is not subjected to the treatment of forming irregularities on the surface, and quartz glass having a product size of □ 100 × 100 × 5 tmm, the evaluation of the surface for the same evaluation items as in Example The results are shown in Table 1 (first time) and Table 2 (30th time).
[0044]
[Table 1]
Figure 0004367816
[0045]
[Table 2]
Figure 0004367816
[0046]
As is apparent from the results of Tables 1 and 2, when the silica glass surface treatment was performed using the treatment liquid to which the hydrophilic carboxylic acid of Examples 1 to 13 was added, unevenness was observed both at the first time and at the 30th time. It was found that uneven surfaces having no or unevenness, specifically, surface roughness of 0.1 μm <Ra <2.0 μm and 1 μm <Rmax <20 μm were formed. In addition, even after 30 times of treatment, the concentration of the added acid was not significantly reduced, and it was confirmed that the treatment could be performed many times without special concentration management.
[0047]
When the surface treatment of quartz glass was performed using the treatment liquid to which acetic acid of Comparative Example 1 was added, in the first time, as in Examples 1 to 13, there was no unevenness or little unevenness, specifically Has a surface roughness of 0.1 μm <Ra <2.0 μm and 1 μm <Rmax <20 μm, but in the 30th time, the acetic acid concentration is reduced to 11%, and the surface is transparent. Is conspicuous, resulting in an insufficient finish as an uneven surface, and the surface roughness is also Ra> 2 μm and Rmax> 20 μm.
[0048]
When the surface treatment of quartz glass was performed using the treatment liquid to which formic acid of Comparative Example 2 was added, there was uneven whiteness at the first time, and a transparent portion was conspicuous on the surface at the 30th time, and the surface was uneven. The finish was insufficient, and the surface roughness was Ra> 2 μm and Rmax> 20 μm for the first and 30th times.
[0049]
When the surface treatment of quartz glass was performed using the treatment liquid to which the hydrophobic carboxylic acid of Comparative Examples 3 to 6 was added, a transparent portion was conspicuous on the surface at the first time and the 30th time, and the surface was not uneven. The finish was sufficient, and the surface roughness was Ra> 2 μm and Rmax> 20 μm in the first and 30th rounds.
[0050]
When the silica glass surface treatment was performed using the treatment liquid to which the inorganic acids of Comparative Examples 7 to 10 were added, the whiteness was uneven even at the first time or the 30th time, and the surface was insufficient as an uneven surface, In addition, the surface roughness was Ra> 2 μm and Rmax> 20 μm for the first time and the 30th time.
[0051]
In Comparative Example 11, when the treatment was performed with a mixed solution of hydrogen fluoride, ammonium fluoride, and water without using carboxylic acid, the whiteness was uneven even at the first time and the 30th time, and the surface was insufficient as an uneven surface. The surface roughness was also Ra> 2 μm and Rmax> 20 μm in the first and 30th rounds.
[0052]
Comparative Example 12 was quartz glass that was not subjected to surface treatment. The surface was transparent and not uneven, and the surface roughness was Ra <0.1 μm and Rmax <1 μm.
[0053]
【The invention's effect】
As described above, according to the silica glass surface treatment solution, a uniform uneven surface can be formed on the quartz glass surface, there is no irritating odor, concentration control is easy, and winter handling is easy. A great effect is achieved.
[0054]
Moreover, according to the quartz glass surface treatment method of the present invention, the use of the above-described quartz glass surface treatment liquid has an effect that a uniform uneven surface having no unevenness can be effectively formed on the quartz glass surface.

Claims (3)

石英ガラス表面処理液を用いて石英ガラスの表面に凹凸を形成するために処理する石英ガラスの表面処理方法であって、前記石英ガラス表面処理液が、フッ化水素と、フッ化アンモニウムと、炭素を3〜7個有する親水性カルボン酸の1種類又は2種類以上と、水とを、5〜40重量%:5〜40重量%:10〜60重量%:10〜50重量%の割合で混合してなるものであり、かつ前記石英ガラス表面処理液で処理された石英ガラス表面の表面粗さ(Ra)が0.1μm<Ra<2.0μmであり、かつ最大粗さ(Rmax)が1μm<Rmax<20μmであることを特徴とする石英ガラスの表面処理方法 A quartz glass surface treatment method for forming irregularities on the surface of quartz glass using a quartz glass surface treatment liquid, wherein the quartz glass surface treatment liquid comprises hydrogen fluoride, ammonium fluoride, carbon 1 to 2 or more types of hydrophilic carboxylic acids having 3 to 7 and water in a ratio of 5 to 40 wt%: 5 to 40 wt%: 10 to 60 wt%: 10 to 50 wt% The surface roughness (Ra) of the quartz glass surface treated with the quartz glass surface treatment solution is 0.1 μm <Ra <2.0 μm and the maximum roughness (Rmax) is 1 μm. <Rmax <surface treatment method of the quartz glass, which is a 20 [mu] m. 石英ガラス表面処理液を用いて石英ガラスの表面に凹凸を形成するために処理する石英ガラスの表面処理方法であって、前記石英ガラス表面処理液が、フッ化水素と、フッ化アンモニウムと、カルボキシル基を2個又は3個有する親水性カルボン酸の1種類又は2種類以上と、水とを、5〜40重量%:5〜40重量%:10〜60重量%:10〜50重量%の割合で混合してなるものであり、かつ前記石英ガラス表面処理液で処理された石英ガラス表面の表面粗さ(Ra)が0.1μm<Ra<2.0μmであり、かつ最大粗さ(Rmax)が1μm<Rmax<20μmであることを特徴とする石英ガラスの表面処理方法 A quartz glass surface treatment method for forming irregularities on the surface of quartz glass using a quartz glass surface treatment liquid, wherein the quartz glass surface treatment liquid comprises hydrogen fluoride, ammonium fluoride, and carboxyl One or more hydrophilic carboxylic acids having two or three groups and water in a ratio of 5 to 40% by weight: 5 to 40% by weight: 10 to 60% by weight: 10 to 50% by weight And the surface roughness (Ra) of the quartz glass surface treated with the quartz glass surface treatment solution is 0.1 μm <Ra <2.0 μm and the maximum roughness (Rmax) Is a surface treatment method of quartz glass, wherein 1 μm <Rmax <20 μm . 石英ガラス表面処理液を用いて石英ガラスの表面に凹凸を形成するために処理する石英ガラスの表面処理方法であって、前記石英ガラス表面処理液が、フッ化水素と、フッ化アンモニウムと、親水性カルボン酸と、水とを、5〜40重量%:5〜40重量%:10〜60重量%:10〜50重量%の割合で混合してなるものであり、前記親水性カルボン酸が、プロピオン酸、アクリル酸、メタクリル酸、安息香酸、乳酸、シュウ酸、コハク酸、アジピン酸、マレイン酸、フマル酸、リンゴ酸、酒石酸、クエン酸からなる群から選択された1種類又は2種類以上の親水性カルボン酸であり、かつ前記石英ガラス表面処理液で処理された石英ガラス表面の表面粗さ(Ra)が0.1μm<Ra<2.0μmであり、かつ最大粗さ(Rmax)が1μm<Rmax<20μmであることを特徴とする石英ガラスの表面処理方法 A quartz glass surface treatment method for forming irregularities on a surface of quartz glass using a quartz glass surface treatment liquid, wherein the quartz glass surface treatment liquid comprises hydrogen fluoride, ammonium fluoride, and hydrophilic The hydrophilic carboxylic acid is obtained by mixing 5 to 40% by weight: 5 to 40% by weight: 10 to 60% by weight and 10 to 50% by weight. One or more selected from the group consisting of propionic acid, acrylic acid, methacrylic acid, benzoic acid, lactic acid, oxalic acid, succinic acid, adipic acid, maleic acid, fumaric acid, malic acid, tartaric acid, citric acid The surface roughness (Ra) of the surface of the quartz glass that is a hydrophilic carboxylic acid and treated with the quartz glass surface treatment liquid is 0.1 μm <Ra <2.0 μm, and the maximum roughness (Rmax) is 1 μm. <Rmax <surface treatment method of the quartz glass, which is a 20 [mu] m.
JP2000148550A 2000-05-19 2000-05-19 Surface treatment method for quartz glass Expired - Lifetime JP4367816B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000148550A JP4367816B2 (en) 2000-05-19 2000-05-19 Surface treatment method for quartz glass
PCT/EP2001/005685 WO2001090015A1 (en) 2000-05-19 2001-05-18 Solution for treating surface of glass and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000148550A JP4367816B2 (en) 2000-05-19 2000-05-19 Surface treatment method for quartz glass

Publications (2)

Publication Number Publication Date
JP2001335342A JP2001335342A (en) 2001-12-04
JP4367816B2 true JP4367816B2 (en) 2009-11-18

Family

ID=18654560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000148550A Expired - Lifetime JP4367816B2 (en) 2000-05-19 2000-05-19 Surface treatment method for quartz glass

Country Status (2)

Country Link
JP (1) JP4367816B2 (en)
WO (1) WO2001090015A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220145959A (en) * 2021-04-20 2022-11-01 (주)금강쿼츠 Quartz glass surface treatment method and quartz glass prepared thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXGT04000020A (en) 2004-12-10 2005-06-07 Luis Rendon Granados Juan Chemical process for a satin-partial or complete unpolished glass by immersion in an acid solution for simultaneously and continuously producing one or several pieces and/or sheets of glass, the same having standard and variable dimensions.
MXGT04000019A (en) * 2004-12-10 2005-06-08 Luis Rendon Granados Juan Chemical process for an anti-reflective glass by immersion in an acid solution for simultaneously and continuously producing one or several pieces and/or sheets of glass, the same having standard and variable dimensions.
JP5564744B2 (en) 2006-12-04 2014-08-06 旭硝子株式会社 Method for producing surface-treated glass plate
US8887528B2 (en) 2006-12-04 2014-11-18 Asahi Glass Company, Limited Process for producing surface-treated glass plate
MX2009002822A (en) 2009-03-17 2010-02-22 Juan Luis Rendon Granados A glass having antireflectant in a total or partial manner on one or both surfaces thereof, with a smooth and soft style, having an aspect that does not reflect light and is agreable.
CN103247551A (en) * 2012-02-01 2013-08-14 上海科秉电子科技有限公司 Roughness regeneration method for bell jar in semi-conductor processing process
US10384972B2 (en) * 2014-02-06 2019-08-20 Momentive Performance Materials Inc. Fused quartz tubing for pharmaceutical packaging and methods for making the same
TWI586611B (en) * 2015-06-10 2017-06-11 圓益QnC股份有限公司 Surface treatment method of quartz materials for semiconductor manufacturing apparatus, composition for surface treatment of quartz materials for semiconductor manufacturing apparatus and quartz materials manufactured by the same
JP6623973B2 (en) * 2016-08-19 2019-12-25 信越半導体株式会社 Light emitting device and method for manufacturing light emitting device
JP6729275B2 (en) * 2016-10-12 2020-07-22 信越半導体株式会社 Light emitting device and method for manufacturing light emitting device
CN115023411A (en) * 2019-12-04 2022-09-06 信越石英株式会社 Method for producing silica glass
TW202317496A (en) * 2021-06-25 2023-05-01 日商信越石英股份有限公司 Method for producing quartz glass jig and quartz glass jig

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395304A (en) * 1982-05-11 1983-07-26 Rca Corporation Selective etching of phosphosilicate glass
ES8500612A1 (en) * 1982-10-13 1984-11-16 Saelzle Erich Process for polishing glass objects in a polishing bath containing sulfuric acid and hydrofluoric acid.
DE3314971A1 (en) * 1983-04-26 1984-10-31 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Method of cleaning the face-plate of a cathode-ray tube
US4508591A (en) * 1984-03-08 1985-04-02 Hewlett-Packard Company Polymethyl methacrylate compatible silicon dioxide complexing agent
US5101457A (en) * 1990-02-28 1992-03-31 At&T Bell Laboratories Optical fiber with an integral lens at its end portion
US5091053A (en) * 1990-02-28 1992-02-25 At&T Bell Laboratories Matte finishes on optical fibers and other glass articles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220145959A (en) * 2021-04-20 2022-11-01 (주)금강쿼츠 Quartz glass surface treatment method and quartz glass prepared thereof
KR102581501B1 (en) * 2021-04-20 2023-09-26 주식회사 금강쿼츠 Quartz glass surface treatment method and quartz glass prepared thereof

Also Published As

Publication number Publication date
WO2001090015A1 (en) 2001-11-29
JP2001335342A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
JP4367816B2 (en) Surface treatment method for quartz glass
US6284721B1 (en) Cleaning and etching compositions
JP5132859B2 (en) Micro-processed surface treatment liquid for glass substrates with multiple components
US5560857A (en) Solution for cleaning silicon semiconductors and silicon oxides
JP3842557B2 (en) Low surface tension, low viscosity, aqueous, acidic composition containing fluoride and organic polar solvent to remove photoresist and organic and inorganic corrosion residues at room temperature
JP3046208B2 (en) Cleaning liquid for silicon wafer and silicon oxide
EP0892840B1 (en) A composition for cleaning and etching electronic display and substrate
ITMI990120A1 (en) PROCEDURE FOR WET TREATMENT WITH SEMICONDUCTOR DISC ACIDS
US6431186B1 (en) Method of cleaning electronic components
KR100865881B1 (en) Surface treating fluid for fine processing of multi-component glass substrate
JP3435698B2 (en) Cleaning liquid for semiconductor substrates
CN1299786A (en) Composition for etching glass, glass-etching liquid and method, and etching product thereof
JP3824299B2 (en) Frost treatment liquid and frost treatment method on quartz glass surface
JP2019176128A (en) Etchant
JP2700778B2 (en) Semiconductor material processing method using acid-containing liquid
KR20080111268A (en) Cleaning solution composition and cleaning method using the same
EP1421164B1 (en) Surface treatment composition and method for removing si component and reduced metal salt produced on the aluminum dicast material in etching process
KR100415261B1 (en) Electronic display device and cleaning and etching composition for substrate
JP6458913B1 (en) Etching solution
US8075709B2 (en) Surface treatment method for aluminum or an aluminum alloy and treating fluid used therefor
US6818320B2 (en) Welding method for welded members subjected to fluoride passivation treatment, fluoride passivation retreatment method, and welded parts
CN104246017A (en) Resist adhesion improver and method for producing copper wiring line
JP3582473B2 (en) Pickling liquid for stainless steel and method for pickling stainless steel
CN116144365B (en) Buffer oxidation corrosive liquid and preparation method and application thereof
JP2003338484A (en) Cleaning solution for semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4367816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term