JP3568773B2 - Components for semiconductor manufacturing equipment - Google Patents

Components for semiconductor manufacturing equipment Download PDF

Info

Publication number
JP3568773B2
JP3568773B2 JP06908698A JP6908698A JP3568773B2 JP 3568773 B2 JP3568773 B2 JP 3568773B2 JP 06908698 A JP06908698 A JP 06908698A JP 6908698 A JP6908698 A JP 6908698A JP 3568773 B2 JP3568773 B2 JP 3568773B2
Authority
JP
Japan
Prior art keywords
semiconductor manufacturing
manufacturing apparatus
gas
wafer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06908698A
Other languages
Japanese (ja)
Other versions
JPH11274149A (en
Inventor
敬司 森田
広海 作左部
良之 内藤
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP06908698A priority Critical patent/JP3568773B2/en
Publication of JPH11274149A publication Critical patent/JPH11274149A/en
Application granted granted Critical
Publication of JP3568773B2 publication Critical patent/JP3568773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体製造装置用部材に係わり、特に多結晶アルミナセラミックスを用いた半導体製造装置用部材に関する。
【0002】
【従来の技術】
従来、半導体製造装置用部材、例えばLP−CVD装置内に原料ガスやキャリアガスを導入するためのガス導入管には一般に石英ガラスが用いられていた。LP−CVD装置を用いてウェーハの表面に保護膜としてホウ酸−リンケイ酸ガラス膜(BPSG膜)やリンケイ酸ガラス質(PSG膜)を形成する場合、原料ガス等を導入するガス導入管にもBPSG膜が堆積するため、BPSG成膜工程終了後にガス導入管をフッ酸溶液で洗浄し、堆積したBPSG膜を除去している。
【0003】
この洗浄工程で石英ガラス製のガス導入管はフッ酸溶液により浸食されてガス導入孔が大きくなり、導入ガス量が変化しプロセスが安定しないため、一度使用されたガス導入管は廃棄されており、不経済であった。
【0004】
また、ウェーハの表面にポリシリコン膜を形成する場合、ガス導入管はじめ半導体製造装置用部材にポリシリコン膜が堆積するため、成膜工程終了後に半導体製造装置用部材をClFガスでガスクリーニングし、堆積したポリシリコン膜を除去していた。
【0005】
このガスクリーニング工程において、ClFガスをガス導入管はじめ半導体製造装置用部材に流し込むが、これら各部材はClFガスにより浸食される。従って、ガス導入管にあっては、導入ガス量に変化をもたらす不都合をきたし、ガス導入管を含む半導体製造装置用部材にあっては、これら各部材自体が肉薄になるため、各部材を構成する石英ガラスの熱膨脹率と例えばポリシリコン膜の生成時に各部材に堆積したSiの熱膨脹率の差により、以降の成膜工程において、これら部材が破損することがしばしばあった。
【0006】
この破損対策として、ガス導入管はじめ半導体製造装置用部材にアルミナセラミックスを用いることが試みられてきた。
【0007】
しかし、汎用のアルミナセラミックスは常圧酸化雰囲気で焼成されるため、残留気泡が存在し、真密度に達しない。この理由は、大気での焼成において焼成体の粒子間の気泡を構成しているものは窒素、二酸化炭素であるため、気泡の移動速度、すなわち拡散速度が低く、また焼結後にも残留するためである。
【0008】
セラミックスの気孔は移動が遅すぎて、逆に移動した粒界に集まる。このため気孔が大きくなりすぎて気孔移動の駆動力となる表面張力が働かなくなり、気孔は完全に除去できない。
【0009】
上述の従来の常圧酸化雰囲気で焼成したアルミナセラミックスの密度は、最高で3.96g/cmであり、理論密度の99.0%〜99.2%である。このアルミナセラミックス製品は結晶粒子間に気孔が残っており、吸水性を持つため、洗浄時に吸着した洗浄水をプロセスに持ち込みやすく、真密度により近いアルミナセラミックスが求められている。
【0010】
このように、従来のアルミナセラミックスは純度的にも、清浄度的にも問題があり、上述成膜工程において、アルミナ製ガス導入管から飛散する不純物元素による装置および製品汚染が避けられなかった。
【0011】
つまり、フッ素系ガスまたはフッ酸溶液を用いて洗浄しても浸食されず、製品形状が自由でありガス放出による製品、装置汚染のない半導体製造装置用部材が要望されていた。
【0012】
【発明が解決しようとする課題】
本発明は上述した事情を考慮してなされたもので、フッ素系ガスまたはフッ酸溶液を用いて洗浄しても浸食されず、製品形状が自由でガス放出による製品、装置汚染のない半導体製造装置用部材を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するためになされた本願請求項1の発明は、フッ素系洗浄用流体を用いて洗浄されLP−CVD半導体製造装置のガス導入管である半導体製造装置用部材において、この部材をかさ密度が3.98g/cm以上で、かつ平均結晶粒径が5μm〜30μmである多結晶アルミナセラミックスで形成し、さらに、水素雰囲気で焼成され、かつアルミナ純度が99.9重量%以上、不純物としてSiが100ppm以下、Na、Ca、Kが各々50ppm以下であることを特徴とする半導体製造装置用部材であることを要旨としている。
【0016】
【発明の実施の形態】
以下、本発明に係わる半導体製造装置用部材の実施の形態について説明する。
【0017】
図1に示される半導体製造装置は、例えばLP−CVD半導体製造装置1で、このLP−CVD半導体製造装置1は石英ガラス製の反応外管2と内側の反応管3の二重構造で構成される装置本体4を有し、この装置本体4はステンレス製のマニホールド5に固定されている。
【0018】
このマニホールド5には、原料ガス導入用のガス導入管6および排気管7が設けられている。装置本体4の外部には、排気管7に連通するガス排気用の真空ポンプ8と、装置本体4を外部から加熱する抵抗加熱ヒータ9が配設されている。
【0019】
マニホールド5の下部開口部に対接するように配設されたキャッピングフランジ10上には、ウェーハボート回転機構11に取り付けられた保温筒12が設けられ、さらにこの保温筒12にはボート13が固定され、このボート13には上部に数枚のダミーウェーハ14と多数のウェーハ15が載置されている。
【0020】
上述反応管3、ガス導入管6、ボート13およびダミーウェーハ14は本発明に係わる半導体製造装置用部材であり、高純度多結晶アルミナセラミックス製である。
【0021】
次に、半導体製造装置用部材に用いられる高純度多結晶アルミナセラミックスの製造方法について説明する。
【0022】
高純度多結晶アルミナセラミックスの原料としては高純度アルミナが用いられ、硫酸アルミニウムや硝酸アルミニウムの液体から再結晶させて得られたγアルミナを焙焼によりα化し、平均粒子径が1μm以下に粉砕された粉末原料を用いる。
【0023】
上述した原料の製法のほかに水酸化アルミニウムから生成する製法もある。
【0024】
高純度アルミナセラミックスを製造する際は、アルミナ粉末原料にMgOを結晶粒子成長抑制剤として添加する。MgO添加量は通常の高純度アルミナセラミックスと同様に、MgO成分で100ppmから1000ppmの範囲で用いられる。
【0025】
MgOを添加した原料は、通常、ポリビニルアルコールやメチルセルロースなどのバインダーを加え、スプレードライヤーで造粒し、ラバ−プレス法で加圧成形する。この成形はラバープレス法以外に、金型プレス、押出成形、射出成形、鋳込成形でも可能である。
【0026】
成形体を加工することにより製品形状に近づける。水素雰囲気で焼成するとバインダーに含まれる炭素を除去できないため、800℃から1300℃で脱脂を行う。焼成雰囲気に使用する水素は、露点が−20℃以下であれば特に問題ない。
【0027】
水素雰囲気焼成炉は熱源として、タングステンやモリブデンの電気ヒーターが使用される。水素雰囲気焼成炉の断熱材や焼成治具はアルミナ耐火物およびタングステンやモリフデンで構成される。1700℃以上の水素雰囲気中で焼成を行うと、真密度のセラミックスが得られる。この得られた焼成体に寸法精度が要求される場合、ダイヤモンド砥石を用いて仕上加工を行う。
【0028】
一般にセラミックス製の半導体製造装置用部材は装置に設置して使用するため、部材の精度が要求され、止め穴加工や外周部、平坦面は焼成後に研削加工が行われる。
【0029】
また、アルミナセラミックスは残留気孔が多いと密度が低下する。この密度低下対策として、1700℃以上の高温で焼成することにより、結晶粒子成長に伴い、気孔の移動と除去を行い密度を高める。高温での焼成は、ヒーターが酸化するため、電気炉より、LPガスとエアーを混合したガスバーナーを熱源とするガス炉が主流である。
【0030】
雰囲気に水素を使用したアルミナセラミックスはサファイアと同等の3.98g/cmの密度が得られ、同時に光の透過性を阻止する気泡がないため、透光性も得られる。この透光性アルミナセラミックスを半導体製造装置用部材、特に反応管などに用いる場合には、この半導体製造装置用部材に付着する膜などの状態を把握し易いため、洗浄やガスクリーニングをタイミング良く行うことができる。
【0031】
焼成中のセラミックスに含まれるSi、Na、K、Fe等の元素は、高温の水素雰囲気中において、蒸気庄が酸化雰囲気より高くなる。このため、被焼成体から、これらの元素が蒸発飛散し、焼成後のセラミックスは純化される。
【0032】
添加したMg成分も同様に水素雰囲気焼成により蒸発除去され、含有量が減少する。製品に含まれるMgが100ppm以下となる場合もあり得る。この高純度、高密度のアルミナセラミックスは、従来の大気常圧酸化雰囲気で焼成した高純度アルミナセラミックスと比較して、Si、Na、Ca、K、Fe等の不純物含有量が減少し、また気孔を含まないため、高温での脱ガスが極めて少なくなる。
【0033】
これらの元素のうち、Siが多いと選択的にエッチングされてアルミナセラミックスの粒子が脱落する。
【0034】
SiはClFガス洗浄やフッ酸溶液洗浄での耐食性の面から100ppm以下、より好ましくは10ppm以下であることが望ましい。また、Na、K、Fe含有量も、LP−CVDプロセスにおけるウェーハでの生成膜に悪影響を及ぼすため、50ppm以下が望ましい。
【0035】
透光性アルミナは、平均結晶粒径が5μm〜30μmであるのが最適である。5μm以下である場合、結晶粒界に残留気孔が残りやすく、吸水性を持つため、洗浄時に洗浄水を逆に吸着し、これによってLP−CVDプロセスに悪影響を及ぼす虞がある。また30μm以上では焼成体の強度が低下し、半導体製造装置用部材には適さない。なお、平均結晶粒径は、焼結体の任意の場所を顕微鏡観察し、各々の結晶の最大径をその結晶径とし、この平均径を採ったものである。
【0036】
上述のように製造された高純度多結晶アルミナセラミックス製の半導体製造装置用部材が組み込まれた図1に示すようなLP−CVD半導体製造装置1を用いて、PSG膜をウェーハ15に被覆する工程を説明する。
【0037】
LP−CVD半導体製造装置1外で、ボート13の上部に数枚のダミーウェーハ14を装填し、他の部分には多数のウェーハ15を装填する。ダミーウェーハ14を用いる理由は、ボート13の上部に装填されたウェーハは汚染され易く、また均一な膜が被覆しにくいためで、ダミーウェーハ14は何度も使用される。
【0038】
ダミーウェーハ14およびウェーハ15が装填されたボート13をLP−CVD半導体製造装置1に収納し、保温筒12に固定する。
【0039】
しかる後、ウェーハボート回転機構11を付勢してボート13を回転させ、抵抗加熱ヒータ9を付勢して、装置本体4内を加熱する。
【0040】
次に、ガス導入管6を介して、原料ガス、例えばテトラエトキシシラン(TEOS)を装置本体4内に供給する。TEOSは加熱され、内側の反応管3内を通り、ボート13に載置されたウェーハ15およびダミーウェーハ14にPSG膜を形成する。
【0041】
この成膜工程において、半導体製造装置用部材は高純度多結晶アルミナセラミックスで作られているので、気孔率の少ない真密度であり、さらに高純度でアルカリなどの不要成分が少なく、蒸気圧が低く汚染源になりにくい。
【0042】
従って、半導体製造装置用部材に高純度多結晶アルミナセラミックスを用いたLP−CVD半導体製造装置1で成膜されたウェーハ15には、汚染のないきれいなPSG膜が形成される。
【0043】
上述のような成膜工程を数回繰り返すと半導体製造装置用部材、すなわち反応管3、ガス導入管6、ボート13およびダミーウェーハ14にはPSGが堆積して膜を形成する。半導体製造装置用部材に堆積してPSG膜が次回以降の成膜工程で剥離し、ウェーハに膜不良を発生させる原因となる。
【0044】
そこで、PSG膜が被覆された製品のおのおのを装置からとり外し、フッ酸溶液に浸しクリーニングする。
【0045】
このクリーニングにより、ガス導入管6はじめ半導体製造装置用部材に堆積したPSG膜は除去される。クリーニング時、ガス導入管6はじめ半導体製造装置用部材は高純度多結晶アルミナセラミックス製であるので、フッ酸溶液により浸食されることがなく、ガス導入管6は当初の寸法を維持するため、LP−CVD半導体製造装置1に適正量の原料ガスを供給することができ、また他の半導体製造装置用部材は当初の肉厚を維持するため、各部材の熱膨脹率と堆積したPSG膜の熱膨脹率の差により以降の成膜工程で部材が破損することがなく、また、きれいな状態で何回も使用できる。
【0046】
次に本発明に係わる半導体製造装置用部材を用いた第2の実施の形態について説明する。
【0047】
図2に示される半導体製造装置、例えばウェーハ20の表面にポリシリコンの保護膜を形成する常圧の化学蒸着装置21で、この化学蒸着装置21は気密性の装置本体22とこの装置本体22に収納された半導体製造装置用部材、例えば表面部が平坦な高純度多結晶アルミナセラミックス製でディスク状のサセプタ23と、このサセプタ23の下方に加熱を目的とした抵抗発熱体24を有している。
【0048】
さらに、装置本体22には半導体製造装置用部材を構成する原料ガス供給用のガス導入管25と排気管26が設けられて、これらガス導入管25と排気管26は高純度多結晶アルミナセラミックス製で形成されている。
【0049】
本実施の形態の化学蒸着装置21は上述のような構造になっているので、ウェーハ20の表面にポリシリコンを成膜するには、ウェーハ20をサセプタ23に載置し、しかるのち、抵抗発熱体24によりサセプタ23を加熱するとともに化学蒸着装置21に原料ガスとして例えばモノシランと水素を体積比で1:4の割合で供給する。サセプタ23の温度を400℃近傍の比較的低温である410±5℃に調節保持し、0.1μm/min以下の膜形成速度で化学蒸着を行い、アモルファスポリシリコン膜をシリコンウェーハ20の片面に形成する。
【0050】
この成膜工程において、上述した第1の実施の形態と同様に半導体製造装置用部材、すなわちサセプタ23、ガス導入管25および排気管26は高純度多結晶アルミナセラミックスで作られているので、気孔率の少ない真密度であり、さらに高純度でアルカリなどの不要成分が少なく、蒸気圧が低く汚染源になりにくい。
【0051】
従って、半導体製造装置用部材に高純度多結晶アルミナセラミックスを用いた化学蒸着装置21で成膜されたウェーハ20には、汚染のないきれいなアモルファスシリコン膜が形成される。上述のような成膜工程を数回繰り返すと半導体製造装置用部材、すなわちサセプタ20、ガス導入管25および排気管26にはポリシリコンが堆積して膜を形成する。これら半導体製造装置用部材に堆積してアモルファスシリコン膜が次回以降の成膜工程で剥離し、ウェーハに膜不良を発生させる原因となり、また各部材の熱膨脹率と堆積したアモルファスシリコン膜の熱膨脹率の差により以降の成膜工程で部材が破損する虞もある。
【0052】
そこで、成膜工程終了後、アモルファスシリコン膜被覆された製品のウェーハ20を化学蒸着装置21から取り出した状態、すなわち、半導体製造装置用部材であるサセプタ23、ガス導入管25および排気管26が化学蒸着装置21に収納され、あるいは取付けられた状態で、ガス導入管25からClFガスを供給して、これら半導体製造装置用部材をガスクリーニングする。
【0053】
このガスクリーニングにより、ガス導入管25はじめサセプタ23、排気管26に堆積したアモルファスシリコン膜は剥離除去される。ガスクリーニング時、半導体製造装置用部材であるガス導入管25はじめサセプタ23、排気管26は高純度多結晶アルミナセラミックス製であるので、ClFガスにより浸食されることがなく、ガス導入管25は当初の寸法を維持するため、化学蒸着装置21に適正量の原料ガスを供給することができ、またガス導入管25はじめ他の半導体製造装置用部材は当初の肉厚を維持するため、各部材の熱膨脹率と堆積したアモルファスシリコン膜の熱膨脹率の差により以降の成膜工程で部材が破損することがない。
【0054】
さらに本発明に係わる半導体製造装置用部材を用いた第3の実施の形態について説明する。
【0055】
図3に示される半導体製造装置、例えば大口径ウェーハ30の表面にアモルファスシリコン膜を形成する化学蒸着装置31で、この装置31は加熱装置32で加熱される気密性の装置本体33とこの装置本体33に収納されモータ駆動される回転軸34に取り付けられた半導体製造装置用部材、例えば表面部が平坦な高純度多結晶アルミナセラミックス製でディスク状のサセプタ34と、このサセプタ34に載置されたウェーハ30方向に原料ガスを放出するノズルを兼ねたガス導入管35が設けられている。
【0056】
上述のような構造を有する化学蒸着装置31にノズルを兼ねたガス導入管35から原料ガスのモノシランと水素を供給し、上述した第2の実施の形態と同様に無欠陥なアモルファスシリコン膜を有するウェーハ30を得ることができる。
【0057】
またガスクリーニング時、半導体製造装置用部材であるガス導入管35はじめサセプタ34は高純度多結晶アルミナセラミックス製であるので、ClFガスにより浸食されることがなく、ガス導入管35は当初の寸法を維持するため、化学蒸着装置31に適正量の原料ガスを供給することができ、またガス導入管35、サセプタ34は当初の肉厚を維持するため、各部材の熱膨脹率と堆積したポリシリコン膜の熱膨脹率の差により以降の成膜工程で部材が破損することがない。
【0058】
さらに、本発明に係わる半導体製造装置用部材を用いた第4の実施の形態について説明する。
【0059】
例えば第1の実施の形態で説明したLP−CVD半導体製造装置を用いて、図4に示すようにBPSG膜が形成されたウェーハ40をボート41から取り出し、次工程の半導体製造装置42に移載するが、この移載には前後伸縮および回転自在に移載装置43に設けられた半導体製造装置用部材、例えばフォーク44により行われる。フォーク44は高純度多結晶アルミナセラミックスで作られているので、気孔率の少ない真密度であり、さらに高純度でアルカリなどの不要成分が少なく、汚染源になりにくく、移載時ウェーハ40を汚染することがない。
【0060】
フォーク44によるウェーハ40の繰り返しの移載で、フォーク44にはBPSGが付着し、このBPSGはウェーハ40汚染の原因になるので、定期的にフッ素系洗浄用流体例えばフッ酸溶液を用いて洗浄する必要がある。
【0061】
そこで、フォーク44をフッ酸溶液により洗浄しても、フォーク44は高純度多結晶アルミナセラミックスで作られているので、フォーク44はフッ酸溶液により浸食されず当初の肉厚を維持するので、ウェーハ40移載中にフォーク44が破損するようなことはない。
【0062】
【実施例】
実施例1: 純度99.99%、平均粒子径0.3μmの高純度アルミナ粉を用い、これに結晶成長抑制剤としてMgOを500ppm添加し、成形助剤としてメチルセルロース10%、ポリエチレングリコール2%、純水8%を加え、混合した。
【0063】
その後、真空混練押出成形機にて、厚さ1.2mm、幅250mmのシートを押出成形した。
【0064】
焼成収縮率20%を考慮し、100mmφ×1mmのウェーハ焼成体が取れるようにシートを切り出し、大気中で900℃、2時間脱脂を行い、その後、各種温度、水素雰囲気で焼成を実施し、焼成体の試料(実施例)を得た。
【0065】
実施例とは一部原料組成ないし製造条件を変えた試料(比較例1〜3)および石英ガラスよりなる試料(従来例)を作製した。
【0066】
これらの試料を図5に示すように、シリコンウェーハでサンドイッチにし、1100℃で3時間加熱後、冷却し、シリコンウェーハの表面を誘導結合型プラズマ質量分析装置(ICP−MS)により分析し、アルミナセラミックスからシリコンウェーハに転写した元素量を測定した。
【0067】
試験結果を表1に示す。
【0068】
【表1】

Figure 0003568773
【0069】
実施例は不純物も少なく、Siウェーハの汚染も比較例1ないし比較例3に比べて少ない。なお、従来例はSiウェーハの汚染は少ないが、上述各実施の形態で説明したように、フッ素系洗浄用流体であるフッ素系ガスまたはフッ酸溶液により浸食された。
【0070】
実施例2: 純度99.99%、平均粒子径0.3μmの高純度アルミナ粉を用い、これに結晶成長抑制剤としてMgOを500ppm添加し、成形助剤として、メチルセルロース10%、ポリエチレングリコール2%、純水8%を加え、混合した。
【0071】
その後、真空混練押出成形機にて、内径5mmφ、外径8mmφのパイプを押出成形した。押出した成形体は乾燥前に、図6に示すようなL字のブロー成形型に装填し、成形型をセットした後、成形体の一端部を封じ、他端部から成形体に圧縮空気を送り、空気圧によりL字に押出成形体を膨脹させブロー成形した。
【0072】
得られた成形体を100℃で乾燥し、水分を蒸発させた後、孔加工を行い、900℃で脱脂し、1800℃の水素雰囲気で焼成した。
【0073】
このガス導入ノズルを用いて、成膜を行い、数回の成膜工程後、ClFガスによりガス洗浄を行ったが、ガス導入ノズルは浸食を受けず、孔径も変化せず、安定した成膜ができた。実施例は耐用が伸び半永久的になった。
【0074】
【発明の効果】
半導体製造装置用部材はかさ密度が3.98g/cm以上で、かつ平均結晶粒径が5μm〜30μmの高純度多結晶アルミナセラミックスで形成したので、フッ素系洗浄用流体であるフッ素系ガスまたはフッ酸溶液を用いて洗浄しても浸食されず、かつ製品形状が自由でありガス放出による製品、装置汚染のない半導体製造装置用部材を提供することができる。
【図面の簡単な説明】
【図1】本発明に係わる半導体製造装置用部材の実施の形態を用いた半導体製造装置の説明図。
【図2】本発明に係わる半導体製造装置用部材の他の実施の形態を用いた半導体製造装置の説明図。
【図3】本発明に係わる半導体製造装置用部材の他の実施の形態を用いた半導体製造装置の説明図。
【図4】本発明に係わる半導体製造装置用部材の他の実施の形態の使用説明図。
【図5】試料の試験に用いられる試験方法の説明図。
【図6】試料の製造に用いられるブロー型の説明図。
【符号の説明】
1 LP−CVD半導体製造装置
2 反応外管
3 反応管
4 装置本体
5 マニホールド
6 ガス導入管
7 排気管
8 真空ポンプ
9 抵抗加熱ヒータ
10 キャッピングフランジ
11 ウェーハボート回転機構
12 保温筒
13 ボート
14 ダミーウェーハ
15 ウェーハ
20 ウェーハ
21 化学蒸着装置
22 装置本体
23 サセプタ
24 抵抗発熱体
25 ガス導入管
26 排気管
30 大口径ウェーハ
31 化学蒸着装置
32 加熱装置
33 装置本体
34 サセプタ
35 ガス導入管
40 ウェーハ
41 ボート
42 半導体製造装置
43 移載装置
44 フォーク[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a member for a semiconductor manufacturing apparatus, and more particularly to a member for a semiconductor manufacturing apparatus using polycrystalline alumina ceramics.
[0002]
[Prior art]
Conventionally, quartz glass has generally been used for a gas introduction pipe for introducing a raw material gas or a carrier gas into a member for a semiconductor manufacturing apparatus, for example, an LP-CVD apparatus. When forming a boric acid-phosphosilicate glass film (BPSG film) or a phosphosilicate glass material (PSG film) as a protective film on the surface of a wafer using an LP-CVD apparatus, a gas introduction pipe for introducing a raw material gas or the like is also used. Since the BPSG film is deposited, the gas introduction pipe is washed with a hydrofluoric acid solution after the BPSG film forming step to remove the deposited BPSG film.
[0003]
In this cleaning process, the quartz glass gas introduction tube is eroded by the hydrofluoric acid solution, and the gas introduction hole becomes large, the amount of introduced gas changes and the process becomes unstable, so the gas introduction tube used once is discarded. Was uneconomical.
[0004]
Further, when a polysilicon film is formed on the surface of the wafer, the polysilicon film is deposited on the gas introduction pipe and the members for the semiconductor manufacturing equipment. Therefore, after the film forming process, the members for the semiconductor manufacturing equipment are subjected to gas cleaning with ClF 3 gas. Then, the deposited polysilicon film was removed.
[0005]
In this gas cleaning step, the ClF 3 gas flows into the gas introduction pipe and the members for the semiconductor manufacturing apparatus, and these members are eroded by the ClF 3 gas. Therefore, in the gas introduction pipe, there is a disadvantage that the amount of introduced gas is changed, and in the member for a semiconductor manufacturing apparatus including the gas introduction pipe, each member itself becomes thin, so that each member is constituted. Due to the difference between the thermal expansion coefficient of quartz glass and the thermal expansion coefficient of Si deposited on each member at the time of forming a polysilicon film, for example, these members are often damaged in the subsequent film forming process.
[0006]
As a countermeasure against this breakage, it has been attempted to use alumina ceramics for members for semiconductor manufacturing equipment including gas introduction pipes.
[0007]
However, general-purpose alumina ceramics are fired in a normal-pressure oxidizing atmosphere, so that residual air bubbles are present and do not reach the true density. The reason for this is that nitrogen and carbon dioxide form bubbles between the particles of the fired body during firing in the atmosphere, so the moving speed of the bubbles, that is, the diffusion speed is low, and also remains after sintering. It is.
[0008]
The pores of the ceramic move too slowly, and converge at the grain boundaries that have moved. For this reason, the pores become too large, and the surface tension acting as a driving force for the pore movement does not work, and the pores cannot be completely removed.
[0009]
The density of the alumina ceramics fired in the conventional atmospheric oxidation atmosphere described above has a maximum of 3.96 g / cm 3, which is 99.0% to 99.2% of the theoretical density. Since this alumina ceramic product has pores remaining between crystal grains and has water absorbability, it is easy to carry washing water adsorbed at the time of washing into the process, and there is a demand for alumina ceramics having a closer to true density.
[0010]
As described above, the conventional alumina ceramics have problems in both purity and cleanliness, and in the above-described film forming process, the contamination of the apparatus and the product due to the impurity elements scattered from the alumina gas introduction pipe cannot be avoided.
[0011]
In other words, there has been a demand for a semiconductor manufacturing apparatus member which does not erode even when washed with a fluorine-based gas or a hydrofluoric acid solution, has a free product shape, and is free from product and device contamination due to gas release.
[0012]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and is not eroded even when washed with a fluorine-based gas or a hydrofluoric acid solution, has a free product shape, and is free from gas discharge. It is intended to provide a member for use.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 of the present application is directed to a member for a semiconductor manufacturing apparatus which is a gas introduction pipe of an LP-CVD semiconductor manufacturing apparatus which has been cleaned using a fluorine-based cleaning fluid and which has a bulk. Formed of polycrystalline alumina ceramics having a density of 3.98 g / cm 3 or more and an average crystal grain size of 5 μm to 30 μm, further fired in a hydrogen atmosphere, and having an alumina purity of 99.9% by weight or more, The present invention is intended to provide a member for a semiconductor manufacturing apparatus characterized in that Si is 100 ppm or less and Na, Ca, and K are each 50 ppm or less.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a member for a semiconductor manufacturing apparatus according to the present invention will be described.
[0017]
The semiconductor manufacturing apparatus shown in FIG. 1 is, for example, an LP-CVD semiconductor manufacturing apparatus 1. This LP-CVD semiconductor manufacturing apparatus 1 has a double structure of an outer reaction tube 2 made of quartz glass and an inner reaction tube 3. The apparatus main body 4 is fixed to a manifold 5 made of stainless steel.
[0018]
The manifold 5 is provided with a gas introduction pipe 6 for introducing a source gas and an exhaust pipe 7. A vacuum pump 8 for gas exhaust communicating with an exhaust pipe 7 and a resistance heater 9 for heating the apparatus main body 4 from outside are provided outside the apparatus main body 4.
[0019]
On a capping flange 10 disposed so as to be in contact with the lower opening of the manifold 5, a heat retaining tube 12 attached to a wafer boat rotating mechanism 11 is provided, and a boat 13 is fixed to the heat retaining tube 12. On this boat 13, several dummy wafers 14 and many wafers 15 are placed on the upper part.
[0020]
The above-mentioned reaction tube 3, gas introduction tube 6, boat 13 and dummy wafer 14 are members for a semiconductor manufacturing apparatus according to the present invention, and are made of high-purity polycrystalline alumina ceramics.
[0021]
Next, a method for producing a high-purity polycrystalline alumina ceramic used for a member for a semiconductor production apparatus will be described.
[0022]
High-purity alumina is used as a raw material for high-purity polycrystalline alumina ceramics, and γ-alumina obtained by recrystallization from a liquid of aluminum sulfate or aluminum nitrate is turned into α by roasting, and pulverized to an average particle diameter of 1 μm or less. Use powdered raw materials.
[0023]
In addition to the above-described method of producing raw materials, there is also a method of producing from aluminum hydroxide.
[0024]
When producing high-purity alumina ceramics, MgO is added to the alumina powder raw material as a crystal grain growth inhibitor. MgO is added in the range of 100 ppm to 1000 ppm in terms of MgO component, similarly to ordinary high-purity alumina ceramics.
[0025]
The raw material to which MgO is added is usually added with a binder such as polyvinyl alcohol or methylcellulose, granulated by a spray drier, and pressure-formed by a rubber press method. This molding can be performed by a die press, extrusion molding, injection molding, or cast molding in addition to the rubber press method.
[0026]
By processing the molded body, it approaches the product shape. Since carbon contained in the binder cannot be removed by baking in a hydrogen atmosphere, degreasing is performed at 800 ° C. to 1300 ° C. Hydrogen used in the firing atmosphere has no particular problem as long as the dew point is −20 ° C. or less.
[0027]
The hydrogen atmosphere firing furnace uses an electric heater of tungsten or molybdenum as a heat source. The heat insulating material and the firing jig of the hydrogen atmosphere firing furnace are made of alumina refractory, tungsten and molybdenum. When firing is performed in a hydrogen atmosphere at 1700 ° C. or more, a ceramic having a true density can be obtained. When dimensional accuracy is required for the obtained fired body, finish processing is performed using a diamond grindstone.
[0028]
In general, since a member for a semiconductor manufacturing device made of ceramics is used by being installed in the device, the accuracy of the member is required, and a stopper hole is formed, and an outer peripheral portion and a flat surface are ground after firing.
[0029]
Further, the density of alumina ceramics decreases when there are many residual pores. As a countermeasure against the decrease in density, baking is performed at a high temperature of 1700 ° C. or more, so that pores are moved and removed as the crystal grains grow, thereby increasing the density. Since firing at high temperatures oxidizes the heater, a gas furnace using a gas burner in which LP gas and air are mixed is mainly used as a heat source rather than an electric furnace.
[0030]
Alumina ceramics using hydrogen in the atmosphere have a density of 3.98 g / cm 3 equivalent to that of sapphire, and at the same time, have no light-transmitting air bubbles, so that light-transmitting properties can also be obtained. When the translucent alumina ceramic is used for a member for a semiconductor manufacturing apparatus, particularly for a reaction tube, the state of a film or the like adhered to the member for a semiconductor manufacturing apparatus can be easily grasped. be able to.
[0031]
Elements such as Si, Na, K, and Fe contained in the ceramic during firing have a higher vapor pressure than a oxidizing atmosphere in a high-temperature hydrogen atmosphere. For this reason, these elements evaporate and scatter from the object to be fired, and the ceramic after firing is purified.
[0032]
Similarly, the added Mg component is also evaporated and removed by baking in a hydrogen atmosphere, and the content decreases. Mg contained in the product may be 100 ppm or less. This high-purity, high-density alumina ceramic has a reduced content of impurities such as Si, Na, Ca, K, Fe and the like, and has a lower porosity than a conventional high-purity alumina ceramic fired in an atmospheric normal-pressure oxidizing atmosphere. , Degassing at a high temperature is extremely reduced.
[0033]
Among these elements, when the content of Si is large, the silicon is selectively etched and alumina ceramic particles fall off.
[0034]
Si is desirably 100 ppm or less, and more desirably 10 ppm or less, from the viewpoint of corrosion resistance in ClF 3 gas cleaning or hydrofluoric acid solution cleaning. Also, the contents of Na, K, and Fe are desirably 50 ppm or less, since they adversely affect the formed film on the wafer in the LP-CVD process.
[0035]
The translucent alumina optimally has an average crystal grain size of 5 μm to 30 μm. If the thickness is 5 μm or less, residual pores are likely to remain at the crystal grain boundaries and have water absorption, so that cleaning water may be absorbed in reverse during cleaning, thereby adversely affecting the LP-CVD process. On the other hand, when the thickness is 30 μm or more, the strength of the fired body is reduced, and the sintered body is not suitable for a member for a semiconductor manufacturing apparatus. The average crystal grain size is obtained by observing an arbitrary portion of the sintered body with a microscope, taking the maximum diameter of each crystal as its crystal diameter, and taking the average diameter.
[0036]
Step of coating a PSG film on a wafer 15 using an LP-CVD semiconductor manufacturing apparatus 1 as shown in FIG. 1 in which a member for a semiconductor manufacturing apparatus made of high-purity polycrystalline alumina ceramics manufactured as described above is incorporated. Will be described.
[0037]
Outside the LP-CVD semiconductor manufacturing apparatus 1, several dummy wafers 14 are loaded on the boat 13 and many wafers 15 are loaded on other portions. The reason for using the dummy wafers 14 is that the wafers loaded on the upper part of the boat 13 are easily contaminated and it is difficult to coat a uniform film. Therefore, the dummy wafers 14 are used many times.
[0038]
The boat 13 loaded with the dummy wafers 14 and the wafers 15 is housed in the LP-CVD semiconductor manufacturing apparatus 1 and fixed to the heat retaining cylinder 12.
[0039]
Thereafter, the wafer boat rotating mechanism 11 is urged to rotate the boat 13, and the resistance heater 9 is urged to heat the inside of the apparatus main body 4.
[0040]
Next, a raw material gas, for example, tetraethoxysilane (TEOS) is supplied into the apparatus main body 4 through the gas introduction pipe 6. The TEOS is heated, passes through the inner reaction tube 3, and forms a PSG film on the wafer 15 and the dummy wafer 14 placed on the boat 13.
[0041]
In this film forming process, since the members for semiconductor manufacturing equipment are made of high-purity polycrystalline alumina ceramics, the porosity is low, the true density is low, the purity is low, unnecessary components such as alkali are low, and the vapor pressure is low. Less likely to be a source of pollution.
[0042]
Therefore, a clean PSG film without contamination is formed on the wafer 15 formed by the LP-CVD semiconductor manufacturing apparatus 1 using high-purity polycrystalline alumina ceramics for the semiconductor manufacturing member.
[0043]
When the above-described film forming process is repeated several times, PSG is deposited on the members for the semiconductor manufacturing apparatus, that is, the reaction tube 3, the gas introduction tube 6, the boat 13, and the dummy wafer 14 to form a film. The PSG film deposited on the member for semiconductor manufacturing equipment is peeled off in the next and subsequent film forming steps, which causes a film defect on the wafer.
[0044]
Therefore, each of the products coated with the PSG film is removed from the apparatus and immersed in a hydrofluoric acid solution for cleaning.
[0045]
By this cleaning, the PSG film deposited on the gas introduction pipe 6 and the member for the semiconductor manufacturing apparatus is removed. At the time of cleaning, since the members for the semiconductor manufacturing apparatus including the gas introduction pipe 6 are made of high-purity polycrystalline alumina ceramics, they are not eroded by the hydrofluoric acid solution, and the gas introduction pipe 6 maintains the original dimensions. In order to be able to supply an appropriate amount of source gas to the CVD semiconductor manufacturing apparatus 1 and to maintain the original thickness of other semiconductor manufacturing apparatus members, the thermal expansion rate of each member and the thermal expansion rate of the deposited PSG film The member is not damaged in the subsequent film forming process due to the difference, and can be used many times in a clean state.
[0046]
Next, a second embodiment using a member for a semiconductor manufacturing apparatus according to the present invention will be described.
[0047]
A semiconductor manufacturing apparatus shown in FIG. 2, for example, a normal pressure chemical vapor deposition apparatus 21 for forming a protective film of polysilicon on the surface of a wafer 20, wherein the chemical vapor deposition apparatus 21 has an airtight apparatus main body 22 and this apparatus main body 22. A semiconductor manufacturing apparatus member housed therein, for example, includes a disk-shaped susceptor 23 made of high-purity polycrystalline alumina ceramics having a flat surface portion, and a resistance heating element 24 below the susceptor 23 for heating. .
[0048]
Further, the apparatus main body 22 is provided with a gas introduction pipe 25 and an exhaust pipe 26 for supplying a raw material gas constituting a member for a semiconductor manufacturing apparatus, and the gas introduction pipe 25 and the exhaust pipe 26 are made of high-purity polycrystalline alumina ceramics. It is formed with.
[0049]
Since the chemical vapor deposition apparatus 21 of the present embodiment has the above-described structure, in order to form a polysilicon film on the surface of the wafer 20, the wafer 20 is placed on the susceptor 23, and then the resistive heating is performed. The susceptor 23 is heated by the body 24 and, for example, monosilane and hydrogen are supplied to the chemical vapor deposition apparatus 21 as raw materials at a volume ratio of 1: 4. The temperature of the susceptor 23 is adjusted and held at 410 ± 5 ° C., which is a relatively low temperature near 400 ° C., and chemical vapor deposition is performed at a film formation rate of 0.1 μm / min or less, and an amorphous polysilicon film is formed on one side of the silicon wafer 20. Form.
[0050]
In this film forming step, the members for the semiconductor manufacturing apparatus, that is, the susceptor 23, the gas introduction pipe 25, and the exhaust pipe 26 are made of high-purity polycrystalline alumina ceramics as in the first embodiment described above. Low density, low density, high purity, low content of unnecessary components such as alkali, low vapor pressure, and less likely to become a pollution source.
[0051]
Therefore, a clean amorphous silicon film without contamination is formed on the wafer 20 formed by the chemical vapor deposition apparatus 21 using high-purity polycrystalline alumina ceramics for the semiconductor manufacturing member. When the above-described film forming process is repeated several times, polysilicon is deposited on the members for the semiconductor manufacturing apparatus, that is, the susceptor 20, the gas introduction pipe 25, and the exhaust pipe 26 to form a film. The amorphous silicon film deposited on these members for semiconductor manufacturing equipment is peeled off in the subsequent film forming process, causing film defects on the wafer, and the thermal expansion coefficient of each member and the thermal expansion coefficient of the deposited amorphous silicon film are reduced. The member may be damaged in the subsequent film forming process due to the difference.
[0052]
Therefore, after the film forming process is completed, the wafer 20 of the product coated with the amorphous silicon film is taken out of the chemical vapor deposition apparatus 21, that is, the susceptor 23, the gas introduction pipe 25, and the exhaust pipe 26 which are the members for the semiconductor manufacturing apparatus are chemically In a state of being housed in or attached to the vapor deposition apparatus 21, ClF 3 gas is supplied from the gas introduction pipe 25 to perform gas cleaning of these semiconductor manufacturing apparatus members.
[0053]
By this gas cleaning, the amorphous silicon film deposited on the gas introduction pipe 25, the susceptor 23, and the exhaust pipe 26 is peeled and removed. During gas cleaning, gas inlet tube 25 initially susceptor 23 a member for semiconductor manufacturing device, the exhaust pipe 26 are made of high-purity polycrystalline alumina ceramic, without being eroded by ClF 3 gas, the gas inlet tube 25 is In order to maintain the original dimensions, it is possible to supply an appropriate amount of source gas to the chemical vapor deposition apparatus 21, and to maintain the original thickness of the gas introduction pipe 25 and other members for the semiconductor manufacturing apparatus. Due to the difference between the thermal expansion coefficient of the amorphous silicon film and the thermal expansion coefficient of the deposited amorphous silicon film, the member is not damaged in the subsequent film forming process.
[0054]
Further, a third embodiment using a member for a semiconductor manufacturing apparatus according to the present invention will be described.
[0055]
A semiconductor manufacturing apparatus shown in FIG. 3, for example, a chemical vapor deposition apparatus 31 for forming an amorphous silicon film on the surface of a large-diameter wafer 30, wherein the apparatus 31 is an airtight apparatus main body 33 heated by a heating apparatus 32 and an apparatus main body 33 A member for a semiconductor manufacturing apparatus mounted on a rotating shaft 34 driven by a motor and housed in 33, for example, a disk-shaped susceptor 34 made of high-purity polycrystalline alumina ceramics having a flat surface portion, and mounted on the susceptor 34 A gas introduction pipe 35 also serving as a nozzle for discharging a source gas in the direction of the wafer 30 is provided.
[0056]
Monosilane and hydrogen as source gases are supplied from the gas introduction pipe 35 also serving as a nozzle to the chemical vapor deposition apparatus 31 having the above-described structure, and have a defect-free amorphous silicon film as in the above-described second embodiment. The wafer 30 can be obtained.
[0057]
Also, at the time of gas cleaning, the susceptor 34 including the gas introduction tube 35, which is a member for a semiconductor manufacturing apparatus, is made of high-purity polycrystalline alumina ceramic, so that it is not eroded by ClF 3 gas, and the gas introduction tube 35 has its original dimensions. In order to maintain the initial thickness, the gas introduction pipe 35 and the susceptor 34 can maintain the original thickness, and the thermal expansion coefficient of each member and the deposited polysilicon can be maintained. The member is not damaged in the subsequent film forming process due to the difference in the coefficient of thermal expansion of the film.
[0058]
Further, a fourth embodiment using a member for a semiconductor manufacturing apparatus according to the present invention will be described.
[0059]
For example, using the LP-CVD semiconductor manufacturing apparatus described in the first embodiment, the wafer 40 on which the BPSG film is formed as shown in FIG. 4 is taken out from the boat 41 and transferred to the semiconductor manufacturing apparatus 42 in the next step. However, this transfer is performed by a member for a semiconductor manufacturing apparatus, for example, a fork 44 provided on the transfer device 43 so as to be able to extend, retract, rotate and rotate freely. Since the fork 44 is made of high-purity polycrystalline alumina ceramics, the fork 44 has a low porosity, a true density, a high purity, a small amount of unnecessary components such as alkalis, is unlikely to be a source of contamination, and contaminates the wafer 40 during transfer. Nothing.
[0060]
As the wafer 40 is repeatedly transferred by the fork 44, BPSG adheres to the fork 44 and this BPSG causes contamination of the wafer 40. Therefore, the BPSG is periodically cleaned using a fluorine-based cleaning fluid such as a hydrofluoric acid solution. There is a need.
[0061]
Therefore, even if the fork 44 is washed with a hydrofluoric acid solution, the fork 44 is made of high-purity polycrystalline alumina ceramics, so that the fork 44 is not eroded by the hydrofluoric acid solution and maintains its original thickness. The fork 44 does not break during the transfer of the fork 44.
[0062]
【Example】
Example 1: Using high-purity alumina powder having a purity of 99.99% and an average particle diameter of 0.3 µm, adding 500 ppm of MgO as a crystal growth inhibitor, and 10% of methylcellulose, 2% of polyethylene glycol as a molding aid, 8% pure water was added and mixed.
[0063]
Thereafter, a sheet having a thickness of 1.2 mm and a width of 250 mm was extruded by a vacuum kneading extruder.
[0064]
In consideration of a firing shrinkage of 20%, a sheet is cut out so as to obtain a 100 mmφ × 1 mm wafer fired body, degreased in the air at 900 ° C. for 2 hours, and then fired at various temperatures and in a hydrogen atmosphere. A body sample (Example) was obtained.
[0065]
Samples in which the raw material composition or manufacturing conditions were partially changed from the examples (Comparative Examples 1 to 3) and a sample made of quartz glass (conventional example) were produced.
[0066]
As shown in FIG. 5, these samples were sandwiched with a silicon wafer, heated at 1100 ° C. for 3 hours, cooled, and the surface of the silicon wafer was analyzed by an inductively coupled plasma mass spectrometer (ICP-MS). The amount of elements transferred from the ceramics to the silicon wafer was measured.
[0067]
Table 1 shows the test results.
[0068]
[Table 1]
Figure 0003568773
[0069]
The example has less impurities and the contamination of the Si wafer is less than those of the comparative examples 1 to 3. In the conventional example, the contamination of the Si wafer was small, but as described in each of the above embodiments, the Si wafer was eroded by a fluorine-based gas or a hydrofluoric acid solution as a fluorine-based cleaning fluid.
[0070]
Example 2: A high-purity alumina powder having a purity of 99.99% and an average particle diameter of 0.3 µm was added with 500 ppm of MgO as a crystal growth inhibitor, and methylcellulose 10% and polyethylene glycol 2% as molding aids. And pure water 8% were added and mixed.
[0071]
Thereafter, a pipe having an inner diameter of 5 mmφ and an outer diameter of 8 mmφ was extruded by a vacuum kneading extruder. Prior to drying, the extruded compact is loaded into an L-shaped blow mold as shown in FIG. 6, and after setting the mold, one end of the compact is sealed and compressed air is applied to the compact from the other end. The extruded product was expanded into an L shape by air pressure and blow-molded.
[0072]
The obtained molded body was dried at 100 ° C., and after evaporating water, drilled, degreased at 900 ° C., and fired in a hydrogen atmosphere at 1800 ° C.
[0073]
Film formation was performed using this gas introduction nozzle, and after several film formation steps, gas cleaning was performed with ClF 3 gas. However, the gas introduction nozzle was not eroded, the hole diameter did not change, and stable gas formation was performed. A film was formed. In the examples, the service life was extended and became semi-permanent.
[0074]
【The invention's effect】
Since the member for semiconductor manufacturing equipment is formed of high-purity polycrystalline alumina ceramics having a bulk density of 3.98 g / cm 3 or more and an average crystal grain size of 5 μm to 30 μm, a fluorine-based gas or a fluorine-based cleaning fluid is used. It is possible to provide a member for a semiconductor manufacturing apparatus which is not corroded even when washed with a hydrofluoric acid solution, has a free product shape, and is free from product and device contamination due to gas release.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a semiconductor manufacturing apparatus using an embodiment of a member for a semiconductor manufacturing apparatus according to the present invention.
FIG. 2 is an explanatory view of a semiconductor manufacturing apparatus using another embodiment of a member for a semiconductor manufacturing apparatus according to the present invention.
FIG. 3 is an explanatory view of a semiconductor manufacturing apparatus using another embodiment of a member for a semiconductor manufacturing apparatus according to the present invention.
FIG. 4 is an explanatory view of use of another embodiment of the member for a semiconductor manufacturing apparatus according to the present invention.
FIG. 5 is an explanatory diagram of a test method used for testing a sample.
FIG. 6 is an explanatory view of a blow mold used for manufacturing a sample.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 LP-CVD semiconductor manufacturing apparatus 2 Outer reaction tube 3 Reaction tube 4 Main unit 5 Manifold 6 Gas introduction tube 7 Exhaust tube 8 Vacuum pump 9 Resistance heater 10 Capping flange 11 Wafer boat rotation mechanism 12 Heating cylinder 13 Boat 14 Dummy wafer 15 Wafer 20 Wafer 21 Chemical vapor deposition device 22 Device main body 23 Susceptor 24 Resistance heating element 25 Gas introduction tube 26 Exhaust tube 30 Large diameter wafer 31 Chemical vapor deposition device 32 Heating device 33 Device main body 34 Susceptor 35 Gas introduction tube 40 Wafer 41 Boat 42 Semiconductor manufacturing Device 43 Transfer device 44 Fork

Claims (1)

フッ素系洗浄用流体を用いて洗浄されLP−CVD半導体製造装置のガス導入管である半導体製造装置用部材において、この部材をかさ密度が3.98g/cm3 以上で、かつ平均結晶粒径が5μm〜30μmである多結晶アルミナセラミックスで形成し、さらに、水素雰囲気で焼成され、かつアルミナ純度が99.9重量%以上、不純物としてSiが100ppm以下、Na、Ca、Kが各々50ppm以下であることを特徴とする半導体製造装置用部材。In a member for a semiconductor manufacturing apparatus which is cleaned by using a fluorine-based cleaning fluid and is a gas introduction pipe of an LP-CVD semiconductor manufacturing apparatus , the member has a bulk density of 3.98 g / cm 3 or more and an average crystal grain size of 5 μm. Formed of polycrystalline alumina ceramics having a thickness of about 30 μm, further fired in a hydrogen atmosphere, having an alumina purity of 99.9% by weight or more, Si as an impurity of 100 ppm or less, and Na, Ca and K of 50 ppm or less each. A member for a semiconductor manufacturing apparatus characterized by the above-mentioned.
JP06908698A 1998-03-18 1998-03-18 Components for semiconductor manufacturing equipment Expired - Fee Related JP3568773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06908698A JP3568773B2 (en) 1998-03-18 1998-03-18 Components for semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06908698A JP3568773B2 (en) 1998-03-18 1998-03-18 Components for semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH11274149A JPH11274149A (en) 1999-10-08
JP3568773B2 true JP3568773B2 (en) 2004-09-22

Family

ID=13392439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06908698A Expired - Fee Related JP3568773B2 (en) 1998-03-18 1998-03-18 Components for semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3568773B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3716386B2 (en) * 2000-07-24 2005-11-16 東芝セラミックス株式会社 Plasma-resistant alumina ceramics and method for producing the same
JP3332915B1 (en) * 2001-02-22 2002-10-07 株式会社三幸 Method and apparatus for cleaning ceramic members
JP3956291B2 (en) * 2002-09-19 2007-08-08 東芝セラミックス株式会社 Semiconductor processing components
CN111201208B (en) * 2017-10-05 2023-05-23 阔斯泰公司 Alumina sintered body and method for producing same

Also Published As

Publication number Publication date
JPH11274149A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
KR100489172B1 (en) A film of yittria-alumina complex oxide, a method of producing the same, a sprayed film, a corrosion resistant member, a member effective for reducing particle generation
KR100953707B1 (en) Semiconductor processing components and semiconductor processing utilizing same
WO2013065666A1 (en) Gas nozzle, plasma device using same, and method for manufacturing gas nozzle
WO2010125739A1 (en) Silica vessel and process for producing same
JPWO2010137221A1 (en) Silica container and method for producing the same
WO2006038349A1 (en) Quartz glass excelling in plasma corrosion resistance and process for producing the same
KR102245106B1 (en) Diffusion bonded plasma resisted chemical vapor deposition (cvd) chamber heater
WO2007111058A1 (en) Structural member for plasma treatment system and method for manufacture thereof
JP3103646B2 (en) Alumina veljer
US6699401B1 (en) Method for manufacturing Si-SiC member for semiconductor heat treatment
JP3568773B2 (en) Components for semiconductor manufacturing equipment
KR101101214B1 (en) Aluminum nitride sintered body and method for producing the same
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
CN113652670A (en) Gallium oxide nanowire and preparation method and application thereof
US20020155940A1 (en) Corrosion-resistive ceramic materials, method of producing the same, and members for semiconductor manufacturing
JP3723396B2 (en) High purity crystalline inorganic fiber and method for producing the same
JP2001151559A (en) Corrosion-resistant member
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP2011088771A (en) Method of molding quartz glass material using mold material
TW200902474A (en) Ceramic member and corrosion-resistant member
JP3145518B2 (en) Surface high-purity ceramics and manufacturing method thereof
JP3769416B2 (en) Components for plasma processing equipment
JP2002008991A (en) Cleaning method
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP3540955B2 (en) Member for plasma processing apparatus and method for manufacturing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees