JP3948727B2 - 三次元形状測定装置および方法 - Google Patents

三次元形状測定装置および方法 Download PDF

Info

Publication number
JP3948727B2
JP3948727B2 JP2003047298A JP2003047298A JP3948727B2 JP 3948727 B2 JP3948727 B2 JP 3948727B2 JP 2003047298 A JP2003047298 A JP 2003047298A JP 2003047298 A JP2003047298 A JP 2003047298A JP 3948727 B2 JP3948727 B2 JP 3948727B2
Authority
JP
Japan
Prior art keywords
measured
light
laser
reflected light
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003047298A
Other languages
English (en)
Other versions
JP2004257803A (ja
Inventor
貴幸 加藤
英樹 山谷
智史 山内
Original Assignee
株式会社アイ・エイチ・アイ・エアロスペース・エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイ・エイチ・アイ・エアロスペース・エンジニアリング filed Critical 株式会社アイ・エイチ・アイ・エアロスペース・エンジニアリング
Priority to JP2003047298A priority Critical patent/JP3948727B2/ja
Publication of JP2004257803A publication Critical patent/JP2004257803A/ja
Application granted granted Critical
Publication of JP3948727B2 publication Critical patent/JP3948727B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、歯牙模型等の三次元形状を非接触で測定する三次元形状測定装置および方法に関する。
【0002】
【従来の技術】
歯科治療において歯に欠損が生じた場合、欠損部を所定の形状に成形して支台歯とし、その上に金属やセラミックスで製作した補綴物を被せて固定する治療が一般に行われている。
【0003】
このような歯科用補綴物を製作するために、成形した支台歯やその隣接歯、あるいはこれらと噛み合う対向歯の印象型から歯牙模型を製作し、その三次元形状を正確に測定する必要がある。このため、レーザ光を用いた非接触式の三次元形状測定手段が開示されている。
【0004】
図6は、かかる非接触式の三次元形状測定手段の原理図である。この図において、Mは歯牙模型、51はレーザ光51aを照射するレーザ光源、52は集光レンズ、53は光位置検出素子(PSD)であり、歯牙模型Mの測定点Pに向けてレーザ光51aを照射し、歯牙模型Mからの反射光51bをPSD53上に集光してその位置yを検出する。
この構成により、PSD53の受光位置yとレーザ光51aの照射角度θから幾何学的に反射光の入射角度αが定まり、これらから測定点Pとセンサ基準点Psの距離Lを繰返し算出することにより、歯牙模型Mの三次元形状を特定することができる。
しかし、単一の光位置検出素子のみを備えた図6の三次元形状測定手段の場合には、被測定物(歯牙模型M)の形状によっては、1次反射光が入射しないため測定を行うことができない場合がある。
【0005】
これに対して、特許文献1の「三次元形状測定方法および装置」は、図7に示すように、レンズと光位置検出素子との組み合わせを少なくとも2以上備えたものであり、一部の光位置検出素子(例えば53c、53d)に反射光が入射しなくても、残りの光位置検出素子(例えば53a、53b)に反射光が入射するため、被測定物の形状に拘わらず測定を行うことができる。
【0006】
【特許文献1】
特開平9−42941号公報
【0007】
【発明が解決しようとする課題】
図8は、支台歯の歯牙模型Mをレーザ光源を挟んで上下に設けられた2つの光位置検出素子54a、54bで計測する場合を示している。このような支台歯の歯牙模型M(図で右半分のみを示す)では補綴物との合わせ面となるマージンラインAが特に重要であり、マージンライン近傍を高精度に計測する必要がある。以下、歯牙模型Mの比較的平坦な頂面を頂部平坦部M1、頂部平坦部を囲むテーパ面を立壁面M2、マージンライン内側の比較的平坦な上面を肩部平坦部M3、マージンライン外側の急斜面を下部立壁面M4と呼ぶ。
【0008】
上述した特許文献1の手段では、多重反射の影響で計測誤差が大きい問題点があった。
【0009】
すなわち、図8(A)において、立壁面M2に斜めに入射したレーザ光55が、立壁面M2で一次反射し、さらに肩部平坦部M3で二次反射する場合、上側の光位置検出素子54aは、一次反射光56aと二次反射光57aの両方を検出する。この場合、立壁面M2と肩部平坦部M3の傾斜角度と上側の光位置検出素子54aの位置関係から、一次反射光56aは比較的弱く、二次反射光57aは比較的強くなり、二次反射光57aの影響で図に破線Bで示すように、測定点Pが実際より外側にあるように測定する誤差が生じる。
なお、この場合でも、下側の光位置検出素子54bは、立壁面M2と肩部平坦部M3の傾斜角度と下側の光位置検出素子54bの位置関係から、一次反射光56bが非常に強く、二次反射光57bは非常に弱いことから、二次反射光57bの影響はほとんどなく、測定点Pをほとんど誤差なく正確に検出できる。
【0010】
また、図8(B)において、肩部平坦部M3に斜めに入射したレーザ光55が、肩部平坦部M3で一次反射し、さらに立壁面M2で二次反射する場合、下側の光位置検出素子54bは、一次反射光56bと二次反射光57bの両方を検出する。この場合、立壁面M2と肩部平坦部M3の傾斜角度と下側の光位置検出素子54bの位置関係から、一次反射光56bは比較的弱く、二次反射光57bは比較的強くなり、二次反射光57bの影響で図に破線Bで示すように、測定点Pが実際より上側にあるように測定する誤差が生じる。
なお、この場合でも、上側の光位置検出素子54aは、立壁面M2と肩部平坦部M3の傾斜角度と上側の光位置検出素子54aの位置関係から、一次反射光56aが非常に強く、二次反射光57aは非常に弱いことから、二次反射光57aの影響はほとんどなく、測定点Pをほとんど誤差なく正確に検出できる。
【0011】
上述した特許文献1の手段では、図7(A)(B)に示したような多重反射を受ける場合に、2つ以上の光位置検出素子を用いても、受光信号の強さ(大小)だけで上側の光位置検出素子54aと下側の光位置検出素子54bのうちから誤差の少ない最適な光位置検出素子を選択できるとは限らず、誤差の多い方を選択してしまう場合もあり、誤差を含む素子の影響で、高精度が要求されるマージンライン近傍の測定精度が低下してしまうという問題点があった。
【0012】
本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、不定型な被測定物の三次元形状を非接触で計測でき、多重反射が生じやすいマージンライン近傍においても多重反射の影響を除去して高い測定精度を維持できる三次元形状測定装置および方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明によれば、平坦部(M3)と立壁部(M2)が交差する多重反射領域を有する被測定物(M)の表面形状を非接触で測定する三次元形状測定装置であって、
被測定物(M)の内部を原点とし原点を通る垂直軸を中心に被測定物を回転させ前記多重反射領域を所定の座標領域に位置決めする保持回転装置(12)と、前記平坦部に対向し平坦部からの反射光を強く受ける第1の光位置検出素子(14)と、前記立壁部に対向し立壁部からの反射光を強く受ける第2の光位置検出素子(16)と、前記第1と第2の光位置検出素子の間に位置し被測定物に向けてレーザ光(1)を走査するレーザ装置(18)と、レーザ光の走査方向と該レーザ光の反射光の前記第1と第2の光位置検出素子による受光位置から被測定物の2つのレーザ光照射位置(P1、P2)をそれぞれ演算する演算装置(20)と、前記所定の座標領域における前記2つのレーザ光照射位置(P1、P2)のうち原点に近いものを選択する選択手段(22)と、を備えたことを特徴とする三次元形状測定装置が提供される。
【0014】
また本発明によれば、平坦部(M3)と立壁部(M2)が交差する多重反射領域を有する被測定物(M)の表面形状を非接触で測定する三次元形状測定方法であって、
被測定物(M)の内部を原点とし原点を通る垂直軸を中心に被測定物を回転させる保持回転装置(12)と、前記平坦部に対向し平坦部からの反射光を強く受ける第1の光位置検出素子(14)と、前記立壁部に対向し立壁部からの反射光を強く受ける第2の光位置検出素子(16)と、前記第1と第2の光位置検出素子の間に位置するレーザ装置(18)と、レーザ光の走査方向と該レーザ光の反射光の光位置検出素子による受光位置から被測定物のレーザ光照射位置をそれぞれ演算する演算装置(20)と、前記2つのレーザ光照射位置(P1、P2)のうちいずれかを選択する選択手段(22)と、を備え、
保持回転装置(12)により、被測定物の前記多重反射領域を所定の座標領域に位置決めし、レーザ装置(18)により、被測定物に向けてレーザ光(1)を照射し、演算装置(20)により、前記第1と第2の光位置検出素子による受光位置から被測定物の2つのレーザ光照射位置(P1、P2)をそれぞれ演算し、前記選択手段(22)により、前記所定の座標領域における前記2つのレーザ光照射位置(P1、P2)のうち原点に近いものを選択する、ことを特徴とする三次元形状測定方法が提供される。
【0015】
上記本発明の装置及び方法によれば、平坦部M2に対向し平坦部からの反射光を強く受ける第1の光位置検出素子(14)と、立壁部M2に対向し立壁部からの反射光を強く受ける第2の光位置検出素子(16)と、それらの光位置検出素子の間に位置するレーザ装置(18)とを備え、保持回転装置(12)により、被測定物の多重反射領域を所定の座標領域に位置決めし、レーザ装置(18)により、被測定物に向けてレーザ光(1)を照射するので、演算装置(20)により、前記第1と第2の光位置検出素子による受光位置から被測定物の2つのレーザ光照射位置(P1、P2)をそれぞれ演算することができる。
また、多重反射領域において2つのレーザ光照射位置(P1、P2)が多重反射の影響で異なる場合には、誤差を強く受ける方が原点から離れることから、選択手段(22)により、原点に近いものを選択することにより多重反射が生じやすいマージンライン近傍においても多重反射の影響を除去して高い測定精度を維持できる。
【0016】
本発明の好ましい実施形態によれば、前記選択手段(22)により、前記所定の座標領域外において、前記第1と第2の光位置検出素子の各信号出力が所定値を超え、かつその信号出力が大きい方に基づくレーザ光照射位置(P1、P2)を選択する。
【0017】
この構成により、被測定物のレーザ光が照射される位置からの反射光を強く受ける方の光位置検出素子を容易に選択できる。また、この光位置検出素子は、相対的に信号出力が大きいことから反射光の強度が低い条件においても、ノイズの影響が少なくSN比を高く維持し、測定精度を高く維持できる。
【0018】
前記第1と第2の光位置検出素子(14、16)とレーザ光(1)は、被測定物(M)を通る同一平面内に位置する、ことが好ましい。
この構成により、二次元の計測で三次元形状測定を行うことができ、演算時間を短縮し高速処理を可能にできる。
【0019】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
【0020】
図1は、本発明で使用する光位置検出素子の原理図である。この光位置検出素子は、P層、Si基板、N層が順に積層された半導体位置検出素子(Position Sensitive Light Detector:PSD)である。この図において、PN間に電圧を印加した状態で、P層の一部にスポット光を受けると、その位置でPN間が導通し、スポット光の強度に比例する電流(I1+I2)が流れる。P層の両端に出力端子a、bを設け、同一の抵抗をそれぞれ付加すると、出力端子a、bにはそれぞれ電流I1,I2が流れ、これを電圧Va、Vbとして検出することができる。
この場合、スポット光の位置は、式(1)(2)で求めることができる。
X1=L×I2/(I1+I2)・・・(1)
X2=L×I1/(I1+I2)・・・(2)
【0021】
図1において、スポット光を2箇所以上で受けると、それぞれの箇所で各スポット光の強度に比例する電流が流れる。この場合、式(1)(2)をそのまま適用すると、一次反射光が最も強いスポット光であっても、それより弱い二次反射光の影響を受け、検出位置は二次反射光側にずれた位置となる。これが、本発明が問題とする多重反射による誤差である。
【0022】
図2は、本発明の三次元形状測定装置の全体構成図である。この三次元形状測定装置10は、平坦部M3と立壁部M2が交差する多重反射領域を有する被測定物Mの表面形状を非接触で測定する三次元形状測定装置である。なお、この図でM1は比較的平坦な頂面である頂部平坦部、M2は頂部平坦部を囲むテーパ面を立壁面、M3はマージンライン内側の比較的平坦な肩部平坦部、M4はマージンライン外側の急斜面である下部立壁面である。
【0023】
上述したように、平坦部M3と立壁部M2が交差する部分で多重反射(この場合、二重反射)が生じやすく、この領域を本発明において「多重反射領域」と呼ぶ。多重反射領域は、マージンラインのM3全体とM2の下端部分に設定するのがよい。
【0024】
なお、この図において被測定物Mとして支台歯の歯牙模型を想定しているが、本発明はこれに限定されず、平坦部と立壁部が交差する多重反射領域を有する被測定物、例えば、支台歯以外の歯牙模型にも同様に適用することができる。
【0025】
図2において、本発明の三次元形状測定装置10は、保持回転装置12、第1の光位置検出素子14、第2の光位置検出素子16、レーザ装置18、演算装置20、及び選択手段22を備える。
【0026】
保持回転装置12は、被測定物Mの内部を原点Oとし、原点Oを通る垂直軸yを中心に被測定物Mを回転させるようになっている。被測定物Mを垂直軸yを中心に1回転させることにより、被測定物Mの外面全周を計測することができる。また、この保持回転装置12により、上述した多重反射領域を所定の座標領域(例えば、y座標値が−2mmから+2mm)に位置決めする。
【0027】
第1光位置検出素子14と第2光位置検出素子16は、上述した半導体位置検出素子(PSD)である。その出力特性は同一であるのが好ましい。しかし、例えば第1光位置検出素子14を主体とし、第2光位置検出素子16を補助にして、出力特性の異なるPSDを用いてもよい。
【0028】
第1光位置検出素子14は、被測定物Mの平坦部M3に対向して位置し、平坦部M3からの反射光を強く受けるようになっている。この例において、第1光位置検出素子14の測定面14aは、平坦部M3に対して±30°以内に設定されている。この場合、立壁部M2からの反射光は、斜めに受けるため逆に弱くなる。
なお、図中の13a、13bは反射光を測定面14a、16aに集光する集光レンズである。
【0029】
第2光位置検出素子16は、被測定物Mの立壁部M2に対向して位置し、立壁部M2からの反射光を強く受けるようになっている。この例において、第2光位置検出素子16の測定面16aは、立壁部M2に対して±30°以内に設定されている。この場合、平坦部M3からの反射光は、斜めに受けるため逆に弱くなる。
【0030】
レーザ装置18は、レーザ発信器18aと走査ミラー18bとからなり、第1と第2の光位置検出素子14、16の間に位置する。レーザ発信器18aは好ましくは単一波長のレーザ光1を走査ミラー18bに向けて照射する。走査ミラー18bは図示しない駆動装置により揺動し、レーザ光1を反射して被測定物Mに向けてレーザ光1を走査するようになっている。
【0031】
また、この例において、第1と第2の光位置検出素子14、16とレーザ装置18によるレーザ光1は、被測定物Mを通る同一平面内(この例でx-y座標の第1象限内)に位置する。この構成により、x-y座標の二次元計測と被測定物Mのy軸まわりの回転により、被測定物Mの外表面の三次元形状測定が可能になる。
【0032】
演算装置20は、レーザ光1の走査方向と、レーザ光1の反射光2の第1と第2の光位置検出素子14、16による受光位置から被測定物Mの2つのレーザ光照射位置P1、P2をそれぞれ演算する。この原理は、図6に示したものと実質的に同一である。
【0033】
選択手段22は、上述した所定の座標領域における演算で得た2つのレーザ光照射位置P1、P2のうちいずれかを選択する機能を有する。
なお、演算装置20と選択手段22として、同一又は異なるコンピュータ(例えばパーソナルコンピュータ)を用いることができる。
【0034】
図3は、本発明による測定状態の模式図である。この図において、(A)は図8(A)と同一であり、立壁面M2に斜めに入射したレーザ光1が、立壁面M2で一次反射2aし、さらに肩部平坦部M3で二次反射3aするため、第1光位置検出素子14は、一次反射光2aと二次反射光3aの両方を検出する。この場合、立壁面M2と肩部平坦部M3の傾斜角度と第1光位置検出素子14の位置関係から、一次反射光2aは比較的弱く、二次反射光3aは比較的強くなり、二次反射光3aの影響で測定点Pが実際より外側P1にあるように測定する誤差が生じる。
なお、この場合、第2光位置検出素子16は、立壁面M2と肩部平坦部M3の傾斜角度と第2光位置検出素子16の位置関係から、一次反射光2bが非常に強く、二次反射光3bは非常に弱いことから、二次反射光3bの影響はほとんどなく、測定点Pをほとんど誤差なく正確に位置P2を検出できる。
【0035】
また、図8(B)に示したように、肩部平坦部M3に斜めに入射したレーザ光55が、肩部平坦部M3で一次反射し、さらに立壁面M2で二次反射する場合には、逆に下側の光位置検出素子54bには、一次反射光56bは比較的弱く、二次反射光57bは比較的強くなり、二次反射光57bの影響で図に破線Bで示したように、測定点Pが実際より上側にあるように測定する誤差が生じる。
この場合でも、上側の光位置検出素子54aは、立壁面M2と肩部平坦部M3の傾斜角度と上側の光位置検出素子54aの位置関係から、一次反射光56aが非常に強く、二次反射光57aは非常に弱いことから、二次反射光57aの影響はほとんどなく、測定点Pをほとんど誤差なく正確に検出できる。
【0036】
従って、図8及び図3(A)に示した多重反射領域の計測では、第1と第2の光位置検出素子による受光位置から被測定物の2つのレーザ光照射位置P1、P2をそれぞれ演算し、所定の座標領域における演算した2つのレーザ光照射位置P1、P2のうち原点に近いものを選択することにより、多重反射が生じやすいマージンライン近傍においても多重反射の影響を除去して高い測定精度を維持できることがわかる。
【0037】
図3(B)は、頂部平坦部M1にレーザ光1が照射されている状態を示している。この場合、頂部平坦部M1で反射した一次反射光2aが第1光位置検出素子14に入射するが、第2光位置検出素子16は、反射光をほとんど受けない。
また、図3(C)は、下部立壁面M4にレーザ光1が照射されている状態を示している。この場合、下部立壁面M4で反射した一次反射光2bが第2光位置検出素子16に入射するが、第1光位置検出素子14は、反射光をほとんど受けない。
従って、図3(B)(C)のように、多重反射領域以外の座標領域外においては、第1と第2の光位置検出素子の各信号出力が所定値を超え、かつその信号出力が大きい方に基づきレーザ光照射位置P1、P2を選択することにより、高い測定精度を維持できることがわかる。
【0038】
次に、上述した知見に基づく本発明の測定方法を説明する。図4は、本発明の三次元形状測定方法の全体フロー図である。
【0039】
この図に示すように本発明の三次元形状測定方法は、位置決めステップS1、レーザ照射ステップS2、照射位置演算ステップS3、選択ステップS4及び出力ステップS5からなる。
【0040】
位置決めステップS1では、保持回転装置12により、被測定物Mの多重反射領域を所定の座標領域(例えば、y座標値が−2mmから+2mm)に位置決めする。
レーザ照射ステップS2では、レーザ装置18により、被測定物Mに向けてレーザ光1を照射する。
照射位置演算ステップS3では、演算装置20により、第1と第2の光位置検出素子14、16による受光位置から被測定物Mの2つのレーザ光照射位置P1、P2をそれぞれ演算する。
【0041】
選択ステップS4では、選択手段22により、所定の座標領域における2つのレーザ光照射位置P1、P2のうち原点に近いものを選択し、所定の座標領域外において、第1と第2の光位置検出素子の各信号出力が所定値を超え、かつその信号出力が大きい方に基づくレーザ光照射位置P1、P2を選択する。
【0042】
なお、図4において、被測定物Mを垂直軸yを中心に1回転させながら、ステップS1〜S4を繰返し、かつレーザ光1を走査することにより、被測定物Mの外面全周を計測することができる。
出力ステップS5では、得られた被測定物Mの外表面の三次元形状データを表示装置に画像表示し、或いは記憶装置に記憶する。
【0043】
図5は、図4の照射位置演算ステップと選択ステップのフロー図である。この図を参照して、上述した照射位置演算ステップS3と選択ステップS4を更に詳しく説明する。
【0044】
照射位置演算ステップS3と選択ステップS4は、この図において、ステップS11〜S20からなる。
【0045】
第1光位置検出素子14の出力信号からステップS11において第1光位置検出素子14の受光位置a1とその信号出力V1を演算し、ステップS12において信号出力V1が安定電圧以上かをチェックし、安定電圧未満(NO)の場合にはステップS13において第2光位置検出素子16の受光位置a2からその照射位置P2のみを演算し、これを選択する。すなわちこの場合、第1光位置検出素子14の出力信号は出力電圧が低く、ノイズ信号の影響が大きいことから無視する。
【0046】
同様に、第2光位置検出素子16の出力信号からステップS14において第2光位置検出素子16の受光位置a2とその信号出力V2を演算し、ステップS15において信号出力V2が安定電圧以上かをチェックし、安定電圧未満(NO)の場合にはステップS16において第1光位置検出素子14の受光位置a1からその照射位置P1のみを演算し、これを選択する。すなわちこの場合、第2光位置検出素子16の出力信号は出力電圧が低く、ノイズ信号の影響が大きいことから無視する。
【0047】
なお、この図には示されていないが、第1光位置検出素子14と第2光位置検出素子16の両方の信号出力V1、V2が安定電圧未満(NO)の場合には、ステップS13、S14の両方を省略し、図4のステップS2に戻る。
【0048】
第1光位置検出素子14と第2光位置検出素子16の両方の信号出力V1、V2が安定電圧以上(YES)の場合には、ステップS17で第1と第2の光位置検出素子14、16による受光位置から被測定物Mの2つのレーザ光照射位置P1、P2をそれぞれ演算する。この2つのレーザ光照射位置P1、P2は、本来同一位置であるが、上述したように二次反射光の影響で誤差を強く受ける方が原点から離れる演算結果となる。
【0049】
ステップS18では、演算した2つのレーザ光照射位置P1、P2のいずれか一方(例えばP2)を基に、この位置が所定の座標領域(例えば、y座標値が−2mmから+2mm)に位置するかどうかを判別する。
所定の座標領域内にある(YES)場合には、ステップ19において、2つのレーザ光照射位置(P1、P2)のうち原点に近いものを選択する。また、所定の座標領域外にある(NO)場合、第1と第2の光位置検出素子の各信号出力が所定値を超え、かつその信号出力が大きい方に基づくレーザ光照射位置P1、P2を選択する。
【0050】
上述した本発明の装置及び方法によれば、平坦部M2に対向し平坦部からの反射光を強く受ける第1の光位置検出素子14と、立壁部M2に対向し立壁部からの反射光を強く受ける第2の光位置検出素子16と、それらの光位置検出素子の間に位置するレーザ装置18とを備え、保持回転装置12により、被測定物の多重反射領域を所定の座標領域に位置決めし、レーザ装置18により、被測定物に向けてレーザ光1を照射するので、演算装置20により、前記第1と第2の光位置検出素子による受光位置から被測定物の2つのレーザ光照射位置P1、P2をそれぞれ演算することができる。
また、多重反射領域において2つのレーザ光照射位置P1、P2が多重反射の影響で異なる場合には、誤差を強く受ける方が原点から離れることから、選択手段22により、原点に近いものを選択することにより多重反射が生じやすいマージンライン近傍においても多重反射の影響を除去して高い測定精度を維持できる。
【0051】
なお、本発明は上述した実施例及び実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【0052】
【発明の効果】
上述したように、本発明は、例えば歯科治療に用いる歯科補綴物を製作・製造するための歯牙模型の三次元形状計測装置に関するものであり、レーザ計測時の測定誤差要因である多重反射の影響を受けずに、歯牙模型の高精度計測要求部を確実かつ正確に計測することを可能にする。
すなわち、本発明では歯科補綴物を製作・製造するための歯牙模型との合わせ面(高精度計測要求部)を計測装置のある一定の範囲内にセットして計測し、それぞれの計測した座標のうちある範囲内の座標は、それぞれの座標値を比較して適切な測定座標値を選択するものである。
【0053】
従って、本発明の三次元形状測定装置および方法は、不定型な被測定物の三次元形状を非接触で計測でき、多重反射が生じやすいマージンライン近傍においても多重反射の影響を除去して高い測定精度を維持できる等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明で使用する光位置検出素子の原理図である。
【図2】本発明の三次元形状測定装置の全体構成図である。
【図3】本発明による測定状態の模式図である。
【図4】本発明の三次元形状測定方法の全体フロー図である。
【図5】図4の照射位置演算ステップと選択ステップのフロー図である。
【図6】非接触式の三次元形状測定手段の原理図である。
【図7】先行出願の三次元形状測定手段の説明図である。
【図8】多重反射による誤差を説明する模式図である。
【符号の説明】
1 レーザ光、2 反射光、
2a、2b 一次反射光、3a、3b 二次反射光、
10 三次元形状測定装置、12 保持回転装置、
13a、13b 集光レンズ、
14 第1光位置検出素子、14a 測定面、
16 第2光位置検出素子、16a 測定面、
18 レーザ装置、18a レーザ発信器、18b 走査ミラー、
20 演算装置、22 選択手段
M 被測定物、M1 頂部平坦部、
M2 立壁面、M3 肩部平坦部、M4 下部立壁面、
P、P1、P2 レーザ光照射位置

Claims (5)

  1. 平坦部(M3)と立壁部(M2)が交差する多重反射領域を有する被測定物(M)の表面形状を非接触で測定する三次元形状測定装置であって、
    被測定物(M)の内部を原点とし原点を通る垂直軸を中心に被測定物を回転させ前記多重反射領域を所定の座標領域に位置決めする保持回転装置(12)と、前記平坦部に対向し平坦部からの反射光を強く受ける第1の光位置検出素子(14)と、前記立壁部に対向し立壁部からの反射光を強く受ける第2の光位置検出素子(16)と、前記第1と第2の光位置検出素子の間に位置し被測定物に向けてレーザ光(1)を走査するレーザ装置(18)と、レーザ光の走査方向と該レーザ光の反射光の前記第1と第2の光位置検出素子による受光位置から被測定物の2つのレーザ光照射位置(P1、P2)をそれぞれ演算する演算装置(20)と、前記所定の座標領域における前記2つのレーザ光照射位置(P1、P2)のうち原点に近いものを選択する選択手段(22)と、を備えたことを特徴とする三次元形状測定装置。
  2. 前記選択手段(22)は、前記所定の座標領域外において、前記第1と第2の光位置検出素子の各信号出力が所定値を超え、かつその信号出力が大きい方に基づくレーザ光照射位置(P1、P2)を選択する、ことを特徴とする請求項1に記載の三次元形状測定装置。
  3. 前記第1と第2の光位置検出素子(14、16)とレーザ光(1)は、被測定物(M)を通る同一平面内に位置する、ことを特徴とする請求項1に記載の三次元形状測定装置。
  4. 平坦部(M3)と立壁部(M2)が交差する多重反射領域を有する被測定物(M)の表面形状を非接触で測定する三次元形状測定方法であって、
    被測定物(M)の内部を原点とし原点を通る垂直軸を中心に被測定物を回転させる保持回転装置(12)と、前記平坦部に対向し平坦部からの反射光を強く受ける第1の光位置検出素子(14)と、前記立壁部に対向し立壁部からの反射光を強く受ける第2の光位置検出素子(16)と、前記第1と第2の光位置検出素子の間に位置するレーザ装置(18)と、レーザ光の走査方向と該レーザ光の反射光の光位置検出素子による受光位置から被測定物のレーザ光照射位置をそれぞれ演算する演算装置(20)と、前記2つのレーザ光照射位置(P1、P2)のうちいずれかを選択する選択手段(22)と、を備え、
    保持回転装置(12)により、被測定物の前記多重反射領域を所定の座標領域に位置決めし、
    レーザ装置(18)により、被測定物に向けてレーザ光(1)を照射し、
    演算装置(20)により、前記第1と第2の光位置検出素子による受光位置から被測定物の2つのレーザ光照射位置(P1、P2)をそれぞれ演算し、
    前記選択手段(22)により、前記所定の座標領域における前記2つのレーザ光照射位置(P1、P2)のうち原点に近いものを選択する、ことを特徴とする三次元形状測定方法。
  5. 前記選択手段(22)により、前記所定の座標領域外において、前記第1と第2の光位置検出素子の各信号出力が所定値を超え、かつその信号出力が大きい方に基づくレーザ光照射位置(P1、P2)を選択する、ことを特徴とする請求項4に記載の三次元形状測定方法。
JP2003047298A 2003-02-25 2003-02-25 三次元形状測定装置および方法 Expired - Fee Related JP3948727B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047298A JP3948727B2 (ja) 2003-02-25 2003-02-25 三次元形状測定装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047298A JP3948727B2 (ja) 2003-02-25 2003-02-25 三次元形状測定装置および方法

Publications (2)

Publication Number Publication Date
JP2004257803A JP2004257803A (ja) 2004-09-16
JP3948727B2 true JP3948727B2 (ja) 2007-07-25

Family

ID=33113589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047298A Expired - Fee Related JP3948727B2 (ja) 2003-02-25 2003-02-25 三次元形状測定装置および方法

Country Status (1)

Country Link
JP (1) JP3948727B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628675A (zh) * 2012-04-20 2012-08-08 安徽国盾三维高科技有限公司 用于三维形貌痕迹比对测量仪的云台

Also Published As

Publication number Publication date
JP2004257803A (ja) 2004-09-16

Similar Documents

Publication Publication Date Title
JPH0650720A (ja) 高さ測定方法および装置
TW200919104A (en) Exposure apparatus and method for manufacturing device
KR101472902B1 (ko) 자외선 리소그래피 시스템들 및 방법들
JP5322841B2 (ja) マスク欠陥の形状測定方法及びマスク良否判定方法
JP3948727B2 (ja) 三次元形状測定装置および方法
JP5710314B2 (ja) マスク検査方法およびその装置
JP2010197143A (ja) ポリゴンミラー用モータのシャフトの軸倒れを測定する測定装置及び測定方法
JP2856711B2 (ja) 位置検出方法
JP2010164326A (ja) 凹凸文字抽出のための画像処理方法
JP2004254828A (ja) 三次元形状測定装置および方法
JP2003014431A (ja) レーザープローブ式形状測定器における傾斜面誤差の補正方法
JPH11142109A (ja) 3次元計測装置、及び3次元計測方法
US12000688B2 (en) Shape inspection device, processing device, height image processing device using characteristic points in combination with correcetion reference regions to correct height measurements
JP7470521B2 (ja) パラメータ取得装置とパラメータ取得方法
JP4230758B2 (ja) 非接触断面形状測定方法および装置
US20230026608A1 (en) Shape inspection device, processing device, height image processing device
JP3898032B2 (ja) 三次元形状測定装置および三次元形状測定方法
JP3276107B2 (ja) 三次元形状測定装置
JP7138479B2 (ja) 検出装置、検出方法、リソグラフィ装置および物品製造方法
JP4995041B2 (ja) 印刷はんだ検査方法、及び印刷はんだ検査装置
JP2011196883A (ja) 距離測定装置
JPH0486548A (ja) 実装基板外観検査装置
JP3479515B2 (ja) 変位測定装置および方法
JPH0240506A (ja) 測距装置
JP5271006B2 (ja) 印刷はんだ検査装置及び印刷はんだ検査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees