JP3944904B2 - 蓄電池寿命診断装置および寿命診断方法 - Google Patents

蓄電池寿命診断装置および寿命診断方法 Download PDF

Info

Publication number
JP3944904B2
JP3944904B2 JP2002067950A JP2002067950A JP3944904B2 JP 3944904 B2 JP3944904 B2 JP 3944904B2 JP 2002067950 A JP2002067950 A JP 2002067950A JP 2002067950 A JP2002067950 A JP 2002067950A JP 3944904 B2 JP3944904 B2 JP 3944904B2
Authority
JP
Japan
Prior art keywords
storage battery
cell
terminal voltage
internal impedance
life diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002067950A
Other languages
English (en)
Other versions
JP2002350521A (ja
JP2002350521A5 (ja
Inventor
展章 上田
三郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2002067950A priority Critical patent/JP3944904B2/ja
Publication of JP2002350521A publication Critical patent/JP2002350521A/ja
Publication of JP2002350521A5 publication Critical patent/JP2002350521A5/ja
Application granted granted Critical
Publication of JP3944904B2 publication Critical patent/JP3944904B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明が属する技術分野】
この発明は、蓄電池の寿命診断技術に関し、特に、寿命診断の精度の向上に関する。
【0002】
【従来の技術】
電源からの電力供給を受ける電子機器において、突然の停電や瞬断が生じる場合がある。このような場合には、コンピュータのデータが消失したり、ハードウェアが故障したりして、電子機器の使用者が被害を受けるおそれがある。かかる問題を解決するために、無停電電源装置が一般に用いられている。無停電電源装置とは、突然の停電や瞬断が生じた場合であっても一定時間電源電力を供給できるように、蓄電池を主電源に予備的に接続した電源装置のことである。
【0003】
図20に、無停電電源装置1のブロック図を示す。図20に示すように、蓄電池12はインバータ18、負荷14および整流器20、電源10に対して並列に接続される。これにより、電源10は、負荷14に電力を供給しながら、蓄電池12を常時充電することができる(このような充電方式を「浮動充電方式」という)。蓄電池12の存在により、停電や瞬断等の緊急時における電力の供給が確保され、その間にデータの保存などを行うことで使用者が受ける被害を最小限に食い止めることができる。
【0004】
しかし、蓄電池12は劣化するものであるため、長年の使用によって寿命に近い場合には、停電などの緊急時に正常に作動しないおそれがある。そこで、従来から蓄電池12の寿命を正確に診断する方法が要求されており、以下の(1)〜(3)のような方法が考えられている。
【0005】
(1)目視による液面点検、比重測定
(2)電源を切った状態で蓄電池12を放電させて端子電圧を測定
(3)内部インピーダンスの測定
【発明が解決しようとする課題】
しかし、(1)目視による液面点検、比重計測のような方法は、構造上、制御弁式鉛蓄電池のような密閉方式の蓄電池12の寿命診断には適さない。また、ユーザーが定期的に目視などによって判断するのは面倒であり、正確な判断も期待できないといった問題がある。
【0006】
また、(2)電源10を切った状態で蓄電池12を放電させ、所定時間経過後の端子電圧を測定する方法は有効な方法であるが、蓄電池12が放電時に既に寿命に達している場合には、電源10を切ることによって電力の供給が完全に絶たれてしまうおそれがあり危険である。
【0007】
(3)内部インピーダンスの測定による方法は、蓄電池12の内部インピーダンスが劣化が進むと共に増加するという特性を利用しており、内部インピーダンスが所定値以上の場合に寿命に近いと判断される。例えば、特開2000−49961号公報には、内部インピーダンスの増加値で寿命を判定することが開示されている。また、論文「電源監視システム”パワーシステムマネージャー”の開発」(「ユアサ時報」第89号の第14頁から第19頁)では、蓄電池の内部抵抗に基づいて蓄電池の劣化・寿命診断を行うようにしている。
【0008】
しかしながら、これでは正確な寿命判断を行うのには不十分である。蓄電池12に内部短絡が生じているような場合には、現実に劣化が進行していても内部インピーダンスは低く測定されてしまうからである。
【0009】
このように、従来の蓄電池寿命診断方法では蓄電池12を交換する時期を正確に判断することは難しかった。
【0010】
【課題を解決するための手段及び発明の効果】
(1)この発明の蓄電池寿命判断装置は、停電時においても負荷への電力供給が絶たれないように負荷に接続される蓄電池のセル寿命を診断するための蓄電池寿命診断装置であって、
前記蓄電池のセルの端子電圧を測定する端子電圧測定手段と、
前記蓄電池のセルの内部インピーダンスを測定する内部インピーダンス測定手段と、
前記端子電圧の減少率および前記内部インピーダンスの増加率を算出し、当該端子電圧の変化および内部インピーダンスの変化に基づいて、当該セルの寿命を診断する寿命診断手段と、
を備えたことを特徴とする。
【0011】
したがって、この発明によれば、蓄電池の寿命診断を正確かつ効率的に行うことが可能となる。これにより、停電時などに蓄電池からの電力供給が確実に行うことができ、かつ、蓄電池を最大限利用できる最適な時期に、蓄電池の交換を行うことができる。
【0012】
(2)この発明の蓄電池寿命判断装置は、前記寿命診断手段が、蓄電池が浮動充電状態にある時の端子電圧の変化および内部インピーダンスの変化に基づいて、寿命を判断するものであることを特徴とする。
【0013】
したがって、この発明によれば、浮動充電状態における蓄電池の寿命診断を正確に行うことが可能となるため、寿命診断を行うために電源からの電力供給を停止する必要がない。これにより、停電のおそれのない状況下で寿命診断を行うことが可能になる。また、寿命診断のために必要な装置、処理などの簡素化が図られる。
【0014】
(3)この発明の蓄電池寿命判断装置は、前記寿命診断手段は、前記端子電圧の減少率が所定値以上であり、かつ、前記内部インピーダンスの増加率が所定値以上であるか否かに基づいて、当該セルの寿命を診断することを特徴とする。
【0015】
したがって、この発明によれば、蓄電池の寿命診断をより正確に行うことが可能となる。
【0016】
(4)この発明の蓄電池寿命判断装置は、前記寿命診断手段は、少なくとも、前記端子電圧が所定値以上である場合か、前記内部インピーダンスが所定値以下の場合に、前記減少率および前記増加率に基づく判断を行うことを特徴とする。
【0017】
(5)この発明の蓄電池寿命判断装置は、前記寿命診断手段が、複数の段階を設けて寿命を診断することを特徴とする。
【0018】
したがって、この発明によれば、蓄電池の寿命診断をより効率的に行うことが可能となる。
【0019】
(6)この発明の蓄電池寿命診断装置は、前記寿命診断手段が、前記内部インピーダンスの増加率を主たる診断要素とし、前記端子電圧の減少率を従たる診断要素として用いて診断することを特徴とする。
【0020】
(7)この発明の蓄電池寿命診断装置は、前記寿命診断手段が、前記負荷への電源供給を停止して蓄電池を放電状態とし、所定時間経過後に取得した端子電圧に基づいて残存容量を算出し、当該残存容量も考慮して寿命診断を行うことを特徴とする。
【0021】
したがって、この発明によれば、蓄電池の寿命診断をより正確に行うことが可能となる。
【0022】
この実施形態において、「セル(蓄電池)が正常でない」とは、セル(蓄電池)が寿命に達した状態だけでなく、寿命に近い状態をも含む概念である。
【0023】
【発明の実施の形態】
[発明の概要]
以下に、図1を用いて、この発明の概要について説明する。図1は、蓄電池12を備える無停電電源装置1と、この蓄電池12の寿命診断を行う蓄電池寿命診断装置8の構成を示す図である。
【0024】
図1に示すように、無停電電源装置1は、電源10、蓄電池12およびこれらの電力供給対象である負荷14を備える。蓄電池12は、電源10および負荷14に対して並列に接続される。
【0025】
かかる構成により、蓄電池12は、通常は浮動充電状態にあるが、停電などの際には負荷14へ電力の供給を行う。しかしながら、蓄電池12は、使用期間の経過により劣化するものであるため、寿命に達する前に交換する必要がある。
【0026】
そこで、この発明の蓄電池寿命診断装置8は、浮動充電状態における蓄電池12のセル16の内部インピーダンスの増加率および端子電圧の減少率に基づいて、蓄電池12の寿命診断を行う。
【0027】
図1に示すように、蓄電池寿命診断装置8は、内部インピーダンス測定手段2、端子電圧測定手段4および寿命診断手段6を備える。内部インピーダンス測定手段2は、蓄電池12の各セル16毎に接続され、浮動充電状態における内部インピーダンスを所定時間毎に測定する。同様に、端子電圧測定手段4も、蓄電池12の各セル16毎に接続され、浮動充電状態における端子電圧を所定時間毎に測定する。さらに、内部インピーダンス測定手段2および端子電圧測定手段4は、寿命診断手段6に接続される。
【0028】
寿命診断手段6は、蓄電池12の寿命診断を行うために、まず、内部インピーダンスおよび端子電圧を、それぞれ内部インピーダンス測定手段2および端子電圧測定手段4から取得する。
【0029】
つぎに、寿命診断手段6は、蓄電池12の測定セル16毎に、端子電圧の減少率及び内部インピーダンスの増加率を算出する。算出した測定セル16の端子電圧の減少率が所定値以上であり、かつ、内部インピーダンスの増加率が所定値以上である場合には、寿命診断手段6は、当該セル16を含む蓄電池12は寿命に近いと診断し、その旨の警告表示を行う。これにより、システム管理者は、寿命に近い蓄電池12を交換する。
【0030】
このように、この発明の蓄電池寿命診断装置8によれば、浮動充電状態にある蓄電池12の寿命診断を確実に行うことができる。これにより、電源電力の停電や瞬断の際に、蓄電池12から負荷14への電力供給が行われないような事態を回避することができる。
【0031】
[蓄電池12の劣化特性]
つぎに、図2を用いて、浮動充電状態における蓄電池12中の一セル16の内部インピーダンスおよび端子電圧が、使用期間の経過と共にどのような変化を示すかについて具体的に説明する。図2は、無停電電源装置1が備える蓄電池12の劣化セルおよび非劣化セルの浮動充電状態における内部インピーダンスおよび端子電圧の変化を示すグラフである。なお、これらの劣化セルおよび非劣化セルは、セル16を複数直列接続した蓄電池12の任意の一セルとする。
【0032】
図2Aは、劣化セルの使用期間tと内部インピーダンスZ、端子電圧Vとの関係を示すグラフである。図2Bは、非劣化セルの使用期間tと内部インピーダンスZ、端子電圧Vとの関係を示すグラフである。なお、図2において、内部インピーダンスの変化は実線で、端子電圧の変化は鎖線で示している。
【0033】
まず、端子電圧Vの変化について説明する。劣化セルにおいては、使用期間tの経過により、過充電による内部短絡や充電不足によるサルフェーションが生じ始める。このため、図2Aに示すように、その端子電圧Vは、使用期間tの経過と共に徐々に減少してゆく。さらに使用期間が経過すると、端子電圧の減少率ΔV(=|dy/dx|)が大きくなる。すなわち、端子電圧の変化を示すグラフ(図2Aの鎖線で示す。)の勾配が急になる。このように、蓄電池12の任意セルが劣化することにより、最終的には、蓄電池12全体として停電時に必要とされる電力を蓄積することができなくなり、当該蓄電池12は寿命に達することとなる。
【0034】
一方、図2Bに示すように、非劣化セルにおいては使用期間tの経過と共に、端子電圧Vは徐々に増加する。これは、劣化セルの端子電圧Vが減少することにより(図2A参照)、その他の非劣化セルの端子電圧Vが影響を受けるためである。
【0035】
例えば、図1において、電源電圧が12Vであり、蓄電池12が直列接続した6つのセル16を備える場合について考える。蓄電池12は、電源10に並列接続され、浮動充電状態にあるために、一部に劣化セルを含むような場合であっても、蓄電池12全体の端子電圧Vは、見かけ上は常に12Vと測定される。すなわち、浮動充電状態においては、測定する蓄電池12の全てのセル電圧を合計すると、常に電源電圧と同じ端子電圧である12Vが測定される。しかしながら、各セル電圧を比較すると、劣化セルと非劣化セルの間では端子電圧は異なる。
【0036】
例えば、内部短絡などの要因により劣化セルの端子電圧が減少して、セル電圧が2Vから1Vにまで減少したような場合には、その差分の電圧が他の非劣化セルに分配される。非劣化セルの状態が同じであると仮定すると、他の5セルの端子電圧が約0.2V(=1V/5セル)ずつ上昇し、それぞれセル電圧が2.2Vとなる。
【0037】
すなわち、蓄電池12全体の端子電圧を測定した場合には、電源電圧の値がそのまま測定されるために端子電圧の変化は生じないが、各セル16毎に端子電圧を測定することにより劣化セルを検出することが可能となる。
【0038】
つぎに、内部インピーダンスZの変化について説明する。図2Aに示すように、劣化セルにおいては、水分枯渇、電極等の部品の腐食などの原因によって、その内部インピーダンスZは、使用期間tの経過と共に徐々に増加していく。さらに、使用期間tが経過すると、内部インピーダンスの増加率ΔZ(=|dy’/dx’|)が大きくなる。すなわち、内部インピーダンスZの変化を示すグラフ(図2Aの実線で示す)の勾配が急になる。このように、蓄電池12の任意セル16が劣化することにより、最終的には、蓄電池12全体として停電時に必要とされる電力を蓄積することができなくなり、当該蓄電池12は寿命に達する。なお、一般には、内部インピーダンスが使用初期の2倍から数倍に増加したセル16を劣化セルと判断している。
【0039】
一方、図2Bに示すように、非劣化セルにおいては、使用期間tの経過と共に内部インピーダンスがいくらか増加するが、図2Aに示す劣化セルの場合のような、内部インピーダンスの急激な変化は示さない。
【0040】
このように、蓄電池12が寿命に近づくまでの間に、劣化セルは、図2に示すように端子電圧の減少率ΔV(=|dy/dx|)および内部インピーダンスの増加率ΔZ(=|dy’/dx’|)が大きくなるという特性を示す。
【0041】
[システム構成およびハードウェア構成]
つぎに、図3aなどを用いて、この発明を実施するためのシステム構成およびハードウェア構成について説明する。この発明を実施するためのシステムは、図3aに示すように、蓄電池12を備えた無停電電源装置1と、その他の蓄電池寿命診断装置8とに分けられる。
【0042】
無停電電源装置1は、図3aに示すように、交流電源10、整流器20、蓄電池12、インバータ18、負荷14を備える。
【0043】
交流電源10は、負荷14や蓄電池12への電力の供給を行うためのものであり、商用電源が用いられる。整流器20は、交流電源10からの出力を整流し、直流電力に変換して出力する。また、放電試験が行われる際には、寿命診断PC6からの要求により、交流電源10の出力制御を行う。インバータ18は、整流器20(停電時には、蓄電池12)からの直流電力を交流電力に変換して負荷14に供給する。
【0044】
蓄電池12は、負荷14に対して並列に接続されており、充電方式として浮動充電方式を採用している。このため、交流電源10の供給が停止した場合には、蓄電池12から負荷14に対して電力を自動的に供給することができる。
【0045】
また、蓄電池12は、直列接続された6個のセル16(図3a中のS1からS6)を備える。各セル16の端子電圧は2Vであるため、蓄電池12全体の端子電圧は12Vとなる。なお、整流器20から出力された交流電源10の出力電圧は、13.2Vから13.7Vとなるように設計される。
【0046】
この実施形態では、蓄電池12が寿命診断装置8によって正常でないと診断された場合には、蓄電池12は交換されるが、交換作業は蓄電池12毎に行われる。したがって、蓄電池12の一セルのみが寿命に近い場合であっても、セル単位での交換は行われない。
【0047】
つぎに、蓄電池寿命診断装置8について説明する。蓄電池寿命診断装置8は、図3aに示すように、寿命診断手段6である寿命診断PC6、端子電圧測定手段4である端子電圧用テスター4、及び内部インピーダンス測定手段2である内部インピーダンス用テスター2を備える。
【0048】
図3aに示すように、蓄電池12の各セル16には、端子電圧用テスター4の入力端子4aおよび内部インピーダンス用テスター2の入力端子2aが接続される。端子電圧用テスター4は、セル16の端子電圧を測定するための装置である。内部インピーダンス用テスター2は、セル16の内部インピーダンスを測定するための装置である。これらのテスターには、一般に市販されているものを用いることができる。さらに、端子電圧用テスター4、内部インピーダンス用テスター2は、図3aに示すように、I/Oポート35を介して寿命診断PC6に接続される。
【0049】
内部インピーダンス用テスター2および端子電圧用テスター4は、その内蔵回路の接点を各セル16の入力端子に切り替える機能を備える。これにより、寿命診断PC6は、各セル16毎の端子電圧及び内部インピーダンスのデータを取得することができる。
【0050】
なお、図3aに示すように、整流器20もI/Oポート35を介して寿命診断PC6に接続される。寿命診断PC6が、蓄電池12が浮動充電状態にあるか否かを検知するためである。また、放電試験時には、寿命診断PC6からI/Oポート35を介して交流電源10の出力制御も行う。
【0051】
I/Oポート35の働きについて、図3bを用いて、以下に説明する。図3bに示すように、寿命診断PC6は、I/Oポート35を介して、内部インピーダンス用テスター2、端子電圧用テスター4に特定セルの内部インピーダンス、端子電圧のデータを要求する(L1)。これに応じて、内部インピーダンス用テスター2、端子電圧用テスター4は、特定セルに端子を選択して各データを取得し、寿命診断PC6に出力する(L2)。さらに、寿命診断PC6は、図3bに示すように、I/Oポート35を介して、電源電力の供給を停止するように整流器20を制御を行い(L3)、また、整流器20が浮動充電状態にあるか否かの検知を行う(L4)。
【0052】
端子電圧用テスター4および内部インピーダンス用テスター2の詳細について、以下に、図4を用いて説明する。図4は、内部インピーダンス用テスター2及び端子電圧用テスター4を取り付けた状態の蓄電池12を示す図である。
【0053】
図4Aに示すように、蓄電池12は、点線で示す6つのセル領域(セル番号S1〜S6)を有しており、それぞれについて、内部インピーダンス用テスター2の入力端子2a及び端子電圧用テスター4への入力端子4aが取り付けられる。
【0054】
図4Bは、図4Aに示す蓄電池12のX−X断面図である。図4Bでは、内部インピーダンス用テスター2の入力端子2aを、セル電極60とは別途に設けられた2つの内部インピーダンス用電極62に接続している。なお、内部インピーダンス用電極62を設けずに、セル電極60に内部インピーダンス用テスター2の入力端子2aを接続しても良い。
【0055】
内部インピーダンス用テスター2は、寿命診断PC6からの要求により、電解液に浸された内部インピーダンス用電極62間に交流電流を流して、内部インピーダンスを各セル毎に出力する機能を備える。内部インピーダンスは、内部インピーダンス用テスター2の出力端に接続された寿命診断PC6(図3a参照)に出力される。
【0056】
また、端子電圧用テスター4の入力端子4aは、図4Bに示すように、セル電極60に接続される。端子電圧用テスター4は、寿命診断PC6からの要求により、端子電圧を各セル16毎に出力する機能を備える。端子電圧は、端子電圧用テスター4の出力端に接続された寿命診断PC6(図3a参照)に出力される。
【0057】
[寿命診断PC6のハードウェア構成]
寿命診断手段6である寿命診断PC6は、図3aに示すように、ハードディスク30、CPU32、メモリ34、ディスプレイ36、キーボード/マウス38、記録媒体リーダ40、記録媒体42を備える。
【0058】
CPU32は、内部インピーダンスおよび端子電圧を測定するために、各テスター2、4の制御を行う。さらに、CPU32は、メモリ34を用いて、各セル16の端子電圧及び内部インピーダンスの変化率の演算や、演算結果データと寿命判断基準データとの比較などの寿命診断に関する処理を行う。
【0059】
ディスプレイ36には、負荷10への電力供給状態の表示、蓄電池12が寿命に近い旨の警告表示、端子電圧及び内部インピーダンスの傾向グラフ等の各種表示が行われる。
【0060】
寿命診断PC6のハードディスク30には、マイクロソフト社のウインドウズのようなオペレーションシステム(OS)や、蓄電池12の寿命診断処理を行う蓄電池寿命管理ソフトなどがインストールされる。これらのソフトウェアのインストールは、例えば、CD-ROM等の記録媒体42を記録媒体リーダ40に挿入し、寿命診断PC6のハードディスク30にデータをコピーすることによって行われる。
【0061】
蓄電池寿命管理ソフトは、蓄電池12の端子電圧データおよび内部インピーダンスデータの管理や、寿命診断に関する処理などを行うソフトウェアであり、図5に、蓄電池寿命管理ソフト50が備えるモジュールを示す。
【0062】
図5に示すように、蓄電池寿命管理ソフト50は、ステータスインフォメーションマネージャ52、セルボルテージマネージャ54、セルインピーダンスマネージャ56、バッテリキャパシティマネージャ58などのモジュールを備える。これらの各モジュールが備える機能について、簡単に説明する。
【0063】
ステータスインフォメーションマネージャ52は、蓄電池12の寿命診断を行い、さらに、その結果を寿命診断PC6のディスプレイ36上に表示する処理などを行う。セルボルテージマネージャ54は、蓄電池12の各セル16の端子電圧の傾向管理のための処理を行う。セルインピーダンスマネージャ56は、蓄電池12の各セル16の内部インピーダンスの傾向管理のための処理を行う。バッテリキャパシティマネージャ58は、放電試験により蓄電池12の残存容量を推定するための処理を行う。
【0064】
[端子電圧および内部インピーダンスの取得の際の処理]
つぎに、寿命診断PC6が、各セル16の端子電圧を取得する際に行われる処理について、図6を用いて説明する。なお、これらの処理は、図5に示すセルボルテージマネージャ54によって行われる。
【0065】
寿命診断PC6のCPU32は、現在時刻と所定の端子電圧の測定時間Tを比較し、現在時刻が予め定められた測定時間であるか否かを常に判断している(ステップS100)。例えば、予め測定時間として設定された毎週月曜日の午前0時であるか否かを判断している。
【0066】
寿命診断PC6は、現在時刻が端子電圧の測定時間であると判断した場合には、セル番号Snのnを初期値1とする(ステップS102)。
【0067】
つぎに、寿命診断PC6は、端子電圧用テスター4にセルS1の端子電圧V1を要求する(ステップS104)。セルS1の端子電圧用テスター4は、これに応じて端子電圧V1を測定し、端子電圧データを寿命診断PC6に送信する(ステップS106)。寿命診断PC6は、受信した端子電圧データをハードディスク30に記憶する(ステップS108)。
【0068】
寿命診断PC6のCPU32は、メモリ34に記憶されたセル番号S1を読み込んで、端子電圧の測定を終えたセルS1が測定する最後のセルか否かを判断する(ステップS110)。例えば、この実施形態においては、全部で6個のセル16が存在するので、S6か否かを判断する。
【0069】
測定する最後のセルでない場合には、寿命診断PC6は、ステップS102において記憶しておいたセル番号S1に1を加えS2とし、ステップS104に移行する(ステップ112)。このようにして、S1からS6までの全てのセル16の端子電圧(V1からV6)が測定されるまで、ステップS104以降の処理が繰り返し行われる。
【0070】
一方、測定する最後のセルS6である場合には、端子電圧の測定は終了し、内部インピーダンスを取得するための処理に移る。
【0071】
図8に、寿命診断PC6のハードディスク30に記憶される各セル16の測定データの例を示す。図8に示すように、例えば、1998年6月22日に測定したセルS1のセル電圧V1が、1.79[V]と記録される。
【0072】
セルボルテージマネージャ54は、ユーザーからの指示に応じ、記憶された端子電圧データに基づいて、各セル16の端子電圧の変化を示すグラフをディスプレイ36上に表示する。図9に、セルS1の端子電圧V1の変化を示すグラフの例を示す。
【0073】
つぎに、寿命診断PC6が、各セルSnの内部インピーダンスを取得する際に行われる処理について、図7を用いて説明する。なお、図7中の「1」は、図6中の「1」に対応する。なお、これらの処理は、図5に示すセルインピーダンスマネージャ56によって行われる。
【0074】
図7に示すように、全てのセル16の端子電圧を測定した後、寿命診断PC6は、セル番号Snのnを再び初期値1とする(ステップS202)。
【0075】
つぎに、寿命診断PC6は、セルS1の内部インピーダンス用テスター2に内部インピーダンスZ1を要求する(ステップS204)。セルS1の内部インピーダンス用テスター2は、これに応じて内部インピーダンスZ1を測定し、内部インピーダンスデータを寿命診断PC6に送信する(ステップS206)。寿命診断PC6は、受信した内部インピーダンスデータをハードディスク30に記憶する(ステップS208)。
【0076】
つぎに、寿命診断PC6のCPU32は、メモリ34に記憶されたセル番号S1を読み込んで、内部インピーダンスの測定を終えたセルS1が測定する最後のセルか否かを判断する(ステップS210)。この実施形態においては、セル16は全部で6個存在するので、セルS6か否かを判断する。
【0077】
測定する最後のセルでない場合には、寿命診断PC6は、ステップS202において記憶しておいたセル番号S1に1を加え、S2とし、ステップS204に移行する。(ステップ212)。
【0078】
このようにして、S1からS6までの全てのセル16の内部インピーダンス(Z1からZ6)が測定されるまで、ステップS204以降の処理が繰り返し行われる。
【0079】
一方、測定する最後のセルS6である場合には、内部インピーダンスの測定は終了し、蓄電池12の寿命診断処理に移る。
【0080】
図8に、寿命診断PC6のハードディスク30に記憶されるセルS1の測定データの例を示す。図8に示すように、例えば、1998年6月22日に測定を行ったセルS1の内部インピーダンスが9.1[mΩ]と記録される。
【0081】
セルインピーダンスマネージャ56は、ユーザーからの指示に応じ、記憶された内部インピーダンスデータに基づいて、各セル16の内部インピーダンスZnの変化を示すグラフをディスプレイ36上に表示する。図10に、セルS1の内部インピーダンスZ1の変化を示すグラフの例を示す。
【0082】
以上のようにして、浮動充電状態における各セル16の端子電圧および内部インピーダンスの測定は、所定の測定時間毎に寿命診断PC6が自動的に行う。
【0083】
[蓄電池12の寿命診断処理]
蓄電池12の寿命診断処理について、図11などを用いて、以下に説明する。図11は、蓄電池12の寿命診断処理を示す図である。なお、図11中の「2」は、図7中の「2」に対応する。
【0084】
セルS1からS6までの各セル16の端子電圧Vおよび内部インピーダンスZのデータを取得した後、寿命診断PC6は、セル番号nと判定回数Nを初期値1とする(ステップS300)。
【0085】
つぎに、寿命診断PC6のCPU32は、セルS1の端子電圧V1が所定値Vth以上であり、かつ内部インピーダンスZ1が所定値Zthが所定値以下であるか否かを判定する(ステップS302)。
【0086】
セルS1の端子電圧V1、内部インピーダンスZ1は、既に寿命診断PC6のハードディスク30に記録されている(ステップS108、S208参照)。所定値Vth、Zthの範囲は、明らかに当該セル16が劣化セルでないと推測できる程度の範囲が予め設定される。例えば、図9の端子電圧のグラフに示す、端子電圧V1がVth以上の範囲、図10の内部インピーダンスのグラフに示す、内部インピーダンスZ1がZth以下の範囲が、所定値の範囲として設定される。
【0087】
端子電圧V1、内部インピーダンスZ1が双方共に劣化セルである旨を示していない場合には、当該セル16についてはここで寿命診断を終了し以降の寿命診断を行わない。これにより、以降の寿命診断処理を行うセル数を削減することができ、寿命診断処理全体の効率化が図られる。
【0088】
セルS1の端子電圧V1が所定値Vth以上であるか、もしくは内部インピーダンスZ1が所定値Zth以下である場合には、寿命診断PC6のCPU32は、セルS1が判定する最後のセルであるか否かを判断する(ステップS304)。
【0089】
セルSnが判定する最後のセルである場合には、蓄電池12は寿命に近くないと判定され、寿命診断処理が終了する。一方、セルSnが判定する最後のセルでない場合には、寿命診断PC6のCPU32は、nに1を加えてそのデータをメモリ34に記憶し、ステップS302に移行する(ステップS306)。これにより、次セルについての寿命診断処理が開始する。
【0090】
一方、セルSnの端子電圧Vnが所定値Vth以下であり、かつ内部インピーダンスZnが所定値Zthが所定値以上である場合には、寿命診断PC6のCPU32は、蓄電池12が浮動充電状態であるか否かを判断する(ステップS308)。蓄電池12が浮動充電状態でない場合には、放電により電圧降下が生じていることが考えられる等の要因により、本基準では正確な寿命診断を行うことができないからである。
【0091】
なお、蓄電池12が浮動充電状態にあるか否かは、寿命診断PC6から整流器20にアクセスして、交流電源10から電力が供給されているかどうかを検知することにより判断することができる。
【0092】
蓄電池12が浮動充電状態にある場合には、寿命診断PC6は、判定回数Nが2か否かを判断する(ステップS310)。Nが2でない場合には、寿命診断PC6は、Nに1を加える(ステップS312)。さらに、当該セルSnの端子電圧Vn、内部インピーダンスZnの再測定を行う(ステップS314)。
【0093】
再測定の処理は、端子電圧Vnについては、ステップS104からステップS108まで(図6参照)の処理と同様である。内部インピーダンスZnについてはステップS204からステップS208まで(図7参照)の処理と同じである。ここで、2回目の端子電圧Vn、内部インピーダンスZnの測定および判定を行うこととしたのは、最初の測定においては接触不良などの要因による測定ミスが生じる場合があることを考慮したためである。
【0094】
蓄電池12が浮動充電状態でない場合には、ステップS304に移行し、前述したように、当該セル16についてはここで寿命診断を終了し以降の寿命診断処理を行わず、次セルについての寿命診断処理が開始する。
【0095】
ステップS310において、判定回数Nが2であると判断された場合には、寿命診断PC6のCPU32は、セルSnの端子電圧の減少率ΔVnが所定値ΔVth以上であり、かつ、内部インピーダンスの増加率ΔZnが所定値ΔZth以上であるか否かを判定する(ステップS316)。
【0096】
端子電圧の減少率ΔVnは、寿命診断PC6のCPU32が、測定時間Tにおける端子電圧Vnの変化を示すグラフの勾配α(α=|dy/dx|;図9参照)を算出して取得する。内部インピーダンスの増加率ΔZnも、同様に、寿命診断PC6のCPU32が、測定時間Tにおける内部インピーダンスZnの変化を示すグラフの勾配β(β=|dy'/dx'|;図10参照)を算出して取得する。
【0097】
一方、所定値ΔVthおよびΔZthは、予め浮動充電状態における蓄電池12の劣化実験を行い決定した値が、無停電電源装置1の管理者により設定される。
【0098】
セルSnの端子電圧の減少率ΔVnが所定値ΔVth以上であり、かつ、内部インピーダンスの増加率ΔZnが所定値ΔZth以上であると判断した場合、寿命診断PC6は、当該セルSnを含む蓄電池12が寿命に近いと判断し、そのディスプレイ36上に蓄電池12を交換すべき旨の警告表示を行う(ステップS318)。
【0099】
図12に、ディスプレイ36上に表示される警告表示の例を示す。蓄電池12が寿命に近いと判断された場合には、図12に示すように、ステータスインフォメーションマネージャ52のウィンドウに「蓄電池が寿命に近いので交換してください。」と表示され、警告ブザーが鳴る。これにより、無停電電源装置1の管理者は、停電時などにおいても、蓄電池12からの電力供給を確実に行うことができ、かつ、蓄電池12を最大限利用できる最適な時期に、蓄電池12を交換することができる。
【0100】
一方、セルSnの端子電圧の減少率ΔVnが所定値ΔVthに満たない場合、もしくは内部インピーダンスの増加率ΔZnが所定値ΔZthに満たない場合には、当該セル16は非劣化セルと判断されるため、ステップS304に移行する。このため、当該セル16についてはここで寿命診断処理が終了する。
【0101】
寿命診断PC6が、ステップ304においてセルSnが最後のセルであると判断した場合には、当該蓄電池12についての寿命診断処理を終了する。
【0102】
この実施形態における寿命診断の結果を、図13を用いて説明する。図13は、寿命診断処理における端子電圧の減少率および内部インピーダンスの増加率に基づく判定(ステップS316参照)の結果の例を示す図である。
【0103】
なお、図13において、端子電圧の減少率ΔVnが所定値ΔVth以上である場合、内部インピーダンスの増加率ΔZnが所定値ΔZth以上である場合(ステップS316参照)をそれぞれ記号「○」で示し、この条件に該当しない場合を記号「×」で示している。さらに、上記判定がまだ済んでいない場合を「・」で表示している。上記判定に移行する前の段階(ステップS302など)において、非劣化セルであると判定されたセルSnについては、記号「−」で示している。
【0104】
まず、図13に示すように、セルS1のΔVnの欄には「○」が、ΔZnの欄には「×」が表示されている。すなわち、セルS1の端子電圧の減少率ΔV1は所定値ΔVth以上であるが、内部インピーダンスの増加率ΔZ1は所定値ΔZth以上でないため、蓄電池12が寿命に近いと判断されていない。
【0105】
つぎに、セルS2のΔVnの欄には「−」が、ΔZnの欄には「−」が表示されている。すなわち、セルS2は、端子電圧の減少率ΔV2が所定値ΔVth以上であるか、内部インピーダンスの増加率ΔZ2が所定値ΔZth以上であるか否かを判定する前の処理で非劣化セルであると判断されている。
【0106】
また、セルS3のΔVnの欄には「○」が、ΔZnの欄には「○」が表示されている。これは、セルS3の端子電圧の減少率ΔV3が所定値ΔVth以上であり、かつ、内部インピーダンスの増加率ΔZ3が所定値ΔZth以上である場合に該当する。これにより、セルS3が劣化セルであると判定され、蓄電池12が寿命に近いと判断されている。
【0107】
なお、セルS4からS6の各欄には「・」が表示されている。これは、セルS3で寿命診断処理が終了したために、セルS4からS6については、上記判定が行われなかったためである。
【0108】
以上のように、この発明によれば、端子電圧の増加率および内部インピーダンスの減少率に基づいて、蓄電池12の寿命診断を正確かつ効率的に行うことが可能となる。
【0109】
[蓄電池12が複数存在する場合の実施形態]
上記実施形態においては、蓄電池12が1つの場合に寿命診断を行うこととしたが、蓄電池12が複数存在する場合にも、この発明を用いることができる。以下に、図14および図15を用いて、蓄電池12が複数存在する場合の実施形態について説明する。
【0110】
図14は、無停電電源装置1の複数の蓄電池12の部分の拡大図である。図14に示すように、この実施形態の無停電電源装置1は、直列接続された3個の蓄電池12を備える。図14に示すように、各蓄電池12の蓄電池番号をR1からR3とする。なお、蓄電池12以外の部分のシステム構成および寿命診断PC6などのハードウェア構成は、図3aに示すものと同じである。
【0111】
また、前述の実施形態の場合と同様に、各蓄電池12には、端子電圧用テスター4および内部インピーダンス用テスター2が接続され、図14に示すように、内部インピーダンス用テスター2の入力端子2aは各セル16毎に接続される。しかしながら、端子電圧用テスター4の入力端子4aは前述の実施形態とは異なり蓄電池12毎に接続される。この実施形態では、蓄電池12が複数存在するために、蓄電池12毎に端子電圧を測定しても、劣化セルの影響が蓄電池R1からR3の間の端子電圧の差としてに現れるからである。ただし、前述の実施形態のようにセル16毎に端子電圧を測定するようにしてもよい。また、内部インピーダンス用テスター2の入力端子2aを蓄電池12毎に接続してシステム構成を簡略化することもできる。
【0112】
寿命診断PC6が蓄電池番号がR1からR3までの各蓄電池12の端子電圧を取得する際に行われる処理は、端子電圧が蓄電池12毎に測定されること以外は、図6に示す各セル16の端子電圧を取得する際に行われる処理と同じである。すなわち、この実施形態における寿命診断PC6が各蓄電池12の端子電圧を取得する際に行われる処理は、図6において、セル番号Snを蓄電池番号Rnとしたものと同じになる。
【0113】
また、寿命診断PC6が各蓄電池12の内部インピーダンスを取得する際に行われる処理は、蓄電池番号がR1からR3までの複数の蓄電池12の各セル16について内部インピーダンスを測定すること以外は、図7に示す1つの蓄電池12の各セル16の内部インピーダンスを取得する際に行われる処理と同じである。すなわち、この実施形態における寿命診断PC6が複数の蓄電池12の各セル16の内部インピーダンスを取得する際に行われる処理は、図7において、ステップS202のセル番号Snおよび蓄電池番号Rnを初期値1とし、さらに、ステップS210の後にRnが測定する最後の蓄電池か否かを判断する処理などを追加したものと同じになる。
【0114】
寿命診断PC6が行う複数の蓄電池12の寿命診断処理についても、蓄電池番号がR1からR3までの複数の蓄電池12に適用できるように、上記と同様の変更を、図11に示す蓄電池12が1つの場合の寿命診断処理に行えばよい。
【0115】
この実施形態における寿命診断の結果を、図15を用いて説明する。図15は、複数の蓄電池12の寿命診断処理における端子電圧の減少率および内部インピーダンスの増加率に基づく判定(ステップS316参照)の結果の例を示す図である。なお、図15に表示された記号の意味は前述の実施形態の場合と同じである。
【0116】
まず、図15に示すように、蓄電池R1のΔVの欄には「−」が、各セルSnのΔZnの欄には「−」が表示されている。すなわち、蓄電池R1は、各セルSnの端子電圧の減少率ΔVnが所定値ΔVth以上であり、かつ、内部インピーダンスの増加率ΔZnが所定値ΔZth以上であるか否かを判定する前の処理で寿命近くでないと判断されている。
【0117】
つぎに、蓄電池R2のΔVnの欄には「×」が、各セルSnのΔZnの欄には「・」が表示されている。すなわち、蓄電池R2は、端子電圧の減少率ΔVは所定値ΔVth以上でないため、寿命に近いと判断されていない。なお、セルΔZnの各欄には「・」が表示されているが、これは、蓄電池R2の端子電圧ΔVの判定のみで蓄電池12が寿命に近くにないと判断されたためである。
【0118】
また、蓄電池R3のΔVの欄には「○」が、セルS1からS4のΔZnの欄には「×」が表示されている。すなわち、蓄電池R3の端子電圧の減少率ΔVは所定値ΔVth以上であるが、蓄電池R3のセルS1からS4の内部インピーダンスの増加率ΔZnは所定値ΔZth以上でない。このため、セルS1からS4は非劣化セルであると判定されている。
【0119】
一方、蓄電池R3のΔVの欄には「○」が、セルS5のΔZnの欄には「○」が表示されている。これは、蓄電池R3の端子電圧の減少率ΔVが所定値ΔVth以上であり、かつ、セルS3の内部インピーダンスの増加率ΔZ3が所定値ΔZth以上の場合に該当する。これにより、セルS5が劣化セルと判定され、蓄電池12が寿命に近いと判断されている。
【0120】
以上のように、蓄電池12が複数存在するような場合であっても、この発明によれば、端子電圧の増加率および内部インピーダンスの減少率に基づいて、蓄電池12の寿命診断を正確かつ効率的に行うことが可能となる。
【0121】
なお、上記実施形態においては、複数の蓄電池12を直列接続することとしたが、複数の蓄電池12を並列接続してもよい。
【0122】
[その他の実施形態]
なお、上記各実施形態においては、端子電圧の減少率が所定値以上で、かつ、内部インピーダンスの増加率が所定値以上である場合に寿命に達したと判断している。つまり、上記各実施形態においては、内部インピーダンスの増加率と端子電圧の減少率を寿命診断において同等に扱うようにした。しかし、内部インピーダンスの増加率を主な判断基準として用い、端子電圧の減少率を補助的な判断基準として用いるようにして、内部インピーダンスの増加率に端子電圧の減少率よりも重みを持たせるようにしてもよい。以下に、図16〜図19を用いて、内部インピーダンスの増加率が端子電圧の減少率よりも重みがあるようにした場合の実施形態について説明する。
【0123】
この実施形態においては、内部インピーダンスの増加率は、その値により、正常レベル・注意レベル・寿命レベルの何れかの状態に分けられる。例えば、図16(内部インピーダンスの変化率の時間変化を示すグラフ)に示すように、ΔZTH1以上が寿命レベル、ΔZTH1未満ΔZTH2以上が注意レベル、ΔZTH2未満が正常レベルといったように分けられる。なお、ΔZTH1、ΔZTH2の値は、上記各実施形態と同様に、浮動充電状態における劣化実験の結果から決定される。
【0124】
端子電圧の増加率も同様に、正常レベル・注意レベル・寿命レベルの何れかの状態に分けられる。例えば、図17(端子電圧の変化率の時間変化を示すグラフ)に示すように、ΔVTH1未満が寿命レベル、ΔVTH1以上ΔVTH2未満が注意レベル、ΔVTH2以上が正常レベルといったように分けられる。なお、ΔVTH1、ΔVTH2の値は、上記と同様に、浮動充電状態における劣化実験の結果から決定される。
【0125】
図18は、この実施形態における寿命診断の方法を示すグラフである。この実施形態においては、図18に示すように、内部インピーダンスの増加率ΔZおよび端子電圧の減少率ΔVの上記各状態に基づいて診断結果が得られる。
【0126】
この寿命診断グラフの特徴は、内部インピーダンスの増加率が「寿命レベル」である場合には、端子電圧の減少率が何れの状態であっても、「劣化」セルであると判断される等、内部インピーダンスの増加率に端子電圧の減少率よりも重みをつけたものとなっていることである。
【0127】
具体的には、図18に示すように、この寿命診断グラフにより「劣化」セルと判断されるのは、内部インピーダンスの増加率が「寿命レベル」である場合、または、内部インピーダンスの増加率が「注意レベル」にあり、かつ、端子電圧の減少率が「寿命レベル」である場合である。また、「準劣化」セルと判断されるのは、内部インピーダンスの増加率が「注意レベル」である場合(「劣化」セルと判断した場合を除く)、または、内部インピーダンスの増加率が「正常レベル」にあり、かつ、端子電圧の減少率が「寿命レベル」である場合である。
【0128】
この寿命診断グラフを用いて寿命判定を行った具体例について、以下に図19を用いて説明する。図19は、ある蓄電池の内部インピーダンスの増加率および端子電圧の減少率の算出結果を示すグラフである。なお、このグラフでは、正常レベルが記号「○」、注意レベルが記号「△」、寿命レベルが記号「×」で表されている。
【0129】
図19に示すように、セルS1は、内部インピーダンスの増加率ΔZが「○(正常レベル)」、端子電圧の減少率ΔVが「×(寿命レベル)」である。一方、セルS2は、逆に、内部インピーダンスの増加率ΔZが「×(寿命レベル)」、端子電圧の減少率ΔVは「○(正常レベル)」である。つまり、セルS1とセルS2では、内部インピーダンスの増加率ΔVと端子電圧の減少率ΔZの状態が逆になっている。
【0130】
これらの条件を図19に示す寿命判定のグラフに当てはめてみると、セルS1はTYPE03に該当するので「準劣化」セルと診断される。一方、セルS2はTYPE07に該当するので「劣化」セルと診断される。
【0131】
つまり、内部インピーダンスの増加率が「×(寿命レベル)」であるセルS1の診断結果の方が、端子電圧の減少率が「×(寿命レベル)」であるセルS2の診断結果よりも悪い結果となっている。これは、端子電圧の減少率ΔZよりも内部インピーダンスの増加率ΔZの方が、診断結果に及ぼす影響が大きくなるようにしているためである。
【0132】
セルS4とセルS5についても、これと同様のことがいえる。つまり、セルS4は、内部インピーダンスの増加率ΔZが「○(正常レベル)」、端子電圧の減少率ΔVが「△(注意レベル)」である。一方、セルS5は、逆に、内部インピーダンスの増加率ΔZが「△(注意レベル)」、端子電圧の減少率ΔVは「○(正常レベル)」である。つまり、セルS4とセルS5では、セルS1とセルS2の場合と同様に、内部インピーダンスの増加率ΔVと端子電圧の減少率ΔZの状態が逆になっている。
【0133】
これらの条件を図19に示す寿命判定のグラフに当てはめてみると、セルS4はTYPE02に該当するので「非劣化」セルと診断される。一方、セルS5はTYPE04に該当するので「準劣化」セルと診断される。このように、セルS1とセルS2の場合と同様に、端子電圧の減少率ΔZよりも内部インピーダンスの増加率ΔZの方が診断結果に及ぼす影響が大きくなっている。
【0134】
なお、セルS3は、内部インピーダンスの増加率ΔZ、端子電圧の減少率ΔVが何れも「○(正常レベル)」であり、寿命診断グラフのTYPE01(図19参照)に該当するので、「正常」セルと判断される。セルS6は、内部インピーダンスの増加率ΔZ、端子電圧の減少率ΔVが何れも「△(注意レベル)」であり、寿命診断グラフのTYPE01(図19参照)に該当するので、「準劣化」セルと判断される。
【0135】
以上のような寿命診断の結果、セルS2が「劣化」セルと判断される。これにより、最終的に当該蓄電池が寿命に近いと判断される。
【0136】
なお、上記の各実施形態においては、蓄電池12の放電試験は行わないこととしたが、さらに放電試験を行うようにしてもよい。すなわち、放電試験により蓄電池12の残存容量を算出し、寿命診断の際に当該残存容量を考慮するようにしてもよい。これにより、寿命診断の精度をさらに上げることができる。
【0137】
蓄電池12の放電試験を行う方法を、図3aを用いて説明する。まず、寿命診断PC6が、整流器20の制御を行うことにより電源10からの電力供給を停止させる。これにより、蓄電池12は放電を開始し、負荷20への電力供給を行う。寿命診断PC6は、電源電力の供給が停止してから所定時間が経過後の蓄電池12の各セル16の端子電圧を測定することにより、蓄電池12の残存容量を演算で求める。
【0138】
かかる放電試験を行う場合の寿命診断の基準としては、蓄電池12の残存容量に基づく寿命診断の一般的なものを用いることができる。例えば、残存容量が初期値の80%以下に低下したときに寿命に近いと判断する基準がある。上記基準による判定を更に行うことで寿命診断をより正確に行うことができる。
【0139】
なお、上記各実施形態においては、複数のセル16を備える蓄電池12の寿命診断を行うこととしたが、単一のセル16を備える蓄電池12について、この発明を用いることもできる。
【0140】
なお、上記各実施形態においては、蓄電池12中の1つのセル16が劣化セルと判断された場合に、当該セル16を含む蓄電池12が寿命に近いと診断されることとした。しかしながら、蓄電池12中の2以上のセル16が劣化セルと判断された場合に、当該セル16を含む蓄電池12が寿命し近いと診断されるようにしてもよい。
【0141】
なお、上記各実施形態においては、端子電圧の減少率および内部インピーダンスの増加率に基づく判定の前に、セルSnの端子電圧Vnが所定値Vth以上であり、かつ内部インピーダンスZnが所定値Zthが所定値以下であるか否かの判定を行うこととしたが、かかる処理を行わないでこの発明を実施してもよい。
【0142】
なお、上記各実施形態においては、端子電圧を内部インピーダンスより先に測定することとしたが、内部インピーダンスを端子電圧より先に測定してもよい。
【0143】
なお、上記各実施形態においては、セルの内部インピーダンスや端子電圧等に基づいて蓄電池の寿命診断を行うこととしたが、負荷電流を考慮して寿命診断を行うようにしてもよい。
【0144】
なお、上記各実施形態においては、蓄電池が寿命に近いか否かを診断することとしたが、蓄電池が寿命に達したか否かを判断するようにしてもよい。
【図面の簡単な説明】
【図1】蓄電池12を備える無停電電源装置1と、この蓄電池12の寿命診断を行う蓄電池寿命診断装置8の構成を示す図である。
【図2】無停電電源装置1が備える蓄電池12の劣化セルと非劣化セルの浮動充電状態における内部インピーダンスおよび端子電圧の変化を示すグラフである。
【図3a】この発明を実施するためのシステム構成およびハードウェア構成を示す図である。
【図3b】I/Oポート35の働きを示す図である。
【図4】内部インピーダンス用テスター2及び端子電圧用テスター4を取り付けた状態の蓄電池12を示す図である。
【図5】蓄電池寿命管理ソフト50が備えるモジュールを示す図である。
【図6】寿命診断PC6が各セルの端子電圧を取得する際に行われる処理を示す図である。
【図7】寿命診断PC6が各セルの内部インピーダンスを取得する際に行われる処理を示す図である。
【図8】寿命診断PC6のハードディスク30に記憶される各セルの測定データの例を示す図である。
【図9】セルS1の端子電圧V1の変化を示すグラフである。
【図10】セルS1の内部インピーダンスZ1の変化を示すグラフである。
【図11】蓄電池12の寿命診断処理を示す図である。
【図12】ディスプレイ36上に表示される警告表示の例を示す図である。
【図13】蓄電池12の寿命診断処理における端子電圧の減少率および内部インピーダンスの増加率に基づく判定結果の例を示す図である。
【図14】無停電電源装置1における複数の蓄電池12の部分の拡大図である。
【図15】複数の蓄電池12の寿命診断処理における端子電圧の減少率および内部インピーダンスの増加率に基づく判定結果の例を示す図である。
【図16】内部インピーダンスの変化率の時間変化を示す図である。
【図17】端子電圧の変化率の時間変化を示す図である。
【図18】その他の実施形態における寿命診断の方法を示すグラフである。
【図19】その他の実施形態における寿命診断の例を示す図である。
【図20】無停電電源装置1のブロック図である。
【符号の説明】
1・・・・無停電電源装置
2・・・・内部インピーダンス測定手段(内部インピーダンス用テスター)
4・・・・端子電圧測定手段(端子電圧用テスター)
6・・・・寿命診断手段(寿命診断PC)
8・・・・蓄電池寿命診断装置
10・・・・電源
12・・・・蓄電池
14・・・・負荷
16・・・・セル
18・・・・インバータ
20・・・・整流器
30・・・・ハードディスク
32・・・・CPU
34・・・・メモリ
35・・・・I/Oポート
36・・・・ディスプレイ
38・・・・キーボード/マウス
40・・・・記録媒体リーダ
42・・・・記録媒体

Claims (12)

  1. 停電時においても負荷への電力供給が絶たれないように負荷に接続される蓄電池のセル寿命を診断するための蓄電池寿命診断装置であって、
    前記蓄電池のセルの端子電圧を測定する端子電圧測定手段と、
    前記蓄電池のセルの内部インピーダンスを測定する内部インピーダンス測定手段と、
    前記端子電圧の減少率および前記内部インピーダンスの増加率を算出し、当該端子電圧の変化および内部インピーダンスの変化に基づいて、当該セルの寿命を診断する寿命診断手段と、
    を備えたことを特徴とする蓄電池寿命診断装置。
  2. 請求項1の蓄電池寿命診断装置において、
    前記寿命診断手段は、蓄電池が浮動充電状態にある時の端子電圧の変化および内部インピーダンスの変化に基づいて、寿命を判断するものであることを特徴とするもの。
  3. 請求項1または2の蓄電池寿命診断装置において、
    前記寿命診断手段は、前記端子電圧の減少率が所定値以上であり、かつ、前記内部インピーダンスの増加率が所定値以上であるか否かに基づいて、当該セルの寿命を診断することを特徴とするもの。
  4. 請求項3の蓄電池寿命診断装置において、
    前記寿命診断手段は、少なくとも、前記端子電圧が所定値以上である場合か、前記内部インピーダンスが所定値以下の場合に、前記減少率および前記増加率に基づく判断を行うことを特徴とするもの。
  5. 請求項1〜4のいずれかの蓄電池寿命診断装置において、
    前記寿命診断手段は、複数の段階を設けて寿命を診断することを特徴とするもの。
  6. 請求項5の蓄電池寿命診断装置において、
    前記寿命診断手段は、前記内部インピーダンスの増加率を主たる診断要素とし、前記端子電圧の減少率を従たる診断要素として用いて診断することを特徴とするもの。
  7. 請求項1〜6のいずれかの蓄電池寿命診断装置において、
    前記寿命診断手段は、前記負荷への電源供給を停止して蓄電池を放電状態とし、所定時間経過後に取得した端子電圧に基づいて残存容量を算出し、当該残存容量も考慮して寿命診断を行うことを特徴とするもの。
  8. 請求項1〜7のいずれかの蓄電池寿命診断装置において、
    前記蓄電池は直列接続された複数のセルを有しており、
    前記寿命診断手段は、前記複数のセルの何れか一つでも正常でないと判断した場合には、前記蓄電池全体を正常でないと判断することを特徴とするもの。
  9. 請求項8の蓄電池寿命診断装置において、
    前記負荷には、直列接続された複数の蓄電池が接続されており、
    前記寿命診断手段は、正常でないと判断したセルを含む蓄電池を正常でないと診断することを特徴とするもの。
  10. 停電時においても負荷への電力供給が絶たれないように負荷に接続される蓄電池のセル寿命を診断するための蓄電池寿命診断装置をコンピュータを用いて実現するためのプログラムであって、
    前記蓄電池のセルについて測定された端子電圧データ、前記蓄電池のセルの内部インピーダンスについて測定された内部インピーダンスデータを受け、
    前記端子電圧の減少率および前記内部インピーダンスの増加率を算出し、当該端子電圧の変化および内部インピーダンスの変化に基づいて、当該セルの寿命を診断する処理をコンピュータに行わせるためのプログラム。
  11. 請求項10に記載のプログラムを記録した記録媒体。
  12. 停電時においても負荷への電力供給が絶たれないように負荷に接続される蓄電池のセル寿命を診断するための蓄電池寿命診断方法であって、
    前記蓄電池のセルの端子電圧を測定し、
    前記蓄電池のセルの内部インピーダンスを測定し、
    前記端子電圧の減少率および前記内部インピーダンスの増加率を算出し、当該端子電圧の変化および内部インピーダンスの変化に基づいて、当該セルの寿命を診断することを特徴とする蓄電池寿命診断方法。
JP2002067950A 2001-03-16 2002-03-13 蓄電池寿命診断装置および寿命診断方法 Expired - Lifetime JP3944904B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002067950A JP3944904B2 (ja) 2001-03-16 2002-03-13 蓄電池寿命診断装置および寿命診断方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-75345 2001-03-16
JP2001075345 2001-03-16
JP2002067950A JP3944904B2 (ja) 2001-03-16 2002-03-13 蓄電池寿命診断装置および寿命診断方法

Publications (3)

Publication Number Publication Date
JP2002350521A JP2002350521A (ja) 2002-12-04
JP2002350521A5 JP2002350521A5 (ja) 2005-07-21
JP3944904B2 true JP3944904B2 (ja) 2007-07-18

Family

ID=26611406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002067950A Expired - Lifetime JP3944904B2 (ja) 2001-03-16 2002-03-13 蓄電池寿命診断装置および寿命診断方法

Country Status (1)

Country Link
JP (1) JP3944904B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714175A (zh) * 2013-12-12 2015-06-17 北京有色金属研究总院 电池系统故障诊断方法及系统
WO2017050471A1 (de) * 2015-09-24 2017-03-30 Robert Bosch Gmbh Verfahren zum überwachen einer batterie

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099791A2 (en) * 2003-04-23 2004-11-18 Powertron Eng'g Co., Ltd Diagnosis for expected life of emergency power apparatus
JP4651316B2 (ja) * 2004-06-21 2011-03-16 中国電力株式会社 配電線遠方監視制御システムの子局のバッテリー管理方式
JP4754509B2 (ja) * 2007-02-08 2011-08-24 富士電機株式会社 蓄電池状態測定装置、蓄電池劣化判定方法、蓄電池劣化判定プログラム
JP5773609B2 (ja) * 2010-10-18 2015-09-02 株式会社Nttファシリティーズ 組電池管理装置および組電池管理方法ならびに組電池システム
JP5992186B2 (ja) * 2012-03-16 2016-09-14 株式会社東芝 二次電池装置および二次電池装置の異常検出方法
JP2014007919A (ja) * 2012-06-27 2014-01-16 Konica Minolta Inc 充電システム、電子機器および充電装置
CN108267693B (zh) * 2017-01-01 2019-07-26 北京当升材料科技股份有限公司 一种锂电池正极材料高温存储性能的快速评价方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714175A (zh) * 2013-12-12 2015-06-17 北京有色金属研究总院 电池系统故障诊断方法及系统
WO2017050471A1 (de) * 2015-09-24 2017-03-30 Robert Bosch Gmbh Verfahren zum überwachen einer batterie
CN108027406A (zh) * 2015-09-24 2018-05-11 罗伯特·博世有限公司 用于监控电池组的方法

Also Published As

Publication number Publication date
JP2002350521A (ja) 2002-12-04

Similar Documents

Publication Publication Date Title
US9190681B2 (en) Method of controlling a fuel cell system using impedance determination
JP4818808B2 (ja) 組電池状態測定装置、組電池劣化判定方法および組電池劣化判定プログラム
TWI286218B (en) Method for determining state-of-health of batteries
JP5499200B2 (ja) 劣化判定装置、劣化判定方法、及びプログラム
JP2007309839A (ja) 組電池状態測定装置、組電池劣化判定方法および組電池劣化判定プログラム
TWI573363B (zh) 電源故障預測的方法、設備及系統
JP5460943B2 (ja) 劣化判定装置、劣化判定方法、コンピュータプログラム
JP2007311255A (ja) 組電池状態測定装置、組電池劣化判定方法および組電池劣化判定プログラム
US20050156603A1 (en) Method of testing a battery pack by purposeful charge/discharge operations
US6922058B2 (en) Method for determining the internal impedance of a battery cell in a string of serially connected battery cells
US10324139B2 (en) Method and electronic device for detecting internal short circuit in battery
JP3944904B2 (ja) 蓄電池寿命診断装置および寿命診断方法
JP2010164441A (ja) 二次電池の劣化診断装置
US9933488B2 (en) Open circuit voltage checking for a battery system
KR20200040056A (ko) 배터리 진단방법 및 장치
CN111521945B (zh) 电池健康状态检测方法、装置、电子设备及存储介质
KR20220102454A (ko) 배터리 시스템 진단 장치 및 방법
EP3278125B1 (en) Apparatus and methods for battery monitoring using discharge pulse measurements
JP2001250590A (ja) 蓄電池の劣化判定方法
CN117706393A (zh) 电池一致性差异检测方法、电子设备及存储介质
JP2000243459A (ja) 蓄電池の寿命判定方法およびそれを用いた寿命判定装置
JP2936441B2 (ja) 蓄電池の容量劣化率演算方法と劣化診断装置
JP2020057565A (ja) 蓄電池の劣化状態診断方法及び劣化状態診断システム
JP2976808B2 (ja) 蓄電池の劣化診断装置
JP4044217B2 (ja) 蓄電池管理装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070401

R150 Certificate of patent or registration of utility model

Ref document number: 3944904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

EXPY Cancellation because of completion of term