JP3944611B2 - Dialkenyl biphenyl derivatives - Google Patents

Dialkenyl biphenyl derivatives Download PDF

Info

Publication number
JP3944611B2
JP3944611B2 JP14570696A JP14570696A JP3944611B2 JP 3944611 B2 JP3944611 B2 JP 3944611B2 JP 14570696 A JP14570696 A JP 14570696A JP 14570696 A JP14570696 A JP 14570696A JP 3944611 B2 JP3944611 B2 JP 3944611B2
Authority
JP
Japan
Prior art keywords
liquid crystal
substituted
general formula
compound
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14570696A
Other languages
Japanese (ja)
Other versions
JPH09328443A (en
Inventor
真治 小川
貞夫 竹原
晴義 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP14570696A priority Critical patent/JP3944611B2/en
Publication of JPH09328443A publication Critical patent/JPH09328443A/en
Application granted granted Critical
Publication of JP3944611B2 publication Critical patent/JP3944611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は新規液晶性化合物である、ジアルケニルビフェニル誘導体、より詳しくは4−アルケニル−4’−アルケニルビフェニル及びそれを含有する液晶組成物に関する。これらは電気光学的液晶表示用、特にネマチック液晶表示用材料として有用である。
【0002】
【従来の技術】
液晶表示素子は、時計、電卓をはじめとして、各種測定機器、自動車用パネル、ワープロ、電子手帳、プリンター、コンピューター、テレビ等に用いられるようになっている。液晶表示方式としては、その代表的なものにTN(捩れネマチック)型、STN(超捩れネマチック)型、DS(動的光散乱)型、GH(ゲスト・ホスト)型あるいはFLC(強誘電性液晶)等があり、また駆動方式としても従来のスタティック駆動からマルチプレックス駆動が一般的になり、さらに単純マトリックス方式、最近ではアクティブマトリックス方式が実用化されている。 これらの表示方式や駆動方式に応じて、液晶材料としても種々の特性が要求されているが、高速応答性は中でも非常に重要な特性である。応答の高速化のためには直接的には(i)粘性を小さくするか、あるいは(ii)弾性定数を大きくすることが必要であるが、弾性定数を大きくすると閾値電圧が上昇することが多いので粘性を小さくすることが効果的である。
【0003】
液晶材料の粘性を小さくするためには、液晶組成物中に粘性の小さい液晶性化合物(いわゆる減粘剤)を適量添加することが一般的である。減粘剤としては通常、2環性のn型液晶性化合物が用いられることが多いが、液晶組成物に添加した場合にそのネマチック相上限温度(TN-I)をあまり低下させないならば、化合物単独では必ずしもネマチック液晶性を示す必要はない。
【0004】
応答の高速化には液晶材料の屈折率異方性も重要な物性である。液晶素子応答を高速化するためには、素子のセル厚を薄くすることが最も効果的であるが、干渉縞の発生によるセルの色むらを防止するためには、セル厚(d(μm))と屈折率異方性(Δn)の積(Δn・d)がある一定の値(0.5、1.0、1.6、2.2)をとらなければならない。通常は0.5あるいは1.0に設定されるが、従ってセル厚を薄くするためには液晶材料の屈折率異方性を大きくする必要がある。現在用いられている減粘剤のなかで、シクロヘキサン系の2環性n型液晶化合物ではこの値が小さいため、屈折率異方性が比較的大きい液晶組成物には充分な量を添加することができず、その効果があまり期待できない。
【0005】
こうした目的にかなうような、減粘効果に優れ且つ屈折率異方性の比較的大きい液晶性化合物としては例えば、一般式(II)
【0006】
【化2】

Figure 0003944611
【0007】
(式中、Ra及びRbは直鎖状アルキル基を表わす。)で表わされるビフェニル誘導体が知られており、現在よく用いられている。しかしながら、この一般式(II)の化合物の減粘効果は、表示品質の向上に伴う液晶材料の粘性低下の要求には応え難くなってきているのが実情である。また、一般式(II)の化合物は液晶性があまり高くなく、その添加によるネマチック相上限温度の降下が著しいという問題点を有する。
【0008】
液晶化合物においてその側鎖アルキル基に二重結合を導入してアルケニルとすることにより粘性の低下や、ネマチック相上限温度の上昇といった効果が得られる場合があることが知られている。そこで本発明者らは一般式(II)の化合物において片側の側鎖をアルケニル基に変換した一般式(III)
【0009】
【化3】
Figure 0003944611
【0010】
(式中、Rcは直鎖状アルキル基を表わし、lは2以上の整数を表わし、Rdは水素原子又はアルキル基を表わす。)のビフェニル誘導体を合成し、その減粘剤としての効果を検討した。しかしながら、一般式(III)の化合物は液晶組成物に添加した場合のネマチック相上限温度に関しては若干の効果が見られたものの、予想に反して粘性においては一般式(II)の化合物より劣っていた。
【0011】
従って、減粘効果に優れ且つ屈折率異方性の比較的大きい液晶性化合物であって、且つ液晶組成物に添加した場合のネマチック相上限温度の降下がより少ない減粘剤が要求されている。
【0012】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、以上の目的に応じるため、減粘効果に優れた液晶性化合物としてジアルケニルビフェニル誘導体を提供し、さらにこれを用いて低粘性で液晶温度範囲が広い液晶組成物を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、上記課題を解決するために、一般式(I)
【0014】
【化4】
Figure 0003944611
【0015】
(式中、R及びR’はそれぞれ独立的に水素原子又は炭素原子数1〜5のアルキル基を表わし、R及び/又はR’がアルキル基の場合、それに隣接する二重結合はトランス(E)又はシス(Z)配置を表わし、m及びnはm≦nであってそれぞれ独立的に2〜8の整数を表わす。)で表わされるジアルケニルビフェニル誘導体を提供する。
【0016】
式中、R及びR’は好ましくは水素原子又は炭素原子数1〜3の直鎖状アルキル基を表わし、さらに好ましくは水素を表わす。m及びnは好ましくは2〜4の整数を表わす。さらに側鎖があまり長くなると減粘効果が低下するのでm+nは6以下であることがさらに好ましく、特にmは2が好ましい。又、m=n=2が好ましい。
【0017】
従って、一般式(I)で表わされる化合物のうち好ましいのは以下の式(Ia)〜(If)
【0018】
【化5】
Figure 0003944611
Figure 0003944611
Figure 0003944611
Figure 0003944611
Figure 0003944611
Figure 0003944611
の各化合物であり、この中でも式(Ia)が特に好ましい。
一般式(I)の化合物は一般的には以下のように、一般式(IVa)
【0019】
【化6】
Figure 0003944611
【0020】
(式中、R及びmは一般式(I)におけると同じ意味を表わし、XはMgCl、MgBr、MgI、Li、B(OH)2、TiR1R2、SiR3R4R5、SnR6R7R8を表わす。ここでR1〜R8は低級アルキル基、アリール基又はハロゲン原子を表わす。)で表わされる有機金属化合物と、一般式(Vb)
【0021】
【化7】
Figure 0003944611
【0022】
(式中、R’及びnは一般式(I)におけると同じ意味を表わし、Yは塩素原子、臭素原子、ヨウ素原子、p−トルエンスルホニル基、メタンスルホニル基あるいはトリフルオロメタンスルホニル基等の脱離基を表わす。)で表わされる化合物とを遷移金属触媒の存在下に反応させることにより製造することができる。ここで遷移金属触媒としてはパラジウム(0)系、パラジウム(II)系及びニッケル(II)系等が一般的に用いられる。もちろん一般式(IVa)と一般式(Vb)を用いる代わりに、一般式(Va)
【0023】
【化8】
Figure 0003944611
【0024】
(式中、R’、n及びXは前述の意味を表わす。)で表わされる有機金属化合物と、一般式(IVb)
【0025】
【化9】
Figure 0003944611
【0026】
(式中、R、m及びYは前述の意味を表わす。)で表わされる化合物とを同様に反応させても良い。
あるいは、特にR=R’であり、且つm=nである場合には、一般式(IVc)
【0027】
【化10】
Figure 0003944611
【0028】
(式中、R及びmは前述の意味を表わし、Zは臭素原子又はヨウ素原子を表わす。)で表わされるハロゲン化ベンゼン誘導体を銅粉存在下に加熱することにより製造することもできる。
【0029】
また、このR=R’であり且つm=nである場合に限り、式(VIa)
【0030】
【化11】
Figure 0003944611
【0031】
の4,4’−ジホルミルビフェニルに式(VIIa)
【0032】
【化12】
Figure 0003944611
【0033】
のウィッティヒ反応剤を反応させ、次いで酸で加水分解する工程をm回繰り返し、一般式(VIb)
【0034】
【化13】
Figure 0003944611
【0035】
(式中、mは前述の意味を表わす。)で表わされるビフェニル−4,4’−ジアルカナールを得て、これに一般式(VIIb)
【0036】
【化14】
Figure 0003944611
【0037】
(式中、Rは前述の意味を表わす。)で表わされるウィッティヒ反応剤を反応させることによる製造方法も考えることができる。しかしながら、この方法では中間体の溶媒に対する溶解度が極端に低いこと、加水分解の進行が遅く副反応が優先して起こり目的物の反応収率が非常に低いなどの問題点があり、実際にこの方法で製造することは不可能に近い。
【0038】
斯くして製造された本発明の化合物を液晶組成物中に添加することにより得られる優れた効果は以下の通りである。
本発明の一般式(I)で表わされる化合物の中で代表的な化合物の一つである式(Ia)
【0039】
【化15】
Figure 0003944611
【0040】
の化合物30重量%及びホスト液晶組成物(H)
【0041】
【化16】
Figure 0003944611
【0042】
70重量%からなる液晶組成物(M−a)を調製した。ここでホスト液晶(H)の物性値は以下の通りである。
ネマチック相上限温度(TN-I): 116.7℃
粘度(20℃): 19.8cp
応答時間(τr=τd): 21.5m秒
屈折率異方性(Δn): 0.090
ここで、粘度は20℃における測定値、応答時間は厚さ4.5μmのTNセルに封入した場合に、立ち上がり時間(τr)と立ち下がり時間(τd)が等しくなる電圧印加時の測定値である。
【0043】
このとき、(M−a)の物性値は以下の通りとなった。
N-I: 76.4℃
粘度(20℃): 13.1cp
応答時間(τr=τd): 12.0m秒
屈折率異方性(Δn): 0.113
これに対して、一般式(II)で表わされる化合物のうち、代表的な化合物の一つである一般式(IIa)
【0044】
【化17】
Figure 0003944611
【0045】
30重量%及びホスト液晶(H)70重量%からなる液晶組成物(MR−1)の物性値は以下の通りであった。
N-I: 70.2℃
粘度(20℃): 14.3cp
応答時間(τr=τd): 13.3m秒
屈折率異方性(Δn): 0.107
以上から明らかなように、一般式(Ia)、一般式(IIa)の化合物は共にホスト液晶(H)に添加することによりその粘性及び応答性を大幅に改善させているけれども、一般式(Ia)の方がより改善効果が著しいことがわかる。さらに(M−1)のTN-Iは(MR−1)よりも約6゜も高く、本発明の一般式(Ia)の化合物は、比較化合物である一般式(IIa)と比較するとネマチック相上限温度をあまり低下させないことが理解できる。また、屈折率異方性も(M−1)がやや大きい。
【0046】
また、片方の側鎖がアルケニル基である一般式(III)で表わされる化合物のうち、代表的な化合物の一つである一般式(IIIa)
【0047】
【化18】
Figure 0003944611
【0048】
30重量%及びホスト液晶(H)70重量%からなる液晶組成物(MR−2)を調整した。その物性値は以下の通りであった。
N-I: 71.2℃
粘度(20℃): 18.9cp
応答時間(τr=τd): 15.0m秒
屈折率異方性(Δn): 0.108
以上からTN-Iは(MR−1)よりわずかに高いけれども、本発明の一般式(Ia)の化合物を含有する(M−1)と比較するとかなり低く、応答時間や粘性では(MR−2)にもはるかに劣っていることがわかる。従って、本発明の一般式(I)の化合物は従来から知られているビフェニル系の減粘性液晶性化合物と比較して、その両側鎖にアルケニル基を導入することにより、予想もできなかったような優れた効果を示すことが明らかとなった。
【0049】
従って、一般式(I)の化合物は、他のネマチック液晶化合物との混合物の状態で、TN型あるいはSTN型等の電界効果型表示セル用として、特に低粘性高速応答性の材料として好適に使用することができる。また一般式(I)の化合物は分子内に強い極性基を持たないので、大きい比抵抗と高い電圧保持率を得ることが容易であり、アクティブマトリックス駆動用液晶材料の構成成分として使用することも可能である。本発明はこのように一般式(I)で表わされる化合物の少なくとも1種類をその構成成分として含有する液晶組成物をも提供するものであり、特に、一般式(I)においてm及びnがそれぞれ独立的に2〜4の整数である化合物を含有する液晶組成物、あるいは一般式(I)においてm=n=2である化合物を含有する液晶組成物が好ましい。
【0050】
この組成物中において、一般式(I)の化合物と混合して使用することのできるネマチック液晶化合物の好ましい代表例としては、例えば、4−置換安息香酸4−置換フェニル、4−置換シクロヘキサンカルボン酸4−置換フェニル、4−置換シクロヘキサンカルボン酸4’−置換ビフェニリル、4−(4−置換シクロヘキサンカルボニルオキシ)安息香酸4−置換フェニル、4−(4−置換シクロヘキシル)安息香酸4−置換フェニル、4−(4−置換シクロヘキシル)安息香酸4−置換シクロヘキシル、4,4’−置換ビフェニル、1−(4−置換シクロヘキシル)−4−置換ベンゼン、4,4’−置換ビシクロヘキサン、1−[2−(4−置換シクロヘキシル)エチル]−4−置換ベンゼン、1−(4−置換シクロヘキシル)−2−(4−置換シクロヘキシル)エタン、4,4”−置換ターフェニル、4−(4−置換シクロヘキシル)−4’−置換ビフェニル、4−[2−(4−置換シクロヘキシル)エチル]−4’−置換ビフェニル、4−(4−置換フェニル)−4’−置換ビシクロヘキサン、4−[2−(4−置換シクロヘキシル)エチル]−4’−置換ビフェニル、4−[2−(4−置換シクロヘキシル)エチル]シクロヘキシル−4’−置換ベンゼン、4−[2−(4−置換フェニル)エチル]−4’−置換ビシクロヘキサン、1−(4−置換フェニルエチニル)−4−置換ベンゼン、1−(4−置換フェニルエチニル)−4−(4−置換シクロヘキシル)ベンゼン、2−(4−置換フェニル)−5−置換ピリミジン、2−(4’−置換ビフェニリル)−5−置換ピリミジン及び上記各化合物においてベンゼン環が側方置換基を有する化合物等を挙げることができる。
【0051】
このうちアクティブマトリックス駆動用としては4,4’−置換ビフェニル、1−(4−置換シクロヘキシル)−4−置換ベンゼン、4,4’−置換ビシクロヘキサン、1−[2−(4−置換シクロヘキシル)エチル]−4−置換ベンゼン、1−(4−置換シクロヘキシル)−2−(4−置換シクロヘキシル)エタン、4,4”−置換ターフェニル、4−(4−置換シクロヘキシル)−4’−置換ビフェニル、4−[2−(4−置換シクロヘキシル)エチル]−4’−置換ビフェニル、4−(4−置換フェニル)−4’−置換ビシクロヘキサン、4−[2−(4−置換シクロヘキシル)エチル]−4’−置換ビフェニル、4−[2−(4−置換シクロヘキシル)エチル]シクロヘキシル−4’−置換ベンゼン、4−[2−(4−置換フェニル)エチル]−4’−置換ビシクロヘキサン、1−(4−置換フェニルエチニル)−4−置換ベンゼン、1−(4−置換フェニルエチニル)−4−(4−置換シクロヘキシル)ベンゼン及び上記においてベンゼン環がフッ素置換されている化合物が適している。
【0052】
本発明の一般式(I)の化合物は新規であり、本発明者等がはじめて報告するものであるが、液晶分子の両側鎖がともにアルケニル基である化合物は知られていなかったわけでなく、特開昭61−83136号公報において式(Ra)あるいは式(Rb)
【0053】
【化19】
Figure 0003944611
Figure 0003944611
【0054】
等の化合物が既に報告されている。この特開昭61−83136号公報に記載されている一般式の範囲は非常に広く、極めて広義に解釈するならば、本発明の化合物もこの一般式に包含されると考えられなくもない。しかしながら、以下に述べるように本発明は特開昭61−83136号公報とは独立して新規であると考えられるべきでる。
【0055】
まず、特開昭61−83136号公報には側鎖の一方がアルケニル(あるいはアルケニルオキシ)基である化合物と両方がアルケニル(あるいはアルケニルオキシ)基である化合物とが含まれるが、一方がアルケニル(あるいはアルケニルオキシ)基である化合物と比較して、両方の側鎖をアルケニル(あるいはアルケニルオキシ)基とすることによる効果については全くふれられていない。また、特開昭61−83136号公報に記載されている一般式は、その選択により中心骨格だけでも1000種類をはるかに越える組み合わせが可能であって、実際に合成されているものはそのうちのわずかにすぎない。本文中には好ましい液晶中心骨格(コア)としてその例が18例挙げられているが、この中には本発明の化合物のようにビフェニル骨格は含まれていない。実際、両側鎖がアルケニル基(アルケニルオキシ基ではなく)である化合物の例はほとんどがエステル化合物であり、本発明の一般式(I)の化合物のようなビフェニル誘導体の例はない。さらに、特開昭61−83136号公報に記載されている合成方法を用いて本発明の一般式(I)の化合物を製造しようとすると、4’−アルケニル−4−シアノビフェニルにアルケニルグリニヤール反応剤を反応させ、加水分解して得られたケトンをヒドラジンでWolff-Kishner還元する方法に限られる。しかしながら、この方法では還元時に2重結合の移動が生じる危険性が強く、例えば3−アルケニル基を導入することは非常に困難である。
【0056】
以上のように本発明の化合物は特開昭61−83136号公報に含まれるものでも、あるいはそれにより容易に類推できるものでもないことは明らかであり、新規であると考えられるべきであることがわかる。
【0057】
【実施例】
以下に本発明の実施例を示し、本発明を更に説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。
【0058】
化合物の構造は、核磁気共鳴スペクトル(NMR)、質量スペクトル(MS)及び赤外吸収スペクトル(IR)により確認した。また転移温度の測定はホットステージを備えた偏光顕微鏡で行った。組成物の「%」は「重量%」を表わす。
(実施例1) 4,4’−ビス(3−ブテニル)ビフェニルの合成。
【0059】
【化20】
Figure 0003944611
【0060】
マグネシウム2.1gを乾燥させたテトラヒドロフラン(THF)5mL中に懸濁させた。これに4−ブロモ−1−(3−ブテニル)ベンゼン18.0gのTHF72mL溶液を溶媒が穏やかに還流する速度で滴下した。滴下終了後、攪拌しながら室温まで放冷し不溶物を濾別してグリニヤール反応剤を調製した。4−ブロモ−1−(3−ブテニル)ベンゼン16.4gのTHF50mL溶液にテトラキス(トリフェニルホスフィン)パラジウム(0)900mgを加えた。これに上記のグリニヤール反応剤溶液を30℃以下で2時間かけて滴下し、さらに室温で5時間攪拌した。稀塩酸を加え、ヘキサンで抽出し、水次いで飽和食塩水で洗滌し、無水硫酸ナトリウムで脱水乾燥させた。溶媒を溜去して得られた粗生成物21.3gをシリカゲルカラムクロマトグラフィーを用いて精製しさらにエタノールから低温で再結晶させて、表記化合物13.8gを得た。
【0061】
相転移温度: 20℃以下(Cr→S)、 71℃(S→I)、
MS: m/e=262(P+)
1HNMR:δ=2.1〜2.7(m,8H)、4.9〜5.1(m,2H)、7.1(d,4H,J=8.2Hz)
(実施例2) 液晶組成物の調製
特にアクティブマトリックス駆動用として好適なホスト液晶(H)
【0062】
【化21】
Figure 0003944611
【0063】
を調製した。この(H)の物性値は以下の通りである。
ネマチック相上限温度(TN-I): 116.7℃
粘度(20℃): 19.8cp
応答時間(τr=τd): 21.5m秒
屈折率異方性(Δn): 0.090
ここで、粘度は20℃における測定値、応答時間は厚さ4.5μmのTNセルに封入した場合に、立ち上がり時間(τr)と立ち下がり時間(τd)が等しくなる電圧印加時の測定値である。
【0064】
このホスト液晶(H)70%及び実施例1で得た式(Ia)
【0065】
【化22】
Figure 0003944611
【0066】
30%からなる液晶組成物(M−a)を調製した。このとき、(M−a)の物性値は以下の通りであった。
N-I: 76.4℃
粘度(20℃): 13.1cp
応答時間(τr=τd): 12.0m秒
屈折率異方性(Δn): 0.113
このように、ネマチック相上限温度(TN-I)は降下しているけれども、その粘度は大幅に低下し、応答時間も大幅に改善されていることがわかる。また、屈折率異方性も25%も大きくすることができた。従って、一般式(I)の化合物は低粘性高速応答性液晶組成物の構成成分として非常に有用であることがわかる。(比較例1)
実施例2において、式(Ia)の化合物に換えて、両側鎖が直鎖状アルキル基である本発明外の一般式(II)で表わされる化合物の中で代表的な化合物の一つである式(IIa)
【0067】
【化23】
Figure 0003944611
【0068】
30重量%及びホスト液晶(H)70重量%からなる液晶組成物(MR−1)を調製した。この物性値は以下の通りであった。
N-I: 70.2℃
粘度(20℃): 14.3cp
応答時間(τr=τd): 13.3m秒
屈折率異方性(Δn): 0.107
このように、式(IIa)の化合物もホスト液晶(H)に添加することによりその粘性及び応答性を大幅に改善させているけれども、本発明の式(Ia)と比較するとその改善効果は少し劣っている。さらに(MR−1)のTN-Iは(M−1)よりも約6゜も低く、式(IIa)の化合物は式(Ia)の化合物よりもネマチック相上限温度の降下の度合いが大きくなってしまっていることがわかる。また、屈折率異方性も(M−1)ほど大きくすることができない。
(比較例2)
実施例2において、式(Ia)の化合物に換えて、片方の側鎖がアルケニル基である本発明外の一般式(III)で表わされる化合物のうち、代表的な化合物の一つである式(IIIa)
【0069】
【化24】
Figure 0003944611
【0070】
30%及びホスト液晶(H)70%からなる液晶組成物(MR−2)を調製した。この物性値は以下の通りであった。
N-I: 71.2℃
粘度(20℃): 18.9cp
応答時間(τr=τd): 15.0m秒
屈折率異方性(Δn): 0.108
以上から(MR−2)のTN-Iは(MR−1)よりわずかに高いけれども、本発明に係わる(M−1)と比較するとかなり低く、応答時間や粘性の改善効果においては(MR−2)のほうがはるかに劣っていることがわかる。
【0071】
従って、本発明の一般式(I)の化合物は従来から知られているビフェニル系の減粘性液晶性化合物と比較して、その両側鎖にアルケニル基を導入することにより、予想もできなかったような優れた効果を示すことが明らかとなった。
【0072】
【発明の効果】
本発明により提供される、ジアルケニルビフェニル誘導体は、実施例にも示したように市販の入手容易な化合物から工業的にも容易に製造することができる。得られたジアルケニルビフェニル誘導体を含有する液晶組成物は、従来用いられている同様あるいは類似骨格を有する減粘性液晶性化合物と比較して、その減粘効果及び応答性の改善効果に優れるため、実用的液晶として特に高速応答を必要とする液晶表示用として極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dialkenyl biphenyl derivative, more specifically a 4-alkenyl-4′-alkenyl biphenyl, which is a novel liquid crystal compound, and a liquid crystal composition containing the same. These are useful as electro-optical liquid crystal display materials, particularly as nematic liquid crystal display materials.
[0002]
[Prior art]
Liquid crystal display elements are used in various measuring instruments, automobile panels, word processors, electronic notebooks, printers, computers, televisions, etc., including watches and calculators. Typical liquid crystal display methods include TN (twisted nematic), STN (super twisted nematic), DS (dynamic light scattering), GH (guest / host), or FLC (ferroelectric liquid crystal). In addition, as a driving method, a multiplex drive is generally used instead of a conventional static drive, and a simple matrix method and recently an active matrix method have been put into practical use. Various characteristics are required as a liquid crystal material according to these display methods and driving methods, but high-speed response is a very important characteristic. In order to speed up the response, it is necessary to directly (i) reduce the viscosity or (ii) increase the elastic constant. However, increasing the elastic constant often increases the threshold voltage. Therefore, it is effective to reduce the viscosity.
[0003]
In order to reduce the viscosity of the liquid crystal material, it is common to add an appropriate amount of a liquid crystal compound having a low viscosity (so-called viscosity reducer) to the liquid crystal composition. In general, a bicyclic n-type liquid crystalline compound is often used as the viscosity reducing agent. However, if the nematic phase upper limit temperature (T NI ) is not lowered so much when added to the liquid crystal composition, the compound alone is used. Thus, it is not always necessary to exhibit nematic liquid crystallinity.
[0004]
The refractive index anisotropy of the liquid crystal material is also an important physical property for speeding up the response. In order to increase the response speed of the liquid crystal element, it is most effective to reduce the cell thickness of the element, but in order to prevent the color unevenness of the cell due to the generation of interference fringes, the cell thickness (d (μm)) ) And refractive index anisotropy (Δn) (Δn · d) must take a certain value (0.5, 1.0, 1.6, 2.2). Usually, it is set to 0.5 or 1.0. Therefore, in order to reduce the cell thickness, it is necessary to increase the refractive index anisotropy of the liquid crystal material. Among the currently used thinning agents, this value is small for cyclohexane-based bicyclic n-type liquid crystal compounds, so a sufficient amount should be added to a liquid crystal composition having a relatively large refractive index anisotropy. Cannot be expected.
[0005]
Examples of the liquid crystal compound that has such an excellent viscosity reducing effect and has a relatively large refractive index anisotropy that can meet these purposes include, for example, the general formula (II)
[0006]
[Chemical 2]
Figure 0003944611
[0007]
(In the formula, Ra and Rb each represent a linear alkyl group) are known, and are currently often used. However, the actual situation is that the thinning effect of the compound of the general formula (II) has become difficult to meet the demand for lowering the viscosity of the liquid crystal material as the display quality is improved. Further, the compound of the general formula (II) has a problem that the liquid crystallinity is not so high and the drop of the nematic phase upper limit temperature due to the addition thereof is remarkable.
[0008]
It is known that by introducing a double bond into the side chain alkyl group of a liquid crystal compound to form alkenyl, effects such as a decrease in viscosity and an increase in the nematic phase upper limit temperature may be obtained. Therefore, the present inventors have changed the general formula (III) in which one side chain is converted to an alkenyl group in the compound of the general formula (II).
[0009]
[Chemical 3]
Figure 0003944611
[0010]
(Wherein Rc represents a linear alkyl group, l represents an integer of 2 or more, and Rd represents a hydrogen atom or an alkyl group) and a biphenyl derivative was synthesized, and its effect as a thinning agent was examined. did. However, although the compound of the general formula (III) has some effect on the upper limit temperature of the nematic phase when added to the liquid crystal composition, contrary to expectation, the viscosity is inferior to the compound of the general formula (II). It was.
[0011]
Accordingly, there is a demand for a thinning agent that is a liquid crystalline compound that has an excellent viscosity reducing effect and a relatively large refractive index anisotropy, and that has a lower drop in the nematic phase upper limit temperature when added to a liquid crystal composition. .
[0012]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a dialkenyl biphenyl derivative as a liquid crystalline compound having an excellent viscosity-reducing effect in order to meet the above-mentioned purpose, and further to use this, a liquid crystal composition having a low viscosity and a wide liquid crystal temperature range. To provide things.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a compound represented by the general formula (I)
[0014]
[Formula 4]
Figure 0003944611
[0015]
(In the formula, R and R ′ each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and when R and / or R ′ is an alkyl group, the double bond adjacent thereto is trans (E Or a cis (Z) configuration, and m and n are each m ≦ n and each independently represents an integer of 2 to 8.)
[0016]
In the formula, R and R ′ preferably represent a hydrogen atom or a linear alkyl group having 1 to 3 carbon atoms, more preferably hydrogen. m and n preferably represent an integer of 2 to 4. Further, if the side chain becomes too long, the effect of reducing the viscosity is lowered. Therefore, m + n is more preferably 6 or less, and in particular, m is preferably 2. Moreover, m = n = 2 is preferable.
[0017]
Accordingly, among the compounds represented by the general formula (I), the following formulas (Ia) to (If) are preferred.
[0018]
[Chemical formula 5]
Figure 0003944611
Figure 0003944611
Figure 0003944611
Figure 0003944611
Figure 0003944611
Figure 0003944611
Of these, the compound of formula (Ia) is particularly preferred.
The compounds of general formula (I) generally have the general formula (IVa)
[0019]
[Chemical 6]
Figure 0003944611
[0020]
(Wherein R and m represent the same meaning as in general formula (I), X represents MgCl, MgBr, MgI, Li, B (OH) 2 , TiR1R2, SiR3R4R5, SnR6R7R8, where R1 to R8 are An organometallic compound represented by a lower alkyl group, an aryl group or a halogen atom) and a general formula (Vb)
[0021]
[Chemical 7]
Figure 0003944611
[0022]
(Wherein R ′ and n represent the same meaning as in general formula (I), and Y represents elimination of a chlorine atom, bromine atom, iodine atom, p-toluenesulfonyl group, methanesulfonyl group, trifluoromethanesulfonyl group, etc. In the presence of a transition metal catalyst. Here, as the transition metal catalyst, palladium (0), palladium (II), nickel (II) and the like are generally used. Of course, instead of using the general formula (IVa) and the general formula (Vb), the general formula (Va)
[0023]
[Chemical 8]
Figure 0003944611
[0024]
(Wherein R ′, n and X represent the above-mentioned meanings) and a general formula (IVb)
[0025]
[Chemical 9]
Figure 0003944611
[0026]
(Wherein, R, m and Y represent the above-mentioned meanings) may be reacted in the same manner.
Alternatively, particularly when R = R ′ and m = n, the general formula (IVc)
[0027]
[Chemical Formula 10]
Figure 0003944611
[0028]
(In the formula, R and m represent the above-mentioned meanings, and Z represents a bromine atom or an iodine atom.) The halogenated benzene derivative represented by the formula can be heated in the presence of copper powder.
[0029]
Only when R = R ′ and m = n, the formula (VIa)
[0030]
Embedded image
Figure 0003944611
[0031]
Of 4,4′-diformylbiphenyl of formula (VIIa)
[0032]
Embedded image
Figure 0003944611
[0033]
The process of reacting the Wittig reagent of the following, followed by hydrolysis with acid was repeated m times to give a compound of the general formula (VIb)
[0034]
Embedded image
Figure 0003944611
[0035]
(Wherein m represents the above-mentioned meaning), biphenyl-4,4′-dialkanal represented by general formula (VIIb)
[0036]
Embedded image
Figure 0003944611
[0037]
A production method by reacting a Wittig reagent represented by the formula (wherein R represents the aforementioned meaning) can also be considered. However, this method has problems that the solubility of the intermediate in the solvent is extremely low, the progress of hydrolysis is slow and the side reaction takes precedence, and the reaction yield of the target product is very low. It is almost impossible to manufacture by the method.
[0038]
The excellent effects obtained by adding the thus-produced compound of the present invention to the liquid crystal composition are as follows.
Formula (Ia) which is one of the representative compounds among the compounds represented by formula (I) of the present invention
[0039]
Embedded image
Figure 0003944611
[0040]
30% by weight of the compound and host liquid crystal composition (H)
[0041]
Embedded image
Figure 0003944611
[0042]
A liquid crystal composition (M-a) comprising 70% by weight was prepared. Here, the physical properties of the host liquid crystal (H) are as follows.
Nematic phase upper limit temperature (T NI ): 116.7 ° C.
Viscosity (20 ° C.): 19.8 cp
Response time (τr = τd): 21.5 ms Refractive index anisotropy (Δn): 0.090
Here, the viscosity is a measured value at 20 ° C., and the response time is a measured value when a voltage is applied so that the rise time (τr) and the fall time (τd) are equal when sealed in a TN cell having a thickness of 4.5 μm. is there.
[0043]
At this time, the physical properties of (M−a) were as follows.
T NI : 76.4 ℃
Viscosity (20 ° C.): 13.1 cp
Response time (τr = τd): 12.0 ms Refractive index anisotropy (Δn): 0.113
On the other hand, among the compounds represented by the general formula (II), the general formula (IIa) which is one of representative compounds.
[0044]
Embedded image
Figure 0003944611
[0045]
The physical properties of the liquid crystal composition (MR-1) comprising 30% by weight and 70% by weight of the host liquid crystal (H) were as follows.
T NI : 70.2 ℃
Viscosity (20 ° C.): 14.3 cp
Response time (τr = τd): 13.3 ms Refractive index anisotropy (Δn): 0.107
As is apparent from the above, the compounds of general formula (Ia) and general formula (IIa) are both improved in viscosity and responsiveness by adding to the host liquid crystal (H). It can be seen that the improvement effect is more remarkable. Further (M-1) T NI of about 6゜Mo higher than (MR-1), compounds of general formula (Ia) of the present invention, compared to the nematic phase upper limit formula and (IIa) is a comparative compound It can be seen that the temperature is not reduced too much. Also, the refractive index anisotropy (M-1) is slightly large.
[0046]
Further, among the compounds represented by the general formula (III) in which one side chain is an alkenyl group, the general formula (IIIa) which is one of representative compounds.
[0047]
Embedded image
Figure 0003944611
[0048]
A liquid crystal composition (MR-2) composed of 30% by weight and host liquid crystal (H) 70% by weight was prepared. The physical property values were as follows.
T NI : 71.2 ℃
Viscosity (20 ° C.): 18.9 cp
Response time (τr = τd): 15.0 msec Refractive index anisotropy (Δn): 0.108
From the above, although TNI is slightly higher than (MR-1), it is considerably lower than (M-1) containing the compound of general formula (Ia) of the present invention, and in response time and viscosity (MR-2) You can see that it is far inferior. Therefore, the compound of the general formula (I) of the present invention was not expected by introducing an alkenyl group into both side chains as compared with the conventionally known biphenyl-based thinning liquid crystalline compounds. It became clear that it showed the outstanding effect.
[0049]
Therefore, the compound of the general formula (I) is suitably used as a low-viscosity and fast-responsive material for field effect display cells such as TN type or STN type in a mixture with other nematic liquid crystal compounds. can do. In addition, since the compound of the general formula (I) does not have a strong polar group in the molecule, it is easy to obtain a large specific resistance and a high voltage holding ratio, and it can be used as a constituent component of a liquid crystal material for active matrix driving. Is possible. The present invention thus also provides a liquid crystal composition containing at least one compound represented by the general formula (I) as a constituent component. In particular, in the general formula (I), each of m and n is A liquid crystal composition containing a compound independently of an integer of 2 to 4 or a liquid crystal composition containing a compound where m = n = 2 in the general formula (I) is preferable.
[0050]
In this composition, preferable representative examples of the nematic liquid crystal compound that can be used by mixing with the compound of the general formula (I) include, for example, 4-substituted benzoic acid 4-substituted phenyl, 4-substituted cyclohexanecarboxylic acid 4-substituted phenyl, 4-substituted cyclohexanecarboxylic acid 4′-substituted biphenylyl, 4- (4-substituted cyclohexanecarbonyloxy) benzoic acid 4-substituted phenyl, 4- (4-substituted cyclohexyl) benzoic acid 4-substituted phenyl, 4 -(4-substituted cyclohexyl) benzoic acid 4-substituted cyclohexyl, 4,4'-substituted biphenyl, 1- (4-substituted cyclohexyl) -4-substituted benzene, 4,4'-substituted bicyclohexane, 1- [2- (4-Substituted cyclohexyl) ethyl] -4-substituted benzene, 1- (4-substituted cyclohexyl) -2- (4- Substituted cyclohexyl) ethane, 4,4 "-substituted terphenyl, 4- (4-substituted cyclohexyl) -4'-substituted biphenyl, 4- [2- (4-substituted cyclohexyl) ethyl] -4'-substituted biphenyl, 4, -(4-substituted phenyl) -4'-substituted bicyclohexane, 4- [2- (4-substituted cyclohexyl) ethyl] -4'-substituted biphenyl, 4- [2- (4-substituted cyclohexyl) ethyl] cyclohexyl- 4′-substituted benzene, 4- [2- (4-substituted phenyl) ethyl] -4′-substituted bicyclohexane, 1- (4-substituted phenylethynyl) -4-substituted benzene, 1- (4-substituted phenylethynyl) ) -4- (4-substituted cyclohexyl) benzene, 2- (4-substituted phenyl) -5-substituted pyrimidine, 2- (4'-substituted biphenylyl) -5-substituted pyrimidine and above Benzene ring in each compound can be exemplified compounds having a lateral substituent.
[0051]
Among these, for active matrix driving, 4,4′-substituted biphenyl, 1- (4-substituted cyclohexyl) -4-substituted benzene, 4,4′-substituted bicyclohexane, 1- [2- (4-substituted cyclohexyl) Ethyl] -4-substituted benzene, 1- (4-substituted cyclohexyl) -2- (4-substituted cyclohexyl) ethane, 4,4 "-substituted terphenyl, 4- (4-substituted cyclohexyl) -4'-substituted biphenyl 4- [2- (4-substituted cyclohexyl) ethyl] -4′-substituted biphenyl, 4- (4-substituted phenyl) -4′-substituted bicyclohexane, 4- [2- (4-substituted cyclohexyl) ethyl] -4'-substituted biphenyl, 4- [2- (4-substituted cyclohexyl) ethyl] cyclohexyl-4'-substituted benzene, 4- [2- (4-substituted phenyl) ethyl] -4'-substituted bicyclohexane, 1- (4-substituted phenylethynyl) -4-substituted benzene, 1- (4-substituted phenylethynyl) -4- (4-substituted cyclohexyl) benzene and the above, the benzene ring is substituted with fluorine Suitable compounds are suitable.
[0052]
The compound of the general formula (I) of the present invention is novel and has been reported for the first time by the present inventors. However, a compound in which both side chains of the liquid crystal molecule are both alkenyl groups has not been known. In Japanese Kokai 61-83136, the formula (Ra) or the formula (Rb)
[0053]
Embedded image
Figure 0003944611
Figure 0003944611
[0054]
Have already been reported. The range of the general formula described in JP-A-61-83136 is very wide, and if interpreted in a very broad sense, the compound of the present invention is not considered to be included in this general formula. However, as described below, the present invention should be considered novel independently of JP-A-61-83136.
[0055]
First, JP-A-61-83136 includes a compound in which one of the side chains is an alkenyl (or alkenyloxy) group and a compound in which both are alkenyl (or alkenyloxy) groups. Or, compared with a compound that is an alkenyloxy) group, the effect of making both side chains alkenyl (or alkenyloxy) groups is not mentioned at all. In addition, the general formula described in JP-A-61-83136 can be selected from a combination of far more than 1000 types with only the central skeleton, and only a few of them are actually synthesized. Only. In the text, 18 examples are given as preferred liquid crystal central skeletons (cores), but these do not contain a biphenyl skeleton like the compounds of the present invention. In fact, most examples of compounds in which both side chains are alkenyl groups (not alkenyloxy groups) are ester compounds, and there are no examples of biphenyl derivatives such as the compounds of general formula (I) of the present invention. Furthermore, when an attempt is made to produce the compound of the general formula (I) of the present invention using the synthesis method described in JP-A-61-83136, an alkenyl Grignard reagent is added to 4′-alkenyl-4-cyanobiphenyl. The ketone obtained by reacting and hydrolyzing is limited to the method of Wolff-Kishner reduction with hydrazine. However, in this method, there is a high risk that a double bond will move during reduction, and it is very difficult to introduce, for example, a 3-alkenyl group.
[0056]
As described above, it is clear that the compounds of the present invention are not included in Japanese Patent Application Laid-Open No. 61-83136, or can be easily inferred therefrom, and should be considered novel. Recognize.
[0057]
【Example】
The following examples further illustrate the present invention. However, the present invention is not limited to these examples.
[0058]
The structure of the compound was confirmed by nuclear magnetic resonance spectrum (NMR), mass spectrum (MS) and infrared absorption spectrum (IR). The transition temperature was measured with a polarizing microscope equipped with a hot stage. “%” In the composition represents “% by weight”.
Example 1 Synthesis of 4,4′-bis (3-butenyl) biphenyl.
[0059]
Embedded image
Figure 0003944611
[0060]
2.1 g of magnesium was suspended in 5 mL of dried tetrahydrofuran (THF). To this, dropwise was added dropwise a solution of 18.0 g of 4-bromo-1- (3-butenyl) benzene in 72 mL of THF at a rate at which the solvent gently refluxed. After completion of the dropwise addition, the mixture was allowed to cool to room temperature with stirring, and insoluble matters were filtered off to prepare a Grignard reactant. To a solution of 16.4 g of 4-bromo-1- (3-butenyl) benzene in 50 mL of THF was added 900 mg of tetrakis (triphenylphosphine) palladium (0). To this was added dropwise the Grignard reactant solution at 30 ° C. or less over 2 hours, and the mixture was further stirred at room temperature for 5 hours. Dilute hydrochloric acid was added, and the mixture was extracted with hexane, washed with water and then with saturated brine, and dried over anhydrous sodium sulfate. The crude product (21.3 g) obtained by distilling off the solvent was purified using silica gel column chromatography and further recrystallized from ethanol at a low temperature to obtain 13.8 g of the title compound.
[0061]
Phase transition temperature: 20 ° C. or less (Cr → S), 71 ° C. (S → I),
MS: m / e = 262 (P +)
1HNMR: δ = 2.1 to 2.7 (m, 8H), 4.9 to 5.1 (m, 2H), 7.1 (d, 4H, J = 8.2 Hz)
(Example 2) Preparation of liquid crystal composition Especially host liquid crystal suitable for driving active matrix (H)
[0062]
Embedded image
Figure 0003944611
[0063]
Was prepared. The physical property values of (H) are as follows.
Nematic phase upper limit temperature (T NI ): 116.7 ° C.
Viscosity (20 ° C.): 19.8 cp
Response time (τr = τd): 21.5 ms Refractive index anisotropy (Δn): 0.090
Here, the viscosity is a measured value at 20 ° C., and the response time is a measured value when a voltage is applied so that the rise time (τr) and the fall time (τd) are equal when sealed in a TN cell having a thickness of 4.5 μm. is there.
[0064]
70% of the host liquid crystal (H) and the formula (Ia) obtained in Example 1
[0065]
Embedded image
Figure 0003944611
[0066]
A liquid crystal composition (M-a) comprising 30% was prepared. At this time, the physical properties of (M-a) were as follows.
T NI : 76.4 ℃
Viscosity (20 ° C.): 13.1 cp
Response time (τr = τd): 12.0 ms Refractive index anisotropy (Δn): 0.113
Thus, although the nematic phase upper limit temperature (T NI ) is decreasing, it can be seen that the viscosity is greatly decreased and the response time is greatly improved. Further, the refractive index anisotropy could be increased by 25%. Therefore, it can be seen that the compound of the general formula (I) is very useful as a component of the low-viscosity high-speed liquid crystal composition. (Comparative Example 1)
In Example 2, in place of the compound of the formula (Ia), it is one of the representative compounds among the compounds represented by the general formula (II) outside the present invention in which both side chains are linear alkyl groups. Formula (IIa)
[0067]
Embedded image
Figure 0003944611
[0068]
A liquid crystal composition (MR-1) consisting of 30% by weight and host liquid crystal (H) 70% by weight was prepared. The physical property values were as follows.
T NI : 70.2 ℃
Viscosity (20 ° C.): 14.3 cp
Response time (τr = τd): 13.3 ms Refractive index anisotropy (Δn): 0.107
Thus, although the viscosity and responsiveness of the compound of the formula (IIa) are also greatly improved by adding it to the host liquid crystal (H), the improvement effect is a little compared with the formula (Ia) of the present invention. Inferior. Further (MR-1) T NI of about 6゜Mo lower than (M-1), the compound of formula (IIa) is increased the degree of drop of the nematic phase upper limit temperature than the compound of formula (Ia) You can see that it is closed. Further, the refractive index anisotropy cannot be increased as much as (M-1).
(Comparative Example 2)
In Example 2, in place of the compound of the formula (Ia), a compound which is one of representative compounds among the compounds represented by the general formula (III) outside the present invention in which one side chain is an alkenyl group. (IIIa)
[0069]
Embedded image
Figure 0003944611
[0070]
A liquid crystal composition (MR-2) comprising 30% and host liquid crystal (H) 70% was prepared. The physical property values were as follows.
T NI : 71.2 ℃
Viscosity (20 ° C.): 18.9 cp
Response time (τr = τd): 15.0 msec Refractive index anisotropy (Δn): 0.108
From the above, although the TNI of (MR-2) is slightly higher than (MR-1), it is considerably lower than (M-1) according to the present invention. ) Is much worse.
[0071]
Therefore, the compound of the general formula (I) according to the present invention was not expected by introducing an alkenyl group into both side chains as compared with the conventionally known biphenyl-based thinning liquid crystalline compounds. It became clear that it showed the outstanding effect.
[0072]
【The invention's effect】
The dialkenyl biphenyl derivative provided by the present invention can be easily produced industrially from commercially available compounds as shown in Examples. Since the liquid crystal composition containing the obtained dialkenylbiphenyl derivative is superior in the viscosity reducing effect and the response improving effect compared to a conventionally used reduced viscosity liquid crystal compound having a similar or similar skeleton, As a practical liquid crystal, it is extremely useful for a liquid crystal display that requires a high-speed response.

Claims (5)

一般式(I)
Figure 0003944611
(式中、R及びR’はそれぞれ独立的に水素原子又は炭素原子数1〜5のアルキル基を表わし、R及び/又はR’がアルキル基の場合、それに隣接する二重結合はトランス(E)又はシス(Z)配置を表わし、m及びnはm≦nであってそれぞれ独立的に2〜8の整数を表わす。)で表わされる化合物を含有する液晶組成物。
Formula (I)
Figure 0003944611
(In the formula, R and R ′ each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and when R and / or R ′ is an alkyl group, the double bond adjacent thereto is trans (E Or a cis (Z) configuration, and m and n are m ≦ n and each independently represents an integer of 2 to 8.) A liquid crystal composition comprising the compound represented by:
一般式(I)において、R及びR’が共に水素原子である請求項1記載の液晶組成物The liquid crystal composition according to claim 1, wherein in formula (I), R and R ′ are both hydrogen atoms. 一般式(I)において、m及びnがそれぞれ独立的に2〜4の整数である請求項1又は2記載の液晶組成物The liquid crystal composition according to claim 1 or 2, wherein in the general formula (I), m and n are each independently an integer of 2 to 4. 一般式(I)において、m=2であり、nが2〜4の整数である請求項1又は2記載の液晶組成物3. The liquid crystal composition according to claim 1, wherein in general formula (I), m = 2 and n is an integer of 2 to 4. 4. 一般式(I)において、m=n=2である請求項1又は2記載の液晶組成物The liquid crystal composition according to claim 1, wherein in general formula (I), m = n = 2.
JP14570696A 1996-06-07 1996-06-07 Dialkenyl biphenyl derivatives Expired - Fee Related JP3944611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14570696A JP3944611B2 (en) 1996-06-07 1996-06-07 Dialkenyl biphenyl derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14570696A JP3944611B2 (en) 1996-06-07 1996-06-07 Dialkenyl biphenyl derivatives

Publications (2)

Publication Number Publication Date
JPH09328443A JPH09328443A (en) 1997-12-22
JP3944611B2 true JP3944611B2 (en) 2007-07-11

Family

ID=15391244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14570696A Expired - Fee Related JP3944611B2 (en) 1996-06-07 1996-06-07 Dialkenyl biphenyl derivatives

Country Status (1)

Country Link
JP (1) JP3944611B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887591B2 (en) * 2001-09-21 2012-02-29 Jnc株式会社 Method for producing alkene derivative
EP2208773B2 (en) 2004-07-02 2021-11-24 Merck Patent GmbH Liquid crystalline medium
JP5481812B2 (en) 2007-09-13 2014-04-23 Jnc株式会社 Liquid crystal composition and liquid crystal display element
WO2011030708A1 (en) * 2009-09-14 2011-03-17 チッソ株式会社 Liquid crystal composition and liquid crystal display element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0168683B1 (en) * 1984-07-16 1990-11-28 F. Hoffmann-La Roche Ag Liquid crystals with alkenyl or alkenyloxy groups

Also Published As

Publication number Publication date
JPH09328443A (en) 1997-12-22

Similar Documents

Publication Publication Date Title
JP3780547B2 (en) Bicyclohexane derivative
JPH1045642A (en) Liquid crystal compound with extremely high dielectric constant anisotropy
JP3944611B2 (en) Dialkenyl biphenyl derivatives
JP4314656B2 (en) Dialkenyl compounds
JP4193075B2 (en) Alkenyl terphenyl derivatives
JP3981844B2 (en) New alkenyltolane derivatives
JP3841178B2 (en) Alkenylbenzene derivative and method for producing the same
JP3632772B2 (en) 4-alkenyloxy-3,5-difluorobenzene derivatives
JP4366737B2 (en) Fluorine-substituted 4- (3-alkenyl) benzoic acid and its phenyl ester derivative and liquid crystal composition containing the same
JP3865084B2 (en) Dialkenyltolane derivatives
JP3632778B2 (en) (2-Cyclohexyl) propylbenzene derivative
JP3673873B2 (en) Biphenyl derivatives
JP4045474B2 (en) Fluoroterphenyl derivatives
JP4193077B2 (en) 1,3-phenylene derivatives
JP3716436B2 (en) 5-substituted alkylbenzene derivatives
JPH11335307A (en) Dialkenylnaphthalene derivative
JP4239242B2 (en) Phenylnaphthalene derivative
JP3937185B2 (en) 2-fluorobiphenyl derivatives
JP4006800B2 (en) Phenyltolane derivatives
JP3613806B2 (en) Phenylbicyclohexane derivative
JPH0656718A (en) Fluorocyclohexane derivative
JP3994460B2 (en) Novel compound and liquid crystal composition using the same
JP3728764B2 (en) Biphenyl derivatives
JPH09227417A (en) Alkenyltolan derivative and its production
JP3642345B2 (en) (Fluoroalkenyl) benzene derivatives

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees