JP3944411B2 - スピンバルブ型薄膜磁気素子の製造方法 - Google Patents

スピンバルブ型薄膜磁気素子の製造方法 Download PDF

Info

Publication number
JP3944411B2
JP3944411B2 JP2002129402A JP2002129402A JP3944411B2 JP 3944411 B2 JP3944411 B2 JP 3944411B2 JP 2002129402 A JP2002129402 A JP 2002129402A JP 2002129402 A JP2002129402 A JP 2002129402A JP 3944411 B2 JP3944411 B2 JP 3944411B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
magnetic field
bias
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002129402A
Other languages
English (en)
Other versions
JP2003051629A (ja
Inventor
直也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2002129402A priority Critical patent/JP3944411B2/ja
Publication of JP2003051629A publication Critical patent/JP2003051629A/ja
Application granted granted Critical
Publication of JP3944411B2 publication Critical patent/JP3944411B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固定磁性層の固定磁化の方向と外部磁界の影響を受けるフリー磁性層の磁化の方向との関係で、電気抵抗が変化するスピンバルブ型薄膜磁気素子の製造方法に関し、特に、耐熱性に優れたスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド及びフリー磁性層の磁化方向と固定磁性層の磁化方向とを容易に直交させることができるスピンバルブ型薄膜磁気素子の製造方法に関するものである。
【0002】
【従来の技術】
磁気抵抗効果型の磁気ヘッドには、磁気抵抗効果を示す素子を備えたAMR(Anisotropic Magnetoresistive)ヘッドと、巨大磁気抵抗効果を示す素子を備えたGMR(Giant Magnetoresistive)ヘッドとがある。AMRヘッドにおいては、磁気抵抗効果を示す素子が磁性体からなる単層構造とされている。一方、GMRヘッドにおいては、素子が複数の材料が積層されてなる多層構造とされている。巨大磁気抵抗効果を生み出す構造にはいくつかの種類があるが、比較的構造が単純で、微弱な外部磁界に対して抵抗変化率が高いものとしてスピンバルブ型薄膜磁気素子がある。
【0003】
図12および図13は、従来のスピンバルブ型薄膜磁気素子の一例を記録媒体との対向面側から見た場合の構造を示した断面図である。これらの例のスピンバルブ型薄膜磁気素子の上下には、ギャップ層を介してシールド層が形成されており、前記スピンバルブ型薄膜磁気素子、ギャップ層、及びシールド層で、再生用のGMRヘッドが構成されている。なお、前記再生用のGMRへッドの上に、記録用のインダクティブヘッドが積層されていてもよい。このGMRヘッドは、インダクティブヘッドと共に浮上式スライダのトレーリング側端部などに設けられて薄膜磁気ヘッドを構成し、ハードディスク等の磁気記録媒体の記録磁界を検出するものである。なお、図12および図13において、磁気記録媒体の移動方向は、図示Z方向であり、磁気記録媒体からの漏れ磁界の方向は、Y方向である。
【0004】
図12に示すスピンバルブ型薄膜磁気素子は、反強磁性層、固定磁性層、非磁性導電層、フリー磁性層が一層ずつ形成された、いわゆるボトム型のシングルスピンバルブ型薄膜磁気素子である。図12に示すスピンバルブ型薄膜磁気素子は、下から下地層31、反強磁性層22、固定磁性層23、非磁性導電層24、フリー磁性層25および保護層32で構成された多層膜33と、この多層膜33の両側に形成された一対のハードバイアス層(永久磁石層)29、29、ハードバイアス層29、29上に形成された一対の電極層28、28とで構成されている。なお、下地層31および保護層32は、Ta膜などで形成されている。また、多層膜9の上面の幅寸法によってトラック幅Twが決定される。
【0005】
一般的に、前記反強磁性層22には、Fe−Mn合金膜やNi−Mn合金膜が、固定磁性層23およびフリー磁性層25には、Ni−Fe合金膜が、非磁性導電層24には、Cu膜が、ハードバイアス層29、29には、Co−Pt合金膜が、電極層28、28には、Cr膜やW膜が使用される。
【0006】
図12に示すように、固定磁性層23の磁化は、反強磁性層22との交換異方正磁界により、Y方向(記録媒体からの漏れ磁界方向:ハイト方向)に単磁区化され、フリー磁性層25の磁化は、前記ハードバイアス層29、29からのバイアス磁界の影響を受けてX1方向と反対方向に揃えられる。すなわち、固定磁性層23の磁化とフリー磁性層25の磁化とが直交するように設定されている。
【0007】
このスピンバルブ型薄膜素子では、ハードバイアス層29、29上に形成された電極層28、28から、固定磁性層23、非磁性導電層24およびフリー磁性層25に検出電流(センス電流)が与えられる。ハードディスクなどの記録媒体の走行方向は、Z方向である。記録媒体からの漏れ磁界方向がY方向に与えられると、フリー磁性層25の磁化がX1方向と反対方向からY方向に向けて変化する。このフリー磁性層25内での磁化方向の変動と、固定磁性層23の固定磁化方向との関係で、電気抵抗が変化(これを磁気抵抗効果という)し、この電気抵抗値の変化に基づく電圧変化により、記録媒体からの漏れ磁界が検出される。
【0008】
また、図13に示すスピンバルブ型薄膜磁気素子は、反強磁性層、固定磁性層、非磁性導電層、フリー磁性層が一層ずつ形成された、いわゆるボトム型のシングルスピンバルブ型薄膜磁気素子である。
【0009】
図13において、符号Kは基板を示している。この基板Kの上には、反強磁性層22が形成されている。さらに、前記反強磁性層22の上には、固定磁性層23が形成され、この固定磁性層23の上には、非磁性導電層24が形成され、さらに、前記非磁性導電層24の上には、フリー磁性層25が形成されている。また、前記フリー磁性層25の上には、バイアス層26、26がトラック幅Twと同じ間隔を開けて設けられ、前記バイアス層26、26の上には、導電層28、28が設けられている。
【0010】
前記固定磁性層23は、例えば、Co膜、NiFe合金、CoNiFe合金、CoFe合金などにより形成されている。また、前記反強磁性層22は、NiMnにより形成されている。前記バイアス層26、26は、面心立方晶で不規則結晶構造のFeMn合金などの反強磁性材料により形成されている。
【0011】
図13に示す固定磁性層23は、前記反強磁性層22との界面にて発生する交換結合による交換異方性磁界により磁化されている。そして、前記固定磁性層23の磁化方向は、図示Y方向、すなわち記録媒体から離れる方向(ハイト方向)に固定されている。
【0012】
また、前記フリー磁性層25は、前記バイアス層26の交換異方性磁界によって磁化されて単磁区化されている。そして、前記フリー磁性層25の磁化方向は、図示X1方向と反対方向、すなわち固定磁性層23の磁化方向と交差する方向に揃えられている。前記フリー磁性層23が、前記バイアス層26の交換異方性磁界により単磁区化されることによって、バルクハウゼンノイズの発生が防止される。
【0013】
このスピンバルブ型薄膜磁気素子においては、導電層28からフリー磁性層25、非磁性導電層24、固定磁性層23に定常電流が与えられ、Z方向に走行する磁気記録媒体からの漏れ磁界が図示Y方向に沿って与えられると、フリー磁性層25の磁化方向が、図示X1方向と反対方向からY方向に向けて変動する。このフリー磁性層25内での磁化方向の変動と固定磁性層23の磁化方向との関係で電気抵抗が変化し、この抵抗変化に基づく電圧変化により磁気記録媒体からの漏れ磁界が検出される。
【0014】
図13のようなスピンバルブ型薄膜磁気素子は、図14に示すように、反強磁性層22からフリー磁性層25までの各層を形成し、磁場中で熱処理(アニール)を施すことにより、固定磁性層23と反強磁性層22との界面にて交換異方性磁界を発生させて、固定磁性層23の磁化方向を図示Y方向に固定したのち、図15に示すように、ほぼトラック幅に相当するリフトオフレジスト351を形成する。ついで、図16に示すように、リフトオフレジスト351に覆われていないフリー磁性層25の表面に、バイアス層26および導電層28を形成し、前記リフトオフレジスト351を除去したのち、フリー磁性層25の磁化方向をトラック幅方向に揃えることにより、図13に示すスピンバルブ型薄膜磁気素子が製造される。
【0015】
【発明が解決しようとする課題】
しかしながら、図12に示す従来のスピンバルブ型薄膜磁気素子では、以下のような問題が発生する。
固定磁性層23の磁化は、上述したように、図示Y方向に単磁区化されて固定されているが、前記固定磁性層23の両側には、X1方向と反対方向に磁化されているハードバイアス層29、29が設けられている。そのために、とくに、固定磁性層23の両側の磁化が、前記ハードバイアス層29、29からのバイアス磁界の影響を受け、図示Y方向に固定されなくなっている。
【0016】
すなわち、前記ハードバイアス層29、29のX1方向と反対方向の磁化を受けて、X1方向と反対方向に単磁区化されているフリー磁性層25の磁化と、固定磁性層23の磁化とは、とくに多層膜33の側端部付近では、直交関係にない。フリー磁性層25の磁化と、固定磁性層23の磁化とを直交関係にしておく理由は、フリー磁性層25の磁化が小さな外部磁界でも容易に変動可能で、電気抵抗を大きく変化させることができ、再生感度を向上させることができるからである。さらに、前記直交関係にあると、良好な対称性を有する出力波形を得ることが可能になるためである。
【0017】
しかも、フリー磁性層25のうち、その側端部付近における磁化は、ハードバイアス層29、29からの強い磁化の影響を受けるため固定されやすく、外部磁界に対して磁化が変動しにくくなっており、図12に示すように、多層膜33の側端部付近には、再生感度の悪い不感領域が形成される。
【0018】
多層膜33のうち、不感領域を除いた中央部分の領域が、実質的に記録媒体の再生に寄与し、磁気抵抗効果を発揮する感度領域であり、この感度領域の幅は、多層膜33の形成時に設定されたトラック幅Twよりも不感領域の幅寸法分だけ短くなっており、不感領域のばらつきのために正確なトラック幅Twを画定することが困難となっている。そのため、トラック幅Twを狭くして高記録密度化対応することが難しくなるという問題がある。
【0019】
また、図13に示すスピンバルブ型薄膜磁気素子は、反強磁性材料からなるバイアス層26を用いたエクスチェンジバイアス方式により、フリー磁性層25の磁化方向を固定磁性層23の磁化方向に対して交差する方向に揃えるものである。前記エクスチェンジバイアス方式は、不感領域があるため実効トラック幅Twの制御が困難であるハードバイアス方式と比較して、トラック幅Twの狭い高密度記録に対応するスピンバルブ型薄膜磁気素子に適した方式である。
【0020】
しかしながら、図13に示すスピンバルブ型薄膜磁気素子においては、反強磁性層22がNi−Mn合金で形成されているため、耐食性に問題があった。また、反強磁性層22にNi−Mn合金またはFe−Mn合金を用いたスピンバルブ型薄膜磁気素子では、薄膜磁気ヘッドの製造工程でさらされるトリポリ燐酸ソーダなどを含んだ弱アルカリ性溶液や乳化剤などにより腐食して、交換異方性磁界が小さくなってしまうなどの問題がある。
【0021】
また、反強磁性層22がNi−Mn合金で形成されていることにより、バイアス層26、26に使用する反強磁性材料に制約があり、その結果、バイアス層26、26の耐熱性、耐食性が悪いという不都合があった。すなわち、耐熱性の高いバイアス層26、26を形成するためには、Ni−Mn合金からなる反強磁性層22と固定磁性層23の界面に、図示Y方向に作用する交換異方性磁界に対し、交差する方向に磁場中で熱処理を施すことにより、バイアス層26、26とフリー磁性層25の界面に、X1方向と反対方向に交換異方性磁界を発生可能なNi−Mn合金などの反強磁性材料を選択しなければならない。
【0022】
しかし、前記磁場中で熱処理を施した際に、反強磁性層22と固定磁性層23の界面に作用する交換異方性磁界がY方向からX1方向と反対方向に傾き、固定磁性層23の磁化方向とフリー磁性層25の磁化方向が非直交となってしまい、出力信号波形の対称性が得られなくなってしまう問題があった。そこで、バイアス層26、26には、磁場中加熱処理を必要とせず、磁場中で成膜直後に交換異方性磁界を発生する反強磁性材料を選択する必要があった。このような理由により、バイアス層26、26は、一般的に、面心立方晶で不規則結晶構造を有するFeMn合金により形成されている。
【0023】
しかしながら、磁気記録装置などに装着した場合には、装置内の温度上昇または検出電流により発生するジュール熱の発生により、素子部の温度が高温となるため、交換異方性磁界が低下し、フリー磁性層25を単磁区化することが困難となり、結果として、バルクハウゼンノイズを発生してしまう問題があった。また、Fe−Mn合金は、Ni−Mn合金以上に耐食性が悪く、薄膜磁気ヘッドの製造工程でさらされるトリポリ燐酸ソーダなどを含んだ弱アルカリ性溶液や乳化剤などにより腐食して、交換異方性磁界が小さくなってしまうなどの問題があるのみならず、磁気記録装置内においても腐食が進行して耐久性に劣るという問題がある。
【0024】
また、図14〜図16に示す従来のスピンバルブ型薄膜磁気素子の製造方法は、図15に示すリフトオフレジスト351を形成する工程で、前記基板と前記バイアス層との間に形成される最上層の表面が大気に触れてしまい、大気に触れた表面をArなどの希ガスによりイオンミリングや逆スパッタによりクリーニングしてからその上の層を形成する必要がある。このため、製造工程が増大する問題がある。さらに、前記最上層の表面をイオンミリングや逆スパッタによりクリーニングする必要があるため、再付着物によるコンタミや、表面の結晶状態の乱れによる交換異方性磁界の発生に対する悪影響など、クリーニングすることに起因する不都合が生じてしまう。
【0025】
また、上述した従来のスピンバルブ型薄膜磁気素子の製造方法では、トラック幅Twをリフトオフレジスト351の両側のバイアス層26、26および電極層28、28で画定しているため、リフトオフレジスト351の基端部の寸法のばらつきによりトラック幅Twがばらつく問題があった。
【0026】
本発明は、上記の課題を解決するためになされたものであって、スピンバルブ型薄膜磁気素子を製造する場合に、フリー磁性層の溝部の両側の平坦部上に配置されるバイアス層が、前記溝部に残ることがなく、トラック幅を精度よく画定でき、高記録密度化に対応できるスピンバルブ型薄膜磁気素子を提供することを課題としている。
また、反強磁性層やバイアス層の材質を改良することにより、耐熱性に優れたスピンバルブ型薄膜磁気素子を提供することを課題としている。また、フリー磁性層の磁化方向と固定磁性層の磁化方向とを容易に直交させることができる前記スピンバルブ型薄膜磁気素子の構造と製造方法を提供することを課題としている。さらにまた、前記スピンバルブ型薄膜磁気素子を備え、耐久性および耐熱性に優れ、十分な交換異方性磁界が得られる薄膜磁気ヘッドを提供することを課題としている。
【0027】
【課題を解決するための手段】
上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のスピンバルブ型薄膜磁気素子の製造方法は、基板上に、反強磁性層と、固定磁性層と、非磁性導電層と、フリー磁性層と、バイアス層とを順次積層して積層体を形成する工程と、前記積層体にトラック幅方向と直交する方向である第1の磁界を印加しつつ、第1の熱処理温度で熱処理し、前記反強磁性層およびバイアス層に交換異方性磁界を発生させて、前記固定磁性層および前記フリー磁性層の磁化を同一方向に固定すると共に、前記反強磁性層の交換異方性磁界を前記バイアス層の交換異方性磁界よりも大とする工程と、トラック幅方向に前記バイアス層の交換異方性磁界よりも大きく前記反強磁性層の交換異方性磁界よりも小さい第2の磁界を印加しつつ、前記第1の熱処理温度よりも高い第2の熱処理温度で熱処理し、前記フリー磁性層に前記固定磁性層の磁化方向と交差する方向のバイアス磁界を付与する工程と、前記バイアス層の一部を除去してトラック幅に近い幅の凹部を形成するとともに、この凹部の下に位置する前記フリー磁性層にトラック幅に相当する幅のトラック溝を形成する工程と、前記バイアス層上に、前記フリー磁性層に検出電流を与える導電層を形成する工程とを有するとともに、前記反強磁性層およびバイアス層は、以下の組成式からなる相互に異なる合金を用いることを特徴とする。
mMn100-m
但し、Xは、Pt、Pd、Ir、Rh、Ru、Osのうちの少なくとも1種以上の元素であり、前記バイアス層の組成比を示すmが、52原子%≦m≦60原子%であり、前記反強磁性層の組成比を示すmが、48原子%≦m≦58原子%である
また、前記第1の熱処理温度を220℃〜240℃の範囲であることができる。更に、前記第2の熱処理熱度を250℃〜270℃の範囲とすることができる。
【0046】
上記のスピンバルブ型薄膜磁気素子の製造方法においては、前記反強磁性層および前記バイアス層に、Pt、Pd、Rh、Ru、Ir、Os、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素と、Mnとを含む合金を用いることが好ましい。また、上記のスピンバルブ型薄膜磁気素子の製造方法においては、前記第1の熱処理温度は、220℃〜240℃の範囲であることが好ましい。さらにまた、上記のスピンバルブ型薄膜磁気素子の製造方法においては、前記第2の熱処理熱度は、250℃〜270℃の範囲であることが好ましい。
【0047】
図17は、ボトム型スピンバルブ型薄膜磁気素子とトップ型スピンバルブ型薄膜磁気素子における反強磁性層の熱処理温度と交換異方性磁界との関係を示したグラフである。図17から明らかなように、反強磁性層と基板との距離が近い(または、固定磁性層の下に反強磁性層が配置された)ボトム型スピンバルブ型薄膜磁気素子の反強磁性層(■印)の交換異方性磁界は、200℃で既に発現し、240℃付近で600(Oe)を越えている。一方、反強磁性層と基板との距離がボトム型スピンバルブ型薄膜磁気素子よりも遠い(または、固定磁性層の上に反強磁性層が配置された)トップ型スピンバルブ型薄膜磁気素子の反強磁性層(◆印)の交換異方性磁界は、240℃付近で発現し、約260℃付近においてようやく600(Oe)を越えている。
【0048】
このように、反強磁性層と基板との距離が近い(または、固定磁性層の下に反強磁性層が配置された)ボトム型スピンバルブ型薄膜磁気素子の反強磁性層は、反強磁性層と基板との距離がボトム型スピンバルブ型薄膜磁気素子よりも遠い(または、固定磁性層の上に反強磁性層が配置された)トップ型スピンバルブ型薄膜磁気素子と比較して、比較的低い熱処理温度で高い交換異方性磁界が得られることがわかる。
【0049】
本発明のスピンバルブ型薄膜磁気素子は、反強磁性層と基板との距離が近いボトム型スピンバルブ型薄膜磁気素子であり、前記反強磁性層に使用される材質と同様の材質によって形成されたバイアス層が反強磁性層よりも基板から遠い位置に配置されている。また、反強磁性層と基板との距離が近いボトム型スピンバルブ型薄膜磁気素子は、固定磁性層の下に反強磁性層が配置され、反強磁性層と基板との距離がボトム型スピンバルブ型薄膜磁気素子よりも遠いトップ型スピンバルブ型薄膜磁気素子は、固定磁性層の上に反強磁性層が配置されている。
【0050】
したがって、本発明のスピンバルブ型薄膜磁気素子の製造方法において、例えば、第1の磁界を印加しつつ、第1の熱処理温度(220〜240℃)で前記の積層体を熱処理すると、反強磁性層およびバイアス層に交換異方性磁界が生じ、固定磁性層とフリー磁性層の磁化方向を同一方向に固定される。また、反強磁性層の交換異方性磁界は600(Oe)以上となり、バイアス層の交換異方性磁界は100(Oe)以下となり、反強磁性層の交換異方性磁界が大きくなる。次に、第1の磁界と直交する方向の第2の磁界を印加しつつ、第2の熱処理温度(250〜270℃)で前記の積層体を熱処理すると、バイアス層の交換異方性磁界が600(Oe)以上となり、先の熱処理にて発生したバイアス層の交換異方性磁界よりも大きくなる。したがって、フリー磁性層の磁化方向は、第1の磁界に対して交差する方向となる。
【0051】
このとき、第2の磁界を先の熱処理にて発生した反強磁性層の交換異方性磁界よりも小さくしておけば、反強磁性層に第2の磁界が印加されても、反強磁性層の交換異方性磁界が劣化することがなく、固定磁性層の磁化方向を固定したままにすることが可能になる。このことにより、固定磁性層の磁化方向とフリー磁性層の磁化方向とを交差する方向にすることができる。
【0052】
したがって、上記のスピンバルブ型薄膜磁気素子の製造方法では、耐熱性に優れたPtMn合金などの合金を反強磁性層だけでなくバイアス層にも使用し、固定磁性層の磁化方向に悪影響を与えることなく、バイアス層にフリー磁性層の磁化方向を固定磁性層の磁化方向に対して交差する方向に揃える交換異方性磁界を発生させることができ、フリー磁性層の磁化方向を固定磁性層の磁化方向に対して交差する方向に揃えることができるため、耐熱性および再生信号波形の対称性に優れたスピンバルブ型薄膜磁気素子を提供することが可能となる。
【0053】
また、上記のスピンバルブ型薄膜磁気素子の製造方法は、基板上に、反強磁性層と、固定磁性層と、非磁性導電層と、フリー磁性層と、バイアス層とを順次積層して積層体を形成し、前記積層体を熱処理する方法であるので、前記積層体を形成するに際し、前記基板と前記バイアス層との間に形成される各層の表面を大気に触れさせることがなく、前記各層の表面が大気に触れた場合のように、大気に触れた表面をイオンミリングや逆スパッタによりクリーニングしてからその上の層を形成する必要がないため、容易に製造することができる。また、再現性が良好な製造方法とすることができる。さらに、前記各層の表面をイオンミリングや逆スパッタによりクリーニングする必要がないため、再付着物によるコンタミや、表面の結晶状態の乱れによる交換異方性磁界の発生に対する悪影響など、クリーニングすることに起因する不都合が生じない優れた製造方法とすることができる。
【0054】
また、上記のスピンバルブ型薄膜磁気素子の製造方法では、前記バイアス層の一部を除去してトラック幅に近い幅の凹部を形成するとともに、この凹部の下に位置する前記フリー磁性層にトラック幅に相当する幅のトラック溝を形成するので、前記バイアス層の厚みにばらつきがある場合でも、前記トラック溝の底部にバイアス層が残ることがないため、トラック幅を精度よく画定でき、高記録密度化に対応可能なスピンバルブ型薄膜磁気素子を得ることができる。また、バイアス層を完全に除去することが簡単であるため、容易に製造することができる。
【0055】
また、本発明の薄膜磁気ヘッドは、スライダに上記のスピンバルブ型薄膜磁気素子が備えられてなることを特徴とする。このような薄膜磁気ヘッドとすることで、耐久性および耐熱性に優れ、十分な交換異方性磁界が得られる薄膜磁気ヘッドとすることができる。
【0056】
【発明の実施の形態】
以下、本発明のスピンバルブ型薄膜磁気素子の基本形態について、図面を参照して詳しく説明する。
[第1の基本形態]
図1は、本発明の第1の基本形態であるスピンバルブ型薄膜磁気素子を記録媒体との対向面側から見た場合の構造を示した断面図であり、図6および図7は、本発明の基本形態のスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッドを示した図である。本発明の基本形態のスピンバルブ型薄膜磁気素子の上下には、ギャップ層を介してシールド層が形成され、スピンバルブ型薄膜磁気素子、ギャップ層、及びシールド層で、再生用のGMRヘッドh1が構成されている。なお、前記再生用のGMRヘッドh1に、記録用のインダクティブヘッドh2を積層してもよい。
【0057】
このスピンバルブ型薄膜磁気素子を具備してなるGMRヘッドh1は、図6に示すように、インダクティブヘッドh2と共にスライダ151のトレーリング側端部151dに設けられて薄膜磁気ヘッド150を構成し、ハードディスク等の磁気記録媒体の記録磁界を検出することが可能になっている。なお、図1において、磁気記録媒体の移動方向は図示Z方向であり、磁気記録媒体からの洩れ磁界の方向はY方向である。
【0058】
図6に示す薄膜磁気ヘッド150は、スライダ151と、スライダ151の端面151dに備えられたGMRヘッドh1及びインダクティブヘッドh2を主体として構成されている。符号155は、スライダ151の磁気記録媒体の移動方向の上流側であるリーディング側を示し、符号156は、トレーリング側を示している。このスライダ151の媒体対向面152には、レール151a、151a、151bが形成され、各レール同士間は、エアーグルーブ151c、151cとされている。
【0059】
図7に示すように、GMRヘッドh1は、スライダ151の端面151d上に形成された磁性合金からなる下部シールド層163と、下部シールド層163に積層された下部ギャップ層164と、媒体対向面152から露出するスピンバルブ型薄膜磁気素子1と、スピンバルブ型薄膜磁気素子1及び下部ギャップ層164を覆う上部ギャップ層166と、上部ギャップ層166を覆う上部シールド層167とから構成されている。上部シールド層167は、インダクティブヘッドh2の下部コア層と兼用とされている。
【0060】
インダクティブヘッドh2は、下部コア層(上部シールド層)167と、下部コア層167に積層されたギャップ層174と、コイル176と、コイル176を覆う上部絶縁層177と、ギャップ層174に接合され、かつコイル176側にて下部コア層167に接合される上部コア層178とから構成されている。コイル176は、平面的に螺旋状となるようにパターン化されている。また、コイル176のほぼ中央部分にて上部コア層178の基端部178bが下部コア層167に磁気的に接続されている。また、上部コア層178には、アルミナなどからなる保護層179が積層されている。
【0061】
図1に示すスピンバルブ型薄膜磁気素子1は、反強磁性層、固定磁性層、非磁性導電層、フリー磁性層が一層ずつ形成された、いわゆるボトム型のシングルスピンバルブ型薄膜磁気素子である。また、この例のスピンバルブ型薄膜磁気素子1は、エクスチェンジバイアス方式により、フリー磁性層の磁化方向を固定磁性層の磁化方向に対して交差する方向に揃えるものである。前記エクスチェンジバイアス方式は、不感領域があるため実効トラック幅の制御が困難であるハードバイアス方式と比較して、高密度記録に対応するトラック幅の狭いスピンバルブ型薄膜磁気素子に適した方式である。
【0062】
図1において、符号Kは基板を示している。この基板Kの上には、Al23などからなる下地絶縁層200、下部シールド層163、下部ギャップ層164、反強磁性層2が形成されている。さらに、前記反強磁性層2の上には、固定磁性層3が形成され、この固定磁性層3の上には、非磁性導電層4が形成され、さらに、前記非磁性導電層4の上には、フリー磁性層5が形成されている。前記フリー磁性層5は、固定磁性層3が配置されている方向と反対側の面もしくは前記基板Kと反対側の面に、トラック幅Twと同じ幅のトラック溝5Aが設けられた溝部5Bと、その両側の平坦部5C、5Cとを有している。前記フリー磁性層5の平坦部5C、5C上には、前記バイアス層6、6が設けられ、前記バイアス層6、6の上には、導電層8、8が形成されている。
【0063】
前記基板Kは、Al23−TiC系セラミックスなどの非磁性体により形成されている。
【0064】
前記反強磁性層2は、Pt、Pd、Ir、Rh、Ru、Ir、Os、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素と、Mnとを含む合金からなるものである。これらの合金からなる反強磁性層2は、耐熱性、耐食性に優れるという特徴を有している。
【0065】
特に、前記反強磁性層2は、下記の組成式からなる合金であることが好ましい。
mMn100-m但し、Xは、Pt、Pd、Ir、Rh、Ru、Osのうちの少なくとも1種以上の元素であり、組成比を示すmは、48原子%≦m≦60原子%である。より好ましい組成比を示すmは、48原子%≦m≦58原子%である。
【0066】
更に、前記反強磁性層2は、下記の組成式からなる合金であっても良い。
PtmMn100-m-nn但し、Zは、Pd、Ir、Rh、Ru、Osのうちの少なくとも1種または2種以上の元素であり、組成比を示すm、nは、48原子%≦m+n≦60原子%、0.2原子%≦n≦40原子%である。より好ましい組成比を示すm、nは、48原子%≦m+n≦58原子%、0.2原子%≦n≦40原子%である。
【0067】
また、前記反強磁性層2は、下記の組成式からなる合金であってもよい。
PtqMn100-q-jj但し、Lは、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素であり、組成比を示すq、jは、48原子%≦q+j≦60原子%、0.2原子%≦j≦10原子%である。また、より好ましい組成比を示すq、jは、48原子%≦q+j≦58原子%、0.2原子%≦j≦10原子%である。
【0068】
前記固定磁性層3は、例えば、Co膜、NiFe合金、CoNiFe合金、CoFe合金、CoNi合金などで形成されている。図1に示す固定磁性層3は、反強磁性層2に接して形成され、磁場中熱処理を施すことにより、前記固定磁性層3と前記反強磁性層2との界面にて発生する交換結合による交換異方性磁界により磁化されている。前記固定磁性層3の磁化方向は、図示Y方向、すなわち記録媒体から離れる方向(ハイト方向)に固定されている。
【0069】
また、前記非磁性導電層4は、Cuなどの非磁性導電膜により形成されることが好ましい。
【0070】
また、前記フリー磁性層5は、前記固定磁性層3と同様の材質などで形成されることが好ましい。前記フリー磁性層5は、バイアス層6からのバイアス磁界によって磁化され、図示X1方向と反対方向、すなわち固定磁性層3の磁化方向と交差する方向に磁化方向が揃えられている。前記フリー磁性層5が前記バイアス層6により単磁区化されることによって、バルクハウゼンノイズの発生が防がれる。
【0071】
前記バイアス層6は、前記反強磁性層2と同様に、Pt、Pd、Ir、Rh、Ru、Os、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素と、Mnとを含む合金からなるものであり、磁場中熱処理により、フリー磁性層5との界面にて交換異方性磁界が発現されて、フリー磁性層5を一定の方向に磁化するものである。そして、これらの合金からなるバイアス層6は、耐熱性、耐食性に優れるという特徴を有している。
【0072】
特に、前記バイアス層6は、下記の組成式からなる合金であることが好ましい。
mMn100-m但し、Xは、Pt、Pd、Ir、Rh、Ru、Osのうちの少なくとも1種以上の元素であり、組成比を示すmは、52原子%≦m≦60原子%である。
【0073】
さらに、バイアス層6は、下記の組成式からなる合金であっても良い。
PtmMn100-m-nn但し、Zは、Pd、Ir、Rh、Ru、Os、Au、Ag、Cr、Niのうちの少なくとも1種または2種以上の元素であり、組成比を示すm、nは、52原子%≦m+n≦60原子%、0.2原子%≦n≦10原子%である。
【0074】
また、バイアス層6は、下記の組成式からなる合金であってもよい。
PtqMn100-q-jj但し、Lは、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素であり、組成比を示すq、jは、52原子%≦q+j≦60原子%、0.2原子%≦j≦10原子%である。
【0075】
また、前記導電層8、8は、例えば、Au、W、Cr、Taなどで形成されることが好ましい。
【0076】
このスピンバルブ型薄膜磁気素子1においては、導電層8、8からフリー磁性層5、非磁性導電層4、固定磁性層3に定常電流が与えられ、図示Z方向に走行する磁気記録媒体からの漏れ磁界が図示Y方向に与えられると、前記フリー磁性層5の磁化方向が図示X方向と反対方向から図示Y方向に向けて変動する。このフリー磁性層5内での磁化方向の変動と固定磁性層3の磁化方向との関係で電気抵抗が変化し、この抵抗変化に基づく電圧変化により磁気記録媒体からの漏れ磁界が検出される。
【0077】
次に、本発明のスピンバルブ型薄膜磁気素子1の製造方法を説明する。この製造方法は、スピンバルブ型薄膜磁気素子1における反強磁性層2およびバイアス層6、6の位置によって、熱処理により発生する反強磁性層2およびバイアス層6、6の交換異方性磁界の大きさが相違することを利用してなされたものであり、1度目の熱処理で固定磁性層3の磁化方向を固定し、2度目の熱処理でフリー磁性層5の磁化方向を揃えるものである。
【0078】
即ち、本発明のスピンバルブ型薄膜磁気素子1の製造方法では、基板K上に、反強磁性層2と、固定磁性層3と、非磁性導電層4と、フリー磁性層5と、バイアス層6とを順次積層して図2に示す積層体a1を形成したのち、前記積層体a1にトラック幅Tw方向と直交する方向である第1の磁界を印加しつつ、第1の熱処理温度で熱処理し、前記反強磁性層2およびバイアス層6に交換異方性磁界を発生させて、前記固定磁性層3および前記フリー磁性層5の磁化を同一方向に固定すると共に、前記反強磁性層2の交換異方性磁界を前記バイアス層6の交換異方性磁界よりも大とする。
【0079】
ついで、トラック幅Tw方向に前記バイアス層6の交換異方性磁界よりも大きく前記反強磁性層2の交換異方性磁界よりも小さい第2の磁界を印加しつつ、前記第1の熱処理温度よりも高い第2の熱処理温度で熱処理し、前記フリー磁性層5に前記固定磁性層3の磁化方向と交差する方向のバイアス磁界を付与する。
【0080】
さらに、図3に示すように、熱処理された前記積層体a1の上に、トラック幅Twに近い幅を開けてレジストなどによるマスク250を形成する。さらに、イオンミリングなどにより、図4に示すように、前記バイアス層6の一部を除去してトラック幅Twに近い幅の凹部6Aを形成するとともに、この凹部6Aの下に位置する前記フリー磁性層5にトラック溝5Aを形成し、レジストなどのマスク250を除去する。
【0081】
前記トラック溝5Aは、トラック幅Twと同じ幅となるように形成されることが好ましい。また、前記トラック溝5Aは、10〜50Å程度の深さ5Hで形成されることが好ましい。前記トラック溝5Aの深さ5Hが10Å程度未満であると、例えば、バイアス層6の厚さにばらつきがある場合などに、除去されるべきバイアス層6のすべてが除去されず、トラック溝5Aの底部5Dにバイアス層6が残る恐れがあるため好ましくない。一方、前記トラック溝5Aが50Å程度を越える深さ5Hであると、イオンミリングなどのエッチング深さのばらつきにより、フリー磁性層5にばらつきが生じやすくなるため好ましくない。
【0082】
ついで、図5に示すように、凹部6A、トラック溝5Aおよびバイアス層6の平坦部の一部に乗り上げるようにリフトオフレジスト251を形成する。さらに、リフトオフレジスト251の表面に導電層8aを形成するとともに、バイアス層6が露出している平坦部に導電層8を形成する。その後、リフトオフレジスト251を除去すると、図1のような前記バイアス層6上に、前記フリー磁性層5に検出電流を与える導電層8、8が形成されたスピンバルブ型薄膜磁気素子1が得られる。
【0083】
次に、反強磁性層の熱処理温度と交換異方性磁界との関係について、図17、図19、図20を参照して詳しく説明する。図17に示した■印は、基板とフリー磁性層の間に反強磁性層を配置したボトム型シングルスピンバルブ薄膜磁気素子の交換異方性磁界の熱処理依存性を示し、図17に示した◆印は、フリー磁性層よりも基板から離れた位置に反強磁性層を配置したトップ型シングルスピンバルブ薄膜磁気素子の交換異方性磁界の熱処理依存性を示す。従って、◆印のトップ型シングルスピンバルブ薄膜磁気素子の反強磁性層は、■印のボトム型シングルスピンバルブ薄膜磁気素子の反強磁性層よりも、基板から離れた位置に設けられていることになる。
【0084】
具体的には、図17に示した◆印で示されるトップ型スピンバルブ型薄膜磁気素子は、図19に示すように、Si基板Kの上に、Al23(1000)からなる下地絶縁層200、Ta(50)からなる下地層210、NiFe合金(70)およびCo(10)の2層からなるフリー磁性層5、Cu(30)からなる非磁性導電層4、Co(25)からなる固定磁性層3、Pt55.4Mn44.6(300)からなる反強磁性層2、Ta(50)からなる保護層220の順に形成された構成のものである。
【0085】
また、図17に示した■印で示されるボトム型スピンバルブ型薄膜磁気素子は、図20に示すように、Si基板Kの上に、Al23(1000)からなる下地絶縁層200、Ta(30)からなる下地層210、Pt55.4Mn44.6(300)からなる反強磁性層2、Co(25)からなる固定磁性層3、Cu(26)からなる非磁性導電層4、Co(10)およびNiFe合金(70)の2層からなるフリー磁性層5、Ta(50)からなる保護層220の順に形成された構成のものである。なお、カッコ内は各層の厚さを示し、単位はオングストロームである。
【0086】
また、図17に示した◆印で示されるトップ型スピンバルブ型薄膜磁気素子は、固定磁性層3の上側に配置され、基板Kと反強磁性層2との間にフリー磁性層5、非磁性導電層4、固定磁性層3が挟まれて形成されている。一方、図17に示した■印で示されるボトム型スピンバルブ型薄膜磁気素子は、固定磁性層3の下側に配置され、基板Kと反強磁性層2との間には、固定磁性層3、非磁性導電層4、フリー磁性層5が形成されていない。
【0087】
図17に示すように、■印で示す反強磁性層2(Pt55.4Mn44.6)の交換異方性磁界は、220℃を過ぎて上昇しはじめ、240℃を越えると700(Oe)程度になって一定となる。また、◆印で示す反強磁性層2(Pt54.4Mn45.6)の交換異方性磁界は、240℃を過ぎて上昇し、260℃を超えると600(Oe)を越えて一定となる。このように、基板に近い位置に配置された反強磁性層2(■印)は、基板より離れた位置に配置された反強磁性層2(◆印)と比較して、比較的低い熱処理温度で高い交換異方性磁界が得られることがわかる。
【0088】
本発明のスピンバルブ型薄膜磁気素子1の製造方法は、上述した反強磁性層の性質を利用したものである。すなわち、本発明のスピンバルブ型薄膜磁気素子1は、反強磁性層2と基板Kとの距離が近い(または、固定磁性層の下に反強磁性層が配置された)ボトム型スピンバルブ型薄膜磁気素子1であり、前記反強磁性層2に使用される合金と同様の合金によって形成されたバイアス層6が反強磁性層2よりも基板Kから遠い位置に配置されている。
【0089】
したがって、例えば、前記積層体a1に、第1の磁界を印加しつつ、第1の熱処理温度(220〜240℃)で前記の積層体a1を熱処理すると、反強磁性層2およびバイアス層6に交換異方性磁界が生じ、固定磁性層3とフリー磁性層5の磁化方向が同一方向に固定される。また、反強磁性層2の交換異方性磁界は600(Oe)以上となり、バイアス層6の交換異方性磁界は100(Oe)以下となり、反強磁性層2の交換異方性磁界が大きくなる。次に、第1の磁界と直交する方向の第2の磁界を印加しつつ、第2の熱処理温度(250〜270℃)で前記積層体a1を熱処理すると、バイアス層6の交換異方性磁界が600(Oe)以上となり、先の熱処理にて発生したバイアス層6の交換異方性磁界よりも大きくなる。したがって、フリー磁性層5の磁化方向は、第1の磁界に対して交差する方向となる。
【0090】
このとき、第2の磁界を先の熱処理にて発生した反強磁性層2の交換異方性磁界よりも小さくしておけば、反強磁性層2に第2の磁界が印加されても、反強磁性層2の交換異方性磁界が劣化することがなく、固定磁性層3の磁化方向を固定したままにすることが可能になる。このことにより、固定磁性層3の磁化方向とフリー磁性層5の磁化方向とを交差する方向にすることができる。
【0091】
第1の熱処理温度は、220℃〜240℃の範囲とすることが好ましい。第1の熱処理温度が220℃未満であると、反強磁性層2の交換異方性磁界が200(Oe)以下となって、固定磁性層3の磁化が高くならず、固定磁性層3の磁化方向が2度目の熱処理によりフリー磁性層5の磁化方向と同一方向に磁化されてしまうので好ましくない。一方、第1の熱処理温度が240℃を越えると、バイアス層6の交換異方性磁界が大きくなって、フリー磁性層5の磁化が強い磁場をかけないと動きにくくなり、第2の熱処理時に前記フリー磁性層5の磁化方向を固定磁性層3の磁化方向に対して交差する方向に揃えられなくなるので好ましくない。また、第1の熱処理温度を230℃〜240℃の範囲とすれば、反強磁性層2の交換異方性磁界を400(Oe)以上とすることができ、固定磁性層3の交換異方性磁界を大きくすることができるのでより好ましい。
【0092】
第2の熱処理温度は、250℃〜270℃の範囲とすることが好ましい。第2の熱処理温度が250℃未満であると、バイアス層6の交換異方性磁界を400(Oe)以上にすることができなくなって、フリー磁性層5の縦バイアス磁界を大きくすることができなくなるので好ましくない。また、第1の熱処理にて固定したフリー磁性層5の磁化方向を、固定磁性層3の磁化方向と交差する方向に揃えることができなくなるので好ましくない。一方、第2の熱処理温度が270℃を越えても、もはやバイアス層6の交換異方性磁界は一定となって増大せず、層界面での熱拡散などによる磁気抵抗効果の劣化を引き起こすので好ましくない。
【0093】
また、図18から示唆されるように、反強磁性層2とバイアス層6の組成を適宜異なった組成に調整することにより、第1の熱処理後で得られる反強磁性層6の交換異方性磁界をより大きく、かつ第1の熱処理後にバイアス層6に交換異方性磁界がほとんど発生しないような第2の熱処理にとって好ましい状態とすることもできる。
【0094】
次に、熱処理温度が245℃または270℃である場合における反強磁性層の組成と交換異方性磁界との関係について図18を参照して詳しく説明する。図示△印及び▲印は、フリー磁性層よりも基板から離れた位置に反強磁性層を配置した(または、固定磁性層の上に反強磁性層が配置された)トップ型シングルスピンバルブ薄膜磁気素子の反強磁性層の組成と交換異方性磁界との関係を示すものであり、図示△印は270℃、図示▲印は245℃で熱処理したものである。図示○印及び●印は、基板とフリー磁性層の間に反強磁性層を配置した(または、固定磁性層の下に反強磁性層が配置された)ボトム型シングルスピンバルブ薄膜磁気素子の反強磁性層の組成と交換異方性磁界との関係を示すものであり、図示○印は270℃、図示●印は245℃で熱処理したものである。
【0095】
具体的には、△印及び▲印で示したトップ型スピンバルブ型薄膜磁気素子は、図19に示すように、Si基板Kの上に、Al23(1000)からなる下地絶縁層200、Ta(50)からなる下地層210、NiFe合金(70)およびCo(10)の2層からなるフリー磁性層5、Cu(30)からなる非磁性導電層4、Co(25)からなる固定磁性層3、PtmMnt(300)からなる反強磁性層2、Ta(50)からなる保護層220の順に形成された構成のものである。
【0096】
一方、○印及び●印で示したボトム型スピンバルブ型薄膜磁気素子は、図20に示すように、Si基板Kの上に、Al23(1000)からなる下地絶縁層200、Ta(30)からなる下地層210、PtmMnt(300)からなる反強磁性層2、Co(25)からなる固定磁性層3、Cu(26)からなる非磁性導電層4、Co(10)およびNiFe合金(70)の2層からなるフリー磁性層5、Ta(50)からなる保護層220の順に形成された構成のものである。尚、カッコ内は、各層の厚さを示し、単位はオングストロームである。
【0097】
本発明のスピンバルブ型薄膜磁気素子1の製造方法では、図18に示すボトム型スピンバルブ型薄膜磁気素子およびトップ型スピンバルブ型薄膜磁気素子の反強磁性層の性質を利用している。すなわち、ボトム型スピンバルブ型薄膜磁気素子である本発明のスピンバルブ型薄膜磁気素子1では、反強磁性層2に使用される合金の組成範囲は、図18に示すボトム型スピンバルブ型薄膜磁気素子の反強磁性層と同様とすることが好ましく、前記バイアス層6に使用される合金の組成範囲は、図18に示すトップ型スピンバルブ型薄膜磁気素子の反強磁性層と同様とすることが好ましい。
【0098】
また、図18から明らかなように、ボトム型スピンバルブ型薄膜磁気素子の反強磁性層、ここでは前記反強磁性層2をXmMn100-m(但し、Xは、Pt、Pd、Ir、Rh、Ru、Osのうちの少なくとも1種以上の元素)からなる合金としたときは、組成比を示すmが、48原子%≦m≦60原子%であることが好ましい。mが48原子%未満または60原子%以上を越えると、熱処理温度270℃の第2の熱処理を行っても、XmMn100-mの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向交換結合磁界を示さなくなるので好ましくない。
【0099】
また、mのより好ましい範囲は、48原子%≦m≦58原子%である。mが48原子%未満または58原子%以上を越えると、熱処理温度245℃の第1の熱処理を行っても、XmMn100-mの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向交換結合磁界(交換異方性磁界)を示さなくなるので好ましくない。
【0100】
また、ボトム型スピンバルブ型薄膜磁気素子の反強磁性層、すなわち前記反強磁性層2をPtmMn100-m-nn(但し、Zは、Pd、Ir、Rh、Ru、Osのうちの少なくとも1種または2種以上の元素)としたとき、組成比を示すm、nは、48原子%≦m+n≦60原子%、0.2原子%≦n≦40原子%であることが好ましい。m+nが48原子%未満または60原子%を越えると、熱処理温度270℃の第2の熱処理を行っても、PtmMn100-m-nnの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、nが0.2原子%未満であると、反強磁性層の結晶格子の規則化の促進効果、すなわち、交換異方性磁界を大きくする効果が十分に現れないので好ましくなく、nが40原子%を越えると、逆に交換異方性磁界が減少するので好ましくない。
【0101】
また、m+nのより好ましい範囲は、48原子%≦m+n≦58原子%である。m+nが48原子%未満または58原子%を越えると、熱処理温度245℃の第1の熱処理を行っても、PtmMn100-m-nnの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。
【0102】
また、ボトム型スピンバルブ型薄膜磁気素子の反強磁性層、すなわち前記反強磁性層2をPtqMn100-q-jj(但し、Lは、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素)としたとき、組成比を示すq、jは、48原子%≦q+j≦60原子%、0.2原子%≦j≦10原子%であることが好ましい。q+jが48原子%未満または60原子%を越えると、熱処理温度270℃の第2の熱処理を行っても、PtqMn100-q-jjの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向交換結合磁界を示さなくなるので好ましくない。また、jが0.2原子%未満であると、元素Lの添加による一方向性交換結合磁界の改善効果が十分に現れないので好ましくなく、jが10原子%を越えると、一方向性交換異方性磁界が低下してしまうので好ましくない。
【0103】
また、q+jのより好ましい範囲は、48原子%≦q+j≦58原子%である。q+jが48原子%未満または58原子%を越えると、熱処理温度245℃の第1の熱処理を行っても、PtqMn100-q-jjの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。
【0104】
図18から明らかなように、トップ型スピンバルブ型薄膜磁気素子の反強磁性層、ここでは前記バイアス層6をXmMn100-m(但し、Xは、Pt、Pd、Ir、Rh、Ru、Osのうちの少なくとも1種以上の元素)からなる合金としたときは、組成比を示すmが、52原子%≦m≦60原子%であることが好ましい。mが52原子%未満または60原子%を越えると、熱処理温度270℃の第2の熱処理を行っても、XmMn100-mの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。
【0105】
また、トップ型スピンバルブ型薄膜磁気素子の反強磁性層、すなわち前記バイアス層6をPtmMn100-m-nn(但し、Zは、Pd、Ir、Rh、Ru、Osのうちの少なくとも1種または2種以上の元素)としたとき、組成比を示すm、nは、52原子%≦m+n≦60原子%、0.2原子%≦n≦40原子%であることが好ましい。m+nが52原子%未満または60原子%を越えると、熱処理温度270℃の第2の熱処理を行っても、PtmMn100-m-nnの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、nが0.2原子%未満であると、反強磁性層の結晶格子の規則化の促進効果、すなわち、交換異方性磁界を大きくする効果が十分に現れないので好ましくなく、nが40原子%を越えると、逆に交換異方性磁界が減少するので好ましくない。
【0106】
また、トップ型スピンバルブ型薄膜磁気素子の反強磁性層、すなわち前記バイアス層6をPtqMn100-q-jj(但し、Lは、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素)としたとき、組成比を示すq、jは、52原子%≦q+j≦60原子%、0.2原子%≦j≦10原子%であることが好ましい。q+jが52原子%未満または60原子%を越えると、熱処理温度270℃の第2の熱処理を行っても、PtqMn100-q-jjの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、jが0.2原子%未満であると、元素Lの添加による一方向性交換結合磁界の改善効果が十分に現れないので好ましくなく、jが10原子%を越えると、一方向性交換異方性磁界が低下してしまうので好ましくない。
【0107】
また、図18から明らかなように、ボトム型スピンバルブ型薄膜磁気素子の反強磁性層ここでは前記反強磁性層2、およびトップ型スピンバルブ型薄膜磁気素子の反強磁性層ここでは前記バイアス層6がXmMn100-m(但し、Xは、Pt、Pd、Ir、Rh、Ru、Osのうちの少なくとも1種以上の元素)からなる合金としたとき、前記反強磁性層および前記バイアス層の組成比を示すmが、52原子%≦m≦58原子%であることが好ましい。
【0108】
mが52原子%未満であると、熱処理温度270℃の第2の熱処理を行っても、前記バイアス層6を構成するXmMn100-mの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、mが58原子%を越えると、熱処理温度245℃の第1の熱処理を行っても前記反強磁性層2を構成するXmMn100-mの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。
【0109】
また、前記反強磁性層2および前記バイアス層6が、XmMn100-mからなる合金としたとき、反強磁性層2およびバイアス層6の組成比を示すmが、52原子%≦m≦56.5原子%であることがより好ましい。mが52原子%未満であると、熱処理温度270℃の第2の熱処理を行っても、バイアス層6を構成するXmMn100-mの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、mが56.5原子%を越えると、熱処理温度245℃の第1の熱処理を行った場合に、反強磁性層2による交換異方性磁界がバイアス層6による交換異方性磁界よりも大きくなるがその差は小さく、熱処理温度270℃の第2の熱処理の際に、固定磁性層3がフリー磁性層5の磁化と同一の方向に磁化されたり、第2の熱処理の際にフリー磁性層5の磁化方向と固定磁性層3の磁化方向とを直交方向に揃え難くなるので好ましくない。
【0110】
また、前記反強磁性層2およびバイアス層6が、XmMn100-mからなる合金としたとき、反強磁性層2およびバイアス層6の組成比を示すmが、52原子%≦m≦55.2原子%であることが最も好ましい。mが52原子%未満であると、熱処理温度270℃の第2の熱処理を行っても、バイアス層6を構成するXmMn100-mの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、mが55.2原子%を越えると、熱処理温度245℃の第1の熱処理を行った場合に、反強磁性層2の交換結合磁界がバイアス層6の交換結合磁界よりも大きくなるがその差は小さく、熱処理温度270℃の第2の熱処理の際に、固定磁性層3がフリー磁性層5の磁化と同一の方向に磁化されたり、第2の熱処理の際に、フリー磁性層5の磁化方向と固定磁性層3の磁化方向とを直交方向に揃え難くなるので好ましくない。
【0111】
従って、反強磁性層2およびバイアス層6の上記組成比が52原子%≦m≦55.2原子%であれば、第1の熱処理時に反強磁性層2の交換異方性磁界がバイアス層6の交換結合磁界よりもより大きくなり、第2の熱処理を行った後も反強磁性層2とバイアス層6の交換結合磁界の差が大きくなるので、磁気記録媒体からの信号磁界の印加に対し、固定磁性層3の磁化方向は変化せずに固定され、フリー磁性層5の磁化方向はスムーズに変化することができるため好ましい。
【0112】
また、反強磁性層2およびバイアス層6が、PtmMn100-m-nn(但し、Zは、Pd、Ir、Rh、Ru、Osのうちの少なくとも1種または2種以上の元素)としたとき、組成比を示すm、nは、52原子%≦m+n≦58原子%、0.2原子%≦n≦40原子%であることが好ましい。
【0113】
m+nが52原子%未満であると、熱処理温度270℃の第2の熱処理を行っても、前記バイアス層6を構成するPtmMn100-m-nnの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、m+nが58原子%を越えると、熱処理温度245℃の第1の熱処理を行っても、前記反強磁性層2を構成するPtmMn100-m-nnの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、nが0.2原子%未満であると、元素Zの添加による一方向性交換結合磁界の改善効果が十分に現れないので好ましくなく、nが40原子%を越えると、一方向性交換結合磁界が低下してしまうので好ましくない。
【0114】
また、前記反強磁性層2およびバイアス層6が、PtmMn100-m-nnからなる合金としたとき、組成比を示すm、nが、52原子%≦m+n≦56.5原子%、0.2原子%≦n≦40原子%であることがより好ましい。
【0115】
m+nが52原子%未満であると、熱処理温度270℃の第2の熱処理を行っても、PtmMn100-m-nnの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、m+nが56.5原子%を越えると、熱処理温度245℃の第1の熱処理を行った場合に、反強磁性層2による交換異方性磁界がバイアス層6による交換異方性磁界よりも大きくなるがその差は小さく、熱処理温度270℃の第2の熱処理の際に、固定磁性層3がフリー磁性層5の磁化と同一の方向に磁化されたり、第2の熱処理の際に、フリー磁性層5の磁化方向と固定磁性層3の磁化方向とを直交方向に揃え難くなるので好ましくない。また、nが0.2原子%未満であると、元素Zの添加による一方向性交換結合磁界の改善効果が十分に現れないので好ましくなく、nが40原子%を越えると、一方向性交換結合磁界が低下してしまうので好ましくない。
【0116】
更に、前記反強磁性層2およびバイアス層6が、PtmMn100-m-nnからなる合金としたとき、組成比を示すm、nが、52原子%≦m+n≦55.2原子%、0.2原子%≦n≦40原子%であることがより好ましい。
【0117】
mが52原子%未満であると、熱処理温度270℃の第2の熱処理を行っても、バイアス層6を構成するPtmMn100-m-nnの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、m+nが55.2原子%を越えると、熱処理温度245℃の第1の熱処理を行った場合に、反強磁性層2の交換結合磁界がバイアス層6の交換結合磁界よりも大きくなるがその差は小さく、熱処理温度270℃の第2の熱処理の際に、固定磁性層3がフリー磁性層5の磁化と同一の方向に磁化されたり、第2の熱処理の際に、フリー磁性層5の磁化方向と固定磁性層3の磁化方向とを直交方向に揃え難くなるので好ましくない。また、nが0.2原子%未満であると、元素Zの添加による一方向性交換結合磁界の改善効果が十分に現れないので好ましくなく、nが40原子%を越えると、一方向性交換結合磁界が低下してしまうので好ましくない。
【0118】
従って、反強磁性層2およびバイアス層6の上記組成比が52原子%≦m+n≦55.2原子%であり、0.2原子%≦n≦40原子%であれば、第1の熱処理時に反強磁性層2の交換異方性磁界がバイアス層6の交換結合磁界よりもより大きくなり、第2の熱処理を行った後も反強磁性層2とバイアス層6の交換結合磁界の差が大きくなるので、磁気記録媒体からの信号磁界の印加に対し、固定磁性層3の磁化方向は変化せずに固定され、フリー磁性層5の磁化方向はスムーズに変化することができるため好ましい。
【0119】
また、反強磁性層2およびバイアス層6が、PtqMn100-q-jj(但し、Lは、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素)としたとき、組成比を示すq、jは、52原子%≦q+j≦58原子%、0.2原子%≦j≦10原子%であることが好ましい。
【0120】
q+jが52原子%未満であると、熱処理温度270℃の第2の熱処理を行っても、前記バイアス層6を構成するPtqMn100-q-jjの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、q+jが58原子%を越えると、熱処理温度245℃の第1の熱処理を行っても、前記反強磁性層2を構成するPtqMn100-q-jjの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、jが0.2原子%未満であると、元素Lの添加による一方向性交換結合磁界の改善効果が十分に現れないので好ましくなく、jが10原子%を越えると、一方向性交換結合磁界が低下してしまうので好ましくない。
【0121】
また、前記反強磁性層2およびバイアス層6が、PtqMn100-q-jjからなる合金としたとき、組成比を示すq、jが、52原子%≦q+j≦56.5原子%、0.2原子%≦j≦10原子%であることがより好ましい。
【0122】
q+jが52原子%未満であると、熱処理温度270℃の第2の熱処理を行っても、前記バイアス層6を構成するPtqMn100-q-jjの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、q+jが56.5原子%を越えると、熱処理温度245℃の第1の熱処理を行った場合に、反強磁性層2による交換異方性磁界がバイアス層6による交換異方性磁界よりも大きくなるがその差は小さく、熱処理温度270℃の第2の熱処理の際に、固定磁性層3がフリー磁性層5の磁化と同一の方向に磁化されたり、第2の熱処理の際に、フリー磁性層5の磁化方向と固定磁性層3の磁化方向とを直交方向に揃え難くなるので好ましくない。また、jが0.2原子%未満であると、元素Lの添加による一方向性交換結合磁界の改善効果が十分に現れないので好ましくなく、jが10原子%を越えると、一方向性交換結合磁界が低下してしまうので好ましくない。
【0123】
更に、前記反強磁性層2およびバイアス層6が、PtqMn100-q-jjからなる合金としたとき、組成比を示すq、jが、52原子%≦q+j≦55.2原子%、0.2原子%≦j≦10原子%であることがより好ましい。
【0124】
qが52原子%未満であると、熱処理温度270℃の第2の熱処理を行っても、バイアス層6を構成するPtqMn100-q-jjの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、q+jが55.2原子%を越えると、熱処理温度245℃の第1の熱処理を行った場合に、反強磁性層2の交換結合磁界がバイアス層6の交換結合磁界よりも大きくなるがその差は小さく、熱処理温度270℃の第2の熱処理の際に、固定磁性層3がフリー磁性層5の磁化と同一の方向に磁化されたり、第2の熱処理の際に、フリー磁性層5の磁化方向と固定磁性層3の磁化方向とを直交方向に揃え難くなるので好ましくない。また、jが0.2原子%未満であると、元素Lの添加による一方向性交換結合磁界の改善効果が十分に現れないので好ましくなく、jが10原子%を越えると、一方向性交換結合磁界が低下してしまうので好ましくない。
【0125】
従って、反強磁性層2およびバイアス層6の上記組成比が52原子%≦q+j≦55.2原子%であり、0.2原子%≦j≦10原子%であれば、第1の熱処理時に反強磁性層2の交換異方性磁界がバイアス層6の交換結合磁界よりもより大きくなり、第2の熱処理を行った後も反強磁性層2とバイアス層6の交換結合磁界の差が大きくなるので、磁気記録媒体からの信号磁界の印加に対し、固定磁性層3の磁化方向は変化せずに固定され、フリー磁性層5の磁化方向はスムーズに変化することができるため好ましい。
【0126】
また、ボトム型スピンバルブ型薄膜磁気素子の反強磁性層ここでは前記反強磁性層2の組成と、トップ型スピンバルブ型薄膜磁気素子の反強磁性層ここでは前記バイアス層6の組成を異ならしめ、例えば反強磁性層2のMn濃度をバイアス層6のMn濃度よりも多くすることにより、第1の熱処理後の両者の交換結合磁界の差をより顕著にでき、第2の熱処理後にフリー磁性層5と固定磁性層3の磁化をより確実に直交状態とすることが可能となる。また、第2の熱処理後のMn濃度を異ならしめた反強磁性層2とバイアス層6の両者の交換異方性磁界の差を、さらに顕著にすることができ、磁気記録媒体からの信号磁界の印加に対し、固定磁性層3の磁化方向は変化せずに固定され、フリー磁性層5の磁化方向はスムーズに変化することが可能となる。
【0127】
すなわち、バイアス層6を、XmMn100-m(Xが、Pt、Pd、Ir、Rh、Ru、Osのうちの少なくとも1種以上の元素、組成比を示すmが52原子%≦m≦60原子%)からなる合金とし、反強磁性層2を、XmMn100-m(Xが、Pt、Pd、Ir、Rh、Ru、Osのうちの少なくとも1種以上の元素、組成比を示すmが、48原子%≦m≦58原子%)からなる合金とすることが好ましい。
【0128】
バイアス層6の組成を示すmが、52原子%未満若しくは60原子%を越えると、図18に示すように、熱処理温度270℃の第2の熱処理を行っても、バイアス層6を構成するXmMn100-mの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向交換結合磁界を示さなくなるので好ましくない。また、反強磁性層2の組成を示すmが、48原子%未満若しくは58原子%を越えると、熱処理温度245℃の第1の熱処理を行っても反強磁性層2を構成するXmMn100-mの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向交換結合磁界を示さなくなるので好ましくない。
【0129】
よって、第1の熱処理温度245℃の第1の熱処理を行った後に、反強磁性層2の交換異方性磁界がバイアス層6の交換異方性磁界よりも大きく、かつ第2の熱処理温度が270℃の第2の熱処理を行った後にも、反強磁性層2の交換異方性磁界がバイアス層6の交換異方性磁界よりも大きくなるように、バイアス層6の組成比(52原子%≦m≦60原子%)と反強磁性層2の組成比(48原子%≦m≦58原子%)の範囲の中から各々の組成比を異ならせて選択すればよい。
【0130】
このような条件を満たす組成比を各々選択して組成範囲を異ならしめることにより、反強磁性層2とバイアス層6を同一組成で形成した場合よりも、第1の熱処理時および第2の熱処理時における各々の反強磁性層2の交換結合磁界とバイアス層6の交換異方性磁界の差を顕著にできる組み合わせが可能になり、設計の自由度が向上する。
【0131】
また、第1の熱処理の際に、反強磁性層2の交換異方性磁界をバイアス層6の交換異方性磁界よりも大きくでき、第2の熱処理の際に、反強磁性層2の交換異方性磁界を劣化または磁化方向を変えることがなく、固定磁性層3の磁化方向を強固に固定したまま、フリー磁性層5と固定磁性層3の磁化方向を交差させることができる。さらに、第2の熱処理後に、反強磁性層2の交換異方性磁界をバイアス層6の交換異方性磁界よりも大きくでき、磁気記録媒体からの信号磁界の印加に対して、固定磁性層3の磁化方向が変化せずに固定され、フリー磁性層5の磁化方向はスムーズに変化することが可能となる。
【0132】
反強磁性層2とバイアス層6の好ましい別の組み合わせは、バイアス層6を、PtmMn100-m-nn(Zが、Pd、Ir、Rh、Ru、Osのうちの少なくとも1種または2種以上の元素、組成比を示すm、nが、52原子%≦m+n≦60原子%、0.2原子%≦n≦40原子%)からなる合金とし、反強磁性層2を、PtmMn100-m-nn(但し、Zは、Pd、Ir、Rh、Ru、Osのうちの少なくとも1種または2種以上の元素、組成比を示すm、nは、48原子%≦m+n≦58原子%、0.2原子%≦n≦40原子%)からなる合金とすることが好ましい。
【0133】
バイアス層6の組成を示すm+nが52原子%未満若しくは60原子%を越えると、熱処理温度270℃の第2の熱処理を行っても、バイアス層6を構成するPtmMn100-m-nnの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向交換結合磁界を示さなくなるので好ましくない。また、バイアス層6の組成を示すnが0.2原子%未満であると、元素Zの添加による一方向性交換結合磁界の改善効果が十分に現れないので好ましくなく、nが40原子%を越えると、一方向性交換結合磁界が低下してしまうので好ましくない。
【0134】
また、反強磁性層2の組成を示すm+nが48原子%未満若しくは58原子%を越えると、熱処理温度245℃の第1の熱処理を行っても、反強磁性層2を構成するPtmMn100-m-nnの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向交換結合磁界を示さなくなるので好ましくない。また、反強磁性層2の組成を示すnが0.2原子%未満であると、元素Zの添加による一方向性交換結合磁界の改善効果が十分に現れないので好ましくなく、nが40原子%を越えると、一方向性交換結合磁界が低下してしまうので好ましくない。
【0135】
よって、第1の熱処理温度245℃の第1の熱処理を行った後に、反強磁性層2の交換異方性磁界がバイアス層6の交換異方性磁界よりも大きく、かつ第2の熱処理温度が270℃の第2の熱処理を行った後にも、反強磁性層2の交換異方性磁界がバイアス層6の交換異方性磁界よりも大きくなるように、反強磁性層2の組成比(48原子%≦m+n≦58原子%)とバイアス層6の組成比(52原子%≦m+n≦60原子%)の範囲の中から各々の組成比を異ならせて選択すればよい。
【0136】
このような条件を満たす組成比を各々選択して組成範囲を異ならしめることにより、反強磁性層2とバイアス層6を同一組成で形成した場合よりも、第1の熱処理時および第2の熱処理時における各々の反強磁性層2の交換結合磁界とバイアス層6の交換異方性磁界の差を顕著にできる組み合わせが可能になり、設計の自由度が向上する。
【0137】
また、第1の熱処理の際に、反強磁性層2の交換異方性磁界をバイアス層6の交換異方性磁界よりも大きくでき、第2の熱処理の際に、反強磁性層2の交換異方性磁界を劣化または磁化方向を変えることがなく、固定磁性層3の磁化方向を強固に固定したまま、フリー磁性層5と固定磁性層3の磁化方向を交差させることができる。さらに、第2の熱処理後に、反強磁性層2の交換異方性磁界をバイアス層6の交換異方性磁界よりも大きくでき、磁気記録媒体からの信号磁界の印加に対して、固定磁性層3の磁化方向が変化せずに固定され、フリー磁性層5の磁化方向はスムーズに変化することが可能となる。
【0138】
反強磁性層2とバイアス層6の好ましい別の組み合わせは、バイアス層6を、PtqMn100-q-jj(但し、Lは、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素、組成比を示すq、jが、52原子%≦q+j≦60原子%、0.2原子%≦j≦10原子%)からなる合金とし、反強磁性層2を、PtqMn100-q-jj(但し、Lは、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素、組成比を示すq、jが、48原子%≦q+j≦58原子%、0.2原子%≦j≦10原子%)からなる合金とすることが好ましい。
【0139】
バイアス層6の組成を示すq+jが、52原子%未満若しくは60原子%を越えると、熱処理温度270℃の第2の熱処理を行っても、バイアス層6を構成するPtqMn100-q-jjの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、バイアス層6の組成を示すjが、0.2原子%未満であると、元素Lの添加による一方向性交換結合磁界の改善効果が十分に現れないので好ましくなく、jが10原子%を越えると、一方向性交換結合磁界が低下してしまうので好ましくない。
【0140】
また、反強磁性層2の組成を示すq+jが、48原子%未満若しくは58原子%を越えると、熱処理温度245℃の第1の熱処理を行っても、反強磁性層2を構成するPtqMn100-q-jjの結晶格子がL10型の規則格子へと規則化しにくくなり、反強磁性特性を示さなくなる。即ち、一方向性交換結合磁界を示さなくなるので好ましくない。また、反強磁性層2の組成を示すjが、0.2原子%未満であると、元素Lの添加による一方向性交換結合磁界の改善効果が十分に現れないので好ましくなく、jが10原子%を越えると、一方向性交換結合磁界が低下してしまうので好ましくない。
【0141】
よって、第1の熱処理温度245℃の第1の熱処理を行った後に、反強磁性層2の交換異方性磁界がバイアス層6の交換異方性磁界よりも大きく、かつ第2の熱処理温度が270℃の第2の熱処理を行った後にも、反強磁性層2の交換異方性磁界がバイアス層6の交換異方性磁界よりも大きくなるように、反強磁性層2の組成比(48原子%≦q+j≦58原子%)とバイアス層6の組成比(52原子%≦q+j≦60原子%)の範囲の中から各々の組成比を異ならせて選択すればよい。
【0142】
このような条件を満たす組成比を各々選択して組成範囲を異ならしめることにより、反強磁性層2とバイアス層6を同一組成で形成した場合よりも、第1の熱処理時および第2の熱処理時における各々の反強磁性層2の交換結合磁界とバイアス層6の交換異方性磁界の差を顕著にできる組み合わせが可能になり、設計の自由度が向上する。
【0143】
また、第1の熱処理の際に、反強磁性層2の交換異方性磁界をバイアス層6の交換異方性磁界よりも大きくでき、第2の熱処理の際に、反強磁性層2の交換異方性磁界を劣化または磁化方向を変えることがなく、固定磁性層3の磁化方向を強固に固定したまま、フリー磁性層5と固定磁性層3の磁化方向を交差させることができる。さらに、第2の熱処理後に、反強磁性層2の交換異方性磁界をバイアス層6の交換異方性磁界よりも大きくでき、磁気記録媒体からの信号磁界の印加に対して、固定磁性層3の磁化方向が変化せずに固定され、フリー磁性層5の磁化方向はスムーズに変化することが可能となる。
【0144】
このようなスピンバルブ型薄膜磁気素子1では、前記フリー磁性層5は、固定磁性層3が配置されている方向と反対側の面に(もしくは、基板Kと反対側の面に)トラック幅Twに相当する幅のトラック溝5Aが設けられた溝部5Bを有しているので、この溝部5Bの幅に応じてトラック幅Twを正確に決めることができる。また、このスピンバルブ型薄膜磁気素子1を製造する場合に、フリー磁性層5の溝部5Bの両側の平坦部5C上に配置されるバイアス層6が、前記溝部5Bに残ることがなく、磁気記録媒体からの微弱な漏れ磁束に対してフリー磁性層5の磁気モーメントがスムーズに回転する感度の優れたスピンバルブ型薄膜磁気素子1となる。
【0145】
さらに、反強磁性層2およびバイアス層6が、Pt、Pd、Rh、Ru、Ir、Os、Au、Ag、Cr、Niのうちの少なくとも1種または2種以上の元素とMnとを含む合金からなるものであるので、交換異方性磁界の温度特性が良好となり、耐熱性に優れたスピンバルブ型薄膜磁気素子1となる。また、ハードディスクなどの装置内の環境温度や素子を流れるセンス電流によるジュール熱により素子が高温となる薄膜磁気ヘッドなどの装置に備えられた場合の耐久性が良好で、温度変化による交換異方性磁界(交換結合磁界)の変動が少ない優れたスピンバルブ型薄膜磁気素子1とすることができる。さらにまた、反強磁性層2を上記の合金で形成することで、ブロッキング温度が高いものとなり、反強磁性層2に大きな交換異方性磁界を発生させることができるため、固定磁性層3の磁化方向を強固に固定することができる。
【0146】
このようなスピンバルブ型薄膜磁気素子1の製造方法では、反強磁性層2およびバイアス層6に、Pt、Pd、Rh、Ru、Ir、Os、Au、Ag、Cr、Niのうちの少なくとも1種または2種以上の元素と、Mnとを含む合金を用い、前記合金の性質を利用して、1度目の熱処理で固定磁性層3の磁化方向を固定し、2度目の熱処理でフリー磁性層5の磁化方向を前記固定磁性層3の磁化方向と交差する方向に揃えるので、固定磁性層3の磁化方向に悪影響を与えることなく、フリー磁性層5の磁化方向を固定磁性層3の磁化方向と交差する方向に揃えることができ、耐熱性に優れたスピンバルブ型薄膜磁気素子1を得ることができる。
【0147】
また、基板上に、反強磁性層2と、固定磁性層3と、非磁性導電層4と、フリー磁性層5と、バイアス層6とを順次積層して積層体a1を形成し、前記積層体a1を熱処理する方法であるので、前記積層体a1を形成するに際し、前記基板Kと前記バイアス層6との間に形成される各層の表面を大気に触れさせることがなく、前記各層の表面が大気に触れた場合のように、大気に触れた表面をイオンミリングや逆スパッタによりクリーニングしてからその上の層を形成する必要がないため、容易に製造することができる。また、再現性が良好な製造方法とすることができる。さらに、前記各層の表面をイオンミリングや逆スパッタによりクリーニングする必要がないため、再付着物によるコンタミや、表面の結晶状態の乱れによる交換異方性磁界の発生に対する悪影響など、クリーニングすることに起因する不都合が生じない優れた製造方法とすることができる。
【0148】
さらにまた、前記バイアス層6の一部を除去してトラック幅Twに近い幅の凹部6Aを形成するとともに、この凹部6Aの下に位置する前記フリー磁性層5にトラック幅Twに相当する幅のトラック溝5Aを形成するので、前記バイアス層6の厚みにばらつきがある場合でも、前記トラック溝5Aの底部5Dにバイアス層6が残ることがないため、トラック幅Twを精度よく画定でき、高記録密度化に対応可能なスピンバルブ型薄膜磁気素子1を得ることができる。また、バイアス層6を完全に除去することが簡単であるため、容易に製造することができる。
【0149】
また、スライダ151に上記のスピンバルブ型薄膜磁気素子1が備えられてなる薄膜磁気ヘッドとすることで、耐久性および耐熱性に優れ、十分な交換異方性磁界が得られる薄膜磁気ヘッドとすることができる。
【0150】
本発明の第1の実施形態のスピンバルブ型薄膜磁気素子1においては、上述したように、非磁性導電層4の厚さ方向上下に、固定磁性層3とフリー磁性層5をそれぞれ単層構造として設けたが、これらを複数構造としてもよい。
【0151】
巨大磁気抵抗変化を示すメカニズムは、非磁性導電層4と固定磁性層3とフリー磁性層5との界面で生じる伝導電子のスピン依存散乱によるものである。Cuなどからなる前記非磁性導電層4に対し、スピン依存散乱が大きな組み合わせとして、Co層が例示できる。このため、固定磁性層3をCo以外の材料で形成した場合、固定磁性層3の非磁性導電層4側の部分を図1の2点鎖線で示すように薄いCo層3aで形成することが好ましい。また、フリー磁性層5をCo以外のNiFe合金、CoNi合金、CoFe合金、CoFeNi合金などの材料で形成した場合も、固定磁性層3の場合と同様に、フリー磁性層5の非磁性導電層4側の部分を図1の2点鎖線で示すように薄いCo層5aで形成することが好ましい。
【0152】
[第2の基本形態]
図8は、本発明の第2の基本形態のスピンバルブ型薄膜磁気素子を模式図的に示した横断面図であり、図9は、図8に示したスピンバルブ型薄膜磁気素子を記録媒体との対向面側から見た場合の構造を示した断面図である。このスピンバルブ型薄膜磁気素子においても、図1に示すスピンバルブ型薄膜磁気素子と同様に、ハードディスク装置に設けられた浮上式スライダのトレーリング側端部などに設けられて、ハードディスクなどの記録磁界を検出するものである。なお、ハードディスクなどの磁気記録媒体の移動方向は、図示Z方向であり、磁気記録媒体からの洩れ磁界の方向は、Y方向である。
【0153】
図8および図9に示すスピンバルブ型薄膜磁気素子は、反強磁性層、固定磁性層、非磁性導電層、及びフリー磁性層が一層ずつ形成された、いわゆるボトム型のシングルスピンバルブ型薄膜磁気素子の一種である。また、この例のスピンバルブ型薄膜磁気素子も、図1に示すスピンバルブ型薄膜磁気素子と同様に、反強磁性材料からなるバイアス層を用いたエクスチェンジバイアス方式により、フリー磁性層の磁化方向を固定磁性層の磁化方向に対して交差する方向に揃えるものである。
【0154】
図8および図9において、符号Kは、基板を示している。この基板Kの上には、Al23などからなる下地絶縁層200、下部シールド層163、下部ギャップ層164、反強磁性層11が形成され、さらに、前記反強磁性層11の上には、第1の固定磁性層12が形成されている。そして、前記第1の固定磁性層12の上には、非磁性中間層13が形成され、前記非磁性中間層13の上には、第2の固定磁性層14が形成されている。前記第2の固定磁性層14の上には、非磁性導電層15が形成され、さらに前記非磁性導電層15の上には、フリー磁性層16が形成されている。前記フリー磁性層16は、図9に示すように、固定磁性層が配置されている方向と反対側の面に(もしくは、基板Kと反対側の面に)トラック幅Twと同じ幅のトラック溝16Aが設けられた溝部16Bと、その両側の平坦部16C、16Cとを有している。前記フリー磁性層16の平坦部16C、16C上には、前記バイアス層130、130が設けられ、前記バイアス層130、130の上には、導電層131、131が形成されている。
【0155】
このスピンバルブ型薄膜磁気素子においては、上述の第1の実施形態のスピンバルブ型薄膜磁気素子と同様に、反強磁性層11は、Pt、Pd、Ir、Rh、Ru、Ir、Os、Au、Ag、Cr、Niのうちの少なくとも1種または2種以上の元素と、Mnとを含む合金からなるものであり、磁場中熱処理により第1の固定磁性層12、第2の固定磁性層14をそれぞれ一定の方向に磁化するものである。
【0156】
前記第1の固定磁性層12および第2の固定磁性層14は、例えば、Co膜、NiFe合金、CoNiFe合金、CoFe合金などで形成されている。また、第1の固定磁性層12と第2の固定磁性層14との間に介在する非磁性中間層13は、Ru、Rh、Ir、Cr、Re、Cuのうち1種あるいは2種以上の合金で形成されていることが好ましい。
【0157】
ところで、図8に示す第1の固定磁性層12及び第2の固定磁性層14に示されている矢印は、それぞれの磁気モーメントの大きさ及びその方向を表しており、前記磁気モーメントの大きさは、飽和磁化(Ms)と膜厚(t)とをかけた値で選定される。
【0158】
図8および図9に示す第1の固定磁性層12と第2の固定磁性層14とは同じ材質で形成され、しかも、第2の固定磁性層14の膜厚tP2が、第1の固定磁性層12の膜厚tP1よりも大きく形成されているために、第2の固定磁性層14の方が第1の固定磁性層12に比べ、磁気モーメントが大きくなっている。また、第1の固定磁性層12および第2の固定磁性層14が異なる磁気モーメントを有することが望ましい。したがって、第1の固定磁性層12の膜厚tP1が第2の固定磁性層14の膜厚tP2より厚く形成されていてもよい。
【0159】
第1の固定磁性層12は、図8および図9に示すように、図示Y方向、すなわち記録媒体から離れる方向(ハイト方向)に磁化されており、非磁性中間層13を介して対向する第2の固定磁性層14の磁化は、前記第1の固定磁性層12の磁化方向と反平行(フェリ状態)に磁化されている。
【0160】
第1の固定磁性層12は、反強磁性層11に接して形成され、磁場中アニール(熱処理)を施すことにより、前記第1の固定磁性層12と反強磁性層11との界面にて交換結合磁界(交換異方性磁界)が発生し、例えば、図8および図9に示すように、前記第1の固定磁性層12の磁化が、図示Y方向に固定される。前記第1の固定磁性層12の磁化が、図示Y方向に固定されると、非磁性中間層13を介して対向する第2の固定磁性層14の磁化は、第1の固定磁性層12の磁化と反平行状態(フェリ状態)で固定される。
【0161】
このようなスピンバルブ型薄膜磁気素子においては、交換結合磁界が大きいほど、第1の固定磁性層12の磁化と第2の固定磁性層14の磁化を安定して反平行状態に保つことが可能である。この例のスピンバルブ型薄膜磁気素子では、反強磁性層11として、ブロッキング温度が高く、しかも第1の固定磁性層12との界面で大きい交換結合磁界(交換異方性磁界)を発生させる上記の合金を使用することで、前記第1の固定磁性層12及び第2の固定磁性層14の磁化状態を熱的にも安定して保つことができる。
【0162】
以上のように、このようなスピンバルブ型薄膜磁気素子では、第1の固定磁性層12と第2の固定磁性層14との膜厚比を適正な範囲内に収めることによって、交換結合磁界(Hex)を大きくでき、第1の固定磁性層12と第2の固定磁性層14の磁化を、熱的にも安定した反平行状態(フェリ状態)に保つことができ、しかも、良好な△MR(抵抗変化率)を得ることが可能である。
【0163】
図8および図9に示すように、第2の固定磁性層14の上には、Cuなどで形成された非磁性導電層15が形成され、さらに前記非磁性導電層15の上には、フリー磁性層16が形成されている。前記フリー磁性層16は、図8および図9に示すように、2層で形成されており、前記非磁性導電層15に接する側に形成された符号17の層はCo膜で形成されている。また、もう一方の層18は、NiFe合金や、CoFe合金、あるいはCoNiFe合金などで形成されている。なお、非磁性導電層15に接する側にCo膜の層17を形成する理由は、Cuにより形成された前記非磁性導電層15との界面での金属元素等の拡散を防止でき、また、△MR(抵抗変化率)を大きくできるからである。
【0164】
また、バイアス層130、130は、前記反強磁性層11と同様に、Pt、Pd、Ir、Rh、Ru、Os、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素と、Mnとを含む合金からなるものとされる。前記バイアス層130のバイアス磁界の影響を受けて、前記フリー磁性層16の磁化は、図示X1方向に磁化された状態となっている。
【0165】
また、導電層131、131は、Au、W、Cr、Taなどにより形成されることが好ましい。
【0166】
図8および図9におけるスピンバルブ型薄膜磁気素子では、前記導電層131、131からフリー磁性層16、非磁性導電層15、及び第2の固定磁性層14にセンス電流が与えられる。記録媒体から図8および図9に示す図示Y方向に磁界が与えられると、フリー磁性層16の磁化は、図示X1方向からY方向に変動し、このときの非磁性導電層15とフリー磁性層16との界面、及び非磁性導電層15と第2の固定磁性層14との界面でスピンに依存した伝導電子の散乱が起こることにより、電気抵抗が変化し、記録媒体からの洩れ磁界が検出される。
【0167】
ところで前記センス電流は、実際には、第1の固定磁性層12と非磁性中間層13の界面などにも流れる。前記第1の固定磁性層12は△MRに直接関与せず、前記第1の固定磁性層12は、△MRに関与する第2の固定磁性層14を適正な方向に固定するための、いわば補助的な役割を担った層となっている。このため、センス電流が、第1の固定磁性層12及び非磁性中間層13に流れることは、シャントロス(電流ロス)になるが、このシャントロスの量は非常に少なく、第2の実施形態では、従来とほぼ同程度の△MRを得ることが可能となっている。
【0168】
この例のスピンバルブ型薄膜磁気素子は、図1に示すスピンバルブ型薄膜磁気素子とほぼ同様の製造方法により製造することができる。即ち、本発明のスピンバルブ型薄膜磁気素子の製造方法では、基板K上に、反強磁性層11、第1の固定磁性層12、非磁性中間層13、第2の固定磁性層14、非磁性導電層15、フリー磁性層16、バイアス層130を順次積層して積層体を形成したのち、前記積層体にトラック幅Tw方向と直交する方向である第1の磁界を印加しつつ、第1の熱処理温度で熱処理し、前記反強磁性層11およびバイアス層130に交換異方性磁界を発生させて、前記第1の固定磁性層12および前記フリー磁性層16の磁化を同一方向に固定すると共に、前記反強磁性層11の交換異方性磁界を前記バイアス層130の交換異方性磁界よりも大とする。
【0169】
ついで、トラック幅Tw方向に前記バイアス層130の交換異方性磁界よりも大きく前記反強磁性層11の交換異方性磁界よりも小さい第2の磁界を印加しつつ、前記第1の熱処理温度よりも高い第2の熱処理温度で熱処理し、前記フリー磁性層16に前記第1の固定磁性層12および第2の固定磁性層14の磁化方向と交差する方向のバイアス磁界を付与する。
【0170】
さらに、熱処理された前記積層体をイオンミリングなどにより、前記バイアス層130の一部を除去してトラック幅Twに近い幅の凹部130Aを形成するとともに、この凹部130Aの下に位置する前記フリー磁性層16にトラック幅Twに相当する幅のトラック溝16Aを形成する。ついで、リフトオフレジストを使用する方法などにより、前記バイアス層130上に、前記フリー磁性層16に検出電流を与える導電層131を形成し、スピンバルブ型薄膜磁気素子が得られる。
【0171】
このようなスピンバルブ型薄膜磁気素子では、前記フリー磁性層16は、前記固定磁性層が配置されている方向と反対側の面に(もしくは、前記基板Kと反対側の面に)トラック幅Twに相当する幅のトラック溝16Aが設けられた溝部16Bを有しているので、この溝部16Bの幅に応じてトラック幅Twを正確に決めることができる。また、このスピンバルブ型薄膜磁気素子を製造する場合に、フリー磁性層16の溝部16Bの両側の平坦部16C上に配置されるバイアス層130が、前記溝部16Bに残ることがなく、磁気記録媒体からの微弱な漏れ磁界に対してフリー磁性層16の磁気モーメントがスムーズに回転する感度の優れたスピンバルブ型薄膜磁気素子となる。
【0172】
また、このスピンバルブ型薄膜磁気素子においても、反強磁性層11およびバイアス層130が、Pt、Pd、Ir、Rh、Ru、Os、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素とMnとを含む合金からなるものであるので、交換異方性磁界の温度特性が良好となり、耐熱性に優れたスピンバルブ型薄膜磁気素子となる。また、ハードディスクなどの装置内の環境温度や素子を流れるセンス電流によるジュール熱により素子が高温となる薄膜磁気ヘッドなどの装置に備えられた場合の耐久性が良好で、温度変化による交換異方性磁界(交換結合磁界)の変動が少ない優れたスピンバルブ型薄膜磁気素子とすることができる。さらにまた、反強磁性層11を上記の合金で形成することで、ブロッキング温度が高いものとなり、反強磁性層11に大きな交換異方性磁界を発生させることができるため、第1の固定磁性層12および第2の固定磁性層14の磁化方向を強固に固定することができる。
【0173】
また、上記のスピンバルブ型薄膜磁気素子の製造方法においては、反強磁性層11およびバイアス層130に、Pt、Pd、Ir、Rh、Ru、Os、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素とMnとを含む合金を用い、前記合金の性質を利用して、1度目の熱処理で第1の固定磁性層12の磁化方向を固定し、2度目の熱処理でフリー磁性層16の磁化方向を前記第1の固定磁性層12および第2の固定磁性層14の磁化方向と交差する方向に揃えるので、第1の固定磁性層12の磁化方向に悪影響を与えることなく、フリー磁性層16の磁化方向を第1の固定磁性層12および第2の固定磁性層14の磁化方向と交差する方向に揃えることができ、耐熱性に優れたスピンバルブ型薄膜磁気素子を得ることができる。
【0174】
また、基板K上に、反強磁性層11、第1の固定磁性層12、非磁性中間層13、第2の固定磁性層14、非磁性導電層15、フリー磁性層16、バイアス層130を順次積層して積層体を形成し、前記積層体を熱処理する方法であるので、前記積層体を形成するに際し、前記基板Kと前記バイアス層130との間に形成される各層の表面を大気に触れさせることがなく、前記各層の表面が大気に触れた場合のように、大気に触れた表面をイオンミリングや逆スパッタによりクリーニングしてからその上の層を形成する必要がないため、容易に製造することができる。また、再現性が良好な製造方法とすることができる。さらに、前記各層の表面をイオンミリングや逆スパッタによりクリーニングする必要がないため、再付着物によるコンタミや、表面の結晶状態の乱れによる交換異方性磁界の発生に対する悪影響など、クリーニングすることに起因する不都合が生じない優れた製造方法とすることができる。
【0175】
さらにまた、前記バイアス層130の一部を除去してトラック幅Twに近い幅の凹部130Aを形成するとともに、この凹部130Aの下に位置する前記フリー磁性層16にトラック幅Twに相当する幅のトラック溝16Aを形成するので、前記バイアス層130の厚みにばらつきがある場合でも、前記トラック溝16Aの底部16Dにバイアス層130が残ることがないため、トラック幅Twを精度よく画定でき、高記録密度化に対応可能なスピンバルブ型薄膜磁気素子を得ることができる。また、バイアス層130を完全に除去することが簡単であるため、容易に製造することができる。
【0176】
[第3の基本形態]
図10は、本発明の第3の基本形態のスピンバルブ型薄膜磁気素子を模式図的に示した横断面図であり、図11は、図10に示したスピンバルブ型薄膜磁気素子を記録媒体との対向面側から見た場合の構造を示した断面図である。この例のスピンバルブ型薄膜磁気素子においても、上記のスピンバルブ型薄膜磁気素子と同様に、ハードディスク装置に設けられた浮上式スライダのトレーリング側端部などに設けられて、ハードディスクなどの記録磁界を検出するものである。なお、ハードディスクなどの磁気記録媒体の移動方向は、図示Z方向であり、磁気記録媒体からの洩れ磁界の方向は、Y方向である。
【0177】
また、この例のスピンバルブ型薄膜磁気素子も、反強磁性材料からなるバイアス層を用いたエクスチェンジバイアス方式により、フリー磁性層の磁化方向を固定磁性層の磁化方向に対して交差する方向に揃えるものである。このスピンバルブ型薄膜磁気素子は、固定磁性層のみならず、フリー磁性層も非磁性中間層を介して第1のフリー磁性層と第2のフリー磁性層の2層に分断されている。
【0178】
図10および図11において、符号Kは、基板を示している。この基板Kの上には、Al23などからなる下地絶縁層200、下部シールド層163、下部ギャップ層164、反強磁性層51が形成され、さらに、前記反強磁性層51の上には、第1の固定磁性層52、非磁性中間層53、第2の固定磁性層54、非磁性導電層55、第1のフリー磁性層56、非磁性中間層59、第2のフリー磁性層60が順に積層されている。前記第2のフリー磁性層60は、図11に示すように、前記固定磁性層が配置されている方向と反対側の面に(もしくは、前記基板Kと反対側の面に)トラック幅Twと同じ幅のトラック溝60Aが設けられた溝部16Bと、その両側の平坦部60C、60Cとを有している。前記第2のフリー磁性層60の平坦部60C、60C上には、前記バイアス層62、62が設けられ、前記バイアス層62、62の上には、導電層63、63が形成されている。
【0179】
本発明の第3の基本形態のスピンバルブ型薄膜磁気素子においても、前記反強磁性層51は、上記のスピンバルブ型薄膜磁気素子と同様に、Pt、Pd、Ir、Rh、Ru、Os、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素と、Mnとを含む合金からなるものであり、磁場中熱処理により第1の固定磁性層52、第2の固定磁性層54をそれぞれ一定の方向に磁化するものである。
【0180】
第1の固定磁性層52及び第2の固定磁性層54は、Co膜、NiFe合金、CoFe合金、あるいはCoNiFe合金などで形成されている。また、非磁性中間層53は、Ru、Rh、Ir、Cr、Re、Cuのうち1種あるいは2種以上の合金で形成されていることが好ましい。
【0181】
第1の固定磁性層52は、反強磁性層51に接して形成され、磁場中アニール(熱処理)を施すことにより、前記第1の固定磁性層52と反強磁性層51との界面にて交換結合磁界(交換異方性磁界)が発生し、例えば、図10および図11に示すように、前記第1の固定磁性層22の磁化が、図示Y方向に固定される。前記第1の固定磁性層52の磁化が、図示Y方向に固定されると、非磁性中間層53を介して対向する第2の固定磁性層54の磁化は、第1の固定磁性層52の磁化と反平行状態(フェリ状態)で固定される。
【0182】
このフェリ状態の安定性を保つためには、大きい交換結合磁界が必要である。この例のスピンバルブ型薄膜磁気素子では、反強磁性層51として、ブロッキング温度が高く、しかも第1の固定磁性層52との界面で大きい交換結合磁界(交換異方性磁界)を発生させる上記の合金を使用することで、前記第1の固定磁性層52及び第2の固定磁性層54の磁化状態を熱的にも安定して保つことができる。
【0183】
また、前記非磁性導電層55は、Cuなどで形成されることが好ましい。
【0184】
また、前記第1のフリー磁性層56は、図10および図11に示すように、2層で形成されており、非磁性導電層55に接する側にCo膜57が形成されている。非磁性導電層55に接する側にCo膜57を形成するのは、第1に△MRを大きくできるためであり、第2に非磁性導電層55との拡散を防止するためである。
【0185】
前記Co膜57の上には、NiFe合金膜58が形成されている。さらに、前記NiFe合金膜58上には、非磁性中間層59が形成されている。そして、前記非磁性中間層59の上には、第2のフリー磁性層60が形成されている。前記第2のフリー磁性層60は、Co膜、NiFe合金、CoFe合金、あるいはCoNiFe合金などで形成されている。
【0186】
また、第1のフリー磁性層56と第2のフリー磁性層60との間に介在する非磁性中間層59は、Ru、Rh、Ir、Cr、Re、Cuのうち1種あるいは2種以上の合金で形成されていることが好ましい。
【0187】
前記第1のフリー磁性層56の磁化と第2のフリー磁性層60の磁化とは、前記第1のフリー磁性層56と第2のフリー磁性層60との間に発生する交換結合磁界(RKKY相互作用)によって、図10および図11に示すように、互いに反平行状態(フェリ状態)になっている。
【0188】
図10および図11に示すスピンバルブ型薄膜磁気素子では、例えば、第1のフリー磁性層56の膜厚tF1は、第2のフリー磁性層60の膜厚tF2よりも小さく形成されている。そして、前記第1のフリー磁性層56のMs・tF1は、第2のフリー磁性層60のMs・tF2よりも小さく設定されており、バイアス層62から図示X1方向と反対方向にバイアス磁界が与えられると、Ms・tF2の大きい第2のフリー磁性層60の磁化が、前記バイアス磁界の影響を受けて、図示X1方向と反対方向に揃えられ、前記第2のフリー磁性層60との交換結合磁界(RKKY相互作用)によって、Ms・tF1の小さい第1のフリー磁性層56の磁化は、図示X1方向に揃えられる。
【0189】
図示Y方向から外部磁界が侵入してくると、前記第1のフリー磁性層56と第2のフリー磁性層60の磁化は、フェリ状態を保ちながら、前記外部磁界の影響を受けて回転する。そして、△MRに奇与する第1のフリー磁性層56の変動磁化と、第2の固定磁性層54の固定磁化(例えば図示Y方向と反対方向に磁化されている)との関係によって、電気抵抗が変化し、外部磁界が電気抵抗変化として検出される。
【0190】
また、バイアス層62、62は、前記反強磁性層51と同様に、Pt、Pd、Ir、Rh、Ru、Os、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素と、Mnとを含む合金からなるものとされる。また、導電層62、63は、Au、W、Cr、Taなどにより形成されることが好ましい。
【0191】
この例のスピンバルブ型薄膜磁気素子も、図1に示すスピンバルブ型薄膜磁気素子とほぼ同様の製造方法により製造することができる。即ち、本発明のスピンバルブ型薄膜磁気素子の製造方法では、基板K上に、反強磁性層51、第1の固定磁性層52、非磁性中間層53、第2の固定磁性層54、非磁性導電層55、第1のフリー磁性層56、非磁性中間層59、第2のフリー磁性層60、バイアス層62を順次積層して積層体を形成したのち、前記積層体にトラック幅Tw方向と直交する方向である第1の磁界を印加しつつ、第1の熱処理温度で熱処理し、前記反強磁性層51およびバイアス層62に交換異方性磁界を発生させて、前記第1の固定磁性層52および前記第2のフリー磁性層60の磁化を同一方向に固定すると共に、前記反強磁性層51の交換異方性磁界を前記バイアス層62の交換異方性磁界よりも大とする。
【0192】
ついで、トラック幅Tw方向に前記バイアス層62の交換異方性磁界よりも大きく前記反強磁性層51の交換異方性磁界よりも小さい第2の磁界を印加しつつ、前記第1の熱処理温度よりも高い第2の熱処理温度で熱処理し、前記第2のフリー磁性層60に前記第1の固定磁性層52および第2の固定磁性層54の磁化方向と交差する方向のバイアス磁界を付与する。
【0193】
さらに、熱処理された前記積層体をイオンミリングなどにより、前記バイアス層62の一部を除去してトラック幅Twに近い幅の凹部62Aを形成するとともに、この凹部62Aの下に位置する前記フリー磁性層60にトラック幅Twに相当する幅のトラック溝60Aを形成する。ついで、リフトオフレジストを使用する方法などにより、前記バイアス層62上に、導電層63を形成し、スピンバルブ型薄膜磁気素子が得られる。
【0194】
このようなスピンバルブ型薄膜磁気素子では、前記フリー磁性層60は、前記固定磁性層が配置されている方向と反対側の面に(もしくは、前記基板Kと反対側の面に)トラック幅Twに相当する幅のトラック溝60Aが設けられた溝部60Bを有しているので、この溝部60Bの幅に応じてトラック幅Twを正確に決めることができる。また、このスピンバルブ型薄膜磁気素子を製造する場合に、フリー磁性層60の溝部60Bの両側の平坦部60C上に配置されるバイアス層62が、前記溝部60Bに残ることがなく、磁気記録媒体からの微弱な漏れ磁界に対してフリー磁性層60の磁気モーメントがスムーズに回転する感度の優れたスピンバルブ型薄膜磁気素子となる。
【0195】
また、このスピンバルブ型薄膜磁気素子においても、反強磁性層51およびバイアス層62が、Pt、Pd、Ir、Rh、Ru、Os、Au、Ag、Cr、Ni、Ne、Ar、Xe、Krのうちの少なくとも1種または2種以上の元素とMnとを含む合金からなるものであるので、交換異方性磁界の温度特性が良好となり、耐熱性に優れたスピンバルブ型薄膜磁気素子となる。また、ハードディスクなどの装置内の環境温度や素子を流れるセンス電流によるジュール熱により素子が高温となる薄膜磁気ヘッドなどの装置に備えられた場合の耐久性が良好で、温度変化による交換異方性磁界(交換結合磁界)の変動が少ない優れたスピンバルブ型薄膜磁気素子とすることができる。さらにまた、反強磁性層51を上記の合金で形成することで、ブロッキング温度が高いものとなり、反強磁性層51に大きな交換異方性磁界を発生させることができるため、第1の固定磁性層52および第2の固定磁性層54の磁化方向を強固に固定することができる。
【0196】
また、上記のスピンバルブ型薄膜磁気素子の製造方法においては、反強磁性層51およびバイアス層62に、Pt、Pd、Rh、Ru、Ir、Os、Au、Ag、Cr、Niのうちの少なくとも1種または2種以上の元素とMnとを含む合金を用い、前記合金の性質を利用して、1度目の熱処理で第1の固定磁性層52の磁化方向を固定し、2度目の熱処理で第2のフリー磁性層60の磁化方向を前記第1の固定磁性層52および第2の固定磁性層54の磁化方向と交差する方向に揃えるので、第1の固定磁性層52の磁化方向に悪影響を与えることなく、第1のフリー磁性層56および第2のフリー磁性層60の磁化方向を第1の固定磁性層52および第2の固定磁性層54の磁化方向と交差する方向に揃えることができ、耐熱性に優れたスピンバルブ型薄膜磁気素子を得ることができる。
【0197】
また、反強磁性層51、第1の固定磁性層52、非磁性中間層53、第2の固定磁性層54、非磁性導電層55、第1のフリー磁性層56、非磁性中間層59、第2のフリー磁性層60、バイアス層62を順次積層して積層体を形成し、前記積層体を熱処理する方法であるので、前記積層体を形成するに際し、前記基板Kと前記バイアス層62との間に形成される各層の表面を大気に触れさせることがなく、前記各層の表面が大気に触れた場合のように、大気に触れた表面をイオンミリングや逆スパッタによりクリーニングしてからその上の層を形成する必要がないため、容易に製造することができる。また、再現性が良好な製造方法とすることができる。さらに、前記各層の表面をイオンミリングや逆スパッタによりクリーニングする必要がないため、再付着物によるコンタミや、表面の結晶状態の乱れによる交換異方性磁界の発生に対する悪影響など、クリーニングすることに起因する不都合が生じない優れた製造方法とすることができる。
【0198】
さらにまた、前記バイアス層62の一部を除去してトラック幅Twに近い幅の凹部62Aを形成するとともに、この凹部62Aの下に位置する前記フリー磁性層60にトラック幅Twに相当する幅のトラック溝60Aを形成するので、前記バイアス層62の厚みにばらつきがある場合でも、前記トラック溝60Aの底部60Dにバイアス層62が残ることがないため、トラック幅Twを精度よく画定でき、高記録密度化に対応可能なスピンバルブ型薄膜磁気素子を得ることができる。また、バイアス層62を完全に除去することが簡単であるため、容易に製造することができる。
【0199】
[センス電流磁界の作用]
次に、図8〜図11に示す第2の実施形態および第3の実施形態の構造において、センス電流磁界の作用について説明する。図8および図9に示すスピンバルブ型薄膜磁気素子では、非磁性導電層15の下側に第2の固定磁性層14が形成されている。この場合にあっては、第1の固定磁性層12及び第2の固定磁性層14のうち、磁気モーメントの大きい方の固定磁性層の磁化方向に、センス電流磁界の方向を合わせる。
【0200】
図8に示すように、前記第2の固定磁性層14の磁気モーメントは、第1の固定磁性層12の磁気モーメントに比べて大きく、前記第2の固定磁性層14の磁気モーメントは、図示Y方向と反対方向(図示左方向)に向いている。このため前記第1の固定磁性層12の磁気モーメントと第2の固定磁性層14の磁気モーメントとを足し合わせた合成磁気モーメントは、図示Y方向と反対方向(図示左方向)に向いている。
【0201】
前述のように、非磁性導電層15は、第2の固定磁性層14及び第1の固定磁性層12の上側に形成されている。このため、主に前記非磁性導電層15を中心にして流れるセンス電流112によって形成されるセンス電流磁界は、前記非磁性導電層15よりも下側において、図示左方向に向くように、前記センス電流112の流す方向を制御すればよい。このようにすれば、第1の固定磁性層12と第2の固定磁性層14との合成磁気モーメントの方向と、前記センス電流磁界の方向とが一致する。
【0202】
図8に示すように、前記センス電流112は、図示X1方向に流される。右ネジの法則により、センス電流を流すことによって形成されるセンス電流磁界は、紙面に対して右回りに形成される。従って、非磁性導電層15よりも下側の層には、図示方向(図示Y方向と反対方向)のセンス電流磁界が印加されることになり、このセンス電流によって、第1の合成磁気モーメントを補強する方向に作用し、第1の固定磁性層12と第2の固定磁性層14間に作用する交換結合磁界(RKKY相互作用)が増幅され、前記第1の固定磁性層12の磁化と第2の固定磁性層14の磁化の反平行状態をより熱的に安定させることが可能になる。
【0203】
特に、センス電流を1mA流すと、約30(Oe)程度のセンス電流磁界が発生し、また素子温度が約10℃程度上昇することが判っている。さらに、記録媒体の回転数は、10000rpm程度まで速くなり、この回転数の上昇により、装置内温度は、最高で約100℃まで上昇する。このため、例えば、センス電流を10mA流した場合、スピンバルブ型薄膜磁気素子の素子温度は、約200℃程度まで上昇し、さらにセンス電流磁界も300(Oe)と大きくなる。このような、非常に高い環境温度下で、しかも、大きなセンス電流が流れる場合にあっては、第1の固定磁性層12の磁気モーメントと第2の固定磁性層14とを足し合わせて求めることができる合成磁気モーメントの方向と、センス電流磁界の方向とが逆向きであると、第1の固定磁性層12の磁化と第2の固定磁性層14の磁化との反平行状態が壊れ易くなる。また、高い環境温度下でも耐え得るようにするには、センス電流磁界の方向の調節の他に、高いブロッキング温度を有する反強磁性材料を反強磁性層11として使用する必要がある。そのため、本発明では、ブロッキング温度が高い上記の合金を使用している。
【0204】
なお、図8に示す第1の固定磁性層12の磁気モーメントと第2の固定磁性層14の磁気モーメントとで形成される合成磁気モーメントが、図示右方向(図示Y方向)に向いている場合には、センス電流を図示X1方向と反対方向に流し、センス電流磁界が紙面に対し左回りに形成されるようにすればよい。
【0205】
また、図10及び図11は、フリー磁性層が非磁性中間層を介して第1のフリー磁性層と第2のフリー磁性層の2層に分断されて形成されたスピンバルブ型薄膜磁気素子の実施例であるが、図10に示すスピンバルブ型薄膜磁気素子のように、非磁性導電層55よりも下側に第1の固定磁性層52及び第2の固定磁性層54が形成された場合にあっては、図8に示すスピンバルブ型薄膜磁気素子の場合と同様のセンス電流方向の制御を行えばよい。
【0206】
以上のように、上述の各実施の形態によれば、センス電流を流すことによって形成されるセンス電流磁界の方向と、第1の固定磁性層の磁気モーメントと第2の固定磁性層の磁気モーメントを足し合わせることによって求めることができる合成磁気モーメントの方向とを一致させることにより、前記第1の固定磁性層と第2の固定磁性層間に作用する交換結合磁界(RKKY相互作用)を増幅させ、前記第lの固定磁性層の磁化と第2の固定磁性層の磁化の反平行状態(フェリ状態)を熱的に安定した状態に保つことが可能である。特に、本実施の形態では、より熱的安定性を向上させるために、反強磁性層にブロッキング温度の高い反強磁性材料を使用しており、これによって、環境温度が、従来に比べて大幅に上昇しても、前記第1の固定磁性層の磁化と第2の固定磁性層の磁化の反平行状態(フェリ状態)を壊れ難くすることができる。
【0207】
また、高記録密度化に対応するためにセンス電流量を大きくして再生出力を大きくしようとすると、それに従ってセンス電流磁界も大きくなるが、本発明の実施の形態では、前記センス電流磁界が、第1の固定磁性層と第2の固定磁性層の間に働く交換結合磁界を増幅させる作用をもたらしているので、センス電流磁界の増大により、第1の固定磁性層と第2の固定磁性層の磁化状態は、より安定したものとなる。なお、このセンス電流方向の制御は、反強磁性層にどのような反強磁性材料を使用した場合であっても適用でき、例えば、反強磁性層と固定磁性層(第1の固定磁性層)との界面で交換結合磁界(交換異方性磁界)を発生させるために、熱処理が必要であるか、あるいは必要でないかを問わない。さらに、図1に示す第1の実施の形態のように、固定磁性層が単層で形成されているシングルスピンバルブ型薄膜磁気素子の場合であっても、前述したセンス電流を流すことによって形成されるセンス電流磁界の方向と、固定磁性層の磁化方向とを一致させることにより、前記固定磁性層の磁化を熱的に安定化させることが可能である。
【0208】
【発明の効果】
以上、詳細に説明したように、本発明のスピンバルブ型薄膜磁気素子の製造方法では、反強磁性層およびバイアス層に、Pt、Pd、Rh、Ru、Ir、Os、Au、Ag、Cr、Ni、Ne、Ar、Kr、Xeのうちの少なくとも1種または2種以上の元素とMnとを含む合金を用い、前記合金の性質を利用して、1度目の熱処理で固定磁性層の磁化方向を固定し、2度目の熱処理でフリー磁性層の磁化方向を前記固定磁性層の磁化方向と交差する方向に揃えるので、固定磁性層の磁化方向に悪影響を与えることなく、前記フリー磁性層の磁化方向を前記固定磁性層の磁化方向と交差する方向に揃えることができ、耐熱性に優れたスピンバルブ型薄膜磁気素子を得ることができる。
【0212】
また、上記のスピンバルブ型薄膜磁気素子の製造方法は、基板上に、反強磁性層、固定磁性層、非磁性導電層、フリー磁性層、バイアス層を順次積層して積層体を形成し、前記積層体を熱処理する方法であるので、前記積層体を形成するに際し、前記基板と前記バイアス層との間に形成される各層の表面を大気に触れさせることがなく、前記各層の表面が大気に触れた場合のように、大気に触れた表面をイオンミリングや逆スパッタによりクリーニングしてからその上の層を形成する必要がないため、容易に製造することができる。また、再現性が良好な製造方法とすることができる。さらに、前記各層の表面をイオンミリングや逆スパッタによりクリーニングする必要がないため、再付着物によるコンタミや、表面の結晶状態の乱れによる交換異方性磁界の発生に対する悪影響など、クリーニングすることに起因する不都合が生じない優れた製造方法とすることができる。
【0213】
また、上記のスピンバルブ型薄膜磁気素子の製造方法では、前記バイアス層の一部を除去してトラック幅に近い幅の凹部を形成するとともに、この凹部の下に位置する前記フリー磁性層にトラック幅に相当する幅のトラック溝を形成するので、前記バイアス層の厚みにばらつきがある場合でも、前記トラック溝の底部にバイアス層が残ることがないため、トラック幅を精度よく画定でき、高記録密度化に対応可能なスピンバルブ型薄膜磁気素子を得ることができる。また、バイアス層を完全に除去することが簡単であるため、容易に製造することができる。
【0214】
また、本発明方法により得られたスピンバルブ型薄膜磁気素子であるならば、耐久性および耐熱性に優れ、十分な交換異方性磁界が得られる薄膜磁気ヘッドに供することができる。
【図面の簡単な説明】
【図1】 本発明の第1の基本形態であるスピンバルブ型薄膜磁気素子を記録媒体との対向面側から見た場合の構造を示す断面図である。
【図2】 図1に示したスピンバルブ型薄膜磁気素子の製造方法を説明するための図であって、基板上に積層体を形成した状況を示す断面図である。
【図3】 図1に示したスピンバルブ型薄膜磁気素子の製造方法を説明するための図であって、マスクを形成した状況を示す断面図である。
【図4】 図1に示したスピンバルブ型薄膜磁気素子の製造方法を説明するための図であって、トラック溝を形成した状況を示す断面図である。
【図5】 図1に示したスピンバルブ型薄膜磁気素子の製造方法を説明するための図であって、導電層を形成した状況を示す断面図である。
【図6】 本発明の第1の基本形態であるスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッドを示す斜視図である。
【図7】 本発明の第1の基本形態であるスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッドの要部を示す断面図である。
【図8】 本発明の第2の基本形態であるスピンバルブ型薄膜磁気素子を示す断面図である。
【図9】 図8に示したスピンバルブ型薄膜磁気素子を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図10】 本発明の第3の基本形態であるスピンバルブ型薄膜磁気素子を示す断面図である。
【図11】 図10に示したスピンバルブ型薄膜磁気素子を記録媒体との対向面側から見た場合の構造を示した断面図である。
【図12】 従来のスピンバルブ型薄膜磁気素子の一例を記録媒体との対向面側から見た場合の構造を示す断面図である。
【図13】 従来のスピンバルブ型薄膜磁気素子の他の例を記録媒体との対向面側から見た場合の構造を示す断面図である。
【図14】 図13に示したスピンバルブ型薄膜磁気素子の製造方法を説明するための図であって、基板上に積層体を形成した状況を示す断面図である。
【図15】 図13に示したスピンバルブ型薄膜磁気素子の製造方法を説明するための図であって、リフトオフレジストを形成した状況を示す断面図である。
【図16】 図13に示したスピンバルブ型薄膜磁気素子の製造方法を説明するための図であって、バイアス層および導電層を形成した状況を示す断面図である。
【図17】 Pt55.4Mn44.6合金及びPt54.4Mn45.6合金の交換異方性磁界の熱処理温度依存性を示すグラフである。
【図18】 PtmMn100-m合金の交換異方性磁界のPt濃度(m)依存性を示すグラフである。
【図19】 図17および図18に示すグラフのデータの測定に用いられたスピンバルブ型薄膜磁気素子を記録媒体との対向面側から見た場合の構造を示す断面図である。
【図20】 図17および図18に示すグラフのデータの測定に用いられたスピンバルブ型薄膜磁気素子を記録媒体との対向面側から見た場合の構造を示す断面図である。
【符号の説明】
1 スピンバルブ型薄膜磁気素子
K 基板
2、11、22、51 反強磁性層
3、23 固定磁性層
4、15、24、55 非磁性導電層
5、16、25 フリー磁性層
6、26、62、130 バイアス層
8、28、63、131 導電層
Tw トラック幅
5A、16A、60A トラック溝
5B、16B、60B 溝部
5C、16C、60C 平坦部
a1 積層体
12、52 第1の固定磁性層
14、54 第2の固定磁性層
13、53 非磁性中間層
56 第1のフリー磁性層
60 第2のフリー磁性層
150 薄膜磁気ヘッド
6A、62A、130A 凹部

Claims (3)

  1. 基板上に、反強磁性層と、固定磁性層と、非磁性導電層と、フリー磁性層と、バイアス層とを順次積層して積層体を形成する工程と、前記積層体にトラック幅方向と直交する方向である第1の磁界を印加しつつ、第1の熱処理温度で熱処理し、前記反強磁性層およびバイアス層に交換異方性磁界を発生させて、前記固定磁性層および前記フリー磁性層の磁化を同一方向に固定すると共に、前記反強磁性層の交換異方性磁界を前記バイアス層の交換異方性磁界よりも大とする工程と、トラック幅方向に前記バイアス層の交換異方性磁界よりも大きく前記反強磁性層の交換異方性磁界よりも小さい第2の磁界を印加しつつ、前記第1の熱処理温度よりも高い第2の熱処理温度で熱処理し、前記フリー磁性層に前記固定磁性層の磁化方向と交差する方向のバイアス磁界を付与する工程と、前記バイアス層の一部を除去してトラック幅に近い幅の凹部を形成するとともに、この凹部の下に位置する前記フリー磁性層にトラック幅に相当する幅のトラック溝を形成する工程と、前記バイアス層上に、前記フリー磁性層に検出電流を与える導電層を形成する工程とを有するとともに、前記反強磁性層およびバイアス層は、以下の組成式からなる相互に異なる合金を用いることを特徴とするスピンバルブ型薄膜磁気素子の製造方法。
    mMn100-m
    但し、Xは、Pt、Pd、Ir、Rh、Ru、Osのうちの少なくとも1種以上の元素であり、前記バイアス層の組成比を示すmが、52原子%≦m≦60原子%であり、前記反強磁性層の組成比を示すmが、48原子%≦m≦58原子%である。
  2. 前記第1の熱処理温度は、220℃〜240℃の範囲であることを特徴とする請求項1に記載のスピンバルブ型薄膜磁気素子の製造方法。
  3. 前記第2の熱処理熱度は、250℃〜270℃の範囲であることを特徴とする請求項1に記載のスピンバルブ型薄膜磁気素子の製造方法。
JP2002129402A 2002-04-30 2002-04-30 スピンバルブ型薄膜磁気素子の製造方法 Expired - Fee Related JP3944411B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129402A JP3944411B2 (ja) 2002-04-30 2002-04-30 スピンバルブ型薄膜磁気素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129402A JP3944411B2 (ja) 2002-04-30 2002-04-30 スピンバルブ型薄膜磁気素子の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15713299A Division JP3710324B2 (ja) 1999-06-03 1999-06-03 スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及びスピンバルブ型薄膜磁気素子の製造方法

Publications (2)

Publication Number Publication Date
JP2003051629A JP2003051629A (ja) 2003-02-21
JP3944411B2 true JP3944411B2 (ja) 2007-07-11

Family

ID=19194306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129402A Expired - Fee Related JP3944411B2 (ja) 2002-04-30 2002-04-30 スピンバルブ型薄膜磁気素子の製造方法

Country Status (1)

Country Link
JP (1) JP3944411B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1648039A4 (en) * 2003-07-18 2006-09-06 Fujitsu Ltd CCP MAGNETO-RESISTANT ELEMENT, METHOD FOR THE PRODUCTION THEREOF, MAGNETIC HEAD AND MAGNETIC STORAGE

Also Published As

Publication number Publication date
JP2003051629A (ja) 2003-02-21

Similar Documents

Publication Publication Date Title
JP3291208B2 (ja) 磁気抵抗効果型センサおよびその製造方法とそのセンサを備えた磁気ヘッド
JP4421822B2 (ja) ボトムスピンバルブ磁気抵抗効果センサ素子およびその製造方法
US7106561B2 (en) Current-perpendicular-to-plane magnetoresistive sensor with free layer stabilized by in-stack orthogonal magnetic coupling to an antiparallel pinned biasing layer
US6856494B2 (en) Spin-valve type thin film magnetic element having bias layers and ferromagnetic layers
US20020086182A1 (en) Spin tunnel magnetoresistive effect film and element, magnetoresistive sensor using same, magnetic apparatus, and method for manufacturing same
US7885042B2 (en) CPP magneto-resistive effect device utilizing an anti-oxidizing layer as part of the spacer layer in a thin-film magnetic head usable in a head gimbal assembly in a hard disk system
JP2001291915A (ja) 磁気抵抗センサ素子およびその製造方法
JP2001216612A (ja) スピンバルブ型薄膜磁気素子およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP3657487B2 (ja) スピンバルブ型薄膜磁気素子およびその製造方法、およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
US6083632A (en) Magnetoresistive effect film and method of manufacture thereof
JP3734716B2 (ja) 磁気検出素子の製造方法
JP3706793B2 (ja) スピンバルブ型薄膜磁気素子及びその製造方法並びにこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
US7092218B2 (en) Magnetic head comprising magnetic domain control layer formed on ABS-side of magnetic flux guide for GMR element and method of manufacturing the magnetic head
JP3198265B2 (ja) 磁気抵抗効果素子
JP3710324B2 (ja) スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及びスピンバルブ型薄膜磁気素子の製造方法
JP2006139886A (ja) 磁気抵抗効果型磁気ヘッド及びその製造方法
JP2001118217A (ja) スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及びスピンバルブ型薄膜磁気素子の製造方法
US7079362B2 (en) Giant magnetoresistive element
JP3710349B2 (ja) スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及びスピンバルブ型薄膜磁気素子の製造方法
US20010033466A1 (en) Spin-valve type thin film magnetic element
JP2001160208A (ja) 磁気抵抗効果素子及びその製造方法
JP3944411B2 (ja) スピンバルブ型薄膜磁気素子の製造方法
JP3831573B2 (ja) スピンバルブ型薄膜素子の製造方法及びこのスピンバルブ型薄膜素子を用いた薄膜磁気ヘッドの製造方法
US6913836B1 (en) Spin-valve type magnetoresistive sensor and method of manufacturing the same
JP2000215422A (ja) スピンバルブ型磁気抵抗効果素子およびその製造方法とその素子を備えた薄膜磁気ヘッド

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees