JP3931956B2 - Method for growing silicon single crystal - Google Patents

Method for growing silicon single crystal Download PDF

Info

Publication number
JP3931956B2
JP3931956B2 JP2001339189A JP2001339189A JP3931956B2 JP 3931956 B2 JP3931956 B2 JP 3931956B2 JP 2001339189 A JP2001339189 A JP 2001339189A JP 2001339189 A JP2001339189 A JP 2001339189A JP 3931956 B2 JP3931956 B2 JP 3931956B2
Authority
JP
Japan
Prior art keywords
boron
phosphorus
single crystal
specific resistance
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001339189A
Other languages
Japanese (ja)
Other versions
JP2003137687A (en
Inventor
浩二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2001339189A priority Critical patent/JP3931956B2/en
Publication of JP2003137687A publication Critical patent/JP2003137687A/en
Application granted granted Critical
Publication of JP3931956B2 publication Critical patent/JP3931956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、半導体材料として使用されるシリコンウェーハ用のp型シリコン単結晶の育成方法に関し、棒状単結晶の長さ方向に所要の比抵抗値を有するシリコンウェーハがより多く得られ歩留りにすぐれたシリコン単結晶の育成方法に関する。
【0002】
【従来の技術】
所望の比抵抗をもつシリコン単結晶をチョクラルスキー法で育成する場合、シリコンと添加剤の種類により決まる物質固有の偏析係数を考慮する必要があり、一般的に引き上げられた単結晶インゴットの後部になるほど比抵抗は低下するため、所望の比抵抗範囲が比較的狭い場合には、その所望の範囲を逸脱することになり、逸脱した部分は製品として使用できなくなる。
【0003】
そこで、ボロン等のp型不純物の効果を相殺し、見かけの偏析係数を大きくする方法として、n型不純物を添加する方法が種々提案(特開平10−29894号、特許第2804456号及び特許第2804455号、特許第2756476号など)されている。これにより1本のインゴットからより多くの所望の比抵抗値をもつウェーハがより多く得られ、歩留りの向上を図ることができる。
【0004】
【発明が解決しようとする課題】
特開平10−29894号に記載の単結晶シリコンの比抵抗調整方法では、石英ルツボの底部に比抵抗の低下を打ち消す添加剤を含有させる必要があるが、初期融解時にはその添加物を融解させてはならず、実際に行おうとした場合、煩雑な方法を取らざるを得ない、または育成途中で融液中に添加剤を添加しなければならないため、何らかの治具が必要であり、簡便な方法ではない。
【0005】
特許第2804456号及び特許第2804455号に記載の方法は、BまたはPを添加したSi融液に融点近傍の熱膨張係数を小さくする元素(Ga,SbまたはIn)を追加添加、あるいはGaまたはSbを添加したSi融液に融点近傍の熱膨張係数を大きくする元素(BまたはP)を追加添加して引き上げることにより、成長方向に不純物濃度が均一な単結晶を育成することができるとされている。
【0006】
特許第2756476号に記載の方法は、CZ又はFZ方法にて育成して得たウェーハ面内の比抵抗値の均一性を改善するために、特定の計算式で添加する不純物量を求めてこれを添加する。しかし、この方法でn型不純物を添加して引き上げ率が大きい場合には、インゴットのボトム部付近において比抵抗値が減少から増加に移る逆転する部分が現れる場合がある。従って、インゴットの比抵抗値保証が困難となり、ウェーハ化工程において全数の比抵抗値を測定する必要が生じて煩雑な工程フローとなる場合がある。
【0007】
この発明は、ボロンを主添加剤とするp型の棒状シリコン単結晶の長さ方向に所要の比抵抗値を有するシリコンウェーハを得ることを目的とし、またできるだけ簡便な手段で見かけの偏析係数を大きくして、シリコン単結晶の比抵抗値を均一にして歩留りを向上させることが可能なシリコン単結晶の育成方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
発明者は、n型不純物を添加する手段でp型シリコン単結晶の見かけの偏析係数を大きくする方法において、シリコン単結晶の長さ方向に比抵抗値が均一となるようにするn型不純物の添加手段を目的に種々検討した結果、初期融液中にリンを単に所定量添加するという簡単な方法で目的が達成できることを知見し、この発明を完成した。
【0009】
すなわち、この発明は、チョクラルスキー法で、原料シリコンを溶融してボロンを主添加剤として含有するp型シリコン単結晶を育成する方法において、初期融液が含む絶対ボロン濃度(atoms/cc)の25〜35%となるように、初期融液中にリンを添加すること、換言すれば、主添加剤として含有されるボロンの見かけのボロン偏析係数が0.83〜0.88となるようにリンを初期融液に添加することを特徴とするシリコン単結晶の育成方法である。
【0010】
【発明の実施の形態】
この発明は、初期融液に絶対ボロン濃度(atoms/cc)の25〜35%のリンを添加すると、ボロンの見かけの偏析係数は0.83〜0.88になり、通常製造する単結晶のほぼ全域にわたり所望の比抵抗値を得ることができ、かつインゴットのボトム付近で比抵抗が逆転する部分が現れない効果が得られることを特徴とする。
【0011】
すなわち、この発明において、シリコン単結晶の比抵抗値は引上げ方向に均一であることを特徴とするが、引上げた単結晶のトップからボトム方向に、例えば、単結晶の長さの90%以下において目標比抵抗値から−30%以内の値を示すなどの所要範囲内で減少から増加する等の現象がなく、減少傾向のみを示すことが望ましい。
【0012】
なお、ボロンの見かけの偏析係数とは、比抵抗値とその測定位置から、ボロンのみが存在すると仮定して求めた場合の偏析係数である。シリコン中にあるボロン・リンはそれぞれ独立した偏析を行う。フォトルミネッセンス等でボロンおよびリンの絶対量を測定しそれぞれの偏析係数を求めると、Cボロン≫Cリンの場合も、Cボロン>Cリンの場合も0.75、0.35に近い値となる。ところが比抵抗値とその測定位置から偏析係数を求めるとボロンにより発生した空孔とリンにより発生した電子が打ち消し合うため、上記とは異なる偏析係数となる。この場合、ボロンのみが存在すると仮定している。具体的には、Cボロン≫Cリンの場合には、圧倒的に空孔の数が多いため0.75に近い値となるがCボロン>Cリンの場合には、空孔の数と電子の数が近似(特に結晶後半)してくるため電子による空孔の打ち治し量が無視できなくなり、比抵抗値とその測定位置から偏析係数を求めると0.75より大きな値となる。
【0013】
この発明において、初期融液に、それが含む絶対ボロン濃度(atoms/cc)の25〜35%のリンを添加するが、25%未満では、ボロンの見かけの偏析係数は0.83以下となり、所望の比抵抗値を得られる範囲が限られ、リンを添加する効果が得難く、35%を越えると、ボロンの見かけの偏析係数は0.88以上となり、ほぼ全範囲にわたり所望の比抵抗値を得られるが、インゴットのボトム付近で比抵抗が逆転する部分が現れるか、あるいはそれに準ずる部分が現れるため好ましくない。
【0014】
詳述すると、ボロンの偏析係数は0.75程度、リンの偏析係数は0.35程度、偏析係数が小さいほど、単結晶中に取り込まれる不純物濃度は小さくなるが、これは偏析係数が小さいほど、融液中の不純物濃度の濃縮が進むことを意味する。ボロン濃度とリン濃度が近似している場合、特にインゴットのボトム付近でリンの濃縮が無視できなくなる。
【0015】
ボロン濃度とリン濃度が近似していない(Cボロン≫Cリン)通常の場合は、ボトムに向かうに従いボロン・リンともに増加し、またボロン濃度とリン濃度の差が大きいため見かけの偏析係数も変わらない。ところがボロン濃度とリン濃度が近似している場合、特にCボロン>Cリンで近似している場合には見かけの偏析係数も変わってくる。この時ボトムに向かうに従いボロン・リンともに増加するが、リンの増加量がボロンの増加量を超えるとボロンの見かけの偏析係数が局所的に負になり比抵抗の逆転現象が起こる。よって、不純物の組合せの種類により特定の最適な値が存在することになる。
【0016】
この発明において、チョクラルスキー法における引上げ条件としては、特に限定されないが、初期融液の絶対ボロン濃度は2.7×1016atoms/cc以下であることが好ましい。
【0017】
【実施例】
比較例1
140kgのシリコンを溶融してp型15〜20Ωcmの8インチ単結晶を育成する目的で、ボロン添加量は、5.77×1019atoms/cc相当のボロンを含むドーパントを添加する条件で育成した。
【0018】
各引上率部におけるシリコン中のボロンおよびリン濃度を図1Aに、ボロンとリンの濃度差を図1Bに、各引上率部における比抵抗値を図1Cに示す。
その結果、全体の70%しか所望の比抵抗値を得られなかった。また、シリコンに対するボロンの偏析係数は、0.75であった。
【0019】
比較例2
比較例1と同様に140kgのシリコンを溶融してp型15〜20Ωcmの8インチ単結晶を育成するとき、初期融液が含む絶対ボロン濃度(atoms/cc)の40%のリンを添加したところ、図3にボロンおよびリン濃度、ボロンとリンの濃度差、比抵抗値を示すように全体の100%において所望の比抵抗値を得ることはできたが、インゴットのボトム部付近で比抵抗値が逆転する部分が現れた。
【0020】
実施例1
比較例1と同様に140kgのシリコンを溶融してp型15〜20Ωcmの8インチ単結晶を育成するとき、初期融液が含む絶対ボロン濃度(atoms/cc)の31%のリンを添加して引上げを行った。
【0021】
その結果、図2にボロンおよびリン濃度、ボロンとリンの濃度差、比抵抗値を示すように、全体の90%において所望の比抵抗値を得ることができた。
また、リンを添加しないときのシリコンに対するボロンの偏析係数は、0.75であったが、31%のリンを添加した場合は0.85であった。
【0022】
【発明の効果】
この発明は、ボロンを主添加剤とするp型シリコン単結晶の育成に際し、特定量のリンを添加するという簡便な手段で見かけの偏析係数を大きくでき、シリコン単結晶の比抵抗値を長さ方向に均一に所要値とすることが可能で、歩留りを向上させることができる。
【図面の簡単な説明】
【図1】Aはリン添加量0%の場合の各引上率部におけるシリコン中のボロンおよびリン濃度を示すグラフ、Bは同各引上率部におけるボロンとリンの濃度差を示すグラフ、Cは同各引上率部における比抵抗値を示すグラフである。
【図2】Aはリン添加量31%の場合の各引上率部におけるシリコン中のボロンおよびリン濃度を示すグラフ、Bは同各引上率部におけるボロンとリンの濃度差を示すグラフ、Cは同各引上率部における比抵抗値を示すグラフである。
【図3】Aはリン添加量40%の場合の各引上率部におけるシリコン中のボロンおよびリン濃度を示すグラフ、Bは同各引上率部におけるボロンとリンの濃度差を示すグラフ、Cは同各引上率部における比抵抗値を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for growing a p-type silicon single crystal for a silicon wafer used as a semiconductor material, and more silicon wafers having a required specific resistance value in the length direction of a rod-shaped single crystal are obtained, and the yield is excellent. The present invention relates to a method for growing a silicon single crystal.
[0002]
[Prior art]
When growing a silicon single crystal with the desired resistivity by the Czochralski method, it is necessary to consider the segregation coefficient specific to the substance determined by the type of silicon and additive, and the rear part of the single crystal ingot that is generally pulled up As the specific resistance decreases, the desired specific resistance range deviates from the desired range when the desired specific resistance range is relatively narrow, and the deviated portion cannot be used as a product.
[0003]
Accordingly, various methods for adding n-type impurities have been proposed as methods for offsetting the effects of p-type impurities such as boron and increasing the apparent segregation coefficient (Japanese Patent Laid-Open Nos. 10-29894, 2804456 and 2804455). No. 2, Japanese Patent No. 2756476, etc.). As a result, more wafers having more desired specific resistance values can be obtained from one ingot, and the yield can be improved.
[0004]
[Problems to be solved by the invention]
In the method for adjusting the resistivity of single crystal silicon described in JP-A-10-29894, it is necessary to contain an additive that counteracts the decrease in resistivity at the bottom of the quartz crucible, but at the initial melting, the additive is melted. If you actually try to do it, you have to take a complicated method, or you have to add an additive to the melt in the middle of the growth, some kind of jig is necessary, a simple method is not.
[0005]
In the methods described in Japanese Patent Nos. 2804456 and 2804455, an element (Ga, Sb or In) for decreasing the thermal expansion coefficient in the vicinity of the melting point is additionally added to the Si melt containing B or P, or Ga or Sb. It is said that a single crystal having a uniform impurity concentration in the growth direction can be grown by additionally adding an element (B or P) that increases the thermal expansion coefficient in the vicinity of the melting point to the Si melt to which is added. Yes.
[0006]
In the method described in Japanese Patent No. 2756476, in order to improve the uniformity of the specific resistance value in the wafer surface obtained by the CZ or FZ method, the amount of impurities added by a specific calculation formula is obtained. Add. However, when the n-type impurity is added by this method and the pulling rate is large, there may be a portion where the specific resistance value reverses from increasing to decreasing in the vicinity of the bottom portion of the ingot. Therefore, it is difficult to guarantee the specific resistance value of the ingot, and it may be necessary to measure the total specific resistance value in the wafer forming process, resulting in a complicated process flow.
[0007]
The object of the present invention is to obtain a silicon wafer having a required specific resistance value in the length direction of a p-type rod-shaped silicon single crystal containing boron as a main additive, and an apparent segregation coefficient by means as simple as possible. An object of the present invention is to provide a method for growing a silicon single crystal that can be enlarged to make the specific resistance value of the silicon single crystal uniform and improve the yield.
[0008]
[Means for Solving the Problems]
In the method of increasing the apparent segregation coefficient of the p-type silicon single crystal by means of adding the n-type impurity, the inventor of the n-type impurity makes the specific resistance value uniform in the length direction of the silicon single crystal. As a result of various studies for the purpose of addition, the inventors have found that the object can be achieved by a simple method of simply adding a predetermined amount of phosphorus into the initial melt, and have completed the present invention.
[0009]
That is, the present invention provides an absolute boron concentration (atoms / cc) contained in an initial melt in a method of growing a p-type silicon single crystal containing boron as a main additive by melting raw material silicon by the Czochralski method. Of phosphorus in the initial melt such that the apparent segregation coefficient of boron contained as a main additive is 0.83 to 0.88. In this method, phosphorus is added to the initial melt.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, when 25 to 35% of phosphorus having an absolute boron concentration (atoms / cc) is added to the initial melt, the apparent segregation coefficient of boron becomes 0.83 to 0.88. It is characterized in that a desired specific resistance value can be obtained over almost the entire region, and an effect that a portion where the specific resistance is reversed does not appear near the bottom of the ingot is obtained.
[0011]
That is, in the present invention, the specific resistance value of the silicon single crystal is uniform in the pulling direction, but from the top to the bottom direction of the pulled single crystal, for example, at 90% or less of the length of the single crystal. It is desirable that there is no phenomenon such as an increase from a decrease within a required range such as a value within −30% from the target specific resistance value, and only a decrease tendency is shown.
[0012]
The apparent segregation coefficient of boron is a segregation coefficient when it is obtained from the specific resistance value and its measurement position on the assumption that only boron exists. Boron and phosphorus in silicon undergo independent segregation. When the absolute amounts of boron and phosphorus are measured by photoluminescence and the respective segregation coefficients are obtained, the values are close to 0.75 and 0.35 in both cases of C boron >> C phosphorus and C boron> C phosphorus. . However, when the segregation coefficient is obtained from the specific resistance value and the measurement position, the vacancies generated by boron and the electrons generated by phosphorus cancel each other, so that the segregation coefficient differs from the above. In this case, it is assumed that only boron exists. Specifically, in the case of C boron >> C phosphorus, the number of vacancies is overwhelmingly large, so the value is close to 0.75, but in the case of C boron> C phosphorus, the number of vacancies and electrons Therefore, the amount of vacancies cured by electrons cannot be ignored, and the segregation coefficient obtained from the specific resistance value and the measurement position is a value greater than 0.75.
[0013]
In this invention, 25 to 35% of the absolute boron concentration (atoms / cc) contained therein is added to the initial melt, but if it is less than 25%, the apparent segregation coefficient of boron is 0.83 or less, The range in which the desired specific resistance value can be obtained is limited, and it is difficult to obtain the effect of adding phosphorus. If it exceeds 35%, the apparent segregation coefficient of boron becomes 0.88 or more, and the desired specific resistance value over almost the entire range. However, it is not preferable because a portion where the specific resistance is reversed appears near the bottom of the ingot, or a portion equivalent thereto appears.
[0014]
More specifically, the segregation coefficient of boron is about 0.75, the segregation coefficient of phosphorus is about 0.35, and the smaller the segregation coefficient, the smaller the concentration of impurities incorporated into the single crystal, but this is the smaller the segregation coefficient is. This means that the concentration of impurities in the melt proceeds. When the boron concentration is close to the phosphorus concentration, the concentration of phosphorus cannot be ignored, especially near the bottom of the ingot.
[0015]
Boron concentration and phosphorus concentration are not approximate (C boron >> C phosphorus) In normal cases, both boron and phosphorus increase toward the bottom, and the apparent segregation coefficient also changes due to the large difference between boron concentration and phosphorus concentration Absent. However, when the boron concentration and the phosphorus concentration are approximate, especially when C boron> C phosphorus is approximated, the apparent segregation coefficient also changes. At this time, both boron and phosphorus increase toward the bottom, but when the amount of increase in phosphorus exceeds the amount of increase in boron, the apparent segregation coefficient of boron becomes locally negative, and a reversal phenomenon of resistivity occurs. Therefore, a specific optimum value exists depending on the kind of the combination of impurities.
[0016]
In the present invention, the pulling condition in the Czochralski method is not particularly limited, but the absolute boron concentration of the initial melt is preferably 2.7 × 10 16 atoms / cc or less.
[0017]
【Example】
Comparative Example 1
For the purpose of growing 140 kg of silicon to grow a p-type 15-20 Ωcm 8-inch single crystal, the boron addition amount was grown under the condition of adding a dopant containing boron equivalent to 5.77 × 10 19 atoms / cc. .
[0018]
FIG. 1A shows the boron and phosphorus concentrations in silicon in each pulling rate portion, FIG. 1B shows the concentration difference between boron and phosphorus, and FIG. 1C shows the specific resistance value in each pulling rate portion.
As a result, only 70% of the total specific resistance value was obtained. Moreover, the segregation coefficient of boron with respect to silicon was 0.75.
[0019]
Comparative Example 2
As in Comparative Example 1, when 140 kg of silicon was melted to grow a p-type 15-20 Ωcm 8-inch single crystal, phosphorus of 40% of the absolute boron concentration (atoms / cc) contained in the initial melt was added. As shown in FIG. 3, boron and phosphorus concentrations, boron and phosphorus concentration differences, and resistivity values, the desired resistivity value could be obtained at 100% of the total, but the resistivity value was near the bottom of the ingot. The part where is reversed appeared.
[0020]
Example 1
Similarly to Comparative Example 1, when 140 kg of silicon was melted to grow a p-type 15-20 Ωcm 8-inch single crystal, 31% of the absolute boron concentration (atoms / cc) contained in the initial melt was added. Pulled up.
[0021]
As a result, as shown in FIG. 2 showing boron and phosphorus concentrations, boron and phosphorus concentration differences, and specific resistance values, desired specific resistance values could be obtained in 90% of the total.
Further, the segregation coefficient of boron with respect to silicon when phosphorus was not added was 0.75, but it was 0.85 when 31% phosphorus was added.
[0022]
【The invention's effect】
In the present invention, when growing a p-type silicon single crystal containing boron as a main additive, the apparent segregation coefficient can be increased by a simple means of adding a specific amount of phosphorus, and the specific resistance value of the silicon single crystal can be increased. It is possible to make the required value uniformly in the direction, and the yield can be improved.
[Brief description of the drawings]
FIG. 1A is a graph showing boron and phosphorus concentrations in silicon in each pulling rate portion when phosphorus addition amount is 0%, and B is a graph showing a concentration difference between boron and phosphorus in each pulling rate portion, C is a graph showing a specific resistance value in each pulling rate portion.
FIG. 2A is a graph showing the boron and phosphorus concentrations in silicon in each pulling rate portion when the phosphorus addition amount is 31%, and B is a graph showing the concentration difference between boron and phosphorus in each pulling rate portion; C is a graph showing a specific resistance value in each pulling rate portion.
FIG. 3A is a graph showing the boron and phosphorus concentrations in silicon in each pulling rate portion when the phosphorus addition amount is 40%, and B is a graph showing the concentration difference between boron and phosphorus in each pulling rate portion, C is a graph showing a specific resistance value in each pulling rate portion.

Claims (1)

主添加剤としてボロンを添加し、初期溶融シリコン中に含有されるボロンの絶対濃度(atoms/cc)の25〜35%に相当する濃度のリンを初期融液に添加した溶融シリコンより、チョクラルスキー法で引上げ方向に比抵抗値が均一なp型シリコン単結晶を育成するシリコン単結晶の育成方法。From the molten silicon in which boron is added as a main additive , and phosphorus having a concentration corresponding to 25 to 35% of the absolute concentration of boron (atoms / cc) contained in the initial molten silicon is added to the initial molten liquid. A silicon single crystal growth method for growing a p-type silicon single crystal having a uniform specific resistance value in a pulling direction by a ski method.
JP2001339189A 2001-11-05 2001-11-05 Method for growing silicon single crystal Expired - Lifetime JP3931956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001339189A JP3931956B2 (en) 2001-11-05 2001-11-05 Method for growing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001339189A JP3931956B2 (en) 2001-11-05 2001-11-05 Method for growing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2003137687A JP2003137687A (en) 2003-05-14
JP3931956B2 true JP3931956B2 (en) 2007-06-20

Family

ID=19153577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001339189A Expired - Lifetime JP3931956B2 (en) 2001-11-05 2001-11-05 Method for growing silicon single crystal

Country Status (1)

Country Link
JP (1) JP3931956B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089392A1 (en) 2010-12-28 2012-07-05 Siltronic Ag Method of manufacturing silicon single crystal, silicon single crystal, and wafer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403919B2 (en) 2004-04-01 2010-01-27 株式会社Sumco Durable silicon electrode plate for plasma etching
US7214267B2 (en) 2004-05-12 2007-05-08 Sumitomo Mitsubishi Silicon Silicon single crystal and method for growing silicon single crystal
JP2013129564A (en) 2011-12-21 2013-07-04 Siltronic Ag Silicon single crystal substrate and method of manufacturing the same
KR101674819B1 (en) * 2015-08-12 2016-11-09 주식회사 엘지실트론 Method for Growing Single Crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089392A1 (en) 2010-12-28 2012-07-05 Siltronic Ag Method of manufacturing silicon single crystal, silicon single crystal, and wafer
US8961685B2 (en) 2010-12-28 2015-02-24 Siltronic Ag Method of manufacturing silicon single crystal, silicon single crystal, and wafer

Also Published As

Publication number Publication date
JP2003137687A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
CN106795647B (en) Resistivity control method and n-type monocrystalline silicon
TWI745520B (en) Methods for forming single crystal silicon ingots with improved resistivity control
WO2004106597A1 (en) Indium phosphide substrate, indium phosphide single crystal and process for producing them
US8043428B2 (en) Process for production of silicon single crystal
CA1242375A (en) Single crystal of compound semiconductor of groups iii-v with low dislocation density
CN114555871A (en) Method for growing nitrogen-doped silicon single crystal ingot using Czochralski method and silicon single crystal ingot grown by the method
JPH0812493A (en) Production of silicon single crystal
JP4380204B2 (en) Silicon single crystal and single crystal growth method
JP3931956B2 (en) Method for growing silicon single crystal
JP4908730B2 (en) Manufacturing method of high resistance silicon single crystal
JPS60122798A (en) Gallium arsenide single crystal and its production
US4584174A (en) Single crystal of compound semiconductor of groups III-V with low dislocation density
US7214267B2 (en) Silicon single crystal and method for growing silicon single crystal
KR101029141B1 (en) Process for Producing P Doped Silicon Single Crystal and P Doped N Type Silicon Single Crystal Wafer
JP3536087B2 (en) Method for producing dislocation-free silicon single crystal
Yonenaga et al. Segregation coefficients of various dopants in SixGe1− x (0.93< x< 0.96) single crystals
JPH11268998A (en) Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same
JP3141975B2 (en) Method for growing doped silicon single crystal
JP2562579B2 (en) Single crystal manufacturing method
JP4755740B2 (en) Method for growing silicon single crystal
JP3237408B2 (en) Method for manufacturing compound semiconductor crystal
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL
US11085128B2 (en) Dopant concentration control in silicon melt to enhance the ingot quality
WO2004065667A1 (en) Process for producing single crystal
JPS6126591A (en) Crystal growing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20020415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20020830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070306

R150 Certificate of patent or registration of utility model

Ref document number: 3931956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term